当前位置: 仪器信息网 > 行业主题 > >

激光原理实验装置

仪器信息网激光原理实验装置专题为您提供2024年最新激光原理实验装置价格报价、厂家品牌的相关信息, 包括激光原理实验装置参数、型号等,不管是国产,还是进口品牌的激光原理实验装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光原理实验装置相关的耗材配件、试剂标物,还有激光原理实验装置相关的最新资讯、资料,以及激光原理实验装置相关的解决方案。

激光原理实验装置相关的资讯

  • X射线自由电子激光试验装置项目通过国家验收
    p style="text-align: justify text-indent: 2em "2020年11月4日,国家重大科技基础设施X射线自由电子激光试验装置项目通过国家验收。 /pp style="text-align: justify text-indent: 2em "X射线自由电子激光试验装置由中国科学院和教育部共同建设,中科院上海应用物理研究所为法人单位,北京大学为共建单位。装置主体由一台8亿4千万电子伏特的高性能电子直线加速器和一台可以实现多种先进运行模式的自由电子激光放大器组成。装置位于上海市浦东新区,将与上海光源、国家蛋白质科学研究(上海)设施、上海超强超短激光装置等组成张江综合性国家科学中心大科学设施集群的核心,成为我国光子科学研究的国之重器。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/92306bfb-33dc-43d6-92d0-665d8bc5c468.jpg" title="W020201111573040934245.jpg" alt="W020201111573040934245.jpg"//pp/pp style="text-align: justify text-indent: 2em "X射线自由电子激光试验装置项目经过5年半的紧张建设和精细调试,高质量地建成了我国首台X射线波段自由电子激光试验装置;并成功地研制了射频超导加速单元。 /pp style="text-align: justify text-indent: 2em "目前,全球建成的X射线自由电子激光装置仅有8台,其它7台分别位于德国(两台)、美国、日本、韩国、意大利和瑞士。以X射线自由电子激光试验装置为基础,建设的我国首台X射线波段自由电子激光用户装置,将为我国开展能源、材料、生物等领域科学前沿问题的探索提供强有力的工具;同时,也为我国继续开展自由电子激光新原理的探索和验证、关键技术的研究提供了不可替代的实验平台。 /pp style="text-align: justify text-indent: 2em "国家验收委员会专家认为,X射线自由电子激光试验装置的各项指标均达到或优于批复的验收指标。建设单位掌握了自由电子激光装置设计、加工集成、安装和调试以及射频超导加速单元等关键核心技术,取得了一系列重大技术成果。 /pp style="text-align: justify text-indent: 2em "在建设过程中,项目自主研制了一系列关键核心设备,其中C波段加速单元的平均运行梯度达到了国际同类装置最高水平,条带型束流位置测量系统的分辨率达到国际先进水平;发展了腔式束流位置探测器和基于偏转腔的束团相空间测量以及XFEL脉冲重构系统,达到国际先进水平;同时实现了超导腔研制的全国产化,垂直测试加速梯度和无载品质因数达到国际先进水平。基于高精度、多维度束流测量和反馈技术,实现了高稳定、高品质的电子束团和FEL辐射产生;在调试过程中,首创了EEHG-HGHG混合级联型的自由电子激光先进运行模式,辐射带宽和中心波长稳定性显著优于传统级联。 /pp style="text-align: justify text-indent: 2em "国家验收委员会专家认为,X射线自由电子激光试验装置的建设队伍通过自主研制和国内外合作,实现了集成创新和原始创新,有力地推动了我国自由电子激光领域的发展,实现了重大的突破,同时为硬X射线自由电子激光装置的建设提供了技术和人才储备。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/2cbee46d-2c88-4f1f-b510-62ff735bc909.jpg" title="W020201111573041002981.jpg" alt="W020201111573041002981.jpg"//ppbr//p
  • 为自由电子激光装置“减负”
    记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光被广泛用于探测物质内部动态结构,研究光与原子、分子和凝聚态物质的相互作用过程,在物理、化学、结构生物学、医学、材料、能源、环境等多学科领域广泛运用。然而,传统的X射线自由电子激光装置动辄几百米、甚至是几公里长的“庞大”规模,造价昂贵、难以普及。研制小型化、低成本的X射线自由电子激光成为该领域重要的发展方向。  该成果的主要完成人、中科院上海光机所研究员王文涛表示,我们的工作是利用新技术把电子加速器的长度缩短,并且把电子束做到稳定、可用,来研制体积小、成本低的自由电子激光器,整个装置长度仅为12米。“打比方说,电子束加速需要‘跑道’,传统方式相当于客机起飞,需要长跑道;我们采取激光加速这一全新方式,可以短距离内把电子束加速至高速度,大大缩短所需距离。”王文涛说。  “该项研究不仅证明了激光可以加速产生可控的、可用的电子束,而且电子束可以进一步用于产生自由电子激光。”中科院上海光机所副所长、强场激光物理国家重点实验室主任冷雨欣说。  用这种加速方式获得的电子束,在品质和稳定性方面尚未达到实际应用的要求,相关研究处于起步阶段,到真正应用还有一段距离。下一步,研究团队将继续提升自由电子激光的输出功率和光子能量,并作为上海超强超短激光实验装置中超快化学与大分子动力学研究平台的重要组成部分,提供开放共享。
  • 深紫外自由电子激光装置实验获重大进展
    记者从中国科学院上海应用物理研究所获悉,经过多年技术积累和艰苦努力,上海深紫外自由电子激光装置(SDUV-FEL)实验取得重大进展,我国自由电子激光实验研究步入世界先进行列。  自由电子激光是激光家族的一个新成员,被国际上公认为新一代光源,有着重要的应用前景。高增益自由电子激光在亮度、相干性和时间结构上,都大大优于第三代同步辐射光源,是国际上竞相发展的新一代大科学装置。  自由电子激光的工作模式主要有“自放大自发辐射(SASE)”和“高增益谐波产生(HGHG)”两种。其中,“高增益谐波产生(HGHG)”工作模式需要短脉冲激光和高品质电子束流的精确相互作用,技术比较复杂,但是性能较“自放大自发辐射(SASE)”工作模式更好。  经过多年的技术积累和艰苦努力,上海深紫外自由电子激光装置于2010年12月中旬成功进行了高增益谐波产生自由电子激光放大与饱和的实验,这是上海深紫外自由电子激光装置成功进行了自放大自发辐射实验和外种子自由电子激光调制实验之后,所取得的又一重大进展。  目前,我国已成为继美国之后世界上第二个实现高增益谐波产生自由电子激光放大与饱和的国家,这表明我国已经基本掌握了相关主要关键技术,为我国未来的X射线自由电子激光大科学装置的发展奠定了坚实基础。  中国科学院上海应用物理研究所是我国大科学装置“上海光源”的建设和运行单位。“上海光源”是目前世界上性能最好的第三代中能同步辐射光源之一。目前,中科院上海应用物理研究所正积极开展自由电子激光新一代大科学装置的预研。
  • “基于可调谐红外激光的能源化学研究大型实验装置”通过验收
    3月8日至9日,国家自然科学基金委员会(以下简称“基金委”)组织专家,在中国科学技术大学对国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置”进行验收。基金委副主任谢心澄、化学科学部主任杨学明线上参会,基金委化学科学部常务副主任杨俊林、教育部科学技术与信息化司相关人员、项目验收组专家、项目四个承担单位负责人、项目组成员等50人参加了会议。会议分别由杨俊林和验收专家组组长主持。   谢心澄指出,国家重大科研仪器研制项目的定位是面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力;建议专家在验收时重点考察仪器的原创性、研究目标的实现情况、仪器技术指标完成情况和指标的先进性,以及对解决重大科学问题、开拓新的研究领域,促进人才培养和推动学科发展所取得的作用。他强调,部门推荐项目验收通过后,基金委适时组织专家对项目进行后评估。因此,希望项目负责人加强后期管理,注重仪器的运行使用与开放共享,提高科研仪器的使用效率和水平,推动项目成果转化,为探索前沿和服务国家需求夯实技术基础。杨学明指出,过去5至10年,我国在化学领域批准建设的比较重大的科学装置对推动化学学科的发展非常重要,证明化学领域和物理领域的研究人员通过合作可以把一件比较困难的事情做好,证明我国在高端科学仪器研制方面具有很大的实力。厦门大学副校长江云宝代表项目四个承担单位发言。   专家组认真审阅了验收材料,听取了项目负责人厦门大学孙世刚院士作的项目工作报告,以及监理组相关人员作的监理情况报告,并进行了质询和现场考察,听取了仪器测试组报告、财务组验收意见及档案组审核情况报告。经过讨论,专家组认为:项目达到了预期研制目标,符合验收要求,同意通过验收。   “基于可调谐红外激光的能源化学研究大型实验装置”项目集厦门大学、中国科学技术大学、复旦大学和大连化物所的相关优势,建设了一套具有先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,以及基于红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。各实验线站分别在四个参研单位研制,最终搬迁到中国科学技术大学与红外自由电子激光光源集成,经调试、验收后开放运行,为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。   该项目的仪器研制历经8年,在项目团队全体成员的不懈努力下,克服各种困难,建成了我国第一个覆盖中、远红外波段的红外自由电子激光用户装置,具体包括:开发了包含光波导效应的光场数值计算方法和程序,实现了加波导的自由电子激光振荡器的模拟;研发了2856MHz次谐波可调、高重频电子枪,实现了基于同一台电子加速器的中红外和远红外两套振荡器的运行;建成了红外自由电子激光反射吸收光谱实验线站、上/下入射激发模式的红外自由电子激光—原子力显微镜实验线站和红外自由电子激光分子反应散射实验线站。   该项目中,大连化物所江凌研究员团队负责研制了一套基于红外自由电子激光的光解离光谱实验站,实现了金属化合物团簇的高灵敏红外光谱探测及结构表征,对诠释催化反应机制具有重要作用。
  • 美国再添核威慑利器 最大激光聚变装置亮相
    激光控制室 效果图 光学组件  世界上最大的激光聚变装置29日在美国加利福尼亚州北部的利弗莫尔劳伦斯国家实验所举行落成典礼。这一装置能产生类似恒星内核的温度和压力,并使美国在无需核试验的情况下保持核威慑力。  打造12年 耗资35亿  据利弗莫尔劳伦斯国家实验所发表的新闻公报,这个激光聚变装置名为“国家点火装置(NIF)”,被安置在一幢占地约3个橄榄球场地的10层楼内,它由美国能源部下属国家核安全管理局投资,从1997年开始建设,总共耗资约35亿美元。  公报说,国家点火装置可以把200万焦耳的能量通过192条激光束聚焦到一个很小的点上,从而产生类似恒星和巨大行星的内核以及核爆炸时的温度和压力。这一过程同太阳中心产生能量原理相似,因此这一试验被称为“人造太阳”。在此基础上,科学家可以实施此前在地球上无法实施的许多试验。  无需核试验 保持核威慑力  公报说,国家点火装置共有3个任务,第一个任务是让科学家用它模拟核爆炸,研究核武器的性能情况,这也是美国建设国家点火装置的初衷,即作为美国核武器储备管理计划的一部分,保证美国在无需核试验的情况下保持核威慑力。  国家点火装置的第二个任务是使科学家进一步了解宇宙的秘密。科学家可使用国家点火装置模拟超新星、黑洞边界、恒星和巨大行星内核的环境,进行科学试验。这些试验大部分不会保密,将为科学界提供大量此前无法获取的数据。 国家点火装置的第三个任务是保证美国的能源安全。  能源结构革命性变化  科学家希望从2010年开始借助国家点火装置来制造类似太阳内部的可控氢核聚变反应,最终用来生产可持续的清洁能源。公报说:“国家点火装置所产生的能量远大于启动它所需要的能量,这是半个多世纪以来核聚变研究人员一直梦寐以求的‘能量增益’目标。如能取得成功,将是有历史意义的科学突破。”  加州州长施瓦辛格发表讲话说,这一激光系统的建成是加州和美国的伟大成就,它将有可能使美国的能源结构发生革命性变化,因为它将教会人们驾驭类似太阳的能量,使其转变成驾驶汽车和家庭生活所需要的能源。  三大核心任务  ■科学家用它模拟核爆炸,研究核武器的性能情况。  ■模拟超新星、黑洞边界、恒星和巨大行星内核的环境,使科学家进一步了解宇宙的秘密。  ■科学家希望从2010年开始借助它来制造类似太阳内部的可控氢核聚变反应,最终用来生产可持续的清洁能源。  聚焦  研制新型氢弹 变身“常规武器”  激光核聚变除了可生产取之不尽的清洁能源外,在军事上还可用于发展新型核武,特别是研制新型氢弹,同时亦可部分代替核试验。因为通过高能激光代替原子弹作为氢弹点火装置实现的核聚变反应,可以产生与氢弹爆炸同样的等离子体条件,为核武设计提供物理学资料,进而制造出新型核武,成为战争新“杀手”。  早在20世纪50年代,氢弹便已研制成功并投入使用。但氢弹均是以原子弹作为点火装置。原子弹爆炸会产生大量放射性物质,所以这类氢弹被称为“不干净的氢弹”。  采用激光作为点火源后,高能激光直接促使氘氚发生热核聚变反应。这样,氢弹爆炸后,就不会产生放射性裂变物,所以,人们称利用激光核聚变方法制造的氢弹为“干净的氢弹”。传统的氢弹属于第2代核武,而“干净氢弹”则属于第4代核武器,不受《全面禁止核子试验条约》的限制。由于不会产生剩余核辐射,因此可作为“常规武器”使用。  回顾  美法日“人造太阳”大事记  美国 仍居世界领先地位,不仅拥有世界上最大的“诺瓦”激光器、世界上功率最大的“X射线模拟器”,还有目前刚刚落成的“国家点火装置”。  法国 激光核聚变研究以军事化为主要目标,确保法国TN-75和TN-81核弹头能处于良好状态。早在1996年,法国原子能委员会便与美国合作进行一项庞大的“兆焦激光计划”,预计2010年前完成,经费预算达17亿美元。其主要设施240台激光发生器可在20纳秒内产生180万焦耳能量,产生240束激光。  日本 1998年,日本成功研制核聚变反应堆上部螺旋线圈装置和高达15米的复杂真空头,标志着日本已突破建造大型核聚变实验反应堆的技术难点。  名词 核聚变  与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全,不过操作难度巨大。  当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。“国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。能否在核聚变过程中实现“能量收益”是问题的关键。之前有试验实现过核聚变,但未能使核聚变释放的能量超过试验所需能量。
  • 应用实例|STFC-UKRI:用于高功率激光实验的高精度微流控装置
    在英国科学与技术设施委员会(STFC-UKRI)中央激光研究所,微靶制造科学家们正积极投身于高功率激光实验的微靶研究。新一代激光器提升了重复频率(高达10Hz),这让高重复制靶法成为了重要的研究途径。在这些高功率激光实验中,科学家们依赖微流控装置实现亚微米级的液体片靶。然而,他们发现,依赖传统的机械加工或蚀刻来制造微流控通道,既耗时又昂贵。因此,研究小组正在寻求一种创新的解决方案,以便能够快速制作新的靶设计几何体原型来满足他们的实验需求。01、研究开发靶研究团队利用微流控设计了一种液体靶,当液体从微通道流出时产生了液体叶片靶。通道的设计会直接影响到叶片的质量,通过叶片的宽度和厚度判断。设计目标为制造出宽度为几毫米、厚度为几百纳米的叶片,以实现高精度实验需求。图1:当液体从通道中流出时产生的液体叶片靶由于液体的行为随通道的变化而变化,因此通道设计对实验来说尤为关键。需要平滑的通道以减少湍流,同时要严格控制出口的形状,因为它对最后的叶片质量起到重要影响。02、精密3D打印制造通道为了创建液体片,该团队利用摩方精密microArch S240打印出 20mm x 15mm x 5mm 的结构,其中有一个30μm 深的通道和一个 100μm 的出口。当然,与微型且精确的通道相比,该结构尺寸相对较大。但使用摩方精密设备打印较大的零件时,可同时保持通道所需的精度和准确度。现今通道选用钨材质,得益于钨能实现精确加工。在这种背景下,研究团队运用摩方精密 microArch系列设备的高精度 3D 打印系统,迅速准确地构建通道,为科研和快速原型设计提供了高效且成本较低的解决方案。图2:原钨件图3:高精度3D打印制造零件的特定部分原文链接:https://bmf3d.com/resource/high-precision-microfluidic-devices-for-high-power-laser-experiments/microArch S240microArch S240 作为摩方精密一款面向工业批量生产的超高精密3D打印机,不仅荣获全球光电科技领域最高奖—"棱镜奖(Prism Award)",且具有以下突出特点和优势:高公差低层厚:光学精度高达10μm,±25µ m的加工公差,打印层厚10~40μm 打印体积扩大:满足工业打印的需求,可达100mm×100mm×75mm,实现更大规模的小部件产量;打印速度提升:最高提升10倍以上,快速缩短加工周期,为客户节省时间和成本;多种材料支持:支持多种高粘度陶瓷浆料(≤20000cps),以及耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料的打印;应用领域广泛:卓越的精度、扩大的打印体积和多材料兼容性,满足客户在尺寸、性能和效率方面的多重需求。摩方精密作为目前全球唯一可以生产最高精度达到2μm精度,微尺度3D打印技术及颠覆性精密加工能力解决方案提供商,会持续专注于精密器件免除模具一次成型能力的研发,为客户提供制造复杂三维微纳结构技术解决方案。
  • 国家重大科研仪器研制专项(部委推荐)“基于可调谐红外激光的能源化学研究大型实验装置”顺利通过验收
    3月8-9日,国家自然科学基金委员会(以下简称基金委)组织专家在中国科学技术大学对厦门大学孙世刚教授主持的国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置(项目批准号:21327901)”进行验收。会议期间,专家组认真审阅了验收材料,听取了项目负责人孙世刚教授的项目工作报告和监理组的监理情况报告,并进行质询和现场考察。在听取仪器测试组报告、财务组验收意见及档案组审核情况报告并经过充分讨论后,专家组认为项目达到预期研制目标,符合验收要求,同意通过验收。“基于可调谐红外激光的能源化学研究大型实验装置”项目由厦门大学、中国科学技术大学、复旦大学和中国科学院大连化学物理研究所共同承担,并由我校孙世刚院士主持。四家承担单位集中优势建设了一套具有国际先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,和以红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。历时8年攻关,我校参研人员在孙世刚院士带领下建成了国际上首个红外自由电子激光反射吸收光谱实验线站,首次实现了低至200波数的宽波段电化学原位红外检测,建成的和频光谱实验线站实现了低波数皮秒级时间分辨和频光谱检测。该装置的研制为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。
  • 硬X射线自由电子激光装置启动建设
    p  上海张江综合性国家科学中心又一重大装置项目——“硬X射线自由电子激光装置”日前获批启动。据悉,该项目作为《国家重大科技基础设施建设“十三五”规划》优先布局的、国内迄今为止投资最大的重大科技基础设施项目,在国家发展改革委、上海市和中科院的共同关心与支持下,在项目各参建单位的共同努力下,取得了阶段性成果。/pp  该装置选址在上海张江综合性国家科学中心核心区域,总长约3.1公里,将建设埋深29米的地下隧道,包含超导直线加速器隧道、波荡器隧道、光束线隧道等10条隧道及5个工作井。装置主要由四部分组成:超导加速器、光束线、实验站和配套的公用设施。加速器装置包括一台能量达到100兆电子伏特的电子注入器、一台能量8为兆电子伏特的连续波超导直线加速器,以及3条产生的X射线光子能量范围为0.4~25千电子伏特的高重复频率自由电子激光放大器。/pp  据了解,硬X射线自由电子激光具有更高的亮度、更短的脉冲结构和更好的相干性,提供的X射线峰值亮度比第三代同步辐射光源高109倍。同时,其具备纳米级的超高空间分辨能力和飞秒级的超快时间分辨能力,可将对微观世界的研究从拍“分子照片”提升到拍“分子电影”的水平,同时满足面向物质、单分子、超强超短单颗粒成像以及极端光物理等多个实验站的需求。/pp  专家表示,该装置建成后,将成为世界上最高效和最先进的自由电子激光用户装置之一,为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段。张江地区也将成为集聚同步辐射光源、软X射线自由电子激光、硬X射线自由电子激光和超强超短激光于同一区域的国际光子科学研究高地。/pp/p
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 上海光机所在SEL-100PW激光装置前端精密光同步方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在SEL-100PW激光前端精密光同步方面取得进展。科研团队基于自主建设的时间同步系统实现了超快强激光飞秒级同步。相关研究成果以Timing fluctuation correction for the front end of a 100-PW laser为题,发表在《高功率激光科学与工程》(High Power Laser Science and Engineering)上。高精度时间同步是促进超快强激光装置与加速器光源等大科学装置协同工作和融合发展的关键技术之一。“硬X射线自由电子激光装置”是我国在建的科技基础设施项目。该项目将建设一台100PW超强激光和一台硬X射线自由电子激光,通过泵浦-探测实验研究极端条件下真空量子电动力学、高能量密度物理等基础科学问题。由于超强激光和X射线激光的脉冲宽度均在20fs量级,两者之间的飞秒级同步是泵浦-探测实验成功开展的基础。科研团队发展了激光同步技术,对激光装置前端作了高精度时间抖动测量和实时反馈,实现了复杂强激光系统的飞秒级同步。激光装置前端结构如图1所示。该研究利用平衡光学互相关测量、时间延迟反馈等技术,分别对种子源系统、预放大系统作了时间抖动的测量和校正(结果如图2所示)。基于自主搭建的时间同步系统,种子源系统的同步精度达到1.82fs,预防大系统的同步精度达到4.48fs,实现了百太瓦级激光系统的飞秒级同步。该研究为超强激光及同类大科学装置的同步系统建设奠定了技术基础,并为基于超强激光和自由电子激光的联合实验研究提供了条件。研究工作得到硬X射线自由电子激光装置项目、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。图1. 100PW激光装置前端同步系统示意图。图2. 时间同步结果。(a)(d)分别为预防大和种子源系统时间同步结果;(b)(e)分别为开环状态下两系统时间漂移情况;(c)(f)为对应环境温度波动。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 新型三维显微激光拉曼光谱仪装置 NanofinderFLEX
    三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上 13581584194 中国联系人三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上 三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 自由电子激光装置和反质子加速器研究取得进展
    欧洲自由电子激光装置(EXFEL)及反质子和离子研究装置(FAIR)是德国牵头组织的两个国际合作重大科学装置,我国参与了其中部分探测器研制、低温系统研究、高性能波荡器研制、超导材料及特殊材料研究等,主要目的是跟踪国际物理学最前沿的发展趋势、开展相关关键技术研究、锻炼科研队伍、提高基础研究水平。  973计划项目“自由电子激光装置和反质子加速器重大基础研究”自立项以来,在FAIR加速器相关科学问题研究、大型实验探测器研究,EXFEL高性能超长波荡器系统物理及关键技术研究、大型恒温器关键技术研究、超导加速器用超导腔以及大晶粒高纯铌片的研制等方面取得多项重要进展。例如:在反质子加速器重大基础研究方面,完成了大型室温和超导二极磁铁样机的研制,并通过了国内外专家测试,同时完成了非烘烤超高实验真空样机研制和测试,主要性能达到或超过了设计指标,达到国际先进水平 在高性能超长波荡器系统物理及关键技术研究方面,我国研究人员参加了德国组织的波荡器系统总体设计、组织开展样机研究及磁测实验,了解并逐步掌握了高性能波荡器涉及的理论和关键技术 在大型恒温器关键技术研究方面,对最关键的漏热和支撑部件进行专门研究,在液氮冷激、压力、真空、漏率等环节攻克了一系列难关,成功研制出高质量,符合和优于国际标准的EXFEL恒温器样机,样机在零下271度低温实验下,各项指标均优于设计标准,并已经被德国成功应用在其试验装置上,为今后国内各种大型恒温器的研制奠定了研究基础 在超导腔相关的研究方面,研制出了用于超导加速腔的大晶粒高纯高性能的铌片,各项性能指标均能满足要求,并已研制出低电阻玻璃和高计数率MRPC样机。在超导加速器用大晶粒高纯铌片的研制、大晶粒9-CELL超导腔的研制和物理性能研究方面取得重要进展,材料性能达到国际先进水平,东方钽业已列入EXFEL供应商名单 在STAR-TOF MRPC探测器的生产方面,成功研制并批量生产了MRPC探测器,产品合格率超过95%,已提供RHIC-STAR使用。此外,在加速器设计思想、新材料和特殊材料性能探索和使用方面也取得了多项成果。  该项目由中国科学院高能物理所姜晓明研究员为首席科学家,近代物理所、北京大学、清华大学、东方钽业集团等研究单位参加。8月6-7日,项目年会在宁夏银川举行,陈佳洱、王乃彦、陈和生、张焕乔、方守贤、陈森玉、何季麟等来自国内高能物理、加速器和特殊材料研究的专家,科技部基础研究司、中科院基础局负责人参加了会议。
  • 钢研院激光原位分析新方法及装置的研究项目通过验收
    近日,由钢铁研究总院承担的“激光原位分析新方法及装置的研究”项目在北京通过了专家验收。  项目组在研究了激光诱导击穿等离子体的形成机理、不同材料的激光等离子体光谱定量数学模型、材料各元素成分均匀度和偏析度定量分析方法等的基础上,初步建立了激光原位统计分布分析新方法,开发了激光等离子体瞬态光谱信号的采集和大尺度范围内扫描分析技术,设计了真空型多通道光学系统,研究成功了激光原位分析仪,并已将研究成果应用于冷轧板和镀锌板样品的缺陷分析之中。
  • 欧洲X射线自由电子激光装置在德国汉堡正式启用
    p  欧洲X射线自由电子激光装置(XFEL)于2017年9月1日在德国汉堡大都市区正式投入使用,德国教研部(BMBF)部长万卡与参与研发和建设的其他11国代表共同按下首次试验的启动按钮。br//pp  欧洲XFEL装置建设项目2003年由德国科学理事会(WR)提议设立,于2009年启动,造价约为12亿欧元,并拥有延伸至德国石勒苏益格-荷尔斯泰因州的3.4千米隧道系统,是全球最大的X射线激光设施。每秒可发射多达2.7万个脉冲,较世界上其他五个同类装置的效率增加200倍。该装置的成功研制,将有助于人类开辟全新研究领域、突破当前的知识界限。例如,借助该装置能更准确观察物质材料的内部结构、像电影的“慢镜头”一样记录化学反应过程、在纳米粒子中制作三维图像、解开处于非结晶状态的病原单分子结构之谜以及推动新药和新材料的研发。/pp  除了德国,参与XFEL装置项目建设的其他11个欧洲国家分别是丹麦、法国、英国、意大利、波兰、俄罗斯、瑞典、瑞士、斯洛伐克、西班牙和匈牙利。德国提供了全部造价的58%,是出资最多的国家,其次是俄罗斯和法国。BMBF已投入约7.6亿欧元用于与此相关的研究项目。目前利用该装置从事研究工作的科学家来自46个国家,还有一些全球顶尖科学家正在申请。/ppbr//p
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 市场监管总局批准启用激光小角度副基准装置
    近日,市场监管总局批准启用由北京航天计量测试技术研究所和中国航空工业集团公司北京长城计量测试技术研究所分别研制建立的两项“激光小角度副基准装置”。 激光小角度副基准装置是国家平面角基准的重要组成之一,可复现和保存平面角单位,并作为激光小角度基准装置的备份,可为激光小角度测量仪、自准直仪、光学角规等小角度器件进行量值传递,满足航空航天用激光陀螺、精密机床用高精密导轨、芯片制造用光刻机等高精尖领域的小角度量值计量需求,对航空航天、高端装备制造、精密光学器件、集成电路等领域高质量发展发挥基础性作用。 北京航天计量测试技术研究所建立的激光小角度基准装置突破了400mm超精密殷钢正弦臂、大口径空心角隅棱镜研制瓶颈,以及双频激光干涉差动测角等关键技术,实现了0.001"超高精度角度测量分辨力,相当于地球上的观察者能够看清400公里外空间站上宇航员手中的铅笔芯。中国航空工业集团公司北京长城计量测试技术研究所建立的激光小角度副基准装置实现了超高分辨力小角度量值复现,具有微小角度的测量能力,其分辨力近似一个圆周的1亿3千万分之一对应的角度量值,准确度可以达到0.03″,相当于一根100公里长的圆棒,一端抬高15毫米对应的角度量值。 当前,我国测量仪器产业正在高速向国际领先水平发展,激光小角度副基准装置的建立有助于解决当前面临的大量小角度精密测量和准确度评价问题,将为我国小角度测量技术的发展提供有力的计量支撑,并推动高精度大范围自准直仪、激光小角度测量仪等高端测量仪器加速实现国产化。
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 顺利贯通!硬X射线自由电子激光装置项目隧道建设取得阶段性进展
    3月5日23点58分,上海硬X射线自由电子激光装置项目4号工作井至3号工作井之间的首条光束线隧道实现基本贯通,东线盾构(束线一号)顺利开始进洞工序,进洞过程顺利,盾构姿态良好。硬X射线自由电子激光装置(SHINE)是上海科技大学作为法人单位、国内迄今为止投资最大的科技基础设施项目,是国家重大科技基础设施建设“十三五”规划优先启动项目,以及上海建设张江综合性国家科学中心的核心内容和重大项目。项目于2018年4月27 日开工建设,计划2025 年建成。本次贯通的光束线隧道连接SHINE项目束线站总体的前端实验大厅和加速器总体的三号工作井,是继主加速器隧道贯通后,建安总体的又一项重要建设进展,标志着项目进入了隧道工程建设的高峰期。按照建设规划,除了已贯通的2条隧道,另外8条隧道预计在2022年内实现贯通。较一般隧道掘进,SHINE工程的隧道对轴线精度和渗水均有极高的要求。“束线一号”盾构机自2021年12月6日始发,春节期间持续掘进。整个过程中隧道轴线精度控制、渗水控制均达到了工程的要求,实现高质量、高速度建设。硬 X 射线自由电子激光科学意义重大,世界主要先进国家都争相建设各自的硬 X 射线自由电子激光装置,以掌握新历史时期的科技发展主动权。SHINE项目的建成将标志着我国拥有最新的高重频硬X 射线自由电子激光光源,可以为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段,可同时满足面向物质、单分子、超强超短单颗粒成像,以及极端光物理等实验需求。SHINE项目建成后将成为我国唯一、具备世界领先水平的第四代 X 射线光源大科学装置。
  • 国家重大科研仪器研制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行现场考察
    2022年8月26日,由国家自然科学基金委员会(以下简称自然科学基金委)副主任谢心澄院士带队,化学科学部组织专家对拟资助的国家重大科研仪器制项目(部门推荐)“基于超高帧频激光诊断的高温高压湍流燃烧研究装置”进行了现场考察,该项目由上海交通大学齐飞教授牵头负责。自然科学基金委化学科学部和计划与政策局相关工作人员,项目推荐部门教育部、依托单位上海交通大学及合作单位相关领导和项目组成员出席。 谢心澄副主任指出,专家组要对项目全面考察、严格把关,推动项目按期完成,项目依托单位和合作单位要为项目实施提供充分的政策支持和条件保障,期待通过本项目的实施,切实提升我国先进发动机燃烧研究的综合水平和国际地位。 化学科学部常务副主任杨俊林指出,原创仪器研制是产出创新科技成果的重要基础,科学仪器研制需要面向国家需求和科学前沿,以解决基础科学问题为目标,全面支撑我国科技原始创新能力的提升,为我国基础研究的发展提供强有力的手段和工具。同时,他强调了项目实施质量、建设条件保障和科技资源共享的重要性。 上海交通大学常务副校长丁奎岭院士代表依托单位感谢自然科学基金委对该项目的支持,强调上海交通大学将落实好依托单位责任,在各个方面全力支持和保障该项目的实施。 齐飞教授代表项目组汇报了项目的科学目标、研制方案、保障条件和研制基础,现场回复了专家组质询。随后,专家组实地考察了上海交通大学激光燃烧诊断实验室和拟建设的装置场地,并根据项目申请材料、负责人汇报和现场考察情况,提出了考察意见和项目实施建议,形成了考察报告,圆满完成了考察任务。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 欧盟拟制造史上最强激光器
    据英国《新科学家》杂志4月25日报道,欧盟通过了一项研究计划——极光基础设施(ELI),支持科学家建造三台可合起来使用的激光器,其中每台激光器都会让现有激光器相形见绌。这三台激光器有望于2015年问世,该计划的成功将会为建造更强的激光器(其能将“虚拟”粒子从时空空白处中拉出)奠定基础。  这三台新激光器将于2015年分别建在捷克、匈牙利和罗马尼亚。每台激光器将发出强度高达10拍瓦(petawatt,1拍瓦=1015瓦)的脉冲,其强度是现有激光脉冲的几百倍。  这种激光脉冲的持续时长仅为1.5×10-14秒,比光通过发丝直径的长度距离所需时间的十分之一还少。因为这种脉冲如此短暂,它们所包含的能量少于美国国家点火装置(NIF)的激光脉冲(其持续时长为2.0×10-8)所拥有的能量。但在这稍纵即逝的瞬间,ELI脉冲产生的能量却是NIF的20倍。  《激光世界》杂志报道称,每台激光器的造价约为4亿美元,由于设计细节各有不同,因而可用于进行不同的高能物理实验,包括使用激光脉冲给粒子加速、研究原子核以及产生更短暂的脉冲来研究原子内部极快事件的动力学原理等。  如果一切进展顺利,第四台激光器将“应运而生”。该项目协调人、法国超快光学研究所所长杰拉德莫瑞希望,第四台激光系统最终能达到的强度能使“虚拟”粒子出现在现实中。
  • 中科院成功研制激光扫描实时立体显微镜
    据中国科学院网站消息,日前,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室(简称:瞬态室)超分辨成像团队研制成功双光子激发激光扫描实时立体显微镜,首次把基于双目视觉的立体显微方法和高分辨率双光子激发激光扫描荧光显微技术结合在一起,实现了对三维荧光样品的高速立体成像,相关研究成果发表在2016年12月刊的PLOS ONE 杂志上,并被授权国家发明专利(专利号ZL201210384895.4)。  当代生命科学研究对光学显微技术提出了越来越高的要求——更高的空间分辨率、更大的成像深度、更快的成像速度。特别是对于生物活体显微成像来说,生物组织对光的散射使得噪声大大增强,严重影响了空间分辨率和成像深度。为了提高成像深度,双光子激发激光扫描荧光显微技术自20世纪90年代提出后被广泛应用于神经成像等领域,但是其逐点扫描的成像方式严重制约了成像速度。因为高分辨率光学显微镜的景深很小,要对样品完成三维成像,通常需要数十层乃至上百层的二维图像进行叠加重建得到,图像采集和处理一般需要数分钟甚至数十分钟,要快速实时地获取和显示三维图像非常困难。  瞬态室超分辨成像团队在研究员姚保利和叶彤的带领下,以双目视觉原理和贝塞尔光束产生扩展焦场为基础,提出了由四个振镜组成的激光束立体扫描装置,实现了对贝塞尔光束的横向位置和倾角共三个维度的控制,突破了只有两个自由度的传统激光扫描不能实时切换视角的限制。通过对四振镜立体扫描装置的优化设计和控制,实现了对贝塞尔光束的三自由度快速扫描,可在毫秒量级进行双视角切换,从而解决了激光扫描立体显微成像系统中双光路同时成像的技术难题,首次实现了基于双视角实时激光扫描的立体显微成像和显示系统。该系统可对样品进行立体动态成像和实时双目立体观测,其三维成像速度比传统的逐点扫描方式提高了一到两个数量级。该双光子立体显微系统为活体生物的三维实时成像和显示提供了一种新的观测工具。  “它可以让我们像观看立体电影一样实时地观测动态的三维微观世界,无需光切片,无需耗时的三维图像重构。”杨延龙如此总结这套系统的特点,他负责设计和完成了其中的立体扫描和成像显示的关键部分。“双目视觉成像是非常高效的三维信息获取方式,但是现有的体视显微镜,空间分辨率和景深互相制约,我们利用三自由度扫描的贝塞尔光束进行非线性荧光激发突破了这种限制。”  这项研究先后在中科院“百人计划”和国家自然科学基金的支持下,从基本原理验证、关键技术突破,到原理样机完成,经历了从基础研究到应用集成的各个环节。目前,课题组正在与国内外相关科研机构开展生物医学应用的合作研究,期望尽快将该项技术应用于生物活体三维快速成像和显示领域。花粉和荧光小球样品的红蓝立体图像(可佩戴红蓝眼镜观看)
  • 首届超快激光应用发展大会在东莞松山湖材料实验室开幕
    激光享有“最快的刀”、“最准的尺”、“最亮的光”等美誉,是20世纪最伟大的发明之一。超快激光作为激光领域重要的研究方向,一直是国际科技关注的研究重点,也是推动基础科学实现重大突破、驱动战略性新兴产业发展的动力源泉。10月26日,超快激光应用发展大会在东莞松山湖材料实验室新园区开幕。大会邀请近500名行业知名院士专家、企业代表,以技术交流、产业论坛、需求对接、项目路演等形式,共同探讨超快激光技术发展趋势、技术应用及前沿进展,展示我国超快激光领域优秀成果案例,加强超快激光政产学研用深度合作,推动超快激光产业高质量发展,助力制造强国、质量强国建设。本次活动由中国光学工程学会主办,东莞松山湖高新区管委会、中国光学工程学会激光技术及应用专业委员会、中国科学院物理研究所、松山湖材料实验室承办。英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院院士、松山湖材料实验室主任汪卫华,中国光学工程学会秘书长赵雪燕,东莞市委副书记、松山湖党工委书记刘炜,中国科学院西安分院院长赵卫,华南师范大学党委常委、副校长杨中民等领导嘉宾出席活动。国内首台先进阿秒激光设施筹建中,助推未来新质生产力加速生成超快激光兼具超短时间和高峰值功率特点,随着我国制造强国、质量强国战略的贯彻实施,超快激光已成为微加工领域的重要手段,正加速推动中国制造制造业实现转型升级。“今年的诺贝尔物理学奖颁给了阿秒激光领域的科学家,充分体现超快激光科学技术领域的重要位置。”开幕式上,大会主席、中国科学院院士王立军在视频致辞中表示,以皮秒、阿秒为代表的超快激光器,在新一代信息技术、增材制造、航空航天、海洋环境以及新能源汽车、新材料、生物医药等领域拥有广泛应用前景。在此背景下,首届超快激光应用发展大会迎运而生。王立军表示,希望与会嘉宾以此次大会为契机,聚焦超快激光技术发展,深化交流对接,推进务实合作。东莞作为海内外闻名的制造业城市,拥有超21万家工业企业、1.3万家规上工业企业、79家上市企业和3家千亿企业组成的先进制造体系,初步形成了激光与增材制造材料、激光器、整机装备、公共服务平台等协调发展的激光产业链,在超快激光的应用上有着非常广阔的前景。东莞市委副书记、松山湖党工委书记刘炜表示,松山湖科学城作为大湾区综合性国家科学中心先行启动区,是引领东莞高质量发展的核心引擎,当前集聚了中国散裂中子源等国家大科学装置、松山湖材料实验室等30家科研平台及新型研发机构、大湾区大学(筹)等6所高校以及华为、生益科技等一批龙头企业,初步构建起全链条、全过程、全要素的创新生态体系。“期待与各位科技大咖、产业专家一起,深入探讨超快激光的发展之路,推动更多科技成果、优质项目在东莞、在松山湖科学城落地。”“可以说,超快超强激光是拓展人类认知的重要工具之一,在某些方面甚至是独一无二、不可替代的研究手段。”中国科学院院士、松山湖材料实验室主任汪卫华表示,作为当前国际科技最重要的前沿方向之一,超快科学为解决室温超导材料制造、超高速计算,以及信息传输等关乎国家重大需求所涉及的底层共性科学问题提供了强大助力,也是未来形成新质生产力的关键。汪卫华表示,松山湖材料实验室将联合中国科学院物理所、西安光机所共建国内第一台先进阿秒激光设施,其中8条束线建设任务将落地东莞。目前松山湖材料实验室已组建了阿秒科学中心,引入了首席科学家魏志义,集聚了一大批国内外优秀的研究员和工程师,希望将来实验室能建成一个超快物质科学的研究中心,依托周边中国散裂中子源等大装置,在能源材料、信息材料等领域做出国际一流的成绩。超快激光产业链领军人物汇聚,数十场报告共论激光技术与产业新趋势近年来,随着全球加工行业精细化程度的不断提升以及我国制造业转型升级,超快激光凭借其精度高、热效应低等优势,在3C产业、增材制造、精准医疗、微纳加工、超快检测等领域拥有广阔的应用前景。大会报告环节,英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院物理研究所研究员、松山湖材料实验室首席科学家魏志义,深圳技术大学教授唐定远,北京大学物理学院副院长、核物理与核技术国家重点实验室副主任颜学庆,中国科学院上海光学精密机械研究所研究员胡丽丽等业内专家,分别从飞秒激光纵波红外远场超衍射极限纳米加工探讨、超快激光科学研究对高新技术产业应用和大科学设施建设的推动、激光等离子体加速器应用与展望,应用于超快激光系统的玻璃及光纤材料研究等不同领域做主题报告,对超快激光发展与应用的若干热点课题进行了分享交流。本次大会作为业内重量级交流活动,吸引了来自全国近百所知名科研院所及高校的专家学者、近30家业内知名企业代表参加,超快激光产业链领军人物汇聚,覆盖激光产业政产学研金服用全领域。“目前国际激光加工产业应用中国做的是最好的,全球市场占比约30%,其中大湾区集聚了很多头部的激光上下游企业,为支撑我国激光制造和应用起到了很大的作用。”李琳院士是国际激光加工领域知名专家,除在大会上做主题报告外,他特别关注超快激光应用层面的新技术、新原理,以及包括激光器在内的工具层面的发展。“这次来参会很多还都是物理领域的科学家及工艺工程师,从激光光源以及激光关键器件、激光加工,激光测量以及其他科学研究,都有很多讨论。”李琳表示,此次500多人的参会规模也说明我国在这个研究领域非常活跃。另一方面,李琳对筹建中的先进阿秒激光大科学装置也非常期待。“这个装置未来对超快光学、超快物理、超快化学、超快工程学都会有很重要的促进作用,能够让全国各个大专院校,科研院所及企业申请使用这一国际上最先进的科学装置,我们也期待它早日建成,为科学进步起到推进作用。”“这次大会我实际是来学习取经,希望能在超快激光赛道上走得更远。”参会企业广东大族粤铭激光集团股份有限公司,是东莞本土成长起来的知名激光企业,该公司董事、总经理卓劲松表示,公司非常重视新技术研发,坚持每年以不低于销售收入10%的研发经费投入到产品研发中。他希望东莞的政府、企业、学校科研院所可以联动呼应,打造高端制造业的产业基础、人才支撑、学术氛围,互相联合进行产学研一体输出,更快推动超快激光产业大步向前。接下来两天时间内,大会还将围绕超快激光技术与产业两大专题,先后开展超20场专题研讨或主题报告,共同探讨新形势下的前瞻思想、创新成果,以及资本、技术、市场如何促进激光产业发展等关注热点。与此同时,大会多措并举共助成果转化落地,邀请各级产业链头部企业、重点科研团队、高校研究所等,集中展示优秀科技成果、应用案例,现场还将进行多场技术交流、项目路演、人才招聘、对接洽谈等活动。
  • 科技部:加快硬X射线自由电子激光装置等重大科技基础设施建设
    12月29日,科技部公布《长三角科技创新共同体建设发展规划》(以下简称《规划》)。《规划》提出,共同打造重大科技基础设施集群,加快硬X射线自由电子激光装置、未来网络试验设施、超重力离心模拟与实验装置、高效低碳燃气轮机试验装置、聚变堆主机关键系统综合研究设施综合研究设施等重大科技基础设施建设。《规划》还提出,聚焦集成电路、新型显示、人工智能、先进材料、生物医药、高端装备、生物育种等重点领域,联合突破一批关键核心技术,形成一批关键标准,解决产业核心难题。除仪器设备领域的直接鼓励外,《规划》还指出,要“加强国家实验室、国家重点实验室、国家技术创新中心、国家产业创新中心、国家制造业创新中心、国家临床医学研究中心等重大科技创新基地布局建设。鼓励沪苏浙皖三省一市在科技前沿、共性关键技术和公共安全等领域集中优势科技资源,创新体制机制,共建一批长三角实验室,支持网络通信与安全紫金山实验室、材料科学姑苏实验室加快发展。“相关科研机构的建设也将促进仪器设备领域的大量采购。以下为规划详情:长三角科技创新共同体建设发展规划为贯彻落实《长江三角洲区域一体化发展规划纲要》和《国家创新驱动发展规划纲要》,推动长三角科技创新共同体建设,制定本规划。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届二中、三中、四中、五中全会精神,以加强长三角区域创新一体化为主线,以“科创+产业”为引领,充分发挥上海科技创新中心龙头带动作用,强化苏浙皖创新优势,优化区域创新布局和协同创新生态,深化科技体制改革和创新开放合作,着力提升区域协同创新能力,打造全国原始创新高地和高精尖产业承载区,努力建成具有全球影响力的长三角科技创新共同体。(二)基本原则。坚持战略协同。立足区域创新资源禀赋,以“一体化”思维强化协同合作,着力强化政策衔接与联动,破除体制机制障碍,实现优势互补,形成区域一体化创新发展新格局。坚持高地共建。发挥区域中心城市科技创新资源集聚优势,健全共享合作机制,联合开展重大科学问题研究和关键核心技术攻关,共建科技创新平台,提升原始创新能力,构筑有全球影响力的创新高地。坚持开放共赢。立足长三角地区创新特色,在更高水平、更广领域开展国际科技创新合作,以全球视野谋划和推动科技创新,集聚配置国际创新资源,塑造国际竞争合作新优势。坚持成果共享。推动优质科技资源和科技成果普惠共享,完善区域一体化技术转移体系,促进科技与经济社会深度融合,支撑长三角高质量一体化发展。(三)战略定位。高质量发展先行区。聚焦经济社会发展、民生福祉和国家安全的重大创新需求,依托国家重大科技创新基地和区域创新载体,推动科技、产业、金融等方面要素的集聚、融合,塑造经济社会发展的新空间、新方向,促进产业基础高级化和产业链现代化,支撑形成强劲活跃增长极。原始创新动力源。围绕科技前沿和国家重大需求,以国家实验室为引领,以重大科技基础设施集群为依托,联合提升原始创新能力,强化核心技术协同攻关,提高重大创新策源能力,推动长三角地区成为以科技创新驱动高质量发展的强劲动力源。融合创新示范区。深化体制机制改革,鼓励先行先试,推动区域科技创新政策有效衔接,科技资源高效共享,创新要素自由流动,创新主体高效协同,基础研究与应用研究融通发展,形成一批可复制、可推广的经验。开放创新引领区。对接国际通行规则,优化开放合作服务环境,联合打造一批高水平开放创新平台,实施一批重大国际科技合作项目,提升集聚和使用全球创新资源的能力,成为融入全球创新网络的前沿和窗口。(四)发展目标。2025年,形成现代化、国际化的科技创新共同体。长三角地区科技创新规划、政策的协同机制初步形成,制约创新要素自由流动的行政壁垒基本破除。涌现一批科技领军人才、创新型企业家和创业投资企业家,培育形成一批具有国际影响力的高校、科研机构和创新型企业。研发投入强度超过3%,长三角地区合作发表的国际科技论文篇数达到2.5万篇,万人有效发明专利达到35件,PCT国际专利申请量达到3万件,长三角地区跨省域国内发明专利合作申请量达到3500件,跨省域专利转移数量超过1.5万件。2035年,全面建成全球领先的科技创新共同体。一体化的区域创新体系基本建成,集聚一批世界一流高校、科研机构和创新型企业。各类创新要素高效便捷流通,科技资源实现高水平开放共享,科技实力、经济实力大幅跃升,成为全球科技创新高地的引领者、国际创新网络的重要枢纽、世界科技强国和知识产权强国的战略支柱。二、协同提升自主创新能力(一)统筹推进科技创新能力建设。共建一批长三角高水平创新基地。加强国家实验室、国家重点实验室、国家技术创新中心、国家产业创新中心、国家制造业创新中心、国家临床医学研究中心等重大科技创新基地布局建设。鼓励沪苏浙皖三省一市(以下简称“三省一市”)在科技前沿、共性关键技术和公共安全等领域集中优势科技资源,创新体制机制,共建一批长三角实验室,支持网络通信与安全紫金山实验室、材料科学姑苏实验室加快发展。加快建设长三角国家技术创新中心,对标国际最高标准、最好水平,围绕提升重点产业领域技术创新水平,打通重大基础研究成果产业化的关键环节,构建风险共担、收益共享、多元主体的协同创新共同体,提升能够引领未来产业发展方向的技术创新策源能力。对标国际标准和通行规则,强化数据治理和标准建设,积极推动长三角科学数据中心建设。共同打造重大科技基础设施集群。以上海张江、安徽合肥综合性国家科学中心为依托,加快构建世界一流的重大科技基础设施集群和区域重大科技基础设施网络,推动重大科技基础设施升级和联合建设,加快硬X射线自由电子激光装置、未来网络试验设施、超重力离心模拟与实验装置、高效低碳燃气轮机试验装置、聚变堆主机关键系统综合研究设施等重大科技基础设施建设,推进合肥先进计算中心建设,谋划筹建生物医学大数据、系统生物学、纳米真空互联、作物表型组学、光子科学、新一代工业控制系统、智能计算等前沿领域的重大科技基础设施,为突破世界前沿重大科学问题、取得重大原创突破提供有力支撑。(二)联合开展重大科技攻关。共同实施重大科技项目。鼓励三省一市立足优势学科和研究力量,瞄准世界科技前沿,聚焦国家重大需求,在基础研究、应用基础研究、关键核心技术攻关领域,主动发起和联合承担若干个国家重大科技项目。围绕三省一市高质量发展和民生改善的重大需求,创新组织管理机制,联合实施重大科技项目。加强三省一市科技计划的协调联动,建立统一的科技计划管理信息平台,促进科技报告和科技成果的信息共享。建立与科技创新区域协同攻关相适应的制度措施,完善各类创新主体充分参与、有效协同的机制,提高科技资源配置效率。协同开展关键核心技术攻关。推动长三角地区高校、科研机构、企业强强联合,面向产业创新需求,开展重大科技攻关。聚焦集成电路、新型显示、人工智能、先进材料、生物医药、高端装备、生物育种等重点领域,联合突破一批关键核心技术,形成一批关键标准,解决产业核心难题。共同打造集成电路共性技术研发、工业控制系统安全、多中心协同的生物医学智能信息技术等公共平台。在智能计算、高端芯片、智能感知、脑机融合等重点领域加快布局,筹建类脑智能、智能计算、数字孪生、全维可定义网络等重大基础平台。联合实施科技成果惠民工程。聚焦公共安全、食品安全、民生保障、生态环境、智慧城市、智慧医疗等社会发展领域,优化区域科研力量布局,完善民生领域科研体系。加大民生领域科技投入,加强检测试剂、疫苗和生物药物、新型化学药物制剂研制,共同加强传染病防治药物、罕见病药物和高性能医疗设备研发,提高疫病防控和公共卫生领域研发水平和技术储备能力。建立公共安全应急技术平台,加快共性适用技术的推广和应用。(三)协力提升现代化产业技术创新水平。强化区域优势产业创新协作。在电子信息、生物医药、航空航天、高端装备、新材料、节能环保、海洋工程装备及高技术船舶等重点领域,建立跨区域、多模式的产业技术创新联盟,支持以企业为主体建立一批长三角产学研协同创新中心。聚焦量子信息、类脑芯片、物联网、第三代半导体、新一代人工智能、细胞与免疫治疗等领域,努力实现技术群体性突破,支撑相关新兴产业集群发展,培育一批具有国际竞争力的龙头企业,建设一批国家级战略性新兴产业创新示范基地,打造若干具有国际竞争力的先进制造业集群。建设长三角国际标准化协作平台,增强企业为主体的国际标准竞争力。支撑循环型产业发展。以长三角生态绿色一体化发展示范区为依托,加强环境生态系统综合治理的科技创新供给,推进高新技术产业开发区工业污水近零排放、固废资源化利用和区域大气污染联防联控科技创新,开展整体技术方案与政策集成示范。积极推进绿色技术银行发展,推动在长三角地区布局建设绿色技术银行分行,打造跨区域的绿色技术协作平台和质量追溯体系。突破水—土—气协同治理和源头控制、清洁生产、末端治理与生态环境修复的成套核心技术群,协同构建循环型产业技术创新体系。三、构建开放融合的创新生态环境(一)共塑一体化科技创新制度框架。加强三省一市科技创新规划的对接。建立长三角科技创新规划会商机制,共同对区域性科技创新目标、重点任务、资源布局、国际合作等进行协商和统筹。针对重点领域和重大科技问题,联合编制科技创新专项规划,逐步形成长三角地区科技协同创新规划体系。鼓励开展创新政策先行先试。系统推进长三角区域全面创新改革,在推动人才、技术、资本、信息等创新要素跨区域自由流动方面先行探索经验。完善高新技术企业跨区域认定制度,鼓励长三角地区高新技术企业跨区域合作和有序流动。鼓励三省一市共同设立长三角科技创新券,支持科技创新券通用通兑,实现企业异地购买科技服务。建立科技创新人员柔性流动制度,深化区域科技交流与创新。共同加强科研诚信和学风作风建设。探索建立长三角地区科技伦理协作委员会和科研诚信信息共享协作与联合惩戒机制,促进区域内科研诚信案件联合调查,集中开展科研诚信宣传教育培训,积极营造长三角地区良好的科研生态和舆论氛围。(二)促进创新主体高效协同。强化各类创新主体的协同和联动。支持长三角地区建设一批世界一流大学和世界一流学科。依托“双一流”建设高校在集成电路等领域布局建设一批国家产教融合创新平台,为高校和企业协同开展人才培养、科学研究、学科建设提供支撑。充分发挥长三角高校协同创新联盟作用,整合高校优势科技资源,在重大基础研究和关键核心技术突破等方面形成联合攻关机制。建立长三角一流高校与科研机构的智库联盟,逐步形成引领型智库网络。鼓励有条件的高校、科研机构和企业牵头设立跨区域的新型研发机构。围绕产业创新链强化协同创新。围绕集成电路、人工智能、量子信息、生物医药、先进制造、物联网、互联网等高端高新产业,建立完善区域产业创新链。以重大科技创新基地为载体,以国家高新技术产业开发区为依托,以企业为技术创新主体,强化产学研用各类创新主体的跨区域跨领域协作攻关,构建基础研究、技术开发、成果转化和产业创新全流程的产业创新链。发挥长三角资本市场优势,构建有利于科技创新和高端产业孵化扩增的金融体系,支持一批中小微科技型企业创新发展。(三)推动创新资源开放共享和高效配置。依托上海科技创新资源数据中心等机构,建设长三角科技资源共享平台,完善利益分享机制,促进区域资源优势互补和高效利用。整合三省一市高校、科研机构、各类创新基地和专业化服务机构的科技创新资源,引入国家科技资源共享平台优质资源,形成科技资源数据池。不断完善长三角科技资源共享服务平台功能,完善财政奖补机制,支持成立科技资源开放共享服务机构联盟,推动重大科研基础设施、大型科研仪器、科技文献、科学数据、生物种质与实验材料等科技资源开放共享与合理流动。加大各省市人才支持政策的协调力度,建立一体化人才保障服务标准,实行人才评价标准互认制度,促进科技人才在各省市之间健康有序流动。允许地方高校按照国家有关规定自主开展人才引进和职称评定。推动三省一市科技专家库共享共用,完善人才交流、合作和共享机制。构筑长三角地区科普工作协同发展体系,完善科普资源开放共享机制,共同承办国家重大科普活动,进一步推进三省一市科普项目、展览、影视作品等优质科普资源交流共享。(四)联合提升创新创业服务支撑能力。构建一体化科技成果转移转化体系。充分发挥市场和政府作用,构建开放、协同、高效的共性技术研发平台,打通原始创新向现实生产力转化通道,推动科技成果跨区域转化,建立健全成果转化项目资金共同投入、技术共同转化、利益共同分享机制。以长三角地区四个技术交易市场为枢纽,建立完善长三角一体化技术交易市场网络。依托三省一市现有技术转移服务平台和长三角国际创新挑战赛等活动,建立面向全球的科技成果信息发布、转移、转让、授权的科技成果转移转化服务体系和科技成果交易中心。以上海闵行、江苏苏南、浙江国家成果转移转化示范区建设为引领,鼓励三省一市高校、科研机构建立专业化技术转移机构,发展社会化技术转移机构,多渠道培养技术转移经理人,提高技术转移专业服务能力。推动高校、科研机构选派拥有科研成果、创新能力强的科研人员担任“科技专员”,深入企业开展技术转移和科普服务。创新科技金融服务模式。探索建立长三角跨省(市)联合授信机制,推动信贷资源流动,服务长三角科技型中小企业创新发展。引导大型国有银行、股份制商业银行、保险公司以及地方金融机构等,开发优质科技金融产品,开展天使投资、知识产权质押、科技贷款、科技保险等活动,为长三角创新型企业提供全生命周期科技金融服务。支持长三角发展“数据驱动”的科技金融模式,研究制定数据化科技融资风险分担和补偿机制,建立促进科技创新的企业信用增进机制。共建长三角创业融资服务平台。加强上海证券交易所和三省一市证监局的协作交流,依托长三角资本市场服务基地,为长三角科技创新企业提供多层次融资服务。支持长三角探索建立区域创新收益共享机制,鼓励设立产业投资、创业投资、股权投资、科技创新、科技成果转化引导基金。发挥科创板对长三角科技创新共同体的支持作用,鼓励符合条件的长三角地区科技创新企业到科创板上市融资。支持科技型上市公司做强做大,发挥高质量上市公司对科技创新的带动作用。优化创业投资发展的制度环境和生态环境,培育一批具有国际竞争力的创业投资机构,吸引具有全球影响力的国际创投机构在长三角投资。(五)完善区域知识产权战略实施体系。推动知识产权创造与合作。制定与长三角科技体制改革相配套的知识产权政策,进一步完善科技创新知识产权激励机制、产学研协同创新机制、高价值专利培育联合推进机制,加强长三角产业知识产权布局谋划,超前布局前瞻性、战略性新兴产业专利,培育知识产权密集型产业。加快大数据确权立法探索与实践,建立健全数据交易机制,鼓励基于公共数据和社会数据的场景开发利用,促进数据要素市场化配置。在长三角跨省(市)联合授信机制下,推进跨区域的知识产权投融资服务。强化知识产权保护协作。加强知识产权法规体系建设,统筹制定知识产权保护政策,推动长三角知识产权地方立法和实施机制更加配套。联合加强知识产权保护工作,推行完善知识产权联合执法和跨地区执法协作的工作机制。加强上海知识产权法院与南京、苏州、杭州、宁波、合肥等地知识产权法庭之间的合作交流,在三省一市高级人民法院建立的司法协作机制框架内建立长效工作机制,提供更高质量的司法服务和保障,实现互利共赢,共同提升知识产权司法保护水平。完善知识产权服务体系。加快构建政府引导、多元参与的一体化知识产权公共服务体系。加强长三角地区协作,强化知识产权公共服务资源供给,建立长三角知识产权信息公共服务平台,形成跨行政区域的公共服务合作机制和知识产权信息共建共享机制,推动科技成果及知识产权信息的有效传播利用。完善一体化的知识产权教育培训、知识产权学科建设和高端人才培养机制,加强知识产权的宣传普及。四、聚力打造高质量发展先行区(一)一体化推进创新高地建设。瞄准世界科技前沿和产业制高点,充分发挥创新资源集聚优势,协同推动原始创新、技术创新和产业创新,共建多层次产业创新大平台,形成具有全国影响力的科技创新和制造业研发高地。提升上海创新能级和国际化水平,加快国际科技创新中心建设步伐,发挥辐射带动作用,引领长三角一体化发展。增强南京、杭州、合肥等区域中心城市创新能力,提升苏浙皖区域创新发展水平,与上海共同打造长三角科创圈,构筑形成优势互补、协同联动的科技创新圈和创新城市群。强化张江综合性国家科学中心、合肥综合性国家科学中心科技创新策源地的重要作用,统筹推进国家实验室、重大科技基础设施和科技创新基地建设。发挥长三角双创示范基地联盟作用,加强跨区域“双创”合作,联合共建国家级科技成果孵化基地和双创示范基地。充分发挥上海张江、苏南、杭州、宁波温州和合芜蚌等国家自主创新示范区集群在重大创新政策先行先试、创新型产业集群发展方面的示范带动效应,依托国家高新技术产业开发区,推动科技、产业、金融、人才等各方面创新要素汇聚融合、体系化发展,共同打造长三角高质量发展主引擎。(二)联合推进G60科创走廊建设。发挥G60科创走廊九城市的创新资源集聚优势,先行先试一批重大创新政策,协同布局一批科技创新重大项目和研发平台,促进科技资源开放共享和科技成果转移转化。在人工智能、集成电路、生物医药、高端装备、新能源、新材料、新能源汽车等领域,加快产业协同创新中心等创新基地建设,支撑打造若干具有国际竞争力的先进制造业集群,共建中国制造迈向中国创造的先进走廊、科技和制度创新双轮驱动的先试走廊、产城融合发展的先行走廊。(三)协力培育沿海沿江创新发展带。以上海为中心,沿海岸线向北、向南展开,分别打造北至南通、盐城、连云港的沪通港沿海创新发展翼和南至宁波、绍兴、舟山、台州、温州的沪甬温沿海创新发展翼。沪通港沿海创新发展翼重点协同推进先进制造、石油化工等领域共性技术研发和海洋科技创新,支撑引领精品钢、海洋工程装备和高技术船舶等高端制造业,临港化工、能源和新能源、港航物流等产业发展,辐射带动苏北皖北创新发展。沪甬温沿海创新发展翼重点协同推进新材料、生物医药和海洋科技创新,开展沿沪宁杭合产业创新带研究,谋划建设沪杭甬湾区经济创新带,引领支撑高端制造、医药健康、海洋高新技术产业和海洋服务业发展,打造生态绿色的海洋发展创新带,辐射带动浙江西南部衢州、丽水等地区创新发展。依托长江黄金水道,打造沿江创新发展带,支持环太湖科技创新带发展,充分发挥皖江城市带承接产业转移示范区的区位优势,建设科技成果转化和产业化基地,支撑跨江联动和港产城一体化发展,增强长三角地区对长江中游地区的辐射带动作用。五、共同推进开放创新(一)共建多层次国际科技合作渠道。鼓励各类区域创新主体积极拓展国际科技合作渠道和领域,积极开展多层次国际科技活动。支持长三角地区高校、科研机构、科技园区和企业在政府间科技合作联委会等机制下开展国际科技交流与合作,提升合作层次与水平。鼓励具备优势技术的高校、科研机构在海外开展联合办学、开设分支机构、实施国际援助项目等,开展技术示范与推广、技术培训、技术服务、联合研发等方面的合作。共同举办国际化、品牌性的展览展示与论坛活动。发挥三省一市华侨华商资本、人脉等资源优势,扩大民间交往、深化民心沟通。鼓励有关商会、产业联盟、企业等推进与国外有关组织和机构的科技创新交流合作。(二)协同实施或参与国际大科学计划。围绕生命健康、资源环境、物质科学、信息科学等领域,集中优势资源,适时牵头和参与发起全脑神经联结图谱等国际大科学计划和国际大科学工程。鼓励在生物医药、能源、先进材料、信息技术、空间天文与海洋等领域加强国际科技合作。依托重大科技基础设施,吸引全球科学家力量,开展联合研究,突破重大科学难题。建立国际大科学计划组织运行、实施管理、知识产权管理等新模式、新机制,通过有偿使用、知识产权共享等方式,吸引国际组织、国内外政府、科研机构、高等院校、企业及社会团体等参与支持大科学计划建设、运营和管理。(三)加快聚集国际创新资源。汇聚国际一流研发机构。加强长三角地区“放管服”改革联动,打造国内最优营商环境,充分发挥长三角对外开放整体优势,大力吸引海外知名大学、研发机构、跨国公司等在长三角地区设立全球性或区域性研发中心,积极争取科技相关国际组织在长三角落户或设立分支机构。促进国际技术转移。加深与欧盟创新驿站等国际机构的合作,加强中以上海创新园、中新南京生态科技岛、中日(苏州)地区合作示范园、中新苏州工业园区、中欧(无锡)生命科技创新产业园、中以常州创新园、杭州万向国际聚能城、中荷(嘉善)产业合作园、合肥国家中德智能制造国际创新园等合作园区建设,共享与国外技术转移机构的合作关系,开展国际技术转移服务,促进国际先进科技成果在长三角转化落地。加快聚集国际高端人才。加强各类创新平台建设,充分发挥浦江创新论坛、世界顶尖科学家论坛、世界互联网大会、世界制造业大会、世界青年科学家峰会的国际化效应,打造全球高端科技人才集聚、交流与合作平台。加大国际人才招引政策支持力度,共享海外引才渠道,加强“二次引进”,推动国际人才认定互认、服务监管部门信息互换,提高国际人才综合服务水平,吸引和集聚全球高层次科技创新人才。六、保障措施(一)坚持党的集中统一领导。把党的领导贯穿长三角科技创新共同体建设的全过程,在推动长三角一体化发展领导小组领导下,建立健全国家有关部门与三省一市的协同联动机制,协调解决有关问题。科技部牵头设立长三角科技创新共同体建设办公室,统筹本规划实施,推进各项任务全面落实。(二)建立完善专家咨询机制。建立长三角科技创新专家咨询制度,开展长三角地区科技创新重大战略问题研究和决策咨询,为科技创新支撑长三角一体化高质量发展提供咨询建议。(三)优化支持方式。加大对长三角科技创新共同体规划建设的支持力度,更好发挥财政资金示范引导作用。创新地方财政投入方式,加强对重大科技项目的联合资助,提升财政科技资金使用效率。(四)建立跟踪评估机制。建立健全长三角科技创新共同体建设发展指标体系。加强对规划实施、政策落实和项目建设情况的督促检查,定期对规划推进落实情况进行监测评估,确保规划取得预期成效。
  • 大族激光 — 世界知名激光设备制造商选用雷尼绍RGH24光栅反馈系统
    多年来,大族激光研发并生产了一系列激光设备,不断满足世界工业对激光应用的各种需求。为迎合中国国内市场的急速发展,大族激光一直在积极地寻求高质量零件供应商,确保随时为客户提供高精度、便利、耐用的激光设备方案。在本案例分析中,大族激光选择雷尼绍RGH24光栅作为其音圈电机的位置反馈系统。 作为在中国深圳上市的公司,大族激光是一家集技术研究、开发、生产及销售为一体的高科技企业。它在世界激光行业中处于领先地位,年出货量高达10 000台!其旗下拥有众多子公司,包括大族电机科技有限公司,大族数控科技有限公司等,为不同领域的客户(如诺基亚、大众汽车等国际企业)提供专业的激光设备和应用方案。公司产品齐全,如激光打标机、切割机、焊接机、电机配件等。大族激光通过自主研发把&ldquo 实验室装置&rdquo 变成可以连续24小时稳定工作的激光技术装备,是世界上仅有的几家拥有&ldquo 紫外激光专利&rdquo 的公司之一。 2004年至今,大族激光从雷尼绍购买了10 000多套光栅系统,广泛应用于各类产品上。 大族激光集团总部 激光打标机内的音圈电机 音圈电机的工作原理是将电信号转换成机械力,当永磁磁铁之间的线圈通电时,磁场改变,从而产生力,产生的力会驱动永磁磁铁之间的线圈组运动;通过控制电流大小,可使线圈在永磁磁铁之间来回移动,从而产生线性运动。与其他电机不同,音圈电机具有一流的线性特性,例如直接驱动、零齿槽刀、轻动子高响应和带宽、动子及定子无磨损等。&ldquo 直接&rdquo 驱动的特性使音圈电机广泛应用在一些距离短但需要较高加速度的直线运动的场合。大族激光旗下的大族电机不但把音圈电机在市场上作为零件出售,还将其广泛应用在集团生产的激光打标机上。 研发部总裁王光能先生说:&ldquo 打标机需要在材料上打出立体效果的标签,我们必须通过运动反馈系统来控制镜子,在极短的时间内引导激光定位到相应位置上,雷尼绍正好能提供这方面的产品。&rdquo RGH24读数头通过光学原理在光栅尺上读取数据,与接触式系统相比,这种非接触式设计能够使音圈电机在位置控制上高速运转,并保证了高重复定位精度。除了应用在激光上之外,音圈电机还可以用于医疗检测仪器、精细位置控制和电脑硬盘生产等等。 音圈电机工作原理 音圈电机体积轻巧 音圈电机是一个理想的线性促动器,在短距离(微米到厘米)位置控制上具有极佳的效果。雷尼绍光栅尺安装在音圈电机活动部位上,读数头则被固定。由于音圈电机需要保持其高输出/重量比例数值,因此光栅尺必须轻巧,以维持最高加速度。王总说:&ldquo 我们在选择光栅尺的时候,尺子的重量是我们考虑的首要问题。通过比较几家供应商的产品,我们发现雷尼绍RGS20光栅尺十分轻巧,满足需要的同时,又不影响电机的效率。&rdquo 雷尼绍RGS20光栅尺使用轻巧材料制成,厚度仅0.2 mm,在音圈电机上几乎是不载重量,完全不影响电机的快速运转。由于使用音圈电机的机器空间一般都比较有限,因此包括电机位置控制的部分要尽量设计得轻巧。设计师在市场上选择读数头时需要考虑体积问题,读数头必须能够固定在狭小的空间内,配合光栅尺运动,从而控制电机位置。 王总说:&ldquo 在市场上同类产品中,雷尼绍读数头设计轻巧,质量和体积都能令人满意,并且其他性能不受影响。&rdquo 王光能 大族激光打印机安装简单 一般光栅系统的安装过程主要包括三个步骤:安装和固定光栅尺、安装读数头以及校准。王总说:&ldquo 雷尼绍光栅系统的整个安装过程十分简单,看过雷尼绍工程师安装一次后,我们的第二台机器就能自己安装了,而且过程快捷便利,看了指示灯就能知道安装过程是否正确。&rdquo 雷尼绍RGS20光栅尺成卷存放,用户在使用时可根据用途自行裁剪所需要的长度。在大族激光的音圈电机设计上,行程距离只有10到20 mm,王总说在市场上找到相同尺寸的光栅尺比较困难,而按需裁剪的设计解决了这一难题,为他们带来了便利。 王总继续说:&ldquo 我们不需要打孔或其他工具辅助,只要把光栅尺背面的双面胶撕掉,贴在预先定好的位置上就可以了。这种设计使我们能够根据需要灵活应用,我们可以自己裁剪光栅尺的长度来决定电机的行程距离,完全不受供应商的限制。&rdquo 此外,雷尼绍读数头上装有专利LED指示灯,使安装和校准过程变得简单快捷。用户通过观察LED指示灯的颜色,便可知道安装是否成功。 RGH24展望 自2004年至今,大族激光与雷尼绍合作已有8年时间,展望未来,王总说:&ldquo 我们大族会在激光行业中继续开发新产品和技术,为客户提供高质量的激光设备;同时我们也会在其他领域,如LED、太阳能等新能源课题上投入资金进行研发。希望在不久的将来,大族能成功开发出与激光设备一样出色的产品,为全球用户提供可信赖、高品质的工业设备。&rdquo -完- 如需了解雷尼绍更多产品,请访问www.renishaw.com.cn 关于雷尼绍英国雷尼绍公司于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国共设有三个分公司和八个办事处,员工近百人。公司产品广泛应用于机床自动化、坐标测量、快速成型制造、比对测量、拉曼光谱分析、机器校准、位置反馈、形状记忆合金、大尺寸范围测绘、立体定向神经外科和医学诊断等领域。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3000人。 -完-详情请联系: 张晶 (Grace Zhang) 市场助理Marketing Administrator 雷尼绍(上海)贸易有限公司北京分公司 电话: +86 10 510882882 *1001电邮:Grace.zhang@renishaw.com
  • 赵继民研究员团队成功研制在线原位高压超快泵浦-探测光谱装置
    时间分辨泵浦-探测超快光谱由于其独特的优势(如超高的时间分辨率、费米面以上激发态的观测、相干玻色子激发等),被广泛应用于研究各种凝聚态物理(和其它科学),包括高温超导、复杂相变、多自由度耦合、相干调控、激光诱导新量子态和隐态等。高压技术通过直接改变晶格常数来调节电子能带结构和自旋特性等,提供了一种独特、干净的调控手段,也成为凝聚态物理(和其它科学领域)研究的重要手段。近年来,在上述丰富而深刻的基础科学需求的推动下,人们致力于将超快光谱和高压物理这两个领域结合起来,以研究高压条件下的超快动力学[Chin. Phys. Lett. (Express Letter) 37, 047801 (2020)]。研究挑战主要来自于实验仪器产生数据的可靠性。由于研究超快动力学的实验非常精细,压力变化也容易引起复杂的物理效应,保证仪器装置获取可靠精准的、有可比性的实验数据对于高压超快动力学这个交叉方向的开启和发展至关重要。例如,如果实验过程中将高压装置拿出光路进行加压、调压、校压之后再放回光路,可能会导致位置偏移和样品转动,将会引入人为实验误差,对于泵浦-探测这样的双光束实验的干扰尤为明显(把双光路光谱实验与高压技术相结合面临更多挑战)。从实践看,国内外目前已有的初步尝试,大多获得的是准粒子寿命信息,缺乏可靠的幅值信息,这为研究超快动力学带来了困难,例如量子材料的超导相变、CDW竞争序、拓扑相变等量子物性的标志特征之一是能隙的打开或闭合,能隙的变化直接对应于激发态超快光谱实验中的声子瓶颈效应(phonon-bottleneck effect),确认声子瓶颈效应需要幅值和寿命双方面的信息,仅有寿命信息不足以确认,于是同时获得可靠的幅值和寿命信息对于高压超快动力学这个交叉领域的开启、成型和顺利发展至关重要。这对仪器装置提出两个关键要求:(1)技术层面--研制可靠精准的在线原位(on-site in situ)高压超快泵浦-探测光谱实验装置,(2)标准层面--提出相应的标准描述,同行们在报道实验结果时最好明确是否为在线原位获得的实验数据,以保证学术交流中实验数据有可比性,从而从整体上提高数据的可靠性,减少不必要的人为误差甚至误导。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF05组赵继民研究员及博士后吴艳玲、博士生加孜拉哈赛恩和田珍耘与北京高压科学研究中心丁阳研究员及博士生尹霞合作,成功搭建了一套室温条件下工作的“在线原位(on-site in situ)”的高压超快泵浦-探测光谱装置(图1)。该仪器装置的搭建取得了重要突破:(1)技术方面,实现了on-site in situ 技术,在整个实验过程中高压DAC不拿出光路,在光路中即可加压、调压、校压,完全避免了复位误差(repositioning fluctuation)(图2),最大程度保证了实验过程中样品不发生(控制在CCD监控微调误差范围以内的)移动或转动,避免了实验过程中不必要的人为误差,在实验数据的精准可靠性方面实现了最大化;(2)标准方面,提出了on-site in situ标准描述,如果在文章中明确DAC是否移出及放回了光路,则可在学术交流中提高实验数据的可比性(图3),避免了不必要的对比误差和解读偏差(使用机械臂将DAC移出光路并复位的装置,在最好的情况下等同于在线原位的精度,一般也有可比性)。总之,基于上述两方面仪器研发的突破,研究团队获得了室温下的可靠的幅值和寿命双方面的超快动力学信息,提供了足够丰富和全面的物性信息,为获得量子材料的高压超快动力学、进一步理解复杂相变和高压引起的激发态超快动力学特性提供了可靠的保障。图1. “在线原位(on-site in situ)”高压超快泵浦-探测光谱实验装置原理图。图2. 复位误差(re-positioning fluctuation)若干情形举例:(a)样品有台阶、位错或晶畴边界引起的晶格变化;(b)样品表面有台阶引起的高度差;(c)样品中存在不均匀的掺杂或缺陷分布;(d)样品具有平面内的超结构或复杂晶格结构;(e)样品有转动,且动力学对晶格方向很敏感。图3. 采用“在线原位(on-site in situ)”超快实验装置和“非在线原位(off-site in situ)”超快实验装置对相同实验观测到的不同超快光谱实验数据之间的对比。其中(b)图与(c)图:在off-site实验中只看到一个变化特征,经过on-site条件的实验能够观测到两个变化特征,分别对应两个不同的物理特性(包括声子瓶颈效应及相变等)。相关工作近期发表在Review of Scientific Instruments上,获得了科技部国家重点研发计划、国家自然科学基金委、中国科学院创新交叉团队、中国科学院对外合作重点项目、中国科学院先导专项、北京市自然科学基金重点项目的支持。相关工作链接:[1] Y. L. Wu, X. Yin, J. Z. L. Hasaien, Z. Y. Tian, Y. Ding, and Jimin Zhao, On-site in situ high-pressure ultrafast pump–probe spectroscopy instrument, Review of Scientific Instruments 92, 113002 (2021).https://doi.org/10.1063/5.0064071
  • 激光精密测量技术及其在高端装备制造业中的应用
    “中国制造 2025”发展战略对高端装备制造业的质量提出了更高要求。超精密测量对提升高端装备制造质量具有基础支撑作用,并在制造全过程中的质量控制发挥决定性作用;只有解决整体测量能力问题,才能从根本上解决高端装备制造质量问题。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。目前,越来越多的激光精密测量系统已作为产品检测的重要环节融入高端装备制造生产线,并已成为大型装备制造业中质量保证的重要手段,包括激光干涉仪、激光跟踪仪等。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器,广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合;特别是基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。为帮助用户更好地了解激光精密测量技术及其在高端制造中的应用,仪器信息网将于2022年10月20-21日举办首届“精密测量与先进制造”主题网络研讨会,特邀中国科学院微电子研究所主任周维虎、清华大学教授张书练、哈尔滨工业大学长聘教授胡鹏程、中国计量科学研究院副研究员崔建军分享主题报告。 点击图片直达报名页面中国科学院微电子研究所主任/研究员 周维虎《激光跟踪仪精密测量技术与应用》(点击报名)周维虎研究员长期从事精密光电测量技术与仪器研究,主持科技部重大仪器专项、国家重点研发计划、自然基金重大仪器专项、国防科工局重点预研、装备发展部军用测试仪器、中科院仪器装备项目等50余项精密测量与仪器类课题,获得中国机械工业科学技术发明特等奖、中国计量测试学会技术发明一等奖等7项省部级奖励,发表论文近200篇,申请专利近50项,编写教材1部,起草国家计量检定规程和规范4部,获得国务院特殊津贴、中科院朱李月华优秀教师奖、江苏省双创领军人才、青岛市创新领军人才等称号。成功研发国际上首台飞秒激光跟踪仪、国内首台三自由度激光跟踪仪和六自由度激光跟踪仪,打破了国外在激光跟踪测量领域的技术垄断。担任中国科学院大学岗位教授、博士生导师,北京航空航天大学、华中科技大学、大连理工大学、吉林大学、合肥工业大学等十余所高校兼职教授和博士生导师,南京航空航天大学特聘教授,湖北工业大学楚天学者教授。担任《计测技术》、《测控技术》、《中国测试》和《光电子》期刊编委,《Optical Engineering》、《中国航空学报(中、英文)》等十余份国内外期刊审稿人。报告摘要:激光跟踪仪用于超大尺寸空间几何量测量,具有测量速度快、精度高、范围大,可现场测量等特点。在航空航天、船舶、雷达、高铁、能源设备、汽车、大科学装置等大型装备制造领域具有广泛应用,本报告重点介绍激光跟踪仪研发技术及相关领域中应用。清华大学教授 张书练《激光回馈精密测量技术新进展》(点击报名)张书练,清华大学教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。曾任清华大学精密测试技术及仪器国家重点实验室主任,现任广东省计量院重点实验室学术委员会主任。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。哈尔滨工业大学长聘教授 胡鹏程《超精密激光干涉位移测量技术进展与挑战》(点击报名)胡鹏程,哈工大长聘教授、博导,精密仪器工程研究院副院长,2019年入选国家高层次青年人才计划。校内兼职:第二届校学术委员会,委员;超精密仪器技术及智能化工信部重点实验室,副主任;超精密光电仪器工程研究所,常务副所长。校外兼职:中国计量测试学会,第八届计量仪器专业委员会,副主任委员;IEEE Senior Member;中国电子学会、中国光学工程学会,高级会员;中国仪器仪表学会传感器分会,理事;教育部学位与研究生教育发展中心,中国高校创新创业教育研究中心,评审专家;《光学精密工程》编委,《哈尔滨工业大学学报》青年编委,《红外与激光工程》青年编委;国家重点研发计划引力波探测重点项目,咨询专家组,成员;ISPEMI 2018, Secretary General;IFMI&ISPEMI 2020,Cochair of organizing committee,IFMI&ISPEMI 2022,Cochair of organizing committee 学术研究:围绕超精密激光测量与光电仪器方向,从事基础研究、关键技术突破和仪器研制测试。承担国家科技重大专项课题、技术基础项目、国家重大工程项目、国家自然科学基金国际合作研究项目、国家自然科学基金重大研究计划课题、国家自然科学基金面上项目等,项目经费1.2亿余元;发表SCI检索论文60篇,出版编著1部,申请/授权国内外发明专利152项。 科研成果奖励:中国计量测试学会科学技术进步奖,一等奖(第1完成人,基础类,2021年);国家技术发明奖,二等奖(第5完成人,2013年)等。报告摘要:甚多轴高速超精密激光干涉测量技术与仪器是高端装备发展与前沿研究的重大核心基础技术,作为光刻机等高端装备中不可替代的核心单元,其直接决定了装备所能达到的极限运动精度与整体性能;作为溯源精度最高的长度计量测试仪器,其准确统一全国相关量值,支撑国际单位制量子化变革等前沿研究。随着高端装备发展与前沿研究的迅猛发展,其甚多轴、高速、超精密测量需求越加显著,使激光干涉测量技术发展不断面临新的挑战。为此,开展了甚多轴高速超精密激光干涉测量技术研究,突破了激光稳频、多轴干涉镜组、干涉信号处理等多项关键技术,研制成功系列超精密激光干涉测量仪器,测量速度优于5m/s,动态测量分辨力0.077nm,光学非线性误差优于0.02nm,并在微电子光刻机、国家基准装置、德国PTB超测量装备等成功应用,为我国高端装备发展与前沿研究奠定重大共性技术基础。中国计量科学研究院课题组长/副研究员 崔建军《差分珐珀激光干涉微位移计量及应用研究》(点击报名)崔建军副研究员长期从事精密几何量测量技术及计量标准研究,主持和参加科技部重大仪器专项、国家重点研发计划、国家及北京市自然科学基金项目、国家市场监管总局项目等30余项精密测量与几何量计量研究项目,获得浙江省科学技术进步二等奖、国家质检总局科技兴检二等奖、中国计量测试学会科学技术进步三等奖等多项省部级奖励,发表论文近40余篇,申请专利近30项,软件著作权20余项,正在负责及参加起草的国家计量检定规程规范10余项。主持建立新一代双频激光干涉仪计量标准装置、激光测微仪、光栅式测微仪校准装置、纳米薄膜厚度计量标准装置等多项国家量值最高的计量标准装置。提出了双频差分法布里珀罗激光干涉技术原理,研制了准确度达到数十皮米的微位移及干涉仪非线性计量装置。担任担任全国半导体器件、全国光学和光子学光纤传感、全国试验机等3个标准化技术委员会委员,担任中国机器人检测认证联盟技术委员会分工作专家组专家,国家计量标准的一级考评员和一级注册计量师,中国计量科学研究院研究生导师,南方科技大学、河南理工大学等多所高校兼职研究生导师,担任《计量学报》、《计量科学与技术》、《中国计量》、《中国激光》,《光学学报》、《sensor review》《measurement》、等十余份国内外期刊审稿人。报告摘要:微位移测量是高端装备核心零部件设计和先进制造急需的应用基础技术,也是几何量计量、微纳制造和光刻技术等发展所急需的关键技术。报告针对当前急需的纳米及亚纳米精度的激光干涉仪、亚纳米电容测微仪和纳米位移传感器等难以计量的现状,创造性提出采用固定频差双频激光建立差分珐珀干涉系统的光学理论,并研究基于该理论构建精度达到数十皮米甚至更高量级的位移测量技术实现方法,研制实现皮米级分辨力的高精度位移测量装置,推动国家精密测量、先进制造等领域的高质量发展,也为建立皮米级国家最高微位移计量标准装置提供技术方法。扫码报名抢位指导单位:中国计量测试学会主办单位:仪器信息网协办单位:上海大学会议日程报告时间报告主题报告人单位职务10月20日上午09:30-10:00工业视觉技术进展及装备应用邾继贵天津大学精密仪器及光电子工程学院院长10:00-10:30激光跟踪仪精密测量技术与应用周维虎中国科学院微电子研究所主任/研究员10:30-11:00激光回馈精密测量技术新进展张书练清华大学教授11:00-11:30待定胡鹏程哈尔滨工业大学长聘教授10月20日下午14:00-14:3020年来齿轮测量技术的发展石照耀北京工业大学长江学者特聘教授14:30-15:00基于波长移相技术的光学平行平板轮廓和厚度信息测量技术于瀛洁上海大学机电工程与自动化学院院长15:00-15:30视觉在线测量与检测技术卢荣胜合肥工业大学教授15:30-16:00面向智能制造的全过程、全样本、全场景测量李明上海大学教授10月21日上午09:00-09:30工业摄影测量技术研究及应用郑顺义武汉大学教授09:30-10:00装备空间运动误差被动跟踪测量方法与仪器娄志峰大连理工大学副教授10:00-10:30差分珐珀激光干涉微位移计量及应用研究崔建军中国计量科学研究院课题组长/副研究员10:30-11:00面向先进制造过程的在线计量技术研究赵子越中国航空工业集团公司北京长城计量测试技术研究所高级工程师
  • 约稿:激光衍射技术在吸入制剂研究中的应用
    1. 引言  通过吸入方式将药物直接输送到人体肺部,已是世界公认的治疗哮喘和慢性阻塞性肺病的最好方法,同时肺部及呼吸道也可作为一个通道,递送的药物通过气道表面进入人体血液系统,然后再进入到身体其他器官,达到全身作用的目的。然而影响药物在肺部及呼吸道沉积的因素有很多,其中气雾的粒度大小分布就是最重要的影响因素之一。目前吸入制剂粒度大小测量最经典的方法还是惯性撞击器法,其利用不同大小的药物颗粒具有不同的动能,从而具有不同的动力学特征而将其分离,不但能够得到雾滴中不同大小的活性成分的绝对含量,而且也是美国药典和欧洲药典评价吸入制剂体外粒度分布推荐使用的方法。但惯性撞击器法本身也存在不足,比如测试比较麻烦,尤其是其洗涤干燥以及色谱分析过程,往往测试一个样品需要较长的时间,这在现代医药研发过程中就显得&lsquo 节奏&rsquo 偏慢,同时随着吸入制剂研究的发展,大家不但对揿次之间的稳定性有更高的要求,而且希望对于每一揿次的吸入或者喷射过程能够获得更多的信息,而在这些方面,惯性撞击器法都略显不足,而激光衍射技术恰恰可以弥补。激光衍射技术是基于不同大小的颗粒其衍射光在空间分布的不同,利用米氏理论反演计算而获得颗粒体系的粒度分布,其本身快速无损的测试方式、对于喷雾细节的展现、以及快速比对的特点,使其在吸入制剂研究和筛选过程中大大提高研究效率,尤其是其本身可以跟惯性撞击器以及USP人工喉联合使用,大大拓展了其应用范围。本文将根据其特点选取一些剂型和领域就激光衍射技术的应用研究跟大家做一些沟通和介绍。  2. 鼻喷剂  近年来,通过鼻粘膜给药已被认为是一种药物能被快速高效吸收的给药方式,鼻粘膜细胞上有很多微细绒毛,因此大大增加了药物吸收的有效面积,粘膜细胞下有着丰富的血管和淋巴管,药物通过粘膜吸收后可直接进入体循环,此外,鼻腔内酶的代谢作用远远小于胃肠道,因此,鼻腔给药系统正日益受到人们的重视,比如,在肽类和蛋白质类药物的剂型研究领域。图1. 马尔文喷雾粒度仪测试鼻喷剂粒度分布  在众多给药剂型中,喷雾剂是比较常见的剂型,仅通过雾化装置借助压缩空气产生的动力使药液雾化并喷出,由于其不含抛射剂,不使用耐压容器,目前应用越来越广泛。在鼻喷剂研究过程中,对于鼻喷剂粒度分布大小有两个因素影响至关重要,即药物配方和喷射装置,下面我们就通过一些模拟实验来看看激光衍射技术如何来体现这些影响因素。  首先简单介绍一下激光衍射技术测量鼻喷剂的一个过程。图1为马尔文的喷雾粒度仪,两端竖起的装置分别为激光的发射端和接收端,其可以自由移动以调整空间位置,中间的装置为鼻喷的触发装置,通过该装置我们可以按需求设置不同的触发压力或者触发速度(也有用触发时间的),同时可以调整喷射角度,这样我们就可以灵活快速地调整测试参数。  测试完成后,激光粒度仪将会实时给出整个喷射过程的状态。图2为鼻喷剂一个揿次的数据。其中横坐标为时间,纵坐标为粒径大小,几条不同颜色的曲线分别代表D10、D50、D90以及喷射浓度随喷射时间的变化。在整个0.16秒的喷射过程,可以被被分为三个阶段,0-0.02秒为触发阶段,此时颗粒喷出还不稳定,粒度迅速变小,浓度也迅速变低 0.02-0.09秒为稳定阶段,此时粒度分布数据趋于稳定 0.09-0.16秒为消散阶段,此时粒度分布变得极其不稳定,有大量大颗粒出现。激光衍射技术不但可以给出清晰的变化过程,而且可以给出整个测试过程或者每个阶段的平均粒径,图3给出每个阶段的平均粒度分布及粒径数据。图2. 鼻喷剂一个揿次整个过程图3. 鼻喷剂一个揿次三个阶段的分别的粒度分布及累计数据  从这也可以看出,初始阶段平均粒径在68微米左右,而稳定后粒径变小达到37微米,而消散阶段粒径进一步变大达到45微米左右。而图4则给出了连续4个揿次的喷射数据,这样我们不仅可以看到每个揿次的粒径变化、粒径平均值等,而且还可以方便快捷地看到其不同揿次间的数据变化及稳定性。图4. 鼻喷剂4个揿次的喷射数据  图5为一款设计为50揿次的喷雾剂配方整个喷射周期内的粒径数据,从该数据可以看出,除第一揿次粒径偏大外,一直到60揿次数据都还是比较稳定,其中41揿次可能是由于操作失败造成喷射粒径明显变大,这样对于鼻喷剂以及罐体设计的喷射周期及稳定性提供了良好的数据基础。图5. 一款设计为50揿次的鼻喷剂整个喷射周期内的粒径数据  除了看揿次间的稳定性,我们还可以观察不同配方、不同喷射泵以及不同喷射口径对于喷射粒径的影响。图6为同一鼻喷剂配方采用不同的喷射泵条件下的液滴粒径大小。图6. 同一种鼻喷配方在两种不同泵条件下的喷射粒径影响  从该图可以看出,两种泵随着触发压力增大,液滴粒径都在显著减小,但相比之下,B泵对压力并不敏感,而A泵在压力比较低的时候,随着压力变化粒径会发生巨大变化,这些在泵体设计和选型时必须考虑的问题。图7. 不同浓度的PVP对喷射粒径的影响(A泵)  当然药物配方对于喷射粒径也会产生较大的影响,在这里我们通过一个模拟实验来观察结果。我们在同样的装置、同样的泵速条件下(40mm/S),分别采用不同浓度的PVP水溶液来观察雾化效果,PVP浓度分别为0、0.25%、0.5%、1.0%以及1.5%。图7给出了五种配方下的喷雾中值粒径结果,从中可以看到,随着PVP浓度的增加,雾化的粒径逐渐变大,而且雾化稳定期越来越短,当PVP浓度达到1.5%时,基本已经无法找到稳定的雾化状态了。产生这样的原因可能是随着PVP浓度的增加导致雾化液粘度增加,从而导致雾化液滴粒径显著变大,但对于同样趋势的配方,我们更换了喷射泵B,结果见图8。图8. 不同浓度的PVP对喷射粒径的影响(B泵)图9. 孔径更小的喷嘴实验结果(B泵)  从该图可以看到,虽然随着PVP浓度增加粒度变大的趋势没有变,但喷雾稳定性明显增加,这也说明B泵提供的剪切力完全克服了雾化液粘度增加带来的波动。为了进一步考察影响喷雾粒径的影响因素,在保持图8的实验条件下,我们更换了更细的喷嘴观察雾化效果。图9展示了PVP浓度在0、0.5%和1.0%三种情况下,在更细的喷嘴下的雾化粒径结果,可以发现雾化液粒径分布显著变小,尤其是1.0%PVP浓度下,其雾化液滴中值粒径由200微米降到120微米左右。  3. Nebulizer喷雾剂  喷雾剂是指通过压缩空气驱动药液通过喷孔达到分散药物的给药剂型,其无需抛射剂、储罐容器无需加压、一般采取水性配方辅以固定的辅料等,同时对于吸入剂量较高的药物(比如诺华公司300mg妥布霉素)其雾化递送也具有明显的优势,再加上可以采取潮式呼吸的方式,因此目前喷雾剂广泛应用于医院急救室,特别是患哮喘或慢阻肺的儿童和老年患者。喷雾剂也是一个非常强调配方和雾化方式的剂型,换句话说,只有一个好的配方搭配以合适的雾化方式,才能够做出一款好的喷雾剂。当然由于呼吸的模式不同,可能也会对吸入雾滴粒径产生影响,因此我们在研究过程中,就必须三方都要考虑到,即雾化配方、雾化方式以及呼吸模式等。  图10是马尔文喷雾粒度仪测试喷雾制剂的一个示意图。其中两边是激光的发射和接收端,紧贴中间的是一个吸入式样品池,模拟人的呼吸道,而上面白色的弯管为USP人工喉,而吸入式样品池下面是接泵或者呼吸装置,这样液雾通过上面人工喉进入激光测试区域,然后通过我们的吸入样品池被泵抽走。图10. 马尔文喷雾粒度仪测试液雾示意图  图11是一个持续液雾雾化的粒径分布结果,图中横坐标为时间,纵坐标为粒径大小,三种颜色的曲线分别为雾滴粒径的D10、D50以及D90,可以看到雾滴的粒径分布在长达10分钟的雾化时间内相对比较稳定。下面我们就将结合一些实验来考察影响雾化粒径的各种因素。我们知道,液雾雾化的方式较多,比如常见的喷射雾化、振动雾化或者超声雾化等,每种雾化都有各自的优缺点,其中喷射雾化就是比较常见的一种方式,其主要原理是通过一定速度的压缩空气携带药液通过狭小喷嘴而雾化,这时候压缩空气的流动速率就对雾化效果产生非常大的影响,图12给出了同一喷嘴在不同空气流速下的雾化粒径结果。图11. 持续的nebulizer雾化粒度测试结果图12. 压缩空气流动速率对雾化粒径的影响  从图中可以看出,随着空气流速速率增大,雾化液滴的粒径参数D10、D50以及D90都呈下降趋势,当流速达到11L/min时,雾化粒径达到最小,随后空气流速进一步增大,其雾化粒径反而变大,这可能是流速太大导致部分大的液滴越过挡板造成的。  同时马尔文喷雾粒度仪可以跟呼吸模拟机相连使用,从而对雾化进行更加深入的研究。图13给出了一个雾化系统在正弦呼吸模式下的雾化粒度结果,刚开始随着吸入速率逐渐增大,雾化液滴浓度迅速增加并趋于稳定,而雾化液滴粒径迅速减小然后缓慢增加,而当吸入速率逐渐变小时,雾化液浓度迅速衰减并且雾化液粒径开始显著增加并且很不稳定,这个数据也很好地体现了呼吸过程中发生的变化。图13. 某雾化系统在正弦呼吸模式下的雾化粒度结果图14. 不同呼吸频率下的雾化液滴粒径结果  当然我们也可以改变呼吸的方式,比如保持相同的配方和管路结构,增加呼吸频率,观察呼吸方式对于雾化粒径的影响(图14)。从图中可以看出,随着呼吸频率的增加,吸入时间也相应减少,同时吸入雾滴的流动速率也跟着增加,液滴粒径显著减小。  除了呼吸方式,雾液配方对于雾化粒径也会有显著的影响,图15给出了三种不同浓度的PVP溶液的雾化粒径结果。可以看出随着PVP的加入以及浓度的增加,其雾化粒径显著增加,这主要是由于PVP的加入增加了雾化液的粘度造成的。图15. 不同浓度的PVP溶液雾化粒径结果图16. 不同浓度的PVP溶液雾化吸入浓度的结果  同时图16给出了上述三种雾化液在吸入过程中雾液吸入浓度的变化,从图中可以看出,随着PVP的加入以及浓度增加,吸入浓度明显变小,这也就意味着,要想达到相同的递送剂量,对于粘度较高的雾化液可能需要更长的吸入时间。  4. DPI干粉吸入剂  干粉吸入剂(DPI)又称吸入粉雾剂,是在定量吸入气雾剂的基础上,结合粉体输送工艺而发展起来的新剂型。它是将微粉化药物单独或与载体混合后,经特殊的给药装置,通过患者的主动吸入,使药物分散成雾状进入呼吸道,从而达到局部或者全身给药的目的。干粉吸入剂具有自身显著的特点:比如无需氟利昂抛射剂,不存在大气污染问题 不含酒精、防腐剂等溶媒溶剂,减少对于喉部的刺激,同时也更加易于保存 不受药物溶解度限制,可以携带的剂量较高 固体剂型,尤其适合多肽和蛋白类药物。然而干粉吸入剂虽然不需要考虑溶解悬浮等问题,但由于粉体颗粒之间容易产生团聚,同时活性成分与辅料载体之间包覆或者相互作用因素也必须详细考量,这就对吸入装置有着更高的要求,换句话说,必须是合适的活性成分及载体,控制合适的颗粒大小,并配以合适的吸入装置,才能达到稳定安全的剂量输送。  为了进一步说明这个问题,我们用了两种不同的药物采取不同的吸入装置观察雾化效果。其中两种粉体药物分别为柳丁氨醇和布地奈德,表1给出了雾化细颗粒所占的比例。表1. 两种粉体在不同的吸入装置下的细颗粒比例  其中可以看出,同一种物料在不同的吸入装置中分散效果差异非常大,比如布地奈德的细颗粒比例可以从14%变为63%。而如果单从粉体物性角度来说,布地奈德的分子表面能是柳丁氨醇的5倍以上,这意味着分散布地奈德的颗粒要比柳丁氨醇难得多,但我们看到最终结果却恰恰相反,布地奈德粉体分散的细颗粒更多,这也进一步说明粉体吸入分散并不是简单的按照其物理性质的规律进行的,因此如果要进行干粉吸入制剂的研究开发,就必须将粉体配方和吸入装置同时相互考量。  接下来,我们就通过一个小的实验来看看粉体配方工艺、吸入装置以及吸入速率是如何影响雾化效果的。我们选了三种配方的粉体(见表2),第一种就是普通微粉化的乳糖粉体,第二种是微粉化的乳糖添加了5%的MgSt,采取实验室普通的混合设备加工,第三种同样是微粉化乳糖添加5%的MgSt,但采用的是高强度的混合设备混合(该技术由Vectura开发)。由于硬脂酸镁本身作为一个两性的物质,可以对微粉化的乳糖形成包覆结构,从而减少乳糖的团聚,但同时混合的方式和效率也将极大地影响乳糖的包裹效率和均匀程度,这也就直接导致粉体输送的复杂性。图17给出了纯的微粉乳糖在不同吸入速率下的粒径分布情况,从图中可以看出随着吸入速率增大,其颗粒粒径明显减小,这说明虽然乳糖本身颗粒是比较小的,但由于细颗粒具有较强的团聚作用,因此随着吸入速率增加,剪切作用力增强,导致颗粒越来越小,但团聚情况依然明显。  表2. 三种不同配方及加工工艺的粉体图17. 纯微粉化乳糖在不同吸入速率下的粒径分布图18. 普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布图19. 采取高能混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布  图18则给出了普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径大小,相比较纯的乳糖,首先在低吸入速率条件下,其颗粒分散粒径更小,尤其是大颗粒方面显著减小,这说明硬脂酸镁的包裹从一定程度下减小了乳糖团聚,但随着吸入速率增大,其粒度变化不明显,而且团聚依旧非常明显,这说明硬脂酸镁的包裹并不均匀,换句话说其并没有形成单个乳糖颗粒表面的包裹,而是多个乳糖团聚颗粒被包裹,这样这些大的包裹颗粒并不会随着吸入速率增加而分散,因此就造成了在高流速下,其粒径反而要比纯乳糖的要大。但如果改善了加工方式,提高了硬脂酸镁的分散均匀性和包裹效率,实现了单个乳糖颗粒的包裹,则可大大改善其分散粒径。图19则是采取高能混合方式的粉体在不同吸入条件下的粒径结果,从图中可以发现其分散粒径大大减少,基本上都在20微米以下,而且其粒度分布对于吸入速率并不敏感,这些都说明乳糖的包裹效率和均匀性得到了显著提升。  5. 激光衍射&撞击器连接图20. 激光衍射粒度仪和安德森撞击器相连接  为了能够使激光衍射的测量条件跟碰撞法的测试条件一致,激光粒度仪还可以跟相关碰撞器相连接。图20是马尔文喷雾粒度仪跟安德森撞击器相连接的示意图,其中吸入制剂通过上面的人工喉进入到吸入样品池中进行粒度检测,然后通过下部的接口进入到撞击器中,由于是在同一通路中,大大提高了测试条件的匹配性,同时激光衍射作为一种无损检测技术,其本身不会对通路中的液滴、雾滴造成任何影响,因而大大扩展了其应用性。  6. 总结  现在吸入制剂越来越受到大家的重视,不论是气雾、液雾还是粉雾,不论何种形式,粒度检测毫无疑问都是体外检测中不可或缺的一环。当前医药研发的过程实际上就是跟时间赛跑的一个过程,因此在研发期间如何能够快速对大量配方、喷射装置以及测试条件进行筛选和甄别就显得非常关键。而激光衍射技术恰恰具有快速无损的特性,同时其结果比对性又非常强,能够快速提供大量粒径检测的相关数据,为吸入制剂的研发和生产提供坚实的保障。  (作者:李雪冰,英国马尔文仪器公司激光衍射产品专家,负责激光衍射及颗粒图像等产品的技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制