当前位置: 仪器信息网 > 行业主题 > >

晶圆湿法工艺设备

仪器信息网晶圆湿法工艺设备专题为您提供2024年最新晶圆湿法工艺设备价格报价、厂家品牌的相关信息, 包括晶圆湿法工艺设备参数、型号等,不管是国产,还是进口品牌的晶圆湿法工艺设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合晶圆湿法工艺设备相关的耗材配件、试剂标物,还有晶圆湿法工艺设备相关的最新资讯、资料,以及晶圆湿法工艺设备相关的解决方案。

晶圆湿法工艺设备相关的资讯

  • 至纯科技称28nm湿法工艺设备完成认证 明年进军14/7nm
    日前国内半导体设备公司至纯科技在互动平台表示,目前至纯科技28纳米节点全部湿法工艺设备已认证完毕。至纯科技表示,国内目前有三家在湿法工艺设备端提供中高阶湿法制程设备,分别是至纯科技、北方华创和盛美,国内厂商的市场占比在逐年上升中。除了28nm工艺节点之外,上海证券报告中指出,至纯科技14nm及7nm工艺预计2022年可供客户验证,客户包括中芯国际、华虹集团、长鑫存储、华为、台湾力晶等行业领先者。2020年湿法设备出货量超过30台,新增订单5.3亿元,增长211.8%。官网介绍,至纯科技成立于2000年,是一家在上交所上市的高新技术企业,证券代码603690.SH。公司坐落于上海紫竹这个国家级科学园区内,注册资本2.08亿元,致力于为高端先进制造业企业提供高纯工艺系统的解决方案。系统解决方案涵盖了提供整个系统的设计、选型、制造、安装、测试、调试和系统托管服务。 至纯提供的系统和专业服务,广泛应用于半导体、微电子、生物医药、光伏、光纤、TFT-LCD、LED等领域。
  • 总投资15亿元,某光伏及半导体工艺设备研发制造基地落户西咸新区
    9月28日,拉普拉斯光伏及半导体工艺设备研发制造基地项目签约落户西咸新区泾河新城。项目总投资15亿元,建成达产运营后预计年营业收入20亿元,为秦创原总窗口光伏产业链发展、泾河新城双碳光伏产业园建设再添新动能,助力光伏产业集群高地建设再加速。西咸新区党工委书记杨仁华、隆基绿能科技股份有限公司董事长钟宝申、西咸新区管委会主任姜建春、深圳市拉普拉斯能源技术有限公司常务副总裁刘群,西咸新区党工委委员,泾河新城党委书记、管委会主任张宏伟见证签约。泾河新城党委委员、管委会副主任寻心乐,深圳市拉普拉斯能源技术有限公司副总裁张武代表双方签约。该项目将在泾河新城建设光伏工艺设备研发及制造基地,主要从事光伏工艺装备(热制程、镀膜及配套产品)及核心零部件的研发及制造,将重点瞄准光伏行业前沿尖端技术,在提升光伏电池转换效率和生产效率、降低光伏电池制造成本等方面持续发力。此外,项目将围绕光伏电池制造过程中的热制程、镀膜等关键核心设备不断研发创新,致力于攻克一批“卡脖子”关键零部件研发制造技术,进一步提高光伏和半导体设备的国产化率,不断提升和巩固我国光伏行业在国际上的领先地位。深圳市拉普拉斯能源技术有限公司是一家高科技高端装备研发制造企业,拥有核心研发团队和近300项知识产权,填补了国内该行业高端装备技术领域的多项空白。2021年公司整体销售收入超过18亿元,在光伏电池新技术部分设备市场占有率超过90%,国内排名第一,是隆基股份核心供应商。
  • 北方华创“承载装置及半导体工艺设备”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“承载装置及半导体工艺设备”专利公布,申请公布日为2024年5月7日,申请公布号为CN117987807A。本申请公开了一种承载装置及半导体工艺设备,涉及半导体装备领域。一种承载装置,包括:承载件、第一气道和限位组件;承载件设有用于容纳晶圆的容纳槽,容纳槽的槽底面为承载面;第一气道的出气口位于承载面上,用于通气,以使晶圆悬浮;容纳槽的边缘处设有多个滑道,多个滑道围绕容纳槽的周向排布,承载件内设有多个第二气道,多个第二气道与多个滑道分别连通;限位组件包括用于与晶圆的外缘周面抵接的多个限位件,多个限位件一一对应地滑动连接于多个滑道,通过向第二气道内通气,使限位件朝向或背离容纳槽的中心可移动。一种半导体工艺设备,包括上述承载装置。本申请能够解决托盘与晶圆的间隙不重复导致晶圆的圆周膜厚不均匀等问题。
  • 未来5年 LC-MS和工艺设备将引领中国实验室产品市场增长
    近日,某出版商发布了一份中国分析仪器和生命科学仪器市场的调研报告,报告概述了快速增长的中国分析仪器和实验室设备市场,包括十类实验室技术的预测和市场细分细节。本文将着重分析LC-MS和工艺设备两类产品以及其主要的需求市场——制药/生物终端市场。十几年来,中国在精准医学、制药、食品和环境安全等领域的投资,推动了分析仪器购买量的快速增长。2020年,中国市场需求总额超过80亿美元。2020年前两个季度因新冠疫情实验室普遍关闭而对科学仪器销售造成了负面影响,但在之后的几个季度需求有所增强,许多科学仪器企业的营业收入出现大幅度增长,2021年第一季度的业绩表现尤为突出,比如,2021年第一季度Waters在中国的营收以固定货币计算,增长了109%,达到1.029亿美元,而在2020年第一季度则下滑了45%。岛津的营收也出现反弹,其第四财季(截至2021年3月31日)显示增长了20.1%,为575.63亿元(5.43亿美元),而2020年第四财季度下降9%。对两家公司而言,中国食品和药品市场的销售推动了收入的增长。根据该调研,未来五年(2025年底以前),中国对科学仪器的需求最旺盛的是实验室设备(工艺设备,并非用于样品的测试)和质谱,而医药/生物市场则是这两类仪器的主要需求来源。目前两类仪器的发展已经反映出每个技术领域中增长最快的产品类别:对于实验室设备,随着中国扩大生物技术研究和制造业,预计2020年至2025年,生物反应器和发酵罐的需求增长最快;对于质谱而言,由于三重四级杆液质联用仪在生物制药研发和QA/QC中的应用,预计将增长最快。目前,国内企业,尤其是医药/生物领域的企业正在快速增长,医药产业大力投入新药研发而非以往的仿制药,据中国日报报道,2019年,国内医药行业固定资产投资增长8.4%。从DIA全球论坛获悉,国家药监局批准了52种新药(中国首次批准),其中11种为国内制药企业研发并在所有国家首次批准。此外,越来越多的跨国伙伴关系也证明了该行业的增长,2019年,中国制药企业与外国跨国公司签署了271项许可协议。中国医药/生物市场的主要部分是合同研究机构(CRO),包括外资和本土企业。这一行业,近期有多项投资,包括美国CRO企业PPD在苏州高新区新建的6224平方米的厂房设施,该厂房定于今年开放,将购买安装LC/MS、流式细胞仪和许多其他实验室仪器,用于药代动力学/药效学(PK/PD)分析、生物标志物分析和疫苗开发等。中国CRO企业方达实验室去年宣布,在苏州吴忠经济技术开发区吴松江工业园增加了超过19974平方米的实验室,将致力于药物代谢和药代动力学和毒理学研究。中国医药/生物终端市场占据对生命科学仪器的大部分需求。报告中生命科学类包含12项技术,如基因测序仪和流式细胞仪等。中国希望摆脱以制造业为基础的经济,2020年,国家统计局公布,中国的总体研发支出增长了10.3%,达到3780亿美元。“十四五”规划要求到2025年,每年增长7%,其中基础研究支出占所有研发资金的8%,生命科学仪器的需求主要也是受到政府对国家和地方研究项目和学术界投资的推动。报告最后指出,中国分析仪器和实验室设备市场前景十分广阔,受良好的市场需求推动,除了上述提及的液质联用仪和工艺设备,报告分析,色谱、其他质谱、光谱、生命科学仪器、表面科学仪器、材料表征仪器、实验室自动化和软件、样品前处理技术、实验室装备等类别在2025年以前都将表现出不错的增长势头。
  • 盛美上海推出新型化合物半导体系列设备加强湿法工艺产品线
    盛美半导体设备(上海)股份有限公司(以下简称盛美上海)(科创板股票代码:688082),一家为半导体前道和先进晶圆级封装(WLP)应用提供晶圆工艺解决方案的领先供应商,今推出了支持化合物半导体制造的综合设备系列。公司的150-200 毫米兼容系统将前道集成电路湿法系列产品、后道先进晶圆级封装湿法系列产品进行拓展,可支持化合物半导体领域的应用,包括砷化镓 (GaAs)、氮化镓 (GaN) 和碳化硅 (SiC) 等工艺。化合物半导体湿法工艺产品线包括涂胶设备、显影设备、光阻去胶设备、湿法蚀刻设备、清洗设备和金属电镀设备,并自动兼容平边或缺口晶圆。“随着不同市场的需求增长,化合物半导体行业正在迅猛发展。” 盛美上海董事长王晖博士表示,“通过对这个行业的调研,我们意识到,应利用现有的前道集成电路湿法和后道先进晶圆级封装湿法系列产品中重要的专业知识和技术,来提供满足化合物半导体技术要求的高性价比、高性能产品。我们认为,化合物半导体设备市场为 盛美上海提供了重要的增长机会,因为 GaAs、GaN 和 SiC 器件正成为未来电动汽车、5G 通信系统和人工智能解决方案日益不可或缺的一部分。”盛美上海的化合物半导体设备系列Ultra C 碳化硅清洗设备:盛美上海的Ultra C碳化硅清洗设备采用硫酸双氧水混合物 (SPM) 进行表面氧化,并采用氢氟酸 (HF) 去除残留物,进行碳化硅晶圆的清洗。该设备还集成盛美上海的SAPS 和 Megasonix™ 技术实现更全面更深层次的清洗。Ultra C 碳化硅清洗设备可提供行业领先的清洁度,达到每片晶圆颗粒≤10ea0.3um,金属含量< 1E10atoms/cm3水平。该设备每小时可清洗超过 70 片晶圆,将于 2022 年下半年上市。Ultra C 湿法刻蚀设备:可为砷化镓和磷化铟镓 (InGaP) 工艺提供<2% 的均匀度,< 10% 的共面度及< 3% 的重复度。Ultra C 湿法刻蚀设备可提供行业领先的化学温度控制、刻蚀均匀性。该设备将于 2022 年第三季度交付给某重要客户,并由其进行测试。Ultra ECP GIII 1309 设备:盛美上海的Ultra ECP GIII 1309 设备集成了预湿和后清洗腔,支持用于铜、镍和锡银的铜柱和焊料,以及重分布层 (RDL) 和凸点下金属化 (UBM) 工艺。设备实现了晶圆内和模内小于3%的均匀度和小于2% 的重复度。该设备已于 2021 年中交付给客户,并满足客户技术要求。Ultra ECP GIII 1108 设备:Ultra ECP GIII 1108 设备提供金凸块、薄膜和深通孔工艺,集成预湿和后清洗腔。设备采用盛美上海久经考验的栅板技术进行深孔电镀,以提高阶梯覆盖率。它可达到晶圆内和模内< 3%的均匀度和< 2% 的重复度。腔体和工艺槽体经过专门设计,可避免金电镀液的氧化,且工艺槽体具有氮气吹扫功能,可减少氧化。该设备已于去年年底交货给关键客户。Ultra C ct 涂胶设备:盛美上海的Ultra C ct 涂胶设备采用二次旋转涂胶技术,可实现均匀涂胶。设备拥有行业领先的优势,包括精确涂胶控制、自动清洗功能、冷热板模块以及每个腔体的独立过程控制功能。Ultra C dv 显影设备:在化合物半导体工艺中,盛美上海的Ultra C dv 显影设备可进行曝光后烘烤、显影和硬烤的关键步骤。设备利用盛美上海的先进技术,可按要求实现+/-0.03 LPM的流量和 +/-0.5 摄氏度的温度控制。Ultra C s刷洗设备:Ultra C s 刷洗设备以盛美上海先进的湿法清洗技术为基础,实现优秀的污染物去除效果。该设备通过氮气雾化二流体清洗或高压清洗实现高性能,以更有效地清洗小颗粒。此外,设备还可兼容盛美上海专有的兆声波清洗技术,以确保优良的颗粒去除效率(PRE),且不会损坏精细的图形结构。Ultra C pr 湿法去胶设备:盛美上海的Ultra C pr湿法去胶设备利用槽式浸泡和单片工艺,确保高效地进行化合物半导体去胶。该设备最近由一家全球领先的整合元件制造商(IDM)订购,用于去除光刻胶,这进一步验证了盛美上海的技术优势。Ultra SFP无应力抛光设备:Ultra SFP 为传统的化学机械抛光在硅通孔 (TSV) 工艺和扇出型晶圆级封装 (FOWLP)应用提供了一种环保替代方案。在 TSV 应用中,盛美上海的无应力抛光 (SFP) 系统可通过运用专有的电抛光技术去除低至 0.2µm 的铜覆盖层,再使用传统的 CMP 进一步去除剩余铜至阻挡层,并通过湿法刻蚀去除阻挡层,从而显著降低耗材成本。对于 FOWLP,相同的工艺可以克服由厚铜层应力引起的晶圆翘曲,并应用于RDL中铜覆盖层并平坦化 。
  • 首届工业研讨会拟探讨工艺设备效能议题
    新加坡,2009年7 月30日 – 在化工、石化、油气生产及提炼等重要领域的加工企业中,工艺设备效能始终是一个备受关注的问题。受当前经济滑坡和企业面对减低“碳足迹”社会责任而必须采取更多环保措施的双重影响,企业的利润空间受到了严峻的挑战。为了更好地应对这些挑战,同时也为了提高设备运转的稳健性、安全性和可靠性,新加坡展览有限公司特组织举办首届工业总线和无线技术研讨会,定于2009 年12月3日至4日在新加坡新达城国际会议中心举行。  企业效益产生于经过高效能设计并能长期稳定运转的工艺设备,而效能设计则基于工业总线技术,即采用一个全数字化的工业网络系统进行实时分布控制,双向联结微机控制系统和各种现场设备。总线部署的优点充分体现在设备安装、维护和试运转的整个过程中。用户可以使用总线技术连同无线网络远程存取状态和诊断信息,通过连续监控采取预测性维护措施,并通过减少点到点布线和互连设备实现显著的成本节约。  “工业总线和无线技术研讨会”由行业领袖所设计,旨在为装置设计和运转领域的各级专业人员提供有益的帮助。会议将探讨总线技术对设备互通性的严峻挑战和日益依赖无线架构而产生的问题。届时,工业和技术专家将针对各种总线和无线技术的实施案例发表他们的深刻见解。  为期两天的本届研讨会将由两个专业论坛组成,即设备运转与维护论坛和控制系统与设计论坛,两个会议同时进行。专家小组由主要工业机构、技术供应商和技术用户的高层人士组成,他们负责制定会议日程并确保议题的高度关联性和全面性。  专家小组成员  小组主席  Kang Thian Jian, Past President, Instrumentation and Control Society (ICS), Managing Director, Global Head of Electrical, Instrumentation & Control, System Manufacturing and Project Management, Hyflux Ltd  小组共同主席  Jonas Berge, ECT (EDDL Cooperation Team)  Charles Cheong, President, Field Device Tool Group Singapore  Andreas Agostin, President, Fieldbus Foundation Marketing Society (Singapore)  Dr David Matsumoto, President, Singapore Section, International Society of Automation (ISA)  Dominique Chabauty, President, PROFIBUS Association South East Asia  Kwong Kok Chan, General Manager, Environment, QA & Special Projects, Senoko Power Ltd  Sachin Gupta, President, Wireless Industrial Networking Alliance Asia Pacific (WINA)  本届“工业总线和无线技术研讨会”将与亚洲领先的工艺工程、控制仪器和科学器材展览会CIA2009 连决举行。该展览会由 ControlsAsia2009、InstrumentAsia2009 和 AnaLabAsia2009 三部分组成,定于 2009 年12 月1日至4日在新加坡新达城国际会议中心举行。  若要获得详细信息,请浏览网站 www.cia-asia.com。
  • 2012国际材料工艺设备、科学器材、实验室设备展览会邀请函
    诚驿科技将于2012年8月29日~31日参加在北京· 国家会议中心举办的2012国际材料工艺设备、科学器材、实验室设备展览会。 诚挚欢迎各界嘉宾光临我公司展台参观洽谈!产品相关链接:http://www.instrument.com.cn/netshow/SH101029/mostly.asp展会具体信息:【展会时间】2012年8月29日~31日【展会地址】北京· 国家会议中心【展 台 号】D49【电 话】010-82382578【传 真】010-82382580【电子邮件】info@chinyee.cn关于我们:诚驿科技有限公司专业从事的进口仪器设备的引进。公司主要面对生化制药、石油化工、地质和新材料等高新技术领域提供先进的分析仪器设备和相应的试剂耗材。公司在提供各种高技术产品的同时,还非常重视售后服务,其中主要包括:提供专业的售前咨询、协助选型、仪器观摩、安装调试、现场培训。售出仪器设备均免费保修一年,保修期后负责常年维修,提供零配件及消耗品。
  • 定制解决方案,引领科技前沿|欧波同亮相2018 国际材料工艺设备、科学器材及实验室设备展
    2018年7月15日,2018国际材料工艺设备、科学器材及实验室设备展在厦门国际会展中心圆满落幕。此次大会由中国材料研究学会发起并主办。大会设 34 个分会场,1 个两岸三地材料论坛。欧波同(中国)有限公司作为实验室系统解决方案的领导者,在展会上隆重亮相并带来精彩技术报告,为国内材料工艺领域带来最先进的材料分析设备和最前沿的创新应用方案。图1:欧波同展台领先科技,吸引全场目光聚焦 7月13日-15日,欧波同位于厦门国际会展中心C3馆的F16号展台,吸引着众多行业专家和材料厂商的关注。图2:欧波同工作人员向观众介绍产品图3:欧波同工作人员向观众介绍产品工作人员向参展观众一一介绍了COXEM台式电镜、ZEISS钨灯丝电镜、ZEISS场发射电镜等显微分析设备,针对材料工艺的不同方向,给出相应的技术方案。产品的多样性和配置的精细化,可以满足客户多种应用需求,以标准化的产品带来定制般的体验。专业方案,助力材料行业发展此次展会采取“一会一展,并驾齐驱”的模式,展会同期举办行业论坛进行技术交流。在矿物与油气田材料分会场,欧波同产品经理作出《 蔡司扫描电镜在矿物分析中的应用》的技术报告,介绍了蔡司电镜在地质行业中的应用方案。图4:大会会场自动矿物分析系统、铁前矿物自动分析系统作为欧波同重点推出的新产品,引起了现场嘉宾的极大关注。这不仅是电镜应用的突破,也是智能化的技术创新,可以为材料相关行业技术的发展清除部分阻碍,使分析检测的过程更加便捷。全面服务,传递科技创新精神 秉承科技创新的精神,欧波同不仅持续丰富产品线,推出多种解决方案,更针对市场需求,建立了技术服务平台。可以通过显微技术服务,解决客户在理论研究、新产品开发、工艺(条件)优化、失效分析、质量管控等过程中一系列材料显微表征和分析的问题。力求精益求精,创新发展,将我们的服务推向更多行业的技术平台,开拓更广阔的合作领域!
  • 工信部发布《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》
    中华人民共和国工业和信息化部公告2021年第25号为贯彻落实《中华人民共和国固体废物污染环境防治法》,加快淘汰产生严重污染环境的工业固体废物的落后生产工艺、设备,持续提高工业绿色发展水平,现将《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》予以公告,自2022年1月1日起施行。附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录.pdf工业和信息化部2021年9月23日附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录条目后括号内年份为淘汰期限,淘汰期限为2023年12月31日是指应于2023年12月31日前淘汰,其余类推;未标淘汰期限的条目为国家产业政策已明令淘汰或立即淘汰。一、石化化工1. 废旧橡胶和塑料土法炼油工艺;2. 间歇焦炭法二硫化碳工艺;3. 高汞催化剂生产设备(氯化汞含量6.5%以上);4. 使用高汞催化剂的乙炔法聚氯乙烯生产装置;5. 有钙焙烧铬化合物生产装置;6. 使用汞或汞化合物的甲醇钠、甲醇钾、乙醇钠、乙醇钾、聚氨酯、乙醛、烧碱、农药生产装置。二、钢铁1. 土法炼焦(含改良焦炉);2. 预应力钢材生产消除应力处理的铅淬火工艺;3. 采用重铬酸盐钝化技术的电解锰工艺设备(2023年12月31日);4. 钢铁行业用一段式固定煤气发生炉(不含粉煤气化炉)。三、有色金属1. 采用马弗炉、马槽炉、横罐等进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或生产氧化锌工艺装备;2. 竖罐炼锌工艺和设备(2025年12月31日);3. 采用铁锅和土灶、蒸馏罐、坩埚炉及简易冷凝收尘设施等落后方式炼汞;4. 采用土坑炉或坩埚炉焙烧、简易冷凝设施收尘等落后方式炼制氧化砷或金属砷工艺装备;5. 铝自焙电解槽及160kA以下预焙槽;6. 鼓风炉、电炉、反射炉炼铜工艺及设备;7. 再生有色金属生产中采用直接燃煤的反射炉;8. 采用地坑炉、坩埚炉、赫氏炉等落后方式炼锑;9. 采用烧结锅、烧结盘、简易高炉等落后方式炼铅工艺及设备;10. 利用坩埚炉熔炼再生铝合金、再生铅的工艺及设备;11. 烧结-鼓风炉炼铅工艺;12. 离子型稀土矿堆浸和池浸工艺;13. 有色金属行业用一段式固定煤气发生炉。四、黄金1. 混汞提金工艺;2. 小氰化池浸工艺、土法冶炼工艺;3. 无环保措施提取线路板中金、银、钯等贵重金属工艺。五、医药1. 铁粉还原工艺生产咖啡因;2. 铁粉还原工艺生产对乙酰氨基酚。六、机械1. 加热温度≤1000℃的热处理氯化钡盐浴炉;2. 钻采工具接头螺纹磷化处理工艺(2023年12月31日);3. 使用汞生产开关和继电器的工艺;4. 使用汞生产气压计、湿度计、压力表、温度计(体温计除外)等非电子测量仪器的工艺(无法获得适当无汞替代品、安装在大型设备中或用于高精度测量的非电子测量设备除外)。七、船舶废旧船舶滩涂拆解工艺。八、轻工1. 脂肪酸法制叔胺工艺 2. 发烟硫酸磺化工艺 3. 铅蓄电池生产用开放式熔铅锅、开口式铅粉机 4. 管式铅蓄电池干式灌粉工艺 5. 铅蓄电池生产中铸板、制粉、输粉、灌粉、和膏、涂板、刷板、配酸灌酸、外化成、称板、包板等人工作业工艺(新建、改扩建项目禁止使用)。
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 重磅!Sartorius将收购Novasep色谱工艺设备部门
    仪器信息网讯 赛多利斯(Sartorius)近日宣布,该公司已通过其子集团Sartorius Stedim Biotech签订了收购Novasep色谱工艺设备部门的协议。双方协定在未收到监管批准前不披露购买价格。本次交易预计在2021年上半年完成。据披露,2020年Novasep的销售额预计为3700万欧元,利润率为两位数。其员工约为100人,其中大部分在法国北部工作,另外还有一部分员工在美国、中国和印度工作。Novasep的色谱单元包括树脂基和连续色谱系统,主要用于小分子(如寡核苷酸、肽和胰岛素)的分离。自2018年以来,Novasep就和Sartorius一直在合作开发用于更有效地分离大分子的低压膜色谱系统,该系统也将很快被推出。Sartorius生物工艺解决方案部门负责人兼执行董事会成员RenéFáber博士说:“Novasep的色谱团队很快成为Sartorius的一部分,我很高兴将进一步加强与该团队的合作。Novasep的色谱产品组合将完美地补充我们现有的色谱产品,为客户的提供更多的选择。多年来,高效的DSP一直是我们行业的挑战,Sartorius始终致力于如何加速和简化这一关键步骤,以便更高效地研发新药。”Novasep总裁兼首席执行官Michel Spagnol博士表示:“这笔交易标志着我们将集团重点放在核心业务上的Rise-2战略计划已经迈出了第一步。我们很高兴加强与Sartorius团队的合作,并相信这将是色谱设备业务在新的所有权下充分发挥潜力和加速增长的一个绝佳机会。”
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 【虹科直播预告】“工艺设备验证主题研讨会”重磅来袭!4月19日(周三)全天候陪伴!
    虹科&Ellab(易来博)联合主办“《工艺设备验证》线上主题研讨会,全天候奉上精彩干货内容,力邀行业大咖及权威讲师,,分享需要验证的设备的结构、原理、验证方案设计,全面讲解干热灭菌工艺验证,分享高压蒸汽灭菌器在制药企业的应用,深入探索冻干工艺及温控设备验证,详细解读BD测试-空气排除试验,诚邀您的参与!【参与方式】搜索虹科环境监测部-进入官网虹科ELLAB医药灭菌温度验证与校准解决方案自1949年以来,虹科Ellab一直提供行业领先的精度和品质的热验证解决方案。硬件和软件由丹麦的总部设计、制造和分销,提供验证系统,校准系统,验证和确认以及租赁服务和校准服务,服务于大型、中型、小型的制药、医疗和食品行业的客户。我们在灭菌,冷冻干燥,隧道式烘箱,巴氏杀菌等多种应用提供解决方案。虹科ELLAB医药温度验证系统(有线、无线和冻干专用)虹科Ellab医药温度验证系统,适用于所有的热验证过程:湿热灭菌,干热灭菌,SIP,水浴灭菌,冻干机,压力容器,冰箱,冷冻柜,培养箱,稳定性试验箱,胶塞清洗机,仓库等。如可同时验证温度,湿度,压力,CO2,真空度,电导率等。FDA 21 CFR Part 11合规。丰富的基于法规/指南设计的专业报告模板:EN285,ISO17665,ISO15883,USP1079,统计报告/F0,限制报告,开关门测试报告,泄露报告,布点图等,可提高验证工作的效率,帮助您改进灭菌和冻干工艺。一.虹科有线温度验证系统E-val Pro&bull 体积小巧仅3kg,自带8英寸触摸显示屏&bull 多达40个通道(可连接3台)&bull 内置可充电电池供电,续航8小时&bull 插拔式USB接头连接热电偶线,即插即用&bull 每个USB接头单独的温度补偿,精度高达±0.05℃二.虹科无线温度验证系统TrackSense Pro&bull 可互换的传感器,提高灵活度,降低维护成本&bull 支持无线实时传输&bull 具有市场上体积最小的记录器,专为空间有限的应用设计&bull 丰富的配件,支持定制(1个起订),特别适合穿刺型的温度验证&bull 基础2年质保,可选延保5年!三.虹科冻干专用无线温度验证系统TrackSense LyoPro全新的冻干机专用的无线温度验证系统(全球首创),专为冻干机的温度验证而设计,从产品外观到功能性能都综合考虑了冻干机的特点,特别适用于自动上料的冻干机,可以在不影响冻干流程和西林瓶内温度的条件下精确地验证西林瓶内的温度,做温度分布验证和批次控制。帮助您改进冻干机设计,改善冻干工艺设计的流程,提高工作效率。&bull 同时验证西林瓶内和冻干机板层的温度&bull 超薄可更换的热电偶传感器,精度高达±0.3℃&bull 丰富的配件,适合匹配所有西林瓶的尺寸&bull 实时在线传输温度数据到上位机&bull 丰富的报告模板功能,FDA 21 CFR Part 11合规&bull 避免校准停机(可自行校准)&bull 通过SCADA/Citrix/AWS进行中央访问和控制虹科ELLAB校准系统(标准温度计和干井/油槽等)提供校准系统同时兼容市场上所有主流的校准系统,如干井,油槽,标准温度计。通过校准确保设备的准确性。当涉及搭配高精度测量时,传感器的精度就是一切。使用虹科Ellab的校准设备系列,减少停机时间和潜在的偏差。干井 - 用于更短的校准周期易于操作,可通过加热或冷却到所需温度来进行工作。干井校准通常具有较短的校准周期,因此更加适合于更快的过程和更快的温度变化,同时还提供紧凑且完全可移动的工作站。不涉及液体,因此不存在溢出或火灾隐患的风险。特别适合长且拉直的传感器,其温度范围为-100℃至+700℃。油槽 - 用于所有类型传感器的校准提供高度稳定的环境,提供高精度。可用于所有类型的传感器,无论其形状如何,包括短和弯曲的传感器。校准传感器的灵活性都是其优势之一。需要定期更换优质液体,以在校准区内实现均匀性和稳定性。油槽的温度范围为-80℃至+300℃。虹科ELPRO医药冷链和仓储温湿度监测方案从超低温冰箱到步入式冷藏室或整个全球仓库配送网络,虹科ELPRO都有一个定制的解决方案来适应您的任何和所有应用。30多年来,虹科ELPRO深受世界领先的制药、生物技术、生命科学和生物组织的信赖,提供完全合规的解决方案,并集成到现有医药供应链运营中。全球顶尖的医药供应链解决方案供应商,研发了世界上第一款真正PDF温度计,提供涵盖药品整个生命周期的温湿度监测解决方案,严格按照GxP的要求研发和设计产品,100%合规 虹科LIBERO PDF医药冷链温湿度记录仪HK-LIBERO PDF温度计,涵盖所有温度范围,包括常温15至25℃,冷藏2至8℃,冷冻-20℃,超低温-80℃(干冰),液氮-196℃,可选内置和外接温度探头,具有实时传输和定位功能。可选一次性型号,适用于药品出口。&bull 体积小巧,操作简单,无需任何配件,直接插入电脑USB接口导出不可修改的PDF数据报告&bull 瑞士品质,质量可靠,工作稳定&bull 获得WHO PQS预认证,WHO推荐冷链温度计&bull 符合IATA要求,具有上化和DGM电池鉴定报告,安全空运&bull 符合FDA 21 CFR Part 11,100% GxP合规虹科ELPRO EMS中央环境自动监测系统统一对整个医药供应链中的温度,湿度,气压,二氧化碳浓度,门开关以及其他变量的连续监测,用于实验室和/仓库的环境参数监测,可选有线和无线的方案,所有数据通过网络上传到服务器,可随时随地登录查看当前和历史的测量值,当参数超过某个设定的范围时,系统会自动触发声光,短信,Email或者电话报警,数据永不丢失。&bull 可选有线和无线的方案,可同时监测上千个点&bull 数据永不丢失,100%合规和安全&bull 瑞士品质,质量可靠,工作稳定&bull 来自全球质量领导者的整个医药供应链中全面的温度监测解决方案
  • 中国电科45所湿法设备进入国内主流8英寸芯片产线
    近日,中国电科45所(以下简称45所)研制的双8英寸全线自动化湿法整线设备进入国内主流FAB厂。该整线设备满足8英寸90nm~130nm工艺节点,适用于8~12英寸BCD芯片工艺中的湿化学制程。晶圆尺寸与工艺线宽代表湿法设备的工艺水准,45所研制的整线设备具备了8寸主流FAB厂湿法设备运行标准,自动化程度高,系统集成度高,覆盖了8英寸BCD芯片工艺中的湿化学工艺制程,实现了全自动湿法去胶、湿法腐蚀、湿法金属刻蚀、RCA清洗、Marangoni干燥等工艺。设备是半导体产业的基石,据SEMI统计,2021年全球半导体制造设备销售额创历史新高,达到1026亿美元,同比增长了44%。在全球芯片扩产潮的推动下,晶圆厂的设备支出将继续提升,预计全球市场2022年将达到1175亿美元,2023年将增至1208亿美元。旺盛的市场需求,为本土半导体设备企业带来了发展契机。中电科电子装备集团有限公司董事长、党委书记景璀表示,基于半导体设备行业“技术密集、人才密集、资金密集,回报周期长”的特点,国内先进的设备企业已经形成“研发先行,产业跟进,金融支撑”的发展模式,并具备以下三个特点:一是半导体设备行业集中度高。据中国电子专用设备工业协会统计,国内前十家半导体设备公司销售收入占国产设备企业销售收入总额的80%。设备龙头企业与制造领军企业在工艺与设备开发方面深度合作,不断强化龙头企业地位。二是国产半导体设备细分品种不断丰富,逐步步入产业化替代阶段。例如,北京烁科中科信公司目前已实现中束流、大束流、高能及第三代半导体等特种应用全系列离子注入机自主创新发展,工艺段覆盖至28nm。三是资本市场对半导体设备科技创新和产业化的支撑力度日益增强。2019年以来,多家企业借助科创板迅速实现IPO上市,募集资金,加速科研投入,产业化进一步提速。
  • 年产40台设备,这个半导体湿法设备制造项目将落地合肥
    8月10日,合肥经济技术开发区管理委员会网站发布关于对合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)环境影响评价文件拟作出审批意见的公示。△Source:合肥经开区网站截图据披露,合肥至汇半导体应用技术有限公司将在合肥经济技术开发区建设半导体湿法设备制造项目(一期),项目总投资1.8亿元,投产后可年产30台年产批次式半导体湿法清洗设备和10台单片式半导体湿法清洗设备。天眼查显示,合肥至汇半导体应用技术有限公司成立于2019年,注册资本1000万元,是上海至纯洁净系统科技股份有限公司的全资子公司,经营范围包括半导体设备、机械设备、自动化设备、计算机及辅助设备、配电开关控制设备制造、销售、维修、调试及技术服务;工业自动化科技、计算机科技、半导体科技领域内的技术研发、技术咨询、技术转让、技术服务等。△Source:天眼查截图据悉,该项目最早可追溯至2019年。2019年5月,至纯科技发布公告称,为顺应我国半导体产业的发展,拟募集资金总额不超过3.56亿元,扣除发行费用后将用于半导体湿法设备制造项目和晶圆再生基地项目,而负责半导体湿法设备制造项目的实施主体正式合肥至汇。△Source:至纯科技公告截图公告显示,半导体湿法设备制造项目建设周期为2年,建成后,主要开展批次式半导体湿法清洗设备和单片式半导体湿法清洗设备的生产制造。至纯科技当时披露,该项目已经取得了合肥经济技术开发区经贸发展局的备案,并取得了合肥市环境保护局经济技术开发区分局出具的《关于合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)审核意见》,认为项目可以在合肥市环境保护局经济技术开发区实施。
  • 中芯国际14nm及以上成熟工艺设备获美供应许可
    3月1日,有报道称,美国商务部、国防部、能源部和国务院四部委,已批准美国领先设备厂商,对中芯国际供应14纳米及以上(14纳米及28等成熟工艺)设备的供应许可。不仅如此,此前中芯国际一直申请但未通过的用于14纳米晶圆外延生长的关键设备也获得了批准。然而,对于10nm及以下技术节点的出口许可,目前暂无进展。此事在先前已有所征兆。前不久,摩根士丹利发表研究报告指出,美国设备供应商近期恢复了零组件供应和现场服务,这缓和了投资者对中芯备用品和零组件库存问题的短期担忧,将上调中芯国际的评级由中性至增持,上调H股目标价34%,由23.8港元升至31.8港元。去年10月,中芯国际发公告确认美国商务部对中芯国际实施出口限制,称经过多日与供应商进行询问和讨论后,知悉向中芯国际出口的部分美国设备、配件及原物料会受限于美国出口管制规定,须事前申请出口许可后,才能向中芯国际继续供货。若此次供应许可的消息属实,对于中芯国际而言将十分重要。芯谋研究认为,此次供货许可证顺利获批,既意味中芯国际的经营和业绩将恢复到正常,也说明中芯国际和美国相关部门的沟通与合作重新建立,为中芯国际和美国企业未来的进一步合作消除了障碍。与此同时,此次获得许可也缓解了中国芯片产能紧张的现状,为中国芯片设计公司的快速发展提供了产能保障。然而,如今政局多变,未来情况难以预测,中芯国际如何才能及时抓住此次机会,改善自身的境况?对此,芯谋研究首席分析师顾文军向《中国电子报》记者表示,中芯国际需要从四点出发,从而才能有效抓住此次良机。第一,中芯国际可以借此机会同美国政府部门、供应商以及客户建立紧密的关系,从而保证未来的长期发展。第二,在窗口开放的同时,中芯国际需要努力提升自身购买力,在尽可能快速地购买到足够的所需设备。第三,在与美国供应商建立联系的同时,中芯国际也要加强自身的管控,在与美国贸易往来的同时,尊重美国的法律法规。第四,在提升自我的同时,作为国内晶圆制造的龙头企业,中芯国际也应当借此机会,支持并带领国内其他的芯片厂商融入到国际竞争中,并给予他们足够的帮助和扶持,从而能够带动整体国内半导体产业的发展。此次14纳米及28等成熟工艺的获批,是否也意味着10nm以下的技术节点出口政策也将会逐步放开?“这并不是没有可能,此次14纳米及28等成熟工艺的获批,从某种意义上来说也给日后的逐步放开开辟了一个先河。然而,俗话说,打铁还需自身硬,面对多变的格局,若想实现日后的稳定发展,还需努力提升自身实力,攻破更多核心技术。”顾文军向《中国电子报》记者说道。据悉,在中芯国际获得设备供应的许可后,联发科等部分芯片设计公司正向中芯国际寻求更多产能,摩根士丹利预测,中芯国际2021年收入将增长10%-15%,上调公司2021年每股纯利预测14%、2022年数字亦上调6%。
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p  在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。”/pp  “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!”/pp  “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!”/pp  从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的?/pp  在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。/pp  曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。/pp  我谈谈自己的经历。/pp  去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。/pp  我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。/pp  而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。/pp  这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。/pp  更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!/pp  今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。/pp  其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。/pp  我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。/pp  十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜:/pp  几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍!/pp  超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。/pp  既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。/pp  原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。/pp  燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。/pp  以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。/pp  也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。/pp  难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。/pp  有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。/pp  现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。”/pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667799730726.jpg" width="571" height="395" style="width: 571px height: 395px "//centerp  更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。/pp  湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。/pp  我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程:/pp  /pcenterimg alt="2" src="http://img.caixin.com/2017-07-10/1499668426791886.jpg" width="562" height="234"//centerpbr//pp  湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径:/pp  1. 在原来湿法脱硫的基础上打补丁。其具体措施是:/pp  1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /pp  2) 加装烟气除雾装置(例如旋风分离器) /pp  3) 加装湿法静电除尘器 /pp  4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667818346916.jpg" width="584" height="241"//centerpbr//pp  但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。/pp  但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。/pp  2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是:/pp  1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /pp  2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667826241238.jpg" width="567" height="179"//centerpbr//pp  德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667836914688.jpg" width="597" height="403" style="width: 597px height: 403px "//centerp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667844142957.jpg" width="460" height="496" style="width: 460px height: 496px "//centerp  上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。/pp  燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物 5~10毫克/立方米烟气,SOx 35毫克/立方米烟气 NOx 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。/pp  湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。/pp  这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。/pp  最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢!/ppstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任/strongstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "陶光远/strong/p
  • 设备商、用户对话:刻蚀/沉积工艺如何助力“中国芯”——2018等离子技术应用研讨会侧记
    p  strong仪器信息网讯 /strong近来,中美贸易大战的背景下,“中国芯”成为热议话题,作为一个装备和工艺高度融合的产业,设计、制造、封测、材料设备等每个关键环节都对半导体的发展起着至关重要的作用。其中,以等离子技术为基础的刻蚀、沉积和生长等工艺设备,就是半导体各项最初设计得以实现的基础。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/aaf85acf-1392-40e4-a55c-58a5c78a206e.jpg" title="第01.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "研讨会现场/span/pp  5月8日,作为刻蚀、沉积和生长等工艺设备知名供应商,牛津仪器公司在北京主办了“2018等离子技术应用研讨会”,会议邀请来自第三代半导体联盟、北京工业大学、中国科学院半导体所的科研用户专家,以及半导体生产企业的用户专家,从工艺设备用户与供应商不同角度,对等离子技术在半导体生产/研发中应用的最新进展及存在问题进行了交流探讨。会议间隙,仪器信息网编辑也与部分专家、牛津仪器高层就半导体研究进展等进行了简单交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/834c78ab-5016-4463-9193-04daa98cceba.jpg" title="第02.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright致辞/span/pp  strong关于研讨会:聚焦科研/生产热点——第三代半导体、VCSEL以及功率射频器件/strong/pp  中国科学院半导体所研究员刘剑认为,从半导体发展历史来看,基础研究固然重要,但是市场对应用研究的影响也非常大。基于此,本次研讨会根据当下科研、工业需求热点,选择“宽禁带半导体”(或称为“第三代半导体”)作为主题,同时,报告内容也兼顾了时下工业应用热点——垂直腔面发射激光器(VCSEL)的相关研究。/pp  研讨会由9个专家报告组成,报告内容主要包括第三代半导体现状与趋势、具有窄谱线和高光束质量的VCSEL介绍、VCSEL相关刻蚀和沉积技术、GaN基半导体电子器件研究进展、低损伤刻蚀和沉积技术等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/a2860748-dcd3-42ef-a89f-991cf6935e47.jpg" title="第03.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "用户专家报告/span/pp  (上至下,左至右:第三代半导体产业技术创新战略联盟秘书长 于坤山,北京工业大学教授 徐晨,中科院半导体所研究员 王晓亮,中科院半导体所研究员 王晓东,中科院半导体所研究员 张峰)/pp  会后,据刘剑介绍,他本人与牛津仪器已经有多年的合作,近十年前与牛津仪器共同举办了第一届等离子体研讨会,后续几乎每一届的研讨会也都协助举办。他认为,作为科研用户,通过参与这种形式会议,既增进了与仪器设备企业之间的交流,也可以现场讨论一些技术问题。对于半导体生产企业用户,他们多数会有自己的研发,尤其是一些先进的器件、模块,而研讨会中探讨的一些工艺解决方案,就可以为他们的研究提供帮助。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/3afa8c17-c9a1-41cb-829b-6450e1228d21.jpg" title="第4.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "牛津仪器应用专家报告/span/pp style="text-align: center "(左至右:牛津仪器Stephanie Baclet博士,杨小鹏博士,黄承扬博士)/pp  strong我国半导体研究现状、热点如何?牛津仪器关注哪些热点?/strong/pp  关于当下半导体相关领域研究进展或研究热点,刘剑表示:“我之前研究领域主要在III-V族半导体材料,但最近又开始回归到传统半导体硅材料,当然也会涉猎部分III-V族半导体材料。从目前来看,类似我们这样的科研工作者,不太容易区分大家具体是做什么材料体系,基本是受一个学科进展的牵引或个人的兴趣,基于不同的材料在做相近的科研。而关于研究热点,其实这次研讨会主题内容中的第三代半导体以及垂直腔面发射激光器(VCSEL)都是当下大家比较关注的。值得一提的是,VCSEL并不是一个新的研究领域,相关研究也有多年的历史,但就是因为IphoneX用了这种3D图像技术之后,VCSEL才重新进入到大众视野。这也成为工业应用热点再次推动了相关科研的一个实例。”/pp  中国科学院半导体所研究员张峰介绍说:“我是研究碳化硅的,领域是宽禁带半导体。因为我们国家对宽禁带半导体的布局比较早,包括碳化硅衬底材料、外延材料、器件,还有最后的封装,所以相比传统半导体领域,与世界的差距并没有那么大,也就是2-3年的时间。因此这个领域在未来五到十年内,我们国家有很大希望能够迎头赶上,甚至在某些方面可以达到世界一流的水平。”关于半导体研究热点,他认为:‘从“中兴之痛”事件我们可以看到,半导体研究或关注的热点主要是极大规模集成电路方面,在14纳米、7纳米及5纳米这些制程方面的一个进展。也就是说我们国家在这个方面跟国际的差距还比较大,目前我们实现量产是28纳米,我们希望未来能向14纳米、7纳米及5纳米靠近。但这需要产业链整体的提高,包括我们的设备、设计、器件制作工艺,及最后的封装等各个方面,这样才能够跟得上世界的发展。目前半导体研究热点主要是在设计及工艺制备这两方面。工艺制备方面又跟设备很相关,所以说这些都是紧密相连的。’/pp  牛津仪器的刻蚀、沉积、生长等相关设备及工艺解决方案在中国半导体领域的市场占有率较高,且拥有广泛的科研及生产企业用户群。设备厂商在前沿热点把控上,在时刻保持对用户最新需求的关注基础上,职业敏锐性往往赋予他们自己的优势。那么,牛津仪器又对哪些半导体领域的热点保持关注呢?牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright表示:“牛津仪器接下来的关注重点,不光是那些具有研发创新能力但处于初期发展阶段的企业,我们更感兴趣的是那些已经成熟的解决方案,这需要更多更稳定的设备把之前好的工艺过程重复出来。对于我们关注的产业领域,主要有两个,第一是光电子领域,比如一些手机的3D面部识别功能,这个功能其实是运用到了我们VCSEL工艺,这个工艺还可以用在无人驾驶汽车的智能测距(测距机理即安装的各种光电传感器,通过各种光电传感器件的协同合作来实现自动驾驶功能)。第二个领域是5G信号网络,该领域会用到一些比较先进的光电子、功率器件,比如,之前的功率器件是基于硅,第二代是基于砷化镓,第三代是氮化镓和碳化硅工艺,牛津仪器是从第一代到三代全覆盖的,当然我们正在着手研究更先进的第四代、第五代半导体,如氧化镓、金刚石等。”/pp  strong用户与设备商协同发展,用户怎么看?牛津仪器怎么看?/strong/pp  在半导体领域,工艺设备对科研或企业生产是至关重要的。张峰认为:“工艺设备是一个基础,如果没有工艺设备,我们设计的东西就没办法实现,但是我们国家在这方面实际上是跟世界有一些差距的,80%-90%工艺设备需要进口。所以,工艺设备方面,我们希望与像牛津仪器这样的国外优秀厂商合作,学习他们的先进技术及经验,使我们国家逐渐掌握工艺设备的研发及生产能力。另外,从科研用户角度讲,我们也有很好的合作。我们会及时向牛津仪器反馈一些最新的需求,比如我们做氮化镓,碳化硅的时候,需要让刻蚀设备刻蚀的更精密一些(如今天会上牛津仪器介绍的原子层刻蚀技术),还有就是在原子层刻蚀与传统等离子体刻蚀结合的需求等。当然,牛津仪器也在不断努力配合我们的需求。”关于如何实现用户与设备供应商更好的合作,张峰表示:“客户可以首先提出一些需求、提供一些样品,让设备厂商提供一些解决方案,及刻蚀的结果 另外,希望设备厂商针对客户提出的新需求,如定制化的需求等,能够积极的满足。”/pp  刘剑补充道:“从科研用户来讲,与生产用户不同的是,我们往往会提出一些特殊的需求。我们主要希望设备企业的工艺设备能够稳定,并能获得我们所需的实验结果。牛津仪器会和用户一起来开发新的工艺,接受客户提出的部分特殊需求,去单独开发一套工艺,然后结合设备一起提供给客户,这对客户研究过程中一些特殊情况是有很大帮助的。”/pp  Ian Wright对两位老师的看法表示赞同,并表示:“总结来看,用户对我们提出的需求主要有三个方面:第一是希望我们能够把牛津仪器一些成熟的解决方案尽快的提供给他们 第二就是他们提出一些特殊需求,我们如果没有一个对应方案的话,能够配合他们一起去解决 第三,售后服务保障,作为一个合格的生产先进器件厂商,并不是说你有了一台先进的工艺设备放在那里就可以没有后顾之忧,接下来的售后服务能力也对你之后的企业发展有很重要的影响。比如设备一旦出现故障,多长时间可以解决 需要一个备件,又需要多长时间可以提供,也是客户衡量设备供应商的一个标准。在此,我敢肯定的是,牛津仪器有能力也愿意在刚才提到的三方面需求全方位与客户合作,解决客户从售前到售后的后顾之忧。”/pp  “牛津仪器走进中国市场已经20余年,但等离子技术部门的大部分精力放在了高校院所科研用户上。为满足更广泛用户的需求,我们决定将工作重心逐渐向技术非常成熟的生产企业用户转移,增强深入合作,通过我们的设备及工艺再加上科研用户的技术来孵化出更多更新的成果。” Ian Wright继续说道。/pp  牛津仪器等离子技术部中国区经理陈伟表示:“中国从过去的能源依赖,发展到现在成为芯片依赖社会形态,包括在各个国家国际环境的变化,都逐渐把矛盾转移到芯片研究上来。许多人认为这是一个危机,但我认为这对我们国家、对我们设备供应商都是一个机遇。现在中国在大力推广自己的芯片产业,这个过程,就需要像牛津仪器这样能够提供优秀设备、解决方案的公司来一起合作,把最新的芯片用最短时间开发出来,这样中国就不必再受制于人。”关于中国市场,他表示:“中国始终是牛津仪器十分重视的市场所在,公司也愿意投入更多的财力、物力到中国市场上来,接下来,牛津仪器将加强与用户的合作。如我们现在正在和一些客户讨论,以共建实验室的方法,来让客户在这方面有更快的突破,帮助一些有潜力客户实现量产。另外,如Ian Wright所说我们更加重视科研客户的同时,对于生产企业客户,我们也会不断加大服务力度,比如,近两年我们相关的售后服务团队就增加了一倍。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/418b86a0-2820-4b0c-98ac-4ca3401df3ef.gif" title="第05.gif"//pp style="text-align: center "span style="color: rgb(0, 0, 0) "(右一:牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright /span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "右二:牛津仪器等离子技术部中国区经理陈伟)/span/p
  • 合辑:最全国内外干式厌氧发酵技术工艺都在这里!
    干式厌氧发酵是近年来发展非常迅速的一项新技术,在畜禽粪便处理、秸杆制气、餐厨垃圾处理等方面有很好的应用前景。具有原料预处理要求低、沼液产量少、能源少、管理方便等优点。 一、干式厌氧发酵 专门针对含固率大于15%成分比较复杂的有机废弃物的厌氧消化处理技术。 二、工艺类型 连续式工艺主要用于含固率15%~25%之间,比较粘稠的有机废弃物的处理;间歇式工艺主要用于含固率在25%以上,且物料粒径分布范围较大,通透性较好的有机废弃物的处理。 三、国内外干式厌氧发酵工艺 有机废弃物干式厌氧发酵技术最早起源于欧洲,目前比较成熟的工艺有比利时的Dranco,法国的Valorga,瑞士的Kompogas和德国的LARAN,而国内关于干式厌氧发酵的研究起步较晚,目前绝大部分工艺还处在实验研究阶段。 1.欧洲干式发酵工艺概况 从20实际40年代起,欧洲一些发达国家就开始尝试研究和使用干式厌氧消化技术,到20世纪80年代,干式厌氧消化技术在德国、荷兰、瑞士和比利时等欧洲国家开始市场化应用。 1)间歇式干式发酵处理工艺与连续干发酵工艺相比,间歇式干发酵工艺发展相对稍晚一些,从90年代初开始商业化应用。主要有德国的Bioferm、BEKON及Wehrlewerk公司的Bioferm,BEKON以及Biopercolat干发酵工艺等。Bioferm工艺 主要应用于含水率低于75%的有机固体废弃物的处理,属于单级车库式中温厌氧消化工艺。该工艺的主要特点是原料投加到反应器内再不需要搅拌或翻掀,也不需要增加额外的补充水,且原料在进入反应器内后不需要做任何预处理。BEKON工艺 BEKON工艺与Bioferm工艺基本上完全相同,也是车库式间歇干式发酵工艺。唯一不同的是BEKON工艺具有高温和中温两种,而Bioferm只有中温。GICON工艺 GICON工艺属于间歇式处理工艺,与上述BEKON与Bioferm间歇式厌氧干发酵工艺相比,主要不同点是GICON工艺是根据微生物的分解步骤将厌氧消化过程分成两个阶段来实现——水解阶段(干式发酵)和产甲烷阶段(湿式发酵)。 2)连续干式发酵处理工艺 从20世纪40年代起,欧洲一些发达国家就开始尝试研究和使用干式厌氧消化技术,到20世纪80年代,干式厌氧消化技术在德国、荷兰、瑞士和比利时等欧洲国家开始市场化应用。其中最具代表性的连续干发酵系统工艺为:比利时OWS公司的Dranco干发酵工艺、法国VALORGA INTERNATIONAL S.A.S 公司的Valorga干发酵工艺、瑞典的KOMPOGAS公司的KOMPOGAS BRV等。Dranco工艺 该工艺属于竖式推流发酵工艺,属于单级中温/高温干式(高固体)厌氧消化工艺。Dranco工艺又分为Dranco和Dranco-Farm,Dranco主要用于餐厨垃圾、城市固体废弃物的有机部分等,而Dranco-Farm主要用于能量作物和工业有机废弃物的处理。Valorga工艺 该工艺属于竖式气体搅拌干发酵工艺,主要应用于有机固体废弃物和城市生活垃圾处理方面,有高温和中温两种形式。是第一个用于对生活垃圾经机械分选后剩余有机部分处理方面的发酵工艺。Kompogas BRV工艺 Kompogas BRV工艺属于卧式推流发酵工艺,主要应用于有机固体废弃物和城市生活垃圾处理方面,属于单级高温干式(高固体)厌氧消化技术。Laran工艺 主要应用于含水率15~45%的有机固体废弃物的处理,属于单级干式卧式推流厌氧消化工艺,有高温和中温两种形式。该工艺与Kompoga相似,主要不同的搅拌方式,Laran工艺采用的是分段搅拌方式,比Kompogas工艺设备多且比较分散。 2.国内干式发酵工艺概况我国对厌氧消化技术的研究相对滞后,尤其是干发酵技术,目前国内致力于干发酵技术的研究和推广应用还比较有限。主要有以下几种工艺模式: 1)覆膜槽沼气干式发酵系统该工艺建设若干个发酵槽,间歇使用,实现好氧升温-厌氧产气-好氧制肥三段同槽发酵工艺,其中厌氧利用柔性膜密封,好氧升温及制肥时将柔性膜取下。 2)干式发酵反应器(立式/卧式两种) 该设备适用于各种有机废弃物和能源作物厌氧发酵工程。 3)多元废弃物车库式干式发酵工艺没有或者几乎没有自由流动水的沼气厌氧微生物发酵过程,是处理有机同体生物质的有效方法,耗水量比湿法发酵大大降低,无沼液消纳问题,适用于各种有机废弃物和能源作物厌氧发酵工程。 行业专家表示干发酵目前在国外是热点和趋势,“相对于我们传统的湿发酵来说,干发酵技术具有三大优点:原料适应性较广;容积产出率较高;整个发沼过程当中没有沼液外排,避免二次污染。”除农业秸秆、畜禽粪便以外,干发酵还可以针对有机垃圾、餐厨垃圾,以及其它农产品废弃物进行处理发酵。 厌氧发酵是沼气工程的基础,而厌氧发酵是一个复杂的过程,预处理、接种比例、总固体浓度、原料、温度和外源添加物等因素都会对厌氧发酵的产气率造成影响。因此,除了要根据发酵原料选择适宜的厌氧发酵工艺及系统结构,选择适宜的沼气成分监测设备,如沼气分析仪Gasboard-3200系列,通过对产出沼气中CH4、H2S、O2、CO2气体浓度的检测,判断发酵工艺状况,并对工艺过程进行适度调控,以降低各因素对产气率造成的负面影响,提高发酵系统的沼气发酵效果也是十分必要的。沼气分析仪(在线型)Gasboard-3200 我国现今能源短缺,发展低碳经济、循环经济已成为世界性潮流。厌氧干式发酵技术在各种固体有机废弃物资源化利用上具有一定的技术优势,由于我国对该技术的研发起步较晚,仍有巨大的研究空间,尤其是在干发酵接种量大、启动慢及易积累有机酸等方面,以求进一步提高干发酵系统的沼气发酵效果。来源:微信公众号@沼气工程及其测控技术,转载/修改转载请务必注明来源!
  • 累计出货超300台!盛美半导体湿法设备2000腔顺利交付
    “盛美半导体设备”官方公众号消息,10月18日盛美半导体湿法设备2000腔顺利交付!累计出货超过300台设备。资料显示,盛美是国内集成电路湿法设备龙头企业。在清洗机和电镀机等领域,该公司形成了集成电路专用清洗系列设备(包括单片、槽式、单片槽式组合清洗、背面清洗、刷洗等)、前道铜互连及先进封装电镀设备、先进封装湿法设备和立式炉管设备等产品线,覆盖了集成电路前道、先进封装和晶圆制造领域。盛美董事长王晖表示,近几年,盛美半导体在清洗、镀铜和炉管等多个领域不断取得重大突破,并跻身全球半导体设备供应商前列。今天很高兴与大家共同见证盛美湿法设备2000腔成功交付这一重要时刻,这标志着盛美在行业细分市场树立了新标杆 ,同时在半导体设备领域跨越新征程、开启新篇章。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 五洲东方将参加2010年国际科学仪器、实验室设备及材料工艺展览会
    由C-MRS主办、MRS-T和MRS-J协办,青岛市政府与C-MRS联合承办的国际新材料及材料工艺设备技术展览会将于2010年9月26日-28日在青岛举行,本次大会共设21个分会和一个论坛,涉及能源与环境材料、高性能结构材料、功能和电子材料、纳米与非晶材料、生物医用材料以及材料模拟和评价等六大领域。 北京五洲东方科技发展有限公司将参加此次展览会,向新老客户展示EKO热导率仪HC-074和真空绝热板快速检测仪HC-120。 欢迎各界人士莅临青岛国际会展中心/B17展台 参观指导! 时间:2010年9月26日&mdash 28日 地点:青岛市东海中路30号
  • 背照式CMOS图像传感器工艺中_硅晶圆背面抛光的新技术!
    新加坡科技研究局微电子研究所Institute of Microelectronics Agency for Science的Venkataraman等人与奥地利Nexgen Wafer Systems公司以及新加坡格罗方德公司GlobalFoundries的工程师组成研究团队,共同开发出一种新的晶圆背面抛光技术。在光检测与测距(LiDAR)等各种应用中,背照式三维堆叠CMOS图像传感器备受该领域专家们关注。这种三维集成器件的重要挑战之一,是对单光子雪崩二极管(SPAD)晶圆的精确背面抛光,该晶圆与CMOS晶圆堆叠,晶圆背面抛光通常通过背面研磨和掺杂敏感湿法化学蚀刻硅的组合来实现。研究团队开发了一种湿法蚀刻工艺,基于HF:HNO3:CH3COOH定制化学试剂,能够在p+/ p硅过渡层实现蚀刻停止,掺杂剂选择性高达90:1。他们证明了全晶圆300mm内厚度变化仅约300nm的可行性。此外,也对HNA蚀刻硅表面的着色和表面粗糙度进行了表征,最后,提出一种湿法锥蚀方法来降低表面粗糙度。该研究成果发表于2023年5月30日至6月2日在美国佛罗里达州奥兰多召开的第73届电子组件与技术会议(ECTC)上。论文录用日期为2023年8月3日,并被IEEE Xplore 收录。这项突破将有可能推动背照式CMOS图像传感器在汽车智能驱动等领域的应用。
  • 湿法脱硫协同除尘机理及超低排放技术路线选择
    p  随着国家三部委《全面实施燃煤电厂超低排放和节能改造工作方案》的实施,燃煤电厂烟气治理设备超低排放改造工作突飞猛进,成绩显著。在实施湿法脱硫(WFGD)超低排放方面,各环保公司纷纷开发了脱硫喷淋塔技术改造提效升级的多种新工艺,如单塔双循环技术、双托盘技术、单塔双区(三区)技术、旋汇耦合技术等,特别在脱硫塔核心部件喷淋系统上,采用增强型的喷淋系统设计(如增加喷淋层、提高覆盖率、提高液气比等)。脱硫效率从以前平均在95%左右提高到99%甚至更高。特别引人关注的是,在超低排放脱硫系统脱硫效率大幅提高的同时,其协同除尘效果也显著提高,一批改造后脱硫系统的协同除尘效率(净效率,已包含脱硫系统逃逸浆液滴的含固量)达到了70%,甚至有更高的报道。p 面对这样的事实,与之相关的问题亟需得到解答与澄清:p (1)超低排放湿法脱硫协同除尘的核心机理是什么?p (2)湿法脱硫协同除尘技术是否有局限性?应用中应注意哪些问题?p (3)超低排放技术路线选择中如何把握好湿法脱硫协同除尘与湿式电除尘器的关系?p 本文旨在追根溯源,一方面回顾总结过去在这方面的研究 一方面从机理出发,研究喷淋系统(及除雾器)对颗粒物脱除的作用。并采用理论模型计算与实际工程案例比较的方法,论证湿法脱硫喷淋系统是协同除尘的主要贡献部件,同时分析湿法脱硫协同除尘的局限性及与湿式电除尘器的关系,为超低排放技术路线选择提供有益的参考意见。p 湿法脱硫协同除尘的研究简要回顾p 清华大学热能系对脱硫塔除尘机理的研究较多,脱硫塔内单液滴捕集飞灰颗粒物的相关研究,主要建立了综合考虑惯性、拦截、布朗扩散、热泳和扩散泳作用的单液滴捕集颗粒物模型并进行了数值模拟计算,分析了温度、液滴直径和颗粒粒径对单液滴捕集过程及效率的影响规律。清华大学王晖等通过测试执行GB13223-2011标准WFGD进出口颗粒物的分级浓度的研究表明,WFGD可有效捕集大颗粒,但对PM2.5的捕集效率较低,且分级脱除效率随粒径减小而明显下降。华电电力科学研究院魏宏鸽等于2011~2013年对39台锅炉(机组容量为25~1000MW)的执行GB13223-2011标准WFGD开展了除尘效率测试试验,结果显示,不同试验机组WFGD的协同除尘效率为18~68%,平均协同除尘效率为49%。国电环保研究院王东歌等通过对我国4座电厂5台不同容量的执行GB13223-2011标准WFGD进出口烟气总颗粒物浓度进行了测试,结果表明,WFGD对烟气中总颗粒物的去除效率介于46.00%~61.70%之间,平均达到55.50%。夏立伟等对某电厂超低排放改造前的WFGD进行了协同除尘效果测试,结果显示,WFGD协同除尘效率为53%。p 上述研究结果一致表明:WFGD具备协同除尘能力 执行GB13223-2011标准WFGD平均协同除尘效率大致在50%左右 湿法脱硫协同除尘的主要机理是喷淋液滴对颗粒物的捕获机理。这种认识在WFGD实施超低排放之前是行业内比较公认的。p 湿法脱硫喷淋液滴协同除尘机理p 1、湿法脱硫喷淋液滴捕集颗粒物的机理与模型喷淋塔除尘机理与湿法除尘设备中重力喷雾洗涤器相似。一定粒径(范围)的喷淋液滴自喷嘴喷出,与自下而上的含尘烟气逆流接触,粉尘颗粒被液(雾)滴捕集,捕集机理主要有重力、惯性碰撞、截留、布朗扩散、静电沉降、凝聚和沉降等。烟气中尘粒细微而又无外界电场的作用,可忽略重力和静电沉降,主要依靠惯性碰撞、截留和布朗扩散3种机理。前人的研究结果表明,Devenport提出的孤立液滴惯性碰撞效率模型、马大广的拦截效率模型、嵆敬文的布郎扩散捕集效率模型与实验结果吻合较好,因此我们根据上述相关模型计算单个液滴的综合颗粒分级捕集效率,然后结合实际工程参数参考岳焕玲提出的液滴群和多层喷淋层中不同粒径液滴的颗粒分级捕集效率模型进行了的计算,相关计算模型见表1所示。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230061.jpg" width="500" height="465"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230934.jpg" width="500" height="478"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609231751.jpg" width="500" height="186"//centerp/pp/pp /pp  2、湿法脱硫喷淋层对颗粒物捕集效率影响因素p (1)颗粒物粒径及分级浓度分布对喷淋层协同粉尘脱除效率的影响p 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比L/G=14.283L/m3时,不同粒径范围(900~5000μm)液滴群对颗粒物分级脱除效果曲线如图1所示。p 随着颗粒物分级粒径的增大,脱除效率明显增加,900μm粒径液滴群对1μm颗粒物的脱除效率不到5%,而对10μm颗粒物的脱除效率可达70%以上,因此,烟尘颗粒的分级浓度特性对喷淋层的协同除尘效率影响很大,小颗粒( 2.5μm)比重越大,脱硫塔的协同除尘效率越低。随着液滴粒径增大,因其数量占比大幅减小,发生惯性碰撞、拦截和扩散效应的概率随之降低,对同一粒径颗粒物分级脱除效率随之降低。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609233040.jpg" width="416" height="343"//centerp (2)液气比对颗粒物协同脱除效率的影响/pp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比选为8、12、16、20L/m3,不同液气比条件下不同粒径范围(900~5000μm)喷淋雾滴群对2.5μm颗粒物脱除效果曲线如图2所示。/pp style="TEXT-ALIGN: center"img alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609240974.jpg" width="402" height="337"//pp 上述计算结果表明,随着液气比的增大,吸收塔单位截面上喷淋浆液量越大,喷淋液滴数目增加,表面积增加,与颗粒物接触机会增加,脱除效率明显增大。对于900μm左右粒径的液滴,液气比从8L/m3增加到16L/m3,对2.5μm颗粒分级脱除效率从14.35%增加到26.64%,脱除率增加了84%。因此增大液气比有助于提高湿法脱硫对粉尘和细颗粒(PM2.5)的协同脱除作用。/pp 3、超低排放WFGD与执行GB13223-2011标准WFGD协同除尘效率的比较/pp 为了分析问题,我们假定有一个脱硫工程需要做超低排放改造,设定进口SO2浓度为2450mg/Nm3,进口粉尘浓度20mg/Nm3,出口SO2浓度在超低排放改造前后分别设定为200mg/Nm和35mg/Nm3,选用双头空心喷嘴(液滴体积平均粒径1795μm),脱硫塔进口飞灰颗粒物浓度分布参考清华大学对某个实际工程的颗粒物质量累积分布测试结果。/pp 根据上述假定,我们计算了超低排放WFGD与执行GB13223-2011标准WFGD喷淋层的协同除尘效率、喷淋层对PM2.5的脱除效率,同时把除雾器出口液滴中的含固量考虑在内,测算了超低排放WFGD与执行13223-2011标准WFGD的协同除尘效率,结果如表2所示。/pcenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609242531.jpg" width="600" height="340"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609243491.jpg" width="600" height="322"//centerp 表2计算可以给我们以下几点认识:/pp (1)WFGD对飞灰颗粒物协同脱除的主要贡献是喷淋层。根据前述WFGD喷淋雾滴捕集颗粒物的机理分析与模型计算,喷淋层对较大粒径颗粒的脱除效率是较高的,而这一部分颗粒占重量浓度的大部分,所以计算结果显示,对执行GB13223-2011标准WFGD,喷淋层协同除尘效率74.95%,超低排放WFGD喷淋层协同除尘效率83.30% /pp (2)WFGD的整体协同除尘效率需要考虑WFGD逃逸液滴中的石灰石、石膏等固体颗粒物分量。在进口粉尘浓度条件不变的情况下,由于超低排放WFGD改造安装了高效除雾器,超低排放WFGD协同除尘效率可保持在72.05%,而执行GB13223-2011标准WFGD由于我们假设的原除雾器设计效率较低,出口液滴排放浓度较高,其协同除尘效率降到了37.45%。为了保障WFGD整体的协同除尘效率和较低的颗粒物总排放浓度,需要应用高效除雾器把WFGD出口液滴排放浓度降到足够低。/pp (3)对于我们特别关注的细颗粒物(PM2.5),执行GB13223-2011标准WFGD喷淋层的协同脱除效率为42.74%,超低排放WFGD喷淋层的协同脱除效率为61.83%,提效44.67%,分析超低排放WFGD喷淋层脱除细颗粒物效率较高的主要原因,在于大幅增加了WFGD的液气比,使得喷淋雾滴总的表面积增加,与细颗粒接触的概率增加,从而明显提高了颗粒物特别是PM2.5的协同脱除效率。/pp/pp/pp  表3是我国部分超低排放WFGD工程的协同除尘效果,其中A为华能南通电厂4号机组(350MW)B为华能国际电力股份有限公司玉环电厂1期1000MW机组,C为首阳山公司二期300MW机组。实际WFGD工程的协同除尘测试效率与理论计算结果存在一定的差别,但是趋势是一致的,部分案例数据还比较接近。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609250410.jpg" width="600" height="157"//centerp 超低排放WFGD与执行GB13223-2011标准WFGD比较,无论是通过理论计算比较,还是通过工程实际测试结果来比较,证明超低排放WFGD对执行GB13223-2011标准WFGD提高协同除尘效率的大致幅度是一致的。这也间接地证明了喷淋层是WFGD协同除尘作用的主力军。/pp 湿法脱硫用机械类除雾器协同除尘机理/pp 1、除雾器的工作机理及主要作用除雾器是WFGD的重要设备,安装于脱硫塔顶部,常采用机械除雾器,用以去除烟气携带的小液滴,保护下游设备免遭腐蚀和结垢。/pp 除雾器对协同除尘的主要作用在于捕集逃逸液滴的同时捕集了液滴中颗粒物(石灰石、石膏及被液滴包裹的烟尘等)。SO2与颗粒物的超低排放对WFGD的除雾器组件提出了更高要求,一方面,通过增加液气比与喷淋层数、提高喷淋覆盖率等措施实现高效脱硫,但在另一方面一定程度上增加了进入除雾区的液滴总量,使其负荷增加。同时为了保证WFGD出口烟气的颗粒物达到超低排放浓度要求,实际超低排放WFGD工程一般会应用多级或组合型(管式、屋脊式、水平烟道式)高效除雾器以保证WFGD出口液滴浓度处在较低水平,以尽量减少逃逸液滴中的颗粒物对排放的贡献。/pp 2、WFGD除雾器协同除尘的贡献讨论当今高效除雾器能将WFGD出口液滴排放浓度控制得比较低已得到工程实际的验证。但有人可能要问,这一类的除雾器对喷淋层出口的飞灰颗粒物是否有较高的直接脱除作用呢?我们认为,应该说会有一定作用。但是,从本文对喷淋层协同除尘效果分析可以看出,未被喷淋层捕集的飞灰颗粒物的平均粒径非常小。在现实燃煤电厂超低排放治理条件下,脱硫前的除尘器出口飞灰颗粒物浓度一般控制在20mg/m3左右,平均粒径约是3.02μm,经过脱硫塔喷淋层协同除尘作用后,喷淋层出口的飞灰颗粒物平均粒径 1μm。从分析可知,机械除雾器对液滴的临界分离粒径在20~30μm左右,可以推断,机械除雾器对喷淋层出口的飞灰颗粒物直接脱除(液滴包裹的除外)作用很有限,不太可能成为协同除尘的主要贡献者。/pp 超低排放技术路线的选择/pp 1、WFGD的主要功能定位与协同除尘的局限性WFGD的主要功能定位是脱硫,工程项目设计时要确定设计输入与输出条件,在设计煤种上会选含硫量较高的煤种进行设计,根据要求的出口SO2浓度设计脱硫效率,从而设计整个脱硫系统(包括喷淋层系统和运行参数),对除尘作用基本上是协同的概念。从我们前述计算与测试数据来源,大多数是以全负荷运行状态而言。实际上,WFGD运行是与煤的含硫量、发电负荷紧密联系的,根据WFGD实际进口SO2浓度进行控制,调节循环泵开启的个数,控制喷淋量与浆液pH。这样可能导致协同除尘效率不是很稳定,运行中二者难以兼顾。当采用WFGD后没有配置湿式电除尘器的超低排放治理技术路线工程中,WFGD就是除尘的终端把关设备,在某种特定应用煤种情况下(如低硫煤、高灰分、高比电阻粉尘),WFGD进口比较低的SO2浓度与较高的飞灰颗粒物浓度同时出现,WFGD的运行将难以兼顾,不大可能为了维持较高的除尘效率将喷淋层全负荷投运,这就是WFGD协同除尘的局限性。WFGD的主要功能定位就是脱硫,除尘仅仅是协同作用,不可把除尘的终端把关全部责任交给WFGD。/pp 2、湿式电除尘器对超低排放与多污染物协同控制的重要作用湿式电除尘器(WESP)安装于WFGD下游,WESP除尘原理与干式电除尘收尘原理相同,都是依靠高压电晕放电使得粉尘颗粒荷电,荷电粉尘颗粒在电场力的作用下到达收尘极。在工作的烟气环境和清灰方式上两者有较大区别,干式电除尘器主要处理含水很低的干气体,WESP主要处理含水较高乃至饱和的湿气体 干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而WESP则通过喷淋系统连续喷雾在收尘极表面形成完整的水膜将粉尘冲刷去除。由于WESP进口烟气温度低且处于饱和湿态,水雾与粉尘结合后比电阻大幅下降,使得WESP对粉尘适应能力强,同时不存在二次扬尘,因此无论前部条件是否波动,WESP对细颗粒和WFGD除雾器逃逸液滴均具备较高的脱除效率,WESP还能有效捕集其它烟气治理设备捕集效率较低的污染物(如PM2.5、SO3酸雾和Hg等),可作为烟气多污染物治理终端把关设备。实际工程中WESP应用较广,除尘效果显著,甚至可达到更低排放要求,例如河北国华定洲发电有限责任公司1号机组(600MW)配套WESP出口粉尘排放浓度低于1mg/m3。/pp 3、是否配置湿式电除尘器是超低排放技术路线选择中的一个重要问题根据我们的经验可以列出以下几点作为考虑是否需要配置WESP的主要因素:/pp (1)脱硫前除尘器的除尘效率是否有较大余量?如有较大余量,就可以在不利条件下启用除尘器余量,不用过分依赖WFGD的协同除尘作用 /pp (2)煤种的条件:实际供应的煤种含硫量是否波动较小?含硫量波动小,意味着协同除尘效率比较稳定,依靠度较高 /pp (3)影响除尘器除尘效率的煤种条件和飞灰条件是否相对稳定?如果经常可能使用影响除尘性能的困难煤种,那脱硫系统的协同除尘负担就重。/pp (4)是否考虑未来对SO3等其他污染物的控制要求?/pp 如果有以上(1)~(3)的不利条件,同时考虑到未来对SO3等可凝结颗粒物和其他污染物的控制要求,那么论证配置WESP的必要性是应该的。/pp 目前,关于超低排放技术路线的选择有很多探讨,实际工程上的问题和条件是很复杂的,除了技术条件,还有现场场地条件、煤种来源稳定性、负荷波动状况等等其他因素需要考虑。所以我们认为超低排放技术路线选择的核心就是具体问题具体分析。/pp 超低排放技术路线中的关键问题是多污染物协同控制,在各主要治理设备中理清主要功能和协同功能非常重要,一定要考虑当主要功能与协同功能有矛盾时如何处理,还是要保留有应对措施。比如,在煤种多变的条件下,保留一个适当规格的WESP作为终端把关,是一个较符合实际的选择。/pp/pp/pp  4、湿法脱硫协同除尘与湿式电除尘器在除尘中相互关系计算举例p 为了说明WFGD与湿式电除尘器在除尘中的相互关系,我们举了个计算例子,按第3节“湿法脱硫喷淋液滴协同除尘机理”的关于超低排放脱硫系统的基本假设,取超低排放WFGD出口烟气液滴浓度为15mg/m3(含固量15wt%),计算液气比分别为10、12.5、15、17.5和20L/m3的WFGD进出口粉尘浓度关系曲线(注:这里是简化计算,实际应考虑塔内其他部件对烟尘的捕集作用),结果见图3所示。p WFGD的液气比越大,喷淋层协同除尘效率越高,越容易达到超低排放。对于特定液气比条件下的WFGD,WFGD进出口粉尘浓度呈线性关系,当其进口粉尘浓度在一定范围以内(较低)时,对应的出口粉尘浓度处于图中垂直网格区域,此时由高效除雾器配合即可满足WFGD出口粉尘浓度达到超低排放要求 但是在斜线网格区域时就不能满足WFGD出口粉尘浓度≤5mg/m3。/pp style="TEXT-ALIGN: center"img alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609254032.jpg" width="413" height="301"//pp 这个结果可以供设计参考,考虑实际用煤的含硫量(特别要注意低含硫量煤种)可以估算实际应用的液气比,考虑最差煤种可以估算进口粉尘浓度最高值,这样可以帮助判断是否需要配置WESP作为除尘终端把关设备。上述结果也可以供实际运行控制时参考,在正常的煤种条件下,充分发挥WFGD的协同除尘作用,同时控制好WESP的运行参数 在低硫煤、飞灰条件对除尘器不利条件下,用好WESP起到终端把关作用实现超低排放(≤5mg/m3)。/pp 通过以上分析,我们得出如下结论:/pp (1)WFGD协同除尘的主要贡献是喷淋层,其除尘的核心机理是雾化液滴对飞灰颗粒物的惯性碰撞、拦截和扩散效应。通过理论计算和工程案例数据比较可看出,由于超低排放WFGD喷淋层应用了高液气比、多层喷淋层、高覆盖率等措施以及高效除雾器的配合,协同除尘效率可达到70%左右。/pp (2)湿法脱硫装置的主要功能定位是脱硫,除尘是协同功能。当燃用低硫煤煤种、对除尘器不利飞灰两种情况同时出现时,WFGD的脱硫与协同除尘较难兼顾,所以在粉尘超低排放技术方案选择时,不应过度依赖WFGD的协同除尘作用(设计上直接应用70%协同除尘效率是有风险的)。/pp (3)机械除雾器主要通过高效脱除来自喷淋层的雾滴抑制WFGD出口液滴中固体含量对排放粉尘的贡献,其液滴的临界分离粒径在20~30μm左右,对粒径更小的喷淋层出口飞灰颗粒物(≤10μm)的脱除作用很有限,起到辅助除尘作用。/pp (4)湿式电除尘器对颗粒物、雾滴及其他(SO3等)污染物具有高效捕集能力,在超低排放中作为终端把关设备可以应对煤种、工况变化的复杂情况。/pp (5)超低排放技术路线选择的核心是具体问题具体分析,在各主要治理设备中理清主要功能和协同功能非常重要,在中国煤种普遍波动较大的现实条件下,更要仔细认清协同控制中协同功能的局限性,不能简单地套用一些国外经验。/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p
  • 盛美半导体设备首次公开发行股票并在科创板上市
    2021年11月18日,盛美半导体设备(上海)股份有限公司首次公开发行股票并在科创板挂牌上市。股票简称:盛美上海,股票代码:688082。上午9点30分,上市仪式以“云鸣锣”的方式举行,盛美半导体设备(上海)股份有限公司董事长王晖先生、上海市经济和信息化委员会副主任傅新华先生、上海华虹(集团)有限公司董事长张素心先生、上海科技创业投资(集团)有限公司原董事长沈伟国先生、海通证券股份有限公司党委副书记、总经理李军先生等以线上方式出席仪式并致辞。公司董事长王晖表示,本次科创板上市是盛美上海发展历程中的一个重要里程碑。公司将进一步巩固和提升公司在半导体设备领域的现有优势,通过新品项目的开发进一步丰富公司的产品线,继续发挥作为半导体设备平台化企业的优势,加速实现公司跻身综合性全球集成电路装备企业第一梯队的战略目标。盛美上海成立于2005年,专注于半导体专用设备的研发、生产和销售,主要产品包括先进半导体清洗设备、半导体电镀设备、立式炉管系列设备和先进封装湿法设备。公司立足差异化技术和原始创新的发展战略,通过多年的技术研发和工艺积累,成功研发出全球首创的国际先进的SAPS单片兆声波清洗技术、国际领先的TEBO单片兆声波清洗技术和Tahoe单片槽式组合清洗技术,可应用于28nm及以下技术节点的晶圆清洗领域,可有效解决刻蚀后有机污染和颗粒的清洗难题,并大幅减少浓硫酸等化学试剂的使用量,在帮助客户降低生产成本的同时,满足节能减排的要求。近几年,盛美上海也开发了半关键清洗设备:单片背面清洗及刻蚀设备、刷洗设备和全自动槽式清洗设备。目前,盛美上海还在继续开发其他几款新的清洗设备陆续推向市场,届时,盛美上海所有清洗设备可覆盖清洗工艺的比例将更高,夯实盛美在国内半导体清洗设备行业的龙头地位。盛美上海从单一的清洗设备,到先进封装湿法设备,再到镀铜设备及无应力抛光设备,而后再到立式炉管设备,进而跨入干法设备领域,每一次的突破都是因为公司坚持持续差异化创新发展的结果。盛美上海已发展成为中国少数具有国际竞争力的半导体设备供应商,产品得到众多国内外主流半导体厂商的认可,取得良好的市场口碑。经过多年的技术研发和工艺积累,截至2021年6月30日,公司及控股子公司拥有已获授予专利权的主要专利322项,其中境内授权专利152项,境外授权专利170项,其中发明专利共计317项,并获得“上海市集成电路先进湿法工艺设备重点实验室”称号。SAPS兆声波清洗技术荣获上海市科技进步一等奖。目前,公司已与华虹集团、中芯国际、晶合集成、粤芯、积塔半导体;长江存储、长鑫存储、海力士;士兰微、芯恩、格科微、卓胜微、德州仪器;长电科技、通富微电、长电绍兴、盛合晶微、芯德;合晶硅材料、金瑞泓、上海新昇;立昂东芯、芯物科技等等国内外半导体行业龙头企业形成了较为稳定的合作关系。未来,公司将始终坚持差异化技术和原始创新的研发战略,继续发挥公司在技术创新、客户资源、行业经验等方面的优势,通过自主研发形成了一系列技术积累;依靠国际化的人才团队,持续培养、建设一流的研发团队,吸引国内外高端专业人才;通过不断的推出具有国际领先水平的差异化新产品、新技术,提升公司的核心竞争力;通过高效的国内、国际市场开拓,提升市场占有率;在保持合理的毛利率的同时,扩大公司的收入规模,为客户及股东创造价值。
  • 我国湿法冶金的开拓者陈家镛院士逝世 享年98岁
    p  北京8月26日,中国共产党党员、中国科学院院士、中国科学院过程工程研究所研究员陈家镛,因病医治无效,于2019年8月26日在北京逝世,享年98岁。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 296px " src="https://img1.17img.cn/17img/images/201908/uepic/9c6877b3-5d83-44b6-a541-6b96ee6b83a6.jpg" title="622762d0f703918f4f63d3a65d587e9258eec493.png" alt="622762d0f703918f4f63d3a65d587e9258eec493.png" width="450" height="296" border="0" vspace="0"//pp style="text-align: center "strong陈家镛院士/strong/pp  陈家镛1922年2月17日生于四川省金堂县,1980年7月加入中国共产党。1943年毕业于国立中央大学化学工程系(重庆)并留校任教,1949和1951年先后获美国伊利诺伊大学化工系硕士和博士学位。1956年回国参与筹建中国科学院化工冶金研究所(现名过程工程研究所),曾任副所长。1980年当选中国科学院学部委员(院士)。/pp  1939年中学毕业后,心怀科学与工业报国理想的陈家镛如愿考取了名师荟萃、专业拔尖的国立中央大学化学工程系。他在重庆遇到了杜长明、高济宇、李景晟、时钧等国内学界一流的老师。凭借学业上的过人天赋和勤奋刻苦,陈家镛赢得了老师们的称赞,毕业后得到了留校任教的机会。任化学系助教期间,在恩师高济宇的指导下,陈家镛试制成功了被国外垄断的农药滴滴涕(DDT)。/pp  陈家镛是我国湿法冶金学科奠基人、化工学科开拓者之一。他针对国家经济建设中的重大急需,开拓了湿法冶金新工艺和新流程,并将化学工程学新原理和方法用于湿法冶金过程,为我国湿法冶金学科的建立和工程技术的发展奠定了基础。他积极倡导气液固多相反应器的反应工程学研究,并将其扩展到化工分离、生物化工、特种材料制备等新领域,取得令人瞩目的基础研究和应用成果。/pp  陈家镛曾获1978年全国科学大会奖2项、1980年国家发明三等奖、1987年国家自然科学三等奖、1996年何梁何利基金科学与技术进步奖、2009年国家自然科学二等奖、2014年国家技术发明二等奖。/pp  为向陈家镛的诸多贡献致敬,中以合作的首颗微重力化工实验卫星,命名为“陈家镛一号星”,于2017年2月15日在印度成功发射。/ppbr//p
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style="text-indent: 2em "涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。/pp style="text-indent: 2em "激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。/pp style="text-indent: 2em "/pp style="text-indent: 2em "1 实验部分/pp style="text-indent: 2em "1.1 主要原料及仪器br//pp style="text-indent: 2em "钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。/pp style="text-indent: 2em "1.2 试验方法/pp style="text-indent: 2em "(1) 干法测试/pp style="text-indent: 2em "称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。span style="text-indent: 2em "(2) 湿法测试/span/pp style="text-indent: 2em "湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。span style="text-indent: 2em "1.3 粒径分布参数/span/pp style="text-indent: 2em "Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。/pp style="text-indent: 2em "2 结果与讨论/pp style="text-indent: 2em "2.1 钛白粉粒径分布的测试/pp style="text-indent: 2em "2.1.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title="1.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。/pp style="text-indent: 2em "2.1.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title="2.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。/pp style="text-indent: 2em "2.1.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title="3.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。/pp style="text-indent: 2em "2.1.4 钛白粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。/pp style="text-indent: 2em "2.2 滑石粉粒径分布的测试/pp style="text-indent: 2em "2.2.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title="4.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。/pp style="text-indent: 2em "2.2.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.4 滑石粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。/pp style="text-indent: 2em "2.3 石墨烯粒度分布的测试/pp style="text-indent: 2em "2.3.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title="7.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。/pp style="text-indent: 2em "2.3.2 湿法测试(不加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title="8.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。/pp style="text-indent: 2em "2.3.3 湿法测试(加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title="9.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。/pp style="text-indent: 2em "2.3.4 石墨烯2种测试方法之间的差异/pp style="text-indent: 2em "从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。/pp style="text-indent: 2em "2.4 涂料粒径分析干法和湿法之间的差异/pp style="text-indent: 2em "干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。/pp style="text-indent: 2em "2.5 干法和湿法测试的重复性比较/pp style="text-indent: 2em "2.5.1 干法测试重复性/pp style="text-indent: 2em "重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title="10.webp.jpg"//pp/pp style="text-indent: 2em "2.5.2 湿法测试重复性/pp style="text-indent: 2em "选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title="11.webp.jpg"//pp/pp style="text-indent: 2em "目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。/pp style="text-indent: 2em "影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。/pp style="text-indent: 2em "3 结语/pp style="text-indent: 2em "讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。/pp style="text-indent: 2em "在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。/p
  • 半导体设备的稳定运行 卓越售后是关键——访武汉光迅科技股份有限公司高级芯片工艺工程师余兵
    近年来,中国化合物半导体市场蓬勃发展,随着产业客户数量和设备装机量激增,客户也对设备厂商的服务水平提出了更高要求。在设备性能满足需求的前提下,售后品质成为了用户采购设备时越来越关注的因素。为促进产业交流,推动厂商为用户提供更优质高效的售后服务,仪器信息网特邀请用户代表为半导体设备行业售后服务现状与未来发声。近日,仪器信息网采访了武汉光迅科技股份有限公司的高级芯片工艺工程师余兵老师,余兵老师在访谈中介绍了半导体行业对生产设备及晶圆表征分析方面的需求,还提到牛津仪器售后服务工程师的专业与细心,以及高配合度。受访人:余兵余兵,武汉光迅科技股份有限公司,高级芯片工艺工程师;主要负责介质膜生长、金属镀膜、干法刻蚀、退火合金、晶圆减薄等芯片工艺。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?余兵老师:我所在的行业是光通信器件和光通信芯片。主要的工作内容是光通信芯片的研发和制造。光芯片在多个领域都有广泛的应用,如通信领域、光学测量领域和医疗器械领域等。在通信领域中,光芯片可以实现高速、高效、远距离的光信息传输和信号处理。在光学测量领域中,光芯片可以实现高精度、高稳定性的光学测量和传感。在医疗器械领域中,光芯片可以实现高精度、小型化的医疗设备和治疗方法。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?余兵老师:主要使用的牛津仪器设备包括:PECVD、RIE、ICP-RIE以及EDS能谱仪等。采购刻蚀这一类型的半导体工艺设备,我们一般会更加关注设备稳定性和生产一致性,当然服务支持的专业性和时效性也非常重要;如果是能谱仪的话,技术支持的及时性会考虑得更多。武汉光迅现场的牛津仪器PlasmaPro 100 Cobra ICP系统仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?余兵老师:使用过牛津仪器的远程售后支持以及现场的技术支持。牛津仪器在国内拥有较为强大的售后团队,售后人员均有较高的技术能力;线上和线下的服务响应度都很高,现场服务基本能够做到48小时内抵达现场。仪器信息网:对于牛津仪器在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等提供的售后服务,您有哪些印象深刻的案例分享?余兵老师:牛津仪器客户服务的现场支持工作是很到位的。有一次印象较深的是有一次周五设备下电极出现大的故障。由于设备生产任务较重,必须尽快恢复设备,和牛津仪器客户服务工程师沟通以后,他们自愿协调工作时间,周六加急上门帮忙处理故障,解了我们的燃眉之急。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?余兵老师:牛津仪器的售后工程师,给我的最大的印象是专业、细心。半导体设备的维护和维修,首先要有专业的技能,能够熟知设备基本构造,并对设备的易故障点如数家珍,才能最快速地发现设备问题;其次,也需要有足够的细心,不会因为大意留下故障隐患,造成设备二次维修。除了优秀的职业素养之外,牛津仪器工程师们也提供了很多专业建议。比如平时工作中,出于研发需求,我们经常会针对工艺设备的一些特殊部位进行定制改造,需要牛津仪器提供详细的设备部件图,一般牛津仪器的工程师都会第一时间提供给我们,并且给出详细的改造建议,对我们的研发提供了非常大的支持。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?余兵老师:听说牛津仪器目前正在国内建立本地备件库,希望进一步加强零配件需求的时效性。后记:牛津仪器表示:武汉光迅科技股份有限公司的高级芯片工艺工程师余兵老师对牛津仪器客户服务的认可和信赖,代表了牛津仪器客户服务秉承着以客户为中心的理念,通过加速布局在中国发展,扩建遍布全国的客户支持网络,在快速增长的化合物半导体行业也能紧跟用户步伐,帮助客户取得成功。除光通信领域之外,牛津仪器等离子技术部在功率半导体领域也有诸多技术创新。高效的电源开关和电力转换器件使诸如电动汽车、本地电源和网络配电等新技术成为可能。利用诸如SiC和GaN等材料可提升器件性能并实现更低的能量损耗。牛津仪器对如何使用诸如原子层沉积、等离子体刻蚀及等离子体沉积的工艺解决方案制造更优化器件有深刻的理解。
  • “生物制药下游工艺开发及放大讲座”邀请函--利穗
    生物制药下游工艺开发及放大讲座由利穗科技(苏州)有限公司于2015年6月19日在北京亦庄生物医药园主办。 本次讲座特邀主讲嘉宾Joachim K.Walter 博士和Bio-Works Sweden AB 创始人Mr Jan Berglof,演讲内容包括生物技术及蛋白药物基础介绍、蛋白药物研发和生产策略介绍、重组蛋白药物生产、生物制药工艺设备解决方案等。 在此,利穗科技诚挚邀请您参加生物制药下游工艺开发及放大讲座,进行产品技术交流。 时间:19 June 2015 9:00-16:00地点:亦庄生物医药园北京市亦庄经济技术开发区科创六街88号Beijing Yizhuang Biomedical ParkNo. 88, Kechuang 6 Street, E-TownBeijing, China 日程安排上午 9:00 — 11 :451.导言2. 生物技术及蛋白药物基础介绍 蛋白质的化学特性简述 药物蛋白介绍3. 蛋白药物研发和生产策略介绍 工艺开发的复杂特性 工艺技术的概述-上游 & 下游生产 工艺设计 工艺开发与生产的策略 蛋白质分离纯化方法 — — 过滤和色谱法 工艺开发的管理 午餐 11:45 — 12 :45 下午 12:45 — 16 :004.重组蛋白药物生产 亲和层析的不同操作模式 蛋白质降解路线 蛋白酶解 蛋白质结构的稳定性 缓冲液的选择 稳定性添加剂 制剂缓冲液5. 生物制药工艺设备解决方案6.生物制药工艺设备解决方案7.生物药物层析填料及应用介绍 主讲人介绍Walter Biotech Consultancy公司创始人兼首席执行官目前为利穗科技(苏州)有限公司咨询顾问 生物制药行业知名学者,咨询顾问。具有超过27年生物药研发及生产经验。曾担任勃林格.英格翰公司新药研发及生产总监,参与75个不同规模的抗体及重组蛋白药物的工艺开发和放大,最大放大规模达12500L。曾担任GE Healthcare 膜过滤事业部全球副总裁,指导多个膜过滤产品及应用的开发。曾经在超过30个国际主流期刊上发表文章,作为Speaker被邀参加国际会议超过40个。目前主要致力于为制药企业进行工艺开发、放大,工艺验证及生产管理的咨询。客户包括华兰生物,Affimed AG, Medac GmbH, Innobiologics Sdn Bhd, Graffinity GmbH等。 Mr Jan BerglofBio-Works Sweden AB 业务总监,创始人曾担任GE Healthcare (former Pharmacia Biotech)蛋白纯化事业部业务总监具有超过30年的生物制药行业从业经验主导Sepharose FF, Sephacryl HR 和 MabSelect等常用填料的应用开发及市场推广。作为应用开发总监参与多个血液制品工艺开发和临床应用,如白蛋白,IgG, 七因子,重组乙肝疫苗等。 报名方式:姓名: 单位: 职务:手机:请将个人单位、姓名、职务、手机信息发送到市场部邮箱:sales@lisui.net ,或可以直接电话报名:0512-69369998备注:本讲座免费(含午餐),人数有限,先到先得,交通住宿自理 会议联系人:蔡新 0512-69561800-8066 /18914086625 caixin@lisui.net 吴婷婷 0512-69369998 /18362618085 wutingting@lisui.net
  • 光伏设备厂商跨界半导体,这四家公司已取得一定进展
    晶盛机电——隐形半导体大佬在国内所有光伏设备公司中,晶盛机电(300316.SZ)无疑是介入集成电路行业最深的公司。公司甚至在2021年底引入了中芯国际(688981.SH)执行董事、长电科技董事长周子学加入董事会。晶盛机电业务主要集中在半导体设备和碳化硅材料,随着近期定增落地,公司还将进入硅片制造环节。当前,光伏和集成电路大多是以单晶硅为基础制造的,这是两者相同点。而不同点则在于硅纯度的不同。因此两者所需设备相近,差别在于设备精度不同。晶盛机电是全球光伏单晶炉的龙头企业,全市场份额为50%到60%。以长晶设备为核心,公司半导体设备延伸覆盖至切片、抛光、外延等环节,包括单晶炉、滚圆机、切断机、线切割机、倒角机(在研)、研磨机、减薄机、边缘抛光机、抛光机和外延炉。奥特维——国产键合机“独苗”奥特维(688516.SH)主营业务为光伏组件串焊机,在全球市占率超过70%。公司近年来开始向半导体封测设备领域拓展。在通富微电(002156.SZ)2021年底披露的《非公开发行股票申请文件的反馈意见的回复》中,通富微电列举了封测领域各环节所需的设备,以及相对应设备的供应商,在键合机上,奥特维成为唯一入选的“国内可提供同类设备的供应商”。奥特维也因此收获了通富微电的批量订单。引线键合(WireBonding) 是封装中的关键环节,是使用细金属线,利用热、压力、超声波能量使金属引线与基板焊盘紧密焊合,实现芯片与基板间的电气互连和芯片间的信号互通。奥特维作为组件串焊机龙头,在自动化、焊接等底层技术积累了较为深厚的基础,在向键合机拓展时具备一定的技术延展性。根据海关数据,2021年国内引线键合机进口总金额为15.86亿美金。考虑国产设备的价格优势,引线键合机国产替代空间约75亿元。根据MIR DATABANK的统计,在中国大陆封测设备市场中,键合机是仅次于测试机的市场规模第二大的设备,以下依次是贴片机、探针台、分选机和划片机。迈为股份、捷佳伟创——小荷才露尖尖角迈为股份(300751.SZ)是全球电池片生产设备的龙头企业,在丝网印刷设备环节市占率超过70%。在迈为股份的官网上,目前有半导体晶圆激光改质切割、半导体激光开槽设备和半导体晶圆研磨三款设备,适用于封装中的划片和减薄两个环节。划片机作为半导体芯片后道工序的加工设备,用于晶圆的划片、分割或开槽等微细加工,其切割的质量与效率直接影响到芯片的质量和生产成本。划片机可分为砂轮划片机与激光划片机两种,分别对应刀片切割工艺与激光切割工艺。研磨机用于晶圆减薄,晶圆制造有几百道工艺流程,需要采用一定厚度的晶片在工艺过程中传递、流片,在晶圆封装前,需要对晶片背面多余的基体材料去除一定的厚度。2021年全球划片机市场规模约为20亿美元,考虑到我国封测产能占比约为全球1/4,合理推测2021年我国半导体划片机市场约为5亿美元,约合32-36亿元,国内尚无绝对龙头,但其较小市场规模对于迈为股份这样体量的公司,更多是试水作用。目前,迈为股份与半导体芯片封装制造企业长电科技、三安光电就半导体晶圆激光开槽设备先后签订了供货协议,并与其他五家企业签订了试用订单。5月20日,迈为股份公告拟与珠海高新区管委会签署投资合作协议,拟投资建设“迈为半导体装备项目”,该项目计划投资总额不低于21亿元。至于具体投资项目,还有待公司进一步披露。捷佳伟创(300724.SZ)是全球电池片清洗制绒设备龙头。公司在2021年年报中提到,在半导体设备领域,全资子公司创微微电子自主开发了6吋、8吋、12吋湿法刻蚀清洗设备,包括有篮和无篮的槽式设备及单片设备,涵盖多种前道湿法工艺。捷佳伟创公众号信息显示,创微微电子于2021年7月21日成功交付3套集成电路全自动槽式湿法清洗设备,同时正在设计制造中的设备还包含了用于MicroLED、第三代化合物半导体及集成电路IDM厂的槽式清洗设备及相关附属设备,涵盖了集成电路200mm以下近70%湿法工艺步骤。2022年中国本土半导体清洗设备市场空间约为80亿元,盛美上海(688082.SH)在该领域是国产替代的龙头,创微微电子在技术上和盛美上海还存在一定差距。根据捷佳伟创近期发布的定增方案,公司拟募集25亿元,其中6.46亿元用于先进半导体装备(半导体清洗设备及炉管类设备)研发项目。该项目主要内容为Cassette-Less刻蚀设备和单晶圆清洗设备技术的改进与研发,立式炉管长压化学气相沉积设备、立式炉管低压化学气相沉积设备、立式炉管低压原子气相沉积设备以及立式炉管HK ALO/HFO2工艺设备技术的改进与研发。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制