当前位置: 仪器信息网 > 行业主题 > >

激光微纳加工系统

仪器信息网激光微纳加工系统专题为您提供2024年最新激光微纳加工系统价格报价、厂家品牌的相关信息, 包括激光微纳加工系统参数、型号等,不管是国产,还是进口品牌的激光微纳加工系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光微纳加工系统相关的耗材配件、试剂标物,还有激光微纳加工系统相关的最新资讯、资料,以及激光微纳加工系统相关的解决方案。

激光微纳加工系统相关的资讯

  • 欧波同应邀参加中国激光微纳加工技术大会
    2016 年 9 月 21-23 日,“中国激光微纳加工技术大会”在苏州召开。国内著名激光专家集结于此,共同商讨微纳加工,为推动苏州乃至全国的激光产业发展贡献力量。欧波同有限公司应邀出席了此次盛会并带来了报告分享,为激光行业注入了国际尖端的科技力量。 本次会议的三大主题分别为“激光微纳加工前沿技术”、“集成电路 IC、光伏、电子芯片等的激光处理”、“激光在电子产品、移动终端的工艺解决方案”。 欧波同高级工程师为与会专家学者带来了“欧波同微纳米结构显微分析系统解决方案”的精彩分享。介绍了欧波同旗下微纳米分析产品线,从光学微观形貌观察到电子光学纳米形貌的分析,以及能谱、背散射、背散射衍射、波谱、阴极荧光等一系列电镜辅助分析手段,为与会专家提供了一套完整的微纳米全系统实验室解决方案,充分拓展了蔡司显微镜在微纳米研究中的功能。 工程师还为与会专家学者现场展示了蔡司的显微镜设备,并与许多参会专家纷纷就自己在实际工作中遇到的问题进行了深入的交流探讨。 目前,微纳加工技术已成为国家科学技术发展水平的重要标志。近年来,微纳技术的出现促使微纳加工向其极限加工精度——原子级加工进行挑战。 未来,激光微纳加工技术市场前景将更加广阔,此次论坛的开展将有利于激光微加工技术的普及推广,帮助客户找到最适用的显微镜分析系统解决方案一直是欧波同所追求的方向,作为将国际尖端显微镜检测技术引进到中国的先驱,提高中国激光微纳加工技术的整体质量控制水平是我们的责任。希望通过我们的技术与服务,不断为中国各领域的质量检测和科研创新带来全新的视野!
  • 中国科大在激光微纳制造领域取得重要进展
    中国科学技术大学苏州高等研究院杨亮研究员课题组开发了一套金属氧化物半导体激光微纳制造新方法,实现了亚微米精度的ZnO半导体结构的激光打印,并且将其与金属激光打印相结合,首次验证了二极管、三极管、忆阻器及加密电路等微电子元器件和电路的一体化激光直写,从而将激光微纳加工的应用场景推广到微电子领域,在柔性电子、先进传感器,智能微机电系统等领域具有重要的应用前景。该研究成果近期以“Laser Printed Microelectronics”为题发表在《Nature Communications》上。印刷电子是利用打印的方法制造电子产品的新兴技术,满足了新一代电子产品柔性与个性化的特征需求,将为微电子行业带来新的技术革命。在过去的20年里,喷墨打印、激光诱导转移(LIFT)或其他打印技术取得了长足发展,能够在不需要洁净室的环境下制造功能性有机物和无机微电子器件。然而,以上打印方式典型特征尺寸通常在几十微米量级,而且常常需要高温后处理工艺,或者依赖多种工艺结合以实现功能器件的加工。激光微纳加工技术利用激光脉冲与材料的非线性作用,可以100 nm精度实现传统方法难以实现的复杂功能结构和器件的增材制造。但是,目前大部分激光微纳加工结构是单一的聚合物材料或金属材料。半导体材料激光直写方法的缺失也导致目前激光微纳加工技术的应用难以拓展至微电子器件领域。图1:金属/半导体材料激光复合打印。a,d:金属铂;b,e:氧化锌半导体 c,f:金属银。在这篇论文中,杨亮研究员与德国及澳大利亚的研究人员合作,创新性地开发了激光打印作为一种功能性电子器件打印技术,在单一激光加工系统中实现了半导体(ZnO) 和导体(Pt 和 Ag)等多种材料的复合激光打印(图1),并且完全不需要任何高温后处理工艺步骤,最小特征尺寸1 µm。 这一突破使得可以根据微电子器件的功能对导体和半导体,甚至是绝缘材料的布局进行定制化设计和打印,极大地提高了微电子器件打印的精度、灵活性、可控性。在此基础上研究团队成功实现了二极管、忆阻器和物理不可复制加密电路的一体化激光直写(图2)。该技术与传统的喷墨打印等技术兼容,并且有望推广至多种P型、N型半导体金属氧化物材料的打印,为复杂、大尺寸、三维功能微电子器件的加工提供了系统的新方法。图2:基于激光打印技术成功实现了忆阻器及物理不可复制加密电路等功能微电子器件的一体化打印。中国科学技术大学苏州高等研究院的杨亮研究员为论文的第一作者和共同通讯作者,合作者包括德国卡尔斯鲁尔大学、德国海德堡大学以及澳大利亚昆士兰大学的研究人员。该项研究工作得到了国家自然科学基金以及德国联邦科学基金的支持。
  • 重磅新品!Nanoscribe全能双光子微纳加工系统Quantum X shape
    Quantum X shapeReshaping precision,output,usabilityQuantum X shape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。作为2019年推出的第一台双光子灰度光刻 (2GL ) 系统Quantum X的同系列产品,Quantum X shape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到最高水平的生产力和打印质量。作为一款真正意义上的全能机型,该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。Quantum X shape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等)。作为Nanoscribe的新型高精度3D打印系统,Quantum X shape可自由设计几乎任何2.5D或3D形状的结构,并提供大尺寸高质量结构制作。Reshaping precision.作为已被工业界认可的Quantum X平台的二代加工系统,Quantum X shape在3D微纳加工领域无与伦比的精度,比肩于Nanoscribe公司在表面结构应用上突破性的双光子灰度光刻(2GL )。全新的Quantum X shape的高精度有赖于其最高能力的体素调制比和超精细处理网格,从而实现亚体素的尺寸控制。此外,受益于双光子灰度光刻对体素的微调,该系统在表面微结构的制作上可达到超光滑,同时保持高精度的形状控制。双光子聚合(2PP)是一种可实现最高精度和完全设计自由度的增材制造方法。而作为同类最佳的3D微加工系统Quantum X shape具有下列优异性能:在所有空间方向上低至 100 纳米的特征尺寸控制,适用于纳米和微米级打印制作高达 50 毫米的目标结构,适用于中尺度打印左图:机械器件的快速高精度小批量生产。200个结构的通宵产量右图:使用Nanoscribe微纳加工技术制作的3D微针,轻松实现具有高纵横比,形状精度和锋利边缘的不同设计变化Reshaping output.高速3D微纳加工系统Quantum X shape可实现一流形状精度和高精度制作。这种高质量的打印效果及产量是结合了最先进的振镜系统和智能电子系统控制单元的结果,同时还离不开工业级飞秒脉冲激光器以及平稳坚固的花岗岩操作平台。Quantum X shape具有先进的激光焦点轨迹控制,可操控振镜加速和减速至最佳扫描速度,并以 1 MHz 调制速率动态调整激光功率。Quantum X shape 带有独特的自动界面查找功能,可以以低至 30 纳米的精度检测基板表面。这种在最高扫描速度下的纳米级精度体现,再加上自校准程序,可在最短的时间内实现可靠和准确的打印,为 3D 微纳加工树立了新标杆。这些优异的性能使Quantum X shape 成为快速原型制作和应用于微纳光学、微流体、材料表面工程、MEMS 等其他领域中晶圆级规模生产的理想工具。Reshaping usability.通过系统集成触控屏控制打印文件来大大提高实用性。通过系统自带的nanoConnectX软件来进行打印文件的远程监控及多用户的使用配置,实现推动工业标准化及基于晶圆批量效率生产。Quantum X shape作为具备光敏树脂自动滴配功能的直立式打印系统,非常适合标准6英寸晶圆片工业批量加工制造。用户还可以通过设备的集成触控屏直接或远程访问Quantum X shape打印系统来控制打印作业。通过远程访问软件nanoConnectX ,用户可以看到触控屏的显示选项并操控所有功能,实现从任何地方启动、监控和控制连接打印系统的打印作业进程。这使得整个小组成员(例如研究小组或部门所有成员)均可在个人电脑访问打印系统。实现了最低限度减少实验室准备时间,简化并提高整个制备、执行和监控打印作业效率,并在共享系统时大大提升团队协作。nanoConnectX远程访问软件实现任意电脑连接到Quantum X shape系统进行远程执行,检查和控制整个打印作业。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • NanoFrazor激光直写 “Merry Christmas”,献上微纳结构加工的圣诞祝福
    3d christmas card made by the nanofrazor in ppa resist.the dimensions: 12μm*7μm , depth from 0 to 60nm 这幅圣诞贺卡的整个画面尺寸仅有12μm*7μm,厚度仅有60nm,图中“Merry Christmas”字迹清晰且格外流畅,风景刻画得栩栩如生,在圣诞的钟声敲响之前,Quantum Design中国子公司献上的这幅Nanofrazor直写的“Merry Christmas”纳米结构一定能够为您带来好的圣诞祝福。 Nanofrazor书写的纳米结构欣赏 Nanofrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的新研究成果。Nanofrazor纳米3D结构直写机采用直径为5nm的探针,通过静电力控制实现直写3d高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测,次将纳米尺度下的3D结构直写工艺快速化、稳定化。该技术自问世以来已经多次刷新了上小3D立体结构的尺寸,创造了上小的马特洪峰模型,小立体地图,小刊物封面等记录。2016年10月,瑞士swisslitho公司又发布了一款NanofrazorS cholar,这款小型的纳米加工设备竟然可以放置在实验室桌面上,而且分辨率依然可达到xy:10nm;z:2nm,轻松实现小于20nm的线宽与间距,更加便于课题组内进行纳米原型器件、微纳光学/光子学/磁学,NEMS、超材料等领域纳米机构与器件的设计与制备,是纳米结构和器件加工制备领域的之选。 Nanofrazor落户澳大利亚墨尔本微纳加工中心 澳洲台Nanofrazor系统也于近日在墨尔本纳米加工中心(MCN)成功安装,该纳米加工中心是澳大利亚大的对外公开的纳米加工洁净室。斯温伯尔大学的SauliusJuodkazis教授率先推动Nanofrazor在MCN的采购,并获得墨尔本大学、莫纳什大学和斯威本科技大学出资支持。他们都将受益于纳米制造新技术带来的许多新的可能性,而这些新的机遇和可能主要来自Nanofrazor的高分辨率和3D纳米结构的制备能力。 相关产品: 3d纳米结构高速直写机nanofrazor : http://www.instrument.com.cn/netshow/c226568.htm
  • 280万!东南大学微纳系统国际创新中心激光共聚焦显微镜采购项目
    项目编号:JSTCC2200213627(SEU-ZB-220613)项目名称:东南大学微纳系统国际创新中心激光共聚焦显微镜采购项目预算金额:280.0000000 万元(人民币)最高限价(如有):270.0000000 万元(人民币)采购需求:序号标的名称数量01激光共聚焦显微镜1套 合同履行期限:合同生效(关境内产品)或开具信用证(关境外产品)后180天内设备安装调试合格。本项目( 不接受 )联合体投标。
  • 济南微纳35年专注激光粒度仪研发
    济南微纳颗粒仪器股份有限公司是集研发、生产、销售激光粒度仪仪器设备于一体的高新技术企业(证券名称:“微纳颗粒”,证券代码430410)。公司的前身为山东建材学院颗粒测试研究所,研究激光粒度测试技术自1982年承担国家七五科技攻关项目伊始,至今已有35余年的历史。 济南微纳35年专业研发激光粒度仪,30余项专利技术,从成功研发中国第一台激光粒度仪至今连创中国十多个第一!!! 济南微纳是行业领先品牌—"中国颗粒测试技术的领航者"、"中国颗粒测试第一股"! 主要产品激光粒度分析仪、纳米激光粒度仪、喷雾激光粒度仪、颗粒图像分析仪等系列均代表同行业最高水平. 激光粒度仪咨询电话: 4000-1919-82 0531-88873312 (济南微纳颗粒仪器股份有限公司) 公司总部员工有100人左右,其中高级工程师、工程师20人,拥有一支高科技含量的技术研发团队。微纳颗粒公司以高校为依托,培养了一流的技术开发团队,90%的员工具有本科以上学历,其中包括光学、电子、计算机、化工、材料各方面的专家和教授。公司的首席专家任中京教授,是我国激光粒度分析技术的开创者,在颗粒测试领域享有崇高声誉。 微纳颗粒公司以“发展与普及当代先进的颗粒测试技术”为己任,研制的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪、在线粒度监测仪、颗粒计数器等系列的颗粒分析仪器均代表了国内同行业最高水平,并于2006年推出代表世界先进水平的在线测试激光粒度仪,2007年推出动态颗粒图像分析仪,2009年推出国内第一台动态光散射原理的光相关纳米粒度仪。将中国颗粒测试技术推向一个全新的高度。多年来济南微纳以先进的科技实力及过硬的产品质量,为中国科学学院、山东省科学院、北京大学、清华大学、上海交通大学等高校科研院所、及中国石化胜利油田有限公司、鞍钢集团、立邦涂料有限公司、中国民用航空总局等各行业的龙头企业提供技术支持与服务,获得了广大用户的好评。 济南微纳从成功研发中国第一台激光粒度仪至今连创中国十多个第一。济南微纳在颗粒测试领域不仅技术上遥遥领先,而且引领着中国颗粒测试技术的发展方向,并且多项产品和技术获得国家专利。 中国第一台激光粒度仪! 中国第一台干法激光粒度仪! 中国第一台动态颗粒图像仪! 中国第一台喷雾激光粒度仪! 中国第一台纳米激光粒度仪! 中国第一个在线粒度监测系统! 为追求公司的长远战略,实现更大空间的跨越式发展。在山东省济南市和高新区政府的大力支持下,我公司于2010年完成了股份制公司改制,2013年通过新三板上市评估流程。2014年作为中国颗粒测试行业的第一支股票,证监会核定微纳公司证券名称为:“微纳颗粒”,证券代码为:430410。并于2014年元月24日在北京《全国中小企业股份转让系统》进行上市挂牌。微纳公司成功登陆新三版,实现了中国颗粒仪器界在股市上零的突破,代表着一个行业走向成熟的里程碑。微纳公司将秉承自身作为中国颗粒测试技术的领航者的职责,再接再厉为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • 630万!山东大学原位3D折射率成像及激光纳米加工系统采购项目
    项目编号:SDDX-SDLC-GK-2022014项目名称:山东大学原位3D折射率成像及激光纳米加工系统购置预算金额:630.0000000 万元(人民币)最高限价(如有):630.0000000 万元(人民币)采购需求:原位3D折射率成像及激光纳米加工系统,亟需购置,具体内容详见招标文件。标段划分:划分为1包合同履行期限:质保期:国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。20230205山东大学原位3D折射率成像及激光纳米加工系统购置招标文件(定稿).doc
  • 飞秒激光结合自组装复合加工技术获突破
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。/pp style="text-indent: 2em "手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。/pp style="text-indent: 2em "在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。/pp style="text-indent: 2em "此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋)/p
  • 双光子微纳打印系统Quantum X在2020美国西部光电展深受关注
    The SPIE Photonics West 2020 成功落幕,作为北美地区规模最大光学领域贸易博览会,也是光电子行业全球数一数二的知名展览会,超过1300家公司参加了展会。此次展会开展了超过5000个精彩的会议演讲,包含多个主题,例如生物光子学,工业激光器,光电子学,微加工,微电子机械系统,微光机电系统和显示器等,展现了最前沿的光学和光子技术。Nanoscribe在展会上介绍了3D微加工领域的进展,其中新品Quantum X系统引起了光子学界的浓厚兴趣。参观者对于多层衍射光学元件和新型折射微光学设计的高端制造也进行了积极的讨论。Quantum X 新型超高速无掩模光刻系统的技术核心是Nanoscribe特别研发的双光子灰度光刻技术(2GL)。该设备能在保持极高精度的同时达到160nm横向最低打印线宽,≤10nm表面粗糙度,使其同时具备高速打印,完全设计自由度和超高精度的特点。从而满足了高端复杂增材制造对于优异形状精度和光滑表面的极高要求。此外,在展会上发布的新型IP-Visio打印材料也受到了生物医学领域的巨大反响。这种打印材料具有无生物毒性,低荧光的特点且专为生物兼容微结构3D微加工而设计。借助自住研发的打印材料IP-Visio, Nanoscribe的3D打印设备为生产3D细胞培养和组织工程所需的复杂微环境开辟了新的道路。会议期间各界的巨大反响证明了微加工已然成为光学和光子学行业的关键技术之一。 Nanoscribe秉持着卡尔斯鲁厄理工学院(KIT)的技术背景,经过十几年的不断研究和成长,已然成为微纳米生产领域的领导企业。为了拓展并加强中国及亚太地区的销售推广和售后服务范围, 在2017年底Nanoscribe在上海成立了独资子公司 - 纳糯三维科技(上海)有限公司,并设立亚太实验室供参观访问。更多咨询可联系Nanoscribe纳糯三维科技(上海)有限公司 销售技术团队
  • ZOLIX发布微纳器件光谱响应度测试系统新品
    DSR300系列微纳器件光谱响应度测试系统是一款专用于低微材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的*对光谱祥响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是微纳器件研究的优选。 功能:? 光谱响应度? 外量子效率? 单色光/变功率IV;? 不同辐照度IT曲线(分辨率200ms)? 不同偏压下的IT曲线? LBIC,Mapping? 线性度测试? 响应速率测试 微纳器件光谱响应度测试系统主要技术参数显微镜头标配:10倍超长工作距离物镜,工作距离大于17mmNA值:0.42光谱范围:350-800nm选配:1,50倍超长工作距离消色差物镜,工作距离大于17mmNA值:0.42光谱范围:480-1800nm 2,15倍紫外物镜,工作距离大于8.5mmNA值:0.32光谱范围:250-700nm 3,50倍超长工作距离紫外物镜,工作距离大于12mmNA值:0.42光谱范围:240-500nm 4,40倍反射式长工作距离工作距离大于7.8mmNA值:0.5光谱范围:200nm-20um光斑中心空心光源选配光源1、半导体激光器波长:405nm,532nm,633nm,808nm,980nm可选不稳定性:<1% 2、皮秒脉冲激光器波长:375nm,405nm,488nm,785nm,976nm可选脉宽:100ps频率:1-20M Hz 3、氙灯光源光谱范围:250nm-1800nm不稳定性:<1% 4、超连续白光激光光源光谱范围:400-2400nm频率:0.01MHz-200MHz脉宽:100ps光谱仪焦距:300mm;相对孔径:f/3.9;光学结构:C-T;光谱仪分辨率:0.1nm;倒线色散:2.7nm;波长准确度:±0.2nm波长重复性:±0.1nm扫描步距:0.005nm狭缝规格:圆孔抽拉式固定狭缝,孔径:0.2mm,0.5mm,1mm,1.5mm,2mm,2.5mm,3mm;三光栅塔台;光栅配置:1-120-300、1-060-500、1-030-1250,光栅尺寸:68×68mm6档自动滤光片轮,光谱范围200-2000nm;内置电动机械快门,软件控制快门开关;杂散光抑制比:10-5探针台配置4个探针座,配20/10微米针尖探针2米三同轴电缆,漏电流小于1pA。真空吸附样品台。探针座:XYZ方向12mm调节行程,0.75um调节分辨率,0-30°调节探针角度。LBIC MaappingXY方向行程50mm,分辨率5um。数釆v 锁相放大器斩波频率:20Hz~1KHz;频率6位显示,2.4英寸屏,320×240液晶显示;电压输入模式:单端输入或差分输入;电压、电流两种输入模式; 满量程灵敏度:1nV至1V;电流输入增益:106或108V/A;动态储备:>100dB;时间常数范围:10μs至3ks; v keithley2612B量程:100nA/1A最小信号:1nA本地噪音:100pa分辨率:100fa通道数:2 v keithley2636B量程:1nA/1A最小信号:10pA本地噪音:1pa分辨率:10fa通道数:2制冷样品台温度范围:-196℃-600℃,(-196℃需要选择专用冷却系统)全程温度精度/温度性:0.1℃/<0.01℃光孔直径:2.4mm样品区域面积:直径22mm两个样品探针,1个LEMO接头(可增加至1探针)工作距离:4.5-12.5mm气密样品腔室,可充入保护性气体独立温度控制响应速率测试示波器型号:MDO32模拟带宽100MHz采样率5GS/s记录长度10M时间范围:uS-S,需要配合调制激光器使用时间范围:10nS-S,需要配合皮秒脉冲激光器使用 三维可调高稳定探针台结构,方便样品位置调节。内置三路半导体激光器或者两路光纤激光器,外置一路激光光路。可以引入可调单色光源,进行全光谱范围的光谱响应度测试。测试功能曲线:40um光斑@550nm@50倍物镜200um光纤 70um光斑@550nm@50倍物镜400um光纤5um光斑@375nm皮秒激光器@40倍物镜 紫外增强氙灯和EQ99光源的单色光能量曲线,使用40倍反射式物镜,300mm焦距光谱仪,光谱仪使用1200刻线300nm闪耀光栅,光斑直径大小80um。创新点:"针对微纳光电器件探测器的测试系统。监控样品位置,实现微小光斑的宽波段光谱响应度测量宽波段显微光谱测试系统。与常规的显微系统相比较,其光源使用是宽波段光源,而不是单色光。是针对针对微纳光电器件开发的专用测试系统。"微纳器件光谱响应度测试系统
  • 西安光机所成功推出三维光纤激光加工系统
    近日,西安光机所瞬态光学与光子技术国家重点实验室成功进行了三维光纤激光加工系统的演示试验,得到在场专家的好评。该系统所使用的500W光纤激光器是由中科院西安光机所新孵化企业西安中科梅曼激光科技有限公司研制。该企业致力于高功率光纤激光器的研发、生产和销售,并可为光纤激光加工系统提供全套的解决方案。现已具备200W~1000W光纤激光器的生产能力,所推出的光纤激光器在切割速度、切割质量等方面与国外同类产品相比具有较强的竞争优势。  三维光纤激光加工系统  500W光纤激光器
  • Nanoscribe微纳3D打印系统助力扫描探针成像系统技术突破
    研究背景为了探索待测物微纳米表面形貌,探针扫描成像技术一直是理论研究和实验项目。然而,由于扫描探针受限于传统加工工艺,在组成材料和几何构造等方面在过去几十年中没有显著的研究进展,这也限制了基于力传感反馈的测量性能。 如何减少甚至避免因此带来的柔软样品表面的形变,以实现对原始表面的精确成像一直是一个重要议题。 Nanoscribe设备加工的“减震器“纳米探针近日,东南大学生物科学与医学工程学院、生物电子学国家重点实验室顾忠泽教授和赵祥伟教授等人在Nature热门子刊Nature Communications上报道了一种新的扫描探针设计和加工方案,使用德国Nanoscribe公司的微纳3D打印系统制作一种基于层次堆叠单元的低密度三维微纳结构,旨在利用谭政自身机械特性来减少探针-样品的过度机械作用。在该工作中,研究人员借鉴生物组织的多孔结构在能量吸收,传导和缓释的有效作用,提出了低密度的结构可控机械材料(Materials with Controlled Microstructural Architecture, MCMA), 作为探针本体的构筑设计,并且通过 Nanoscribe公司先进的微纳米增材技术进行激光直写制备。微结构缓冲材料与扫描成像系统的创新集成为尖端成像方案开辟了林一条道路,促进了基于3D激光直写制备的多功能扫描探针成像系统的发展。Nanoscribe公司的系列产品是基于双光子聚合原理的高精度微纳3D打印系统,双光子聚合技术是实现微纳尺度3D打印最有效的技术,其打印物体的最小特征尺寸可达亚微米级,并可达到光学质量表面的要求。Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备
  • 三十年磨一剑:济南微纳隆重推出在线激光粒度监测仪
    微纳公司拟于4月27日-29日组团参加北京中国国际展览中心举办的《中国国际水泥技术及装备展览会》。会上将隆重推出《在线激光粒度监测仪》,并现场征集免费试用单位。 微纳颗粒是一家专门研制生产颗粒仪器的高科技企业,2014年一月登陆新三板。股票名称:微纳颗粒 股票代码:430410 微纳自1986年承担国家七五科技攻关项目“水泥颗粒级配在线分析仪”开始,从未中断在线粒度仪的研究工作。迄今已有30年。此期间,与上海化机三厂合作成功研制了在线粒度仪一台;为绵阳某研究院研制了纳米金属粉在线粒度仪一台;为了在线粒度测试相关技术的研究,微纳公司在企业内建立了在线粒度测试实验平台一套;2014年为南京某大型水泥企业研制了矿渣微粉在线激光粒度监测仪一台,已经运行半年,效果良好得到客户认可。现在24小时工作,运行正常。 本次参展的是最新设计的在线粒度监测仪产品Winner7303型。它采用了多项专利技术,经过了现场考验,可以长期连续实时提供有代表性的粒度数据,对于水泥工业优质高效节能和提高自动化水平具有重要意义。 为了推广此新产品。微纳决定在展会现场公开征集3家有规模的水泥企业免费试用。希望有意向的企业领导和专家莅临指导、洽谈,勿失良机。
  • 中国科大实现飞秒激光复合材料加工多关节微机械
    近年来,飞秒激光双光子聚合技术作为一种具有纳米精度的真三维加工方式已被广泛应用于制造各种功能微结构,这些微结构在微纳光学,微传感器和微机器系统等领域展现出广阔的应用前景。然而,如何利用飞秒激光实现复合多材料加工,并进一步构建具有多模态的微纳机械仍极具挑战。鉴于此,中国科学技术大学微纳米工程实验室吴东教授团队提出了一种飞秒激光二合一写入多材料的加工策略,制造了由温敏水凝胶和金属纳米颗粒组成的微机械关节,随后开发出具有多种变形模式(10)的多关节人形微机械。该工作于7月17日以“Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing”为题发表于Nature Communications。 图1. 受人类多关节变形启发,利用飞秒激光二合一多材料加工策略构建多关节人形微机械。   飞秒激光二合一加工策略包括使用不对称双光子聚合构建水凝胶关节以及在关节局部区域激光还原沉积银纳米颗粒(Ag NPs)(图1)。其中,非对称光聚合技术使水凝胶微关节局部区域的交联密度产生各向异性,最终使其可以实现方向和角度可控的弯曲变形。原位激光还原沉积可以在水凝胶关节上精确加工银纳米颗粒,这些银纳米颗粒具有很强的光热转换效应,使多关节微机械的模态切换表现出超短响应时间(30 ms)和超低驱动功率(10 mW)的优异特性。 图2. 基于空间多焦点光束刺激,多关节人形微机械展现出多个变形模态。   作为一个典型的示例,八个微关节被集成在一个人形微机械上。随后,利用空间光调制技术在3D空间内实现多焦点光束,进而精确地刺激每一个微关节。多个关节之间的协同变形促使人形微机械手完成多个可重构的变形模态。最终,在微米尺度下实现了“舞动的微机器人”(图2)。   最后,作为概念验证,通过设计微关节的分布和变形方向,双关节微型机械臂可以对同向和异向的多个微颗粒进行收集(图 3)。总之,飞秒激光二合一加工策略可以在各种三维微结构局部区域构建可变形的微关节,实现多种可重构的变形模态。未来,具有多种变形模态的微机械手将在微型货物收集、微流体操作和细胞操纵方面展现广阔的应用前景。 图3. 通过设计微关节的位置和变形方向,双关节微机械臂能够收集不同位置和方向的多个微货物。   辛晨博士和任中国博士为该工作的共同第一作者,通讯作者为吴东教授。论文的合作者还包括中科大的褚家如教授、胡衍雷教授、李家文副教授、香港中文大学的张立教授等。该项研究工作得到了国家自然科学基金、科技部国家重点研发计划等基金的支持。
  • Nanoscribes3D微纳加工技术 - 光谱学3D非球面微透镜研发
    近日,一个由华沙大学物理系,日本筑波物质材料研究所以及法国格勒诺布尔国家科学研究中心所组成的国际科研团队的科学家们通过运用Nanoscribe的3D微纳加工技术设计出了如头发丝般细小的纳米级3D非球面微透镜组。此款具有3D形状的微透镜组可以更大程度从半导体样品导入光源,并将射出部分光源重整为超窄光束。这一突破性的研究成果可替代用于光学测量的实验装置中笨重的显微镜物镜。该微透镜增加了两个数量级的可用工作距离(即透镜前端到样品表面之间的距离),为各种光学实验开辟了全新视角。此外,该3D微透镜也可以在不同材料(包括易碎的石墨烯类材料)上进行3D打印制作。图片来自华沙大学Aleksander Bogucki教授:使用Nanoscribe双光子微纳3D打印设备Photonic Professional系列在短时间内制作的3D非球面微透镜阵列。微透镜的优点透镜是一种人们非常熟悉的光学元件,它属于被动光学元件,在光学系统中用来会聚、发散光辐射。随着科学技术的进步,传统方法制造出来的光学元件已经不能满足当今科技发展的需要了。而利用微光学技术所制造出的微透镜和微透镜阵列以其体积小、重量轻、便于集成化、降低制造和包装成本等优点,已然成为新的科研发展方向。微透镜用处广泛,可用于例如照明,显示器,传感器和医疗设备等领域。有效地进行光的传输和收集,对于微光学系统的性能和潜能有着至关重要的作用。通常,我们会运用不同的方式来增加全内反射临界角或减少界面处的菲涅尔反射,例如在光源发射器下方放置镜子,在防放射层上覆盖基材表面以减少内部反射等。在对于半导体纳米结构,通常会使用半球形的固体浸没透镜(SIL)来解决问题。通过三维减材制造制造的SIL可以增加23%甚至40%的光子提取。但是,这些方法都不能达到令人满意的效果,仍然需要借助使用具有高数值孔径的聚光光学器件。而科学家们此次通过使用Nanoscribe3D激光直写技术(DWL)制造的椭圆微透镜(μ透镜)适用于光谱测量中的点光源发射器。基于菲涅耳反射的减少和全内反射的临界角的增加的原理,该非球面透镜成倍提高了光的提取效率。此外,还将收集的光源重整为超低发散光束(测得的光束发散半角小于1°)。因此,发出的光可以直接以约600-700 mm的有效WD引入聚光光学器件,这是标准的高NA长WD显微镜物镜的70倍。在传统实验中,科学家们通常会将重达半公斤,几乎手掌大小的重型显微镜物镜放置在距离分析样品几毫米的位置上。显而易见,这会限制很多现代实验的操作和可行性,例如在脉冲高磁场,低温或微波腔中的测量实验。而这款基于Nanoscribe3D微纳加工技术具有微型化和轻便特性的非球面微透镜则可以轻松解决这类问题。科学家们对该非球面微透镜阵列在两种类型的半导体发射器上的性能已得到验证:自组装量子点(QDs)和新型准二维材料制成的范德华异质结构(van der Waals heterostructures)。3D微纳加工技术应用于微透镜阵列Nanoscribe的双光子微纳3D打印设备具有极大设计自由度的特点,因此可以轻松制作出具有光学质量表面的各种光学元件,例如球形,非球形甚至自由曲面的微透镜。此外,Nanoscribe的3D微纳打印设备速度很快,在短时间内即可以实现在样品上打印数百个微透镜,并按规则或随机排列阵列,用来实现微透镜阵列的不同新功能及应用。相关文献:"Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses" - Nature :Light:Science & Applicationshttps://www.nature.com/articles/s41377-020-0284-1更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 双光子灰度光刻微纳打印设备
  • 热烈祝贺微纳激光粒度分析软件V3.0通过第三十五批软件产品评估及认定
    《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(国发〔2000〕18号,以下简称国发18号文件)印发以来,我国软件产业和集成电路产业快速发展,产业规模迅速扩大,技术水平显著提升,有力推动了国家信息化建设。但与国际先进水平相比,我国软件产业和集成电路产业还存在发展基础较为薄弱,企业科技创新和自我发展能力不强,应用开发水平急待提高,产业链有待完善等问题。济南微纳颗粒仪器股份有限公司是专业研发激光粒度仪,纳米粒度仪,喷雾粒度仪等产品的公司,自成立以来一直紧跟国家形势,不断研发新的应用在激光粒度仪上的激光粒度分析软件。在2016年济南微纳成功研制出激光粒度分析软件V3.0,并通过了第三十五批软件产品评估及认定, 2017年会投入市场使用,相信在社会各界监督下,微纳未来一定会做的越来越好。2016年12月26日至2016年12月30日山东省软件协会公布了2016年第三十五批软件产品评估及认定名单,现将部分获奖名单公布如下:
  • Nanoscribe3D微纳加工技术开启自由曲面微光学新纪元
    德国 Nanoscribe 公司推出针对微光学元件(如微透镜、棱镜或复杂自由曲面光学器件等)具有特殊性能的新型材料 – IP-n162光刻胶。全新的光敏树脂材料具有高折射率,高色散和低阿贝数的特性,这些特性对于3D微纳加工创新微光学元件设计尤为重要,尤其是在没有旋转对称和复合三维光学系统的情况下。“使用IP-n162这样的高折射率光敏树脂可以实现强大的设计自由度。设计人员可以利用更少的时间和成本制造出更强大、更薄、弧度更小且更紧凑的微透镜。”Simon Thiele,由BMBF资助的同名衍生公司项目PRINTOPTICS和CTO项目参与人说道。这个项目由德国Nanoscribe公司携手斯图加特大学和Karl Storz医学技术公司,共同合作研发在用于内窥镜应用中的光纤上打印微型光学器件。图为Nanoscribe公司高精度双光子微纳3D打印设备:Photonic Professional GT2 & Quantum X以及新型材料IP-n162全新IP-n162光刻胶是为基于双光子聚合技术的3D打印量身定制的打印材料。高折射率材料可以完美配合Nanoscribe公司的双光子微纳3D打印系统PPGT2和Quantum X,制作出具有高精度形状精度的创新微光学设计,并将高精度微透镜和自由曲面3D微光学提升到一个新的高度。主要特点:高折射率光刻胶,在589nm波长下n = 1.62低吸收率适合红外微光学,也是光通讯、量子技术和光子封装等需要低吸收损耗应用的最佳选择高色散低阿贝数由于其光学特性,高折射率聚合物可促进许多运用突破性技术的各种应用,例如光电应用中,他们可以增加显示设备、相机或投影仪镜头的视觉特性。此外,这些材料在3D微纳加工技术应用下可制作更高阶更复杂更小尺寸的3D微光学元件。例如适用于AR/VR应用的微型成像系统和3D感测。新型IP-n162阿贝数低至25,使其成为了Nanoscribe高色散光刻胶。用该款光敏树脂所打印的样品结构,其光学性能能接近常规用注塑成型技术制作的光学聚合物,例如聚碳酸酯(polycarbonate)或聚酯(polyesters)。IP-n162材料尤其适合用于制作消色散光学系统,即通过使用由较低折射率和较高折射率材料(例如IP-n162)打印并组和而成的复合光学元件。图示结构由Simon Thiele设计,TTI GmbH TGU Printoptics, 由Nanoscribe打印制作“在IP-n162光刻胶的使用过程中,我所实现的最强大的设计是一个复杂的光学系统。该系统由两个具有完全自由曲面表面的透镜组成,以实现无失真的图像。集成衍射透镜的特点是在透镜顶部包含精细的阶梯结构,用来矫正色彩误差,而IP-n162打印材料的高折射率有助于减小这些阶梯结构并减少杂散光。”Thiele根据使用新型光敏树脂的经验说道。 更多有关双光子微纳3D打印产品和技术应用咨询欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 双光子灰度光刻微纳打印设备
  • 滨松中国与湖北工业大学激光加工联合实验室正式建立
    2019年7月5日,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”在湖北工业大学举行揭牌仪式。湖北省机械工程学会监事长陈万诚教授、秘书长朱永平教授、湖北省激光学会秘书长唐霞辉教授、华工激光、锐科激光、华日激光等十余家国内知名激光企业代表及吉林大学、华中科技大学、华南师范大学的专家学者近百人参加了活动。在出席嘉宾的见证下,湖北工业大学科研处处长武明虎、滨松中国总经理章劲松与金顿激光总经理金翔代表三方签署了联合实验室合作框架协议。湖北工业大学校长刘德富代表学校,与两方企业一起,为 “激光加工联合实验室”揭牌。该联合实验室目前主要进行着基于空间光调制器的精密激光加工方案(钻孔,切割,打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。期望通过产学研一体化的发展,推进空间光调制技术在精密加工中的应用。除此之外,实验室也将持续以行业需求为导向,集合三方资源,逐渐拓宽研究范围,将该平台拓展为国内一流产学研平台,促进我国智能激光加工行业的发展。湖北工业大学校长刘德富在致辞中回顾了与滨松长久以来的深入合作,希望以此次三方全方位的合作为契机,博采众长,共同提高,建立一个相互交流的平台,实现校企共赢,创建联合实验室的行业典范。滨松中国总经理章劲松则表示,滨松致力于光子的研究已经60余年,一直秉持着不断探索人类未知未涉的理念。滨松相信,“光”将是引领第四次工业革命的关键,而在中国制造2025的政策引领下,激光加工也必将是下一个备受追逐的风口,此次激光加工联合实验室的建立具有重大意义。华南师范大学博士生导师张庆茂教授、中国科学院上海光机所储蔚副研究员、吉林大学樊华博士、华中科技大学博士生导师甘棕松教授、新加坡南洋理工大学邵国栋博士、滨松中国高级光学技术工程师王梓博士等七名国内知名专家学者也出席了本次活动,并围绕超快激光微加工技术发展趋势、激光微加工技术与激光微纳制造技术研究发展现状等相关主题,进行了精彩的学术报告分享。
  • 聚焦低维材料的制备和微纳加工——LDMAS2021分会报告集锦
    近日,2021年第四届低维材料应用与标准研讨会(简称:LDMAS2021)在北京西郊宾馆成功召开。会议吸引了低维材料与器件相关领域的400余名专家学者与企业代表出席,云端参会人数超过1万人。会议同期举办5个不同主题的分会场,仪器信息网编辑对“第1分论坛:低维材料的制备和微纳加工”进行了跟踪报道。该会场共安排了16个特邀报告和6个青年报告,相继由清华大学魏飞教授、中国科学院半导体研究所王智杰研究员、湖南大学刘松教授等人主持;内容精彩纷呈,得到与会观众的高度关注,现场座无虚席。会议现场报告题目:《超长无缺陷碳纳米管的控制制备与器件、结构材料应用》清华大学化学工程系教授 魏飞碳纳米管由于其高比表面积、化学稳定性及导热、导电及力学特性,近年来发展十分迅速。报告中,魏飞教授团队利用碳纳米管几何结构拓扑保护及进化生长的概念,通过动力学选择性实现 650mm 长碳纳米管的无缺陷生长,可实现99.9999%高纯度半导体性碳纳米管的生长,这类碳纳米管的电学、热学性质可以达到理论预测的极限。同时利用这种无缺陷碳纳米管可得到宏观强度、韧性、耐疲劳性高于目前所有材料数量级的碳纳米管高强纤维束。报告最后介绍了高纯碳纳米材料在器件等方面的应用。报告题目:《拓扑光电探测》北京大学量子材料中心长聘副教授 孙栋成熟的半导体可见光和近红外光电探测器是各个领域不可或缺的关键器件,而探测更长波长的中远红外和太赫兹波段的光电探测器却存在多个难以攻克的技术瓶颈。如何实现室温下工作的高性能长波探测器困扰了光电探测领域几十年时间,一直是科研领域关注的重要研究方向之一。基于半金属的材料替代半导体材料有望解决目前低能光子探测方面的一系列问题,但是基于半金属材料的光电探测器为了避免暗电流需要在无偏置条件下工作,一直存在响应度低的关键性能缺陷,限制了其进一步的发展。孙栋教授团队借助于全新的拓扑半金属材料的特殊拓扑性质,于近期克服了一些关键的技术问题,使得基于拓扑半金属的光电探测器在室温的低能光子探测方面展现出了广阔的应用前景。报告题目:《二维半导体的范德华集成与去集成工艺》湖南大学教授 刘渊基于二维半导体材料的低功耗新型器件被认为有望延续摩尔定律存在空间,得到更小尺寸、更高密度的集成电路。然而由于超薄得体厚度,传统的硅基晶体管的高能量制备工艺电极很难应用于脆弱的二维晶格,严重限制了二维半导体器件的性能与其应有的新奇特性。报告中,刘渊教授重点阐述了其开发的范德华异质金属集成方法作为低能量的集成工艺来保证二维半导体的本征性能,这种集成工艺在与传统的硅基工艺兼容的同时,又避免了对二维材料表面的损伤,为二维材料与传统硅工艺的兼容集成提供了新的可能。另外,PVA 旋涂法可以作为一种新的基底和高分子层来补充/代替传统 PPC、PC、PMMA、PDMS 分子层,实现对二维范德华异质结更精确的控制。报告题目:《二维磁性材料的制备与性质研究》北京理工大学教授 周家东二维过渡金属硫属化合物包括硫化物,硒化物和碲化物三大类,表现为 2H,1T,3R 等多种相结构。这些二维材料包括半金属、半导体与绝缘体等,表现出多种优异的物理性质如铁磁、铁电、超导等,使其在诸多领域包括晶体管、光电传感器、高性能自旋电子学器件等领域有着潜在的应用价值。特别的,新型二维磁性材料 CrI3 和 CrSiTe3 的发现开启了二维磁性材料研究的科学前沿。但是对于二维铁磁材料如铁基,铬基等的二元和三元的单层与少层的制备仍非常困难,这极大的限制了其性质与应用的研究。报告主要聚集Fe 基硫族化合物和Cr 基硫族化合物新型二维磁性材料可控合成与性质研究,研究其结构与铁磁性能之间的关系。报告题目:《亚纳米尺度超薄纳米晶体》清华大学化学系教授 王训亚纳米尺度(Sub-1nm)材料指至少在一个维度上特征尺寸小于 1 纳米的材料。这个特征尺寸接近高分子链/DNA 单链的直径,并与无机晶体单晶胞的尺寸相当。亚纳米尺度材料理论上具有很多优异的特性及重要的研究价值,王训教授团队围绕亚纳米尺度材料开展了系统性研究工作:以良溶剂-不良溶剂体系控制晶核尺寸策略为基础,发展出亚纳米尺度材料合成方法学,以此为基础提出亚纳米尺度材料的新概念;发现一维无机纳米材料直径限制在1纳米左右时,会表现出类生物大分子及高分子的特征,其宏观组装体兼具无机与高分子材料的优异性能;实现了具有明确结构亚纳米尺寸团簇的精确组装,进一步证明团簇可以与亚纳米尺寸无机晶核共组装,从而在亚纳米尺度实现对无机材料组分及功能的调控。报告题目:《钙钛矿量子点原位制备与集成应用》北京理工大学教授 钟海政量子点具有光谱可调、溶液加工等特点,是备受关注的新一代光学材料,已经在照明显示、传感探测、太阳能电池、激光等领域展现出应用前景。近年来,钙钛矿量子点的出现,为发展量子点集成应用技术提供了机遇。针对光电集成应用需求,钟海政教授团队发明了钙钛矿量子点的原位制备技术,利用钙钛矿材料的溶液加工特性,通过引入聚合物或者有机分子配体控制结晶过程,在聚合物基质中直接制备出量子点,或者在ITO基片上控制形核和生长过程直接制备量子点薄膜,并在此基础上开展了量子点的显示和传感应用探索。报告题目:《盐辅助的过渡金属硫化物的可控制备》湖南大学教授 刘松二维层状过渡金属硫化物具有优异的电学、光学等性能,在电子学,光电子学、能源催化等多方面具有广泛的研究及应用潜力,但过渡金属硫化物材料的可控生长仍然是该领域的重要问题。报告重点介绍了盐辅助的化学气相沉积法,可控制备并调控过渡金属硫化物及异质结的生长,探索过渡金属硫化物生长的新策略。这些材料制备的可控探索为进一步的电子学及光电子学应用提供了材料基础,并将进一步推动过渡金属硫化物在不同领域的应用。报告题目:《基于二维纳米材料的聚合物电磁屏蔽复合材料研究》北京化工大学教授 张好斌随着电子技术的迅速发展,日渐严重的电磁辐射污染对人们健康和精密电子设备的正常工作造成了难以忽视的影响,因此,发展高性能聚合物电磁屏蔽纳米复合材料在电子、航空、航天等领域具有重要价值。张好斌教授团队致力于研究纳米材料制备、高分子材料加工过程中界面调控和复合体系设计等关键科学问题。报告在其团队前期聚合物/石墨烯纳米复合材料研究基础上,着重介绍了新型二维过渡金属碳/氮化物(MXene)纳米材料在电磁屏蔽应用方面的最新进展,探索充分利用其高电导率和亲水性特性的策略和方法,以期实现聚合物电磁屏蔽纳米复合材料的多功能化和高性能化设计与制备。报告题目:《低维纳米结构制备技术及其光催化应用》中国科学院半导体研究所研究员 王智杰低维纳米结构已经被广泛应用于光电子器件、光伏器件以及光催化等各个领域,并极大 的提高了相关器件的性能。报告主要介绍了几种新型纳米结构及材料制备技术,即缺陷诱导法规则纳米材料制备技术、AB孔氧化铝模板法纳米结构制备技术、以及湿法化学法纳米材料制备技术。利用这些新型纳米结构和材料,王智杰课题组以及合作者开发了一系列高性能光电化学系统,并用于光解水制氢、光催化降解污染等领域;研究了复杂污染物(比如抗生素等)光降解过程中的反应动力学过程,提出了相应的反应动力学模型。相对于常规的光电化学体系,利用复杂结构纳米材料制备的光电化学系统的性能大有提高。其他精彩报告掠影
  • 复旦成立微纳加工和器件公共实验室
    6月15日,经校长办公会议最终审议通过,决定成立复旦大学微纳加工和器件公共实验室。实验室由物理系系主任沈健教授牵头,物理系和微电子系共同参与建设和运转。  纳米科技在高科技领域中具有重要战略地位,但加工、配套器件工艺设备投入和运行成本较大。我国长期以来在先进科研设备方面投入偏少、分散,严重限制了相关领域的前沿基础研究和成果推广。从学科发展现状考虑,复旦大学微纳米加工领域的落后条件已成为多个学科进一步发展的瓶颈问题,这严重限制了研究效率,也无法确保对成果知识产权的所有权。  作为学校“985工程”三期重点建设的高水平学术研究中心之一,微纳加工和器件公共实验室致力于提升复旦大学在微纳米尺度的实验研究能力,满足纳米相关学科前沿研究的迫切需求,服务于全校的研究课题。实验室建成后,将致力于成为国内微加工技术领域学术交流和人才培养的重要基地,促进我国纳米科技的发展。  作为一个服务性质的校级公共实验设施,实验室将直接对学校负责,向全校所有物质科学和信息科学的院系开放。同时,微纳加工实验室良好的实验条件,有利于实施或争取多项国家重要科技计划(如若干重大专项、纳米重大研究计划等),可大幅度提升我校在国家纳米科技领域的地位。  此外,目前上海地区无开放纳米加工平台,复旦大学微纳加工实验室将面向全校、全市、全国开放,促进学校研究成果的技术转化,孵化对加工有需求的高新企业,对地方经济做出贡献。
  • 新发现对进行微纳加工等具有重要指导意义
    近日,西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心研究生余倩在导师孙军、肖林等指导下,与美国宾夕法尼亚大学李巨教授、丹麦瑞瑟国家实验室黄晓旭博士合作,对微小尺度金属单晶材料中的孪晶变形行为及其对材料力学性能的影响进行了深入研究,发现单晶体外观尺寸对其孪晶变形行为的强烈影响,以及相应材料力学性能的显著变化。该研究结果发表在1月21日出版的《自然》杂志上。  孙军等通过实验设计,基于六方晶体结构金属孪晶、位错滑移变形的特异性,选取钛—5%铝合金单晶中以孪晶变形为主导塑性变形方式的晶体取向,有针对性地研究了孪晶变形在微小尺度材料中的行为规律和机理。结果发现,当外观几何尺度减小到微米量级时,与相应宏观块体材料相同,材料的塑性变形仍以孪晶切变为主,但材料的屈服强度及其塑性变形中能够承受的最大流变应力均有显著的提高。但当晶体的外部几何尺度进一步减小到亚微米量级时,其塑性变形方式将发生根本性转变:孪晶变形被位错滑移变形所取代。而发生这一转变的临界特征晶体尺寸为1微米左右,远大于多晶纳米材料强度极值对应的20纳米。文中提到,由于仅有1%左右的位错可作为极轴,而晶体尺寸愈小,就愈难于利用螺型位错的极轴作用将两个相邻的滑移面有效耦合在一起形成孪晶,从而解释了孪晶变形具有强烈的晶体尺寸效应和“尺寸愈小、强度愈高”的内在原因。  该研究结果对于系统认识微小尺度材料的力学行为有着十分重要的作用。对于微电子元器件与微机电系统所用材料的性能表征评价与设计,特别是利用其强度的强烈晶体尺度效应进行微纳加工等具有重要指导意义。
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• 400 fs标准脉冲宽度• 5 W / 75 μJ @ 1030nm• 2.5 W / 40 μJ @ 515 nm• 1 W / 20 μJ @ 343nm• 单发(Single-shot)和按需脉冲(Pulse-on-Demand)• 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 激光粒度仪中标周盘点 济南微纳、布鲁克海文成赢家
    p style="text-align: left "span style="text-indent: 28px font-family: 宋体 " 在仪器信息网编辑的/spanspan style="text-indent: 28px "”/spanspan style="text-indent: 28px font-family: 宋体 "雷达/spanspan style="text-indent: 28px "”/spanspan style="text-indent: 28px font-family: 宋体 "搜索范围内,截至6月1日中午,本周的激光粒度仪采购市场较为平静,但仍有微澜两朵——两条中标信息。采购方分别是中南大学(竞价)和云南中医学院基础医学院(招标),各采购激光粒度仪一台,至于中标厂商则国产、进口各表一枝,分别由济南微纳和美国布鲁克海文摘得。/spanbr//pp style="text-indent:28px"span style="font-family:宋体"其中,济南微纳中标的激光粒度仪型号为/spanwinner2308Aspan style="font-family:宋体",中标单价为/span16.8span style="font-family:宋体"万元;美国布鲁克海文中标的激光粒度仪型号为/span90Plus PALSspan style="font-family:宋体",中标单价/span34.8span style="font-family:宋体"万。/span/pp style="text-indent: 2em text-align: left "strongspan style="font-family:宋体 color:red"本周激光粒度仪中标详情如下:/span/strong/pp style="text-indent: 2em text-align: left "span style="font-family:宋体 color:red"一、中南大学激光粒度仪竞价项目/span/pp style="text-indent: 2em text-align: left "span style="font-family:宋体 color:red"编号:/spanspan style="color:red"CB119422018001805/span/ptable border="1" cellspacing="0" cellpadding="0" width="564"tbodytr style=" height:94px" class="firstRow"td width="93" valign="top" style="border: 1px solid windowtext padding: 0px 7px " height="94"pspan style="font-family: 宋体"中标标的/span/p/tdtd width="93" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="94"pspan style="font-family: 宋体"数量/span/p/tdtd width="93" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="94"pspan style="font-family: 宋体"品牌/span/p/tdtd width="100" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="94"pspan style="font-family: 宋体"型号/span/p/tdtd width="93" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="94"pspan style="font-family: 宋体"中标单价(元)/span/p/tdtd width="93" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="94"pspan style="font-family: 宋体"中标供应商/span/p/td/trtr style=" height:47px"td width="93" valign="top" style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height="47"pspan style="font-family: 宋体"激光粒度仪/span/p/tdtd width="93" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="47"p1span style="font-family:宋体"套/span/p/tdtd width="93" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="47"pspan style="font-family: 宋体"济南微纳颗粒仪器股份有限公司/span/p/tdtd width="100" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="47"pWinner2308A/p/tdtd width="93" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="47"p168000.0/p/tdtd width="93" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="47"pspan style="font-family: 宋体"长沙市望城区沙检仪器设备经营部/span/p/td/tr/tbody/tablep style="text-indent: 2em "strongspan style="font-family:宋体 color:red"br//span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体 color:red"二、/span/strongspan style="font-family:宋体 color:red"云南中医学院基础医学院(熊磊课题组)购置激光粒度仪/spanspan style="color:red"1/spanspan style="font-family:宋体 color:red"套项目/span/pp style="text-indent: 2em "span style="font-family:宋体 color:red"招标编号/spanspan style="color:red":/span span style="color:red"ZA12201-ZGH18120421/span/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="95" valign="top" style="border: 1px solid windowtext padding: 0px 7px "pspan style="font-family: 宋体"中标标的/span/p/tdtd width="95" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"数量/span/p/tdtd width="95" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"品牌/span/p/tdtd width="95" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"型号/span/p/tdtd width="95" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"中标单价(元)/span/p/tdtd width="95" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"中标供应商/span/p/td/trtrtd width="95" valign="top" style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"激光粒度仪/span/p/tdtd width="95" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p1span style="font-family: 宋体"套/span/p/tdtd width="95" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"美国布鲁克海文仪器公司/span/p/tdtd width="95" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p90Plus PALS/p/tdtd width="95" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p348000.00/p/tdtd width="95" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px word-break: break-all "pspan style="font-family: 宋体"昆明瑞凯商贸有限公司/span/p/td/tr/tbody/tablep style="text-indent:28px"span style="font-family:宋体"另外值得注意的是,就在昨天(/span5span style="font-family:宋体"月/span31span style="font-family:宋体"日),西安建筑科技大学环境学院、东莞理工化学工程与能源技术学院的激光粒度仪采购项目,都因参加的供应商不足而废标,这两家后续很可能将继续发布激光粒度仪采购的需求,有意的商家可以重点关注,仪器信息网编辑也将跟进追踪。/span/pp style="text-indent:28px"strongspan style="font-family:宋体 color:#7F7F7F"本周激光粒度仪废标详情:/span/strong/pp style="text-indent:28px"span style="color: rgb(127, 127, 127) "一、/spanspan style="font-family: 宋体 color: rgb(127, 127, 127) "西安建筑科技大学环境学院多通道电化学工作站等设备采购项目(第四标段)/span/pp style="text-indent:28px"span style="font-family:宋体 color:#7F7F7F"项目编号:/spanspan style="color:#7F7F7F"ZX2018-04-19/span/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="52" valign="top" style="border: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"采购品类/span/p/tdtd width="52" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"采购数量/span/p/tdtd width="51" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"预算金额/span/p/tdtd width="69" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"采购单位/span/p/tdtd width="50" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"采购单位联系方式/span/p/tdtd width="104" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"代理机构/span/p/tdtd width="94" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"代理机构联系方式/span/p/tdtd width="70" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family:宋体"废标理由/span/p/td/trtrtd width="52" valign="top" style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px "pspan style="font-family:宋体"激光粒度分布测试仪/span/p/tdtd width="52" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p1/p/tdtd width="51" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p48span style="font-family:宋体"万/span/p/tdtd width="69" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family:宋体"西安建筑科技大学/span/p/tdtd width="50" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p029-82202221/p/tdtd width="104" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family:宋体"陕西正信招标有限公司/span/p/tdtd width="94" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p029-88411508/88411169span style="font-family:宋体"转/span806/p/tdtd width="70" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family:宋体"有效投标人不足/span3span style="font-family:宋体"家/span/p/td/tr/tbody/tablep style="text-indent: 2em "span style="color: rgb(127, 127, 127) "br//span/pp style="text-indent: 2em "span style="color: rgb(127, 127, 127) "二、/spanspan style="font-family: 宋体 color: rgb(127, 127, 127) "东莞理工化学工程与能源技术学院激光粒度仪设备采购项目/span/pp style="text-indent: 2em "span style="text-indent: 21px font-family: 宋体 color: rgb(127, 127, 127) "项目编号:/spanspan style="text-indent: 21px color: rgb(127, 127, 127) "DGUT-CG-1813/span/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="51" valign="top" style="border: 1px solid windowtext padding: 0px 7px "pspan style="font-family: 宋体"采购品类/span/p/tdtd width="64" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"采购数量/span/p/tdtd width="52" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"预算金额/span/p/tdtd width="51" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"采购单位/span/p/tdtd width="104" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"采购单位联系方式/span/p/tdtd width="78" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"代理机构/span/p/tdtd width="103" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"代理机构联系方式/span/p/tdtd width="51" valign="top" style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"废标理由/span/p/td/trtrtd width="51" valign="top" style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"激光粒度仪/span/p/tdtd width="64" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p1/p/tdtd width="52" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "p29span style="font-family: 宋体"万/span/p/tdtd width="51" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"东莞理工学院/span/p/tdtd width="104" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"叶老师/span 0769-22861688/p/tdtd width="78" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"广东三方诚信招标有限公司/span/p/tdtd width="103" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px "pspan style="font-family: 宋体"梁先生/span 0769-21682660-807/p/tdtd width="51" valign="top" style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px word-break: break-all "pspan style="font-family: 宋体"无投标人/span/p/td/tr/tbody/table
  • 全球最小的三维纳米雄鸡贺卡,3D纳米激光直写设备NanoFrazor专业定制
    金鸡报晓已迎春,元宵临近聚福门,Quantum Design China恭祝大家新春愉快,元宵吉祥。上图这幅立体逼真的画作是 Quantum Design China专为您打造的新年特别礼物。看到图像右面的坐标轴,是不是很惊讶?没错,这不是一幅手绘作品,而是借助SwissLitho公司制造的3D纳米结构高速直写设备—NanoFrazor专业定制的三维纳米雄鸡贺卡! 这幅雄赳赳气昂昂的鸡年贺卡,其尺寸仅有10μm*10μm,深度差为50nm,是目前全球小的三维纳米鸡年贺卡。整只雄鸡的微纳尺寸,以及鸡身立体的轮廓和清晰的线条,都体现了3D纳米结构高速直写机NanoFrazor让人膜拜的高直写精度(XY: 10nm, Z: 1nm)、高形貌感知灵敏度(0.1nm),另外还有高速直写,无需显影,实时观察直写效果,无临近效应,无电子/离子损伤等有的特点。 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的新研究成果。NanoFrazor纳米3D结构直写机采用直径为5nm的探针,通过静电力控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测,次将纳米尺度下的3D结构直写工艺快速化、稳定化。该技术自问世以来已经多次刷新了上小3D立体结构的尺寸,创造了上小的马特洪峰模型,小立体地图,小刊物封面等记录。2016年10月,瑞士Swisslitho公司又发布了一款NanoFrazor Scholar,这款小型的纳米加工设备竟然可以放置在实验室桌面上,而且分辨率依然可达到XY:10nm;Z:2nm,轻松实现小于20nm的线宽与间距,更加便于课题组内进行纳米原型器件、微纳光学/光子学/磁学,NEMS、超材料等领域纳米机构与器件的设计与制备,是纳米结构和器件加工制备领域的之选。 2017的年味儿少不了科学的情怀,少不了我们对未知的探索和追求,带着NanoFrazor专业定制的全球小的三维纳米雄鸡贺卡,Quantum Design China祝愿大家在新的科学年中创意无限,收获满满!2017,Quantum Design China将继续伴您左右,提供丰富、的科研设备,便捷、专业的售后服务,助力您的科学研究更有说服力,更具创造力! 相关产品: 3D纳米结构高速直写机NanoFrazor: http://www.instrument.com.cn/netshow/C226568.htm小型台式无掩模光刻系统: http://www.instrument.com.cn/netshow/C155920.htm
  • 济南微纳亮相IPB2020 助力粉体粒度分析解决方案
    7月29日,由中国颗粒学会主办的IPB 2020第十八届中国国际粉体加工/散料输送展览会在上海世博展览馆隆重开幕,济南微纳颗粒仪器股份有限公司应邀参加。 IPB上海国际粉体展会是纽伦堡全球系列粉体展会的重要展会之一,始终致力于在中国粉体行业打造从材料加工改性到输送包装的完整产业链平台,不仅运用于化工、制药、食品工业的处理,更广泛应用于颜料染料,包装,采石,建筑,陶瓷等领域。这次粉体展涉及粉体的制备与合成、输送与储存、测量与控制、安全与环保以及颗粒分析与表征。 众所周知,原材料粉体的粒度分布会直接影响成品的性能,如在塑料或橡胶制品领域,填料的粒径大小和分布会直接影响到成品的力学性能,在染料或涂料领域,原材料的粒度分布直接影响到涂料的光学性能和流变性能,因此原材料粒径分布的控制与检测成为生产与生活中重要的课题。济南微纳作为粉体领域的粒度检测专家,专注于颗粒粒径检测技术的研发和激光粒度分析仪的制造,公司研发的干湿激光粒度仪、纳米粒度仪、喷雾粒度仪、图像粒度仪、在线粒度监测系统等可对微纳米颗粒、乳液、固体粉末、溶剂、混悬液、粉雾、水雾、油雾、气雾颗粒的粒径分布进行检测,还可对颗粒的粒形粒貌进行分析,济南微纳专注颗粒测试分析技术30多年,助力粉体颗粒粒度分析提供解决方案。 本次展会济南微纳展出光子相关纳米激光粒度仪Winner803、医药型喷雾激光粒度仪Winner311XP,湿法激光粒度分布仪Winner2000ZD和干湿两用激光粒度分布仪Winner2309。作为技术创新的纳米粒度仪,Winner803有效解决了具有吸光属性样品的粒度测试难题,受到现场客户的一致好评。 度万物之微,纳四海之阔。微纳坚持技术研发为主导,不断创新为宗旨,广泛开展产学研,与多所高校保持技术研发合作关系,不断提升自身品质,为颗粒测试技术的发展贡献自己的力量,为国产仪器的振兴添光增彩。
  • Nanoscribe微纳加工技术应用于3D中空光波导微观结构研究
    光波导是集成光子电路的关键元素,影响了光子学的许多领域,包括电信,医学,环境科学等。对于小型几何尺寸结构而言,低折射率介质内部的高效波导对于各种需要光与物质间的强相互作用的应用都至关重最近,一个国际研究团队提出了一种全新的限制并引导厘米范围内无衍射光的芯片光笼概念。通过使用Nanoscribe的3D打印系统,科学家们实现了直接在硅基光子芯片上制作中空3D光波导的微观结构,即集成于芯片的用细条排列并围绕成中空的双环结构(见下图)。这项新颖的光笼研究成果能展现光与物质的强相互作用,并开辟全新的应用,例如基于气体和液体的检测以及生物分析和量子技术等。集成光子设备中光与气体、液体或者生物制剂之间的强相互作用能有效应用于环境监测和生物传感器中,而这依赖于先进的光学传感元件来增强光与物质的相互作用。为此,来自于布莱尼兹光子技术研究所(Leibniz Institute of Photonic Technology), LMU慕尼黑大学 (Ludwig-Maximilians-Universit?t Munich), 伦敦帝国理工学院(Imperial College London)以及德国耶拿大学奥托肖特材料研究所(Otto Schott Institute of Materials Research of theFriedrich Schiller University of Jena)的科学家们开创了一种新的3D光笼波导概念。该实验是通过波导借助微观细条捕获光,并借助光子带隙效应将其引导到数毫米距离上。光笼的开放式设计有利于光与物质(例如液体或气体分子)之间的强相互作用。SEM图片来源:Bumjoon Jang, Leibniz Institute of Photonic Technology微纳加工技术应用于3D光波导研究科学家们将细条排列成内外两个六边形结构,其中的中空芯用来引导光束。细条直径仅3.6 μm且细条之间的间距为7 μm,长度为5毫米,纵横比超过1000。该复杂的双环体系光笼微观结构需要直接能打印在硅芯片上。这个十分具有挑战性的制作通过使用德国Nanoscribe公司的3D打印系统成功得以实现。这个3D微观结构的设计能够通过细条之间的空间横向进入波导的核心区域。因此,分子可以从侧面进入中空芯并与核心区域的光进行相互作用。独特的侧面通过方式可将气体扩散时间至少缩短了10000倍。性能测试表明,通过3D光笼的波导效率很高,并且研究证明波导长度可达到3cm,纵横比超过8000。集成芯片使得光笼概念在诸如生物分析或量子技术等众多领域都有很好的应用前景。凭借着拥有极其复杂和超高精度的3D打印技术,Nanoscribe公司的3D微纳加工技术推动着光子电路的研究和创新。三维光子晶体,光子互联以及复合透镜系统和自由曲面耦合器的实现都得益于Nanoscribe的3D打印系统。相关文献:Light guidance in photonic band gap guiding dual-ring lightcages implemented by direct laser writing网址:https://pubs.acs.org/doi/10.1021/acsphotonics.8b01428HollowCore Light Cage: Trapping Light Behind Bars网址:https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-16-4016 更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印系统 Quantum X 双光子灰度光刻微纳打印系统
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制