当前位置: 仪器信息网 > 行业主题 > >

精密金刚石石锯床

仪器信息网精密金刚石石锯床专题为您提供2024年最新精密金刚石石锯床价格报价、厂家品牌的相关信息, 包括精密金刚石石锯床参数、型号等,不管是国产,还是进口品牌的精密金刚石石锯床您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密金刚石石锯床相关的耗材配件、试剂标物,还有精密金刚石石锯床相关的最新资讯、资料,以及精密金刚石石锯床相关的解决方案。

精密金刚石石锯床相关的论坛

  • 【分享】类金刚石薄膜

    类金刚石薄膜,通常又称为DLC薄膜,是Diamond Like Carbon的简称,因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)—碳碳以sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而类金刚石(DLC)—碳碳则是以sp3和 sp2键的形式结合,因此兼具了金刚石和石墨的优良特性,类金刚石碳膜(DLC)通常为非晶态或含有部分纳米晶。 由于含有金刚石成分,DLC具有很多优良的特性:高硬度—60GPa或Hv6000以上;低摩擦系数—0.06;极好的膜层致密性;良好的化学稳定性以及良好的光学性能等。应用于刀具上的DLC涂层所表现出的特殊性能远超过其它硬质涂层。涂以DLC的刀具主要应用于石墨切削,各种有色金属(如铝合金,铜合金等)切削,非金属硬质材料(如亚克力,玻璃纤维,PCB材料)切削等。

  • 【转帖】金刚石复合镀层的研究现状

    0 引言  工业上应用的材料经常是根据对强度的要求来选用的,但其表面性能,例如耐磨损性、抗腐蚀性、耐擦伤性、导电性不一定能满足要求。因此,需要选择不同的镀层以满足表面性能的要求。镀层的制备可通过机械镀、摩擦电喷镀、流镀、激光镀、浸镀、电泳涂装、复合电镀等技术来实现。近年来,高速发展起来的复合镀层以其独特的物理、化学、机械性能成为复合材料的新秀,得到广泛的关注,并已经被公认为一种生产技术。复合镀层是通过金属电沉积或共沉积的方法,将一种或数种不溶性的固体颗粒、纤维均匀地夹杂到金属镀层中所形成的特殊镀层。以超硬材料作为分散微粒,与金属形成的复合镀层称为超硬材料复合镀层。文中介绍的金刚石复合镀层就属于这一类。金刚石复合镀层的制备方法主要有化学复合镀和复合电沉积法。1 金刚石颗粒与金属离子共沉积机理  在复合镀液中加入的金刚石颗粒具有很强的化学稳定性,施镀过程中它不参与任何化学反应,只是与化学(电化学)反应产生的金属离子共同沉积在基体的表面上。故化学镀和电沉积复合镀层都可用相同的机理来解释。在研究复合电镀共沉积过程中,人们曾提出3种共沉积机理,即机械共沉积、电泳共沉积和吸附共沉积。目前较为公认的是由N.Guglielmi在1972年提出的两段吸附理论。Gugliemi提出的模型认为,镀液中的微粒表面为离子所包围,到达阴极表面后,首先松散地吸附(弱吸附)于阴极表面,这是物理吸附,是可逆过程。其次,随着电极反应的进行,一部分弱吸附于微粒表面的离子被还原,微粒与阴极发生强吸附,此为不可逆过程,微粒逐步进入阴极表面,继而被沉积的金属所埋入。  该模型对弱吸附步骤的数学处理采用Langmuir吸附等温式的形式。对强吸附步骤,则认为微粒的强吸附速率与弱吸附的覆盖度和电极与溶液界面的电场有关。王森林等研究耐磨性镍 金刚石复合镀层的共沉积过程,结果表面:镍 金刚石共沉积机理符合Guglielmi的两步吸附模型,其速度控制步骤为强吸附步骤。到目前为止,复合电沉积和其它新技术、新工艺一样,实践远远地走在理论的前面,其机理的研究正在不断的发展之中。2 金刚石复合镀层的制备及应用2.1 化学复合镀金刚石  化学镀是不外加电流,在金属表面的催化作用下经控制化学还原法进行的金属沉积过程。在镀液中加入不溶性微粒,使之与金属共沉积,即可得到复合镀层。化学复合镀不需电源和辅助阳极,不受基体材料形状的影响,可在材料的各部位均匀沉积,镀层致密硬度高,以及自润滑性、耐热性、耐腐蚀性和特殊的装饰性。在航空、机械、化工、冶金及核工业等方面有广泛的应用。复合化学镀镍镀层的性质随着选用微粒种类不同而异。金刚石有多种类型,大致可分为两类:单晶和多晶。制备复合材料所选用的金刚石类型取决于复合材料的最终用途。单晶金刚石适用于研磨和磨削,因其表面特征是具有尖锐的边角。  金刚石锉和砂轮等是用复合镀层作为功能面,易采用天然单晶金刚石。耐磨的复合材料不能含有单晶金刚石,因其粗糙的表面易磨损配对面,一般采用爆炸法人造多晶金刚石。化学镀镍-多晶金刚石复合材料具有良好的表面防护和抗擦伤性能。薄层的化学镀镍-金刚石作为中间层可以提高镍 铬电镀沉积物的抗腐性,是最早镀制的化学镀复合材料之一,现在此种镀层则主要用于抗磨。表1是Taber实验机测定金刚石镀层耐磨性结果[6],较对比试样硬铬高4倍,也优于工具钢及硬质合金。  国内有不少学者都研究过化学镀金刚石复合镀层。吴玉程等[7]研究表明在镍磷合金沉积溶液中加入金刚石颗粒(平均尺寸14μm),可以明显的强化镀层,提高耐磨性能。王正等[8]研究表明金刚石复合镀层除了硬度高,耐磨性好之外,还具有优良的导热性和耐腐性,因此可以大幅度提高铸塑模具和冷加工模具的使用寿命。张信义等研究表明热处理工艺对Ni P 金刚石(1μm)化学复合镀层结构及性能的影响,研究表明复合镀层在镀态具有非晶态特征,镀层在300℃开始晶化,在200℃~400℃镀层有良好的耐磨性能。2.2 复合电镀金刚石  用电镀的方法将金刚石固结在金属镀层中得到金刚石复合镀层。在实际工作中,金属镀层起结合剂的作用,金刚石起主要作用。我国金刚石电镀制品是与树脂结合剂和青铜结合剂金刚石磨具一起,于60年代发展起来的。后来逐渐开发了各种非磨削工具。现已形成了比较成熟的工艺。金刚石电镀制品现已广泛的应用在机械加工业、电器电子工业、光学玻璃工业、地质钻探工业、建筑工业、工艺美术及日用品工业。起着不可替代的作用。电镀金刚石复合镀层在新领域的应用也是现在研究的热点。  于金库等]研究表明复合电刷镀金刚石制造工艺简单,得到的镀层硬度耐磨性良好,具有广泛的工业应用前景。余火昆等]对银基金刚石复合镀层的性能进行了研究,其研究表明复合镀层中金刚石含量越高,粒径越小,其磨损率越小,接触电流较大时效果更明显,从而提高了接触头的使用寿命及其耐大接触电流的能力。李云东等提出了一种能很好的适应电镀金刚石工具要求的新型镀层镍钴锰三元合金镀层。研究结果表明,镍钴锰三元合金镀层具有比镍钴或镍锰镀层更高的综合机械性能和低得多的钴含量,更适用于制造电镀金刚石工具,是一种有发展前途的更新替代镀层。王维等针对硬齿面齿轮加工中的刮削,磨削等加工方法中存在的问题,提出了在滚齿机上用金刚石镀层蜗杆珩轮强制珩磨硬齿面的新方法。结果表明工具加工表面质量好,加工效率高。周振君等将金刚石复合镀应用到柔性磨具上,结果表明复合镀层提高了磨具寿命及磨削效率。此外,用复合镀法制造的高硬度的梯度功能材料,如Ni 金刚石、Co 金刚石已经成功的在航空航天领域得到了应用。2.3 复合镀纳米金刚石  复合镀早期添加的金刚石大多是微米级的。随着纳米材料与纳米技术研究的不断深入,把纳米级的金刚石微粒引入到复合镀层中已成为复合镀发展的新趋势。纳米金刚石具有超微粒子的一般性质,如体积效应、表面效应以及小尺寸量子效应等。同时它还具有金刚石的一般性质,如高硬度、高导热性、高弹性模量、高耐磨性、低的比热容与极好的化学稳定性。近年来,俄罗斯、西方各国竞相研究开发纳米金刚石工业产品,并在复合镀层、研磨、抛光、润滑、高强度树脂和橡胶等领域得到了广泛的应用,我国也有多家单位从事这方面的研究。纳米金刚石兼备超硬材料和纳米颗粒的双重特性。具有减磨耐磨,自润滑性,在刀具、研磨、复合镀、润滑、摩擦等方面,都会有广泛的应用。特别是对于精密仪器、高光洁度表面精细加工用刀具等方面纳米金刚石具有其它材料无法比拟的特性。表2列出了有铬 纳米金刚石镀层零件的使用期限与普通表面硬化方法的对比数据。      此外,纳米复合镀在电接触材料中也大有发展前途。吴元康等使用纳米金刚石颗粒来增强银基镀层,降低了电磨损率,提高了电触头的使用寿命及耐大电流强度的能力。国内在该领域的研究尚在探索起步阶段。加快这方面的研究并尽快将其投入使用,不论对国防和民用都具有重要意义。现在研究中存在的主要问题有:  (1) 纳米金刚石在镀液中的分散。纳米级金刚石粉现在主要是由爆炸法制备。平均粒径4~10nm。复合电镀要求将金刚石粉均匀的分散在镀液中,按照胶体分散体系的定义(半径为10 9~10-7m),此时镀液应为胶体分散体系。溶胶中胶团的结构较为复杂,从真溶液到溶胶是从均相到开始具有相界面的超微不均匀相,且由于分散相的颗粒小,表面积大,其表面能也高,这就使得胶粒处于不稳定状态,它们有相互聚结起来变成较大的粒子而聚沉的趋势。实验表明掺有金刚石微粉的镀液其团聚情况严重,且得到的镀层中,纳米级金刚石粉团聚情况也很严重,这很大程度上影响了纳米金刚石粉在实际中的应用。

  • 金刚石测试

    那位能对利用电镜研究纳米单晶金刚石及多晶金刚石提供建议或帮助

  • 对于100微米的微金刚石有没有更好的制备方法

    样品尺寸为100微米左右的金刚石,由于金刚石硬度大,磨抛是很有可能会被崩掉,有没有什么特别的制备方法,可以在透射电镜同时观看多个金刚石样品当然之前,很多学者用FIB切过,但是速度慢,只能进行逐个的样品制备,现在希望能在样品上同时放多个金刚石,并且能同时得到可观察的薄区欢迎各位提出宝贵的意见

  • 红外窗片有镀金刚石膜的吗?

    【转帖】锗/硅红外光学镜头(片)镀类金刚石碳膜的方法 本工艺发明属于在锗硅光学镜头(片)上镀红外超硬膜技术。是在溅射机中,充入丁烷和氩气的混合气体,选择适当的射频电压产生辉光放电,使混合气体电离,在电场作用下,使正离子撞击到负电极上沉积薄膜的方法,从而使锗硅镜头(片)上获得类金刚石超硬膜。本发明所镀制出的膜属类金刚石碳膜,它具有机械强度高,耐磨性能好,红外光学特性优良,且适于镀制大面积光学透镜等优点。适用于一切红外光学镜头(片)及光学仪器窗口材料的镀制。 该专利全部权利属于昆明物理研究所。

  • 如何检测聚晶金刚石层中的石墨相含量

    我公司做金刚石复合片,聚晶金刚石层中的石墨相对金刚石颗粒结合强度影响很大,估计聚晶金刚石层中的石墨相含量较低,用什么仪器能够检出,用什么仪器能检出金刚石颗粒晶界处的石墨相?

  • 【求助】求助金刚石的HRTEM

    【求助】求助金刚石的HRTEM

    各位大侠,我做了金刚石的HRTEM,量的晶面间距与PDF的不一致,PDF卡显示(111)面间距是0.21纳米,(220)是0.12,(311)是0.106,而我做的XRD显示金刚石为面心立方结构,出现(111)(220)(311).FFT与XRD一致. 根据HRTEM测量得到最小的晶面间距为0.21,那其他方向的平行线怎么解释? 谢谢[img]http://ng1.17img.cn/bbsfiles/images/2007/09/200709230913_64707_1465847_3.jpg[/img]

  • 纳米金刚石raman光谱出现奇怪的峰?

    纳米金刚石raman光谱出现奇怪的峰?

    http://ng1.17img.cn/bbsfiles/files/2012/11/201211190857_405115_1797438_3.JPG用高压方法做了个纳米金刚石块体,刚做了个raman。法先光谱上在1600cm-1以后出现一溜的峰。有高手知道这是什么情况吗?

  • 金刚石中的 NV 色心

    NV(Nitrogen-Vacancy)色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空位,近邻的位置有一个氮原子,这样就形成以了一个 NV 色心。我们这里所说的 NV 色心,指的是带负电荷 NV? 顺磁中心。NV 色心的有六个电子,两个来自氮原子,三个来自与空位相邻的碳原子,另外一个是俘获的(来自施主杂质的)电子。

  • PIKE公司的ATR(金刚石)更换

    最近我们用ATR做的红外谱图峰衰减的很厉害,可能是金刚石使用的的时间长了,需要更换.那位能告诉我国内哪家公司能提供类似的服务.更换金刚石晶体大约费用是多少.

  • 热导率 金刚石铜 复合材料

    大家有测过金刚石铜的热导率吗?我用耐弛LFA447。金刚石铜两面焊上铜皮,结果特别小,280左右。寄给厂家测380。我又测变成480了。主要是比热在变化,哪位大神可以帮助解释一下

  • 【求助】金刚石的前处理方法

    如果使用ICP测定金刚石中的杂志元素,有没有哪位有相关的前处理方法可以供借鉴呢?谢谢。如果有响应的分析结果参考是最好不过的了。

  • 请问能用扫描电镜照金刚石材料吗?

    请问能用扫描电镜照金刚石材料吗? 众所周知,用扫描电镜的能谱分析不能进行碳元素的定量分析,不知道能不能扫描金刚石的照片,望各位大侠指教!

  • 【求助】金刚石如何消解

    各位大侠,有谁做过金刚石的微波消解啊?取多少样品?加什么酸?条件怎么设置(温度做到多少度?压力多少?)保温多少时间?最好能写的详细点我参照过版内的http://www.instrument.com.cn/bbs/shtml/20070428/822309/硫磷混酸230一个小时都没反应

  • 金刚石或成未来核磁共振技术的关键

    美国能源部(DOE)伯克利劳伦斯国家实验室(Berkeley Lab)和加州大学(UC)伯克利分校的研究人员已经论证,金刚石可能是未来的核磁共振(NMR)和磁共振成像(MRI)技术的关键。 Alex Pines的研究小组记录了第一块室温下任意磁场和晶体取向下,金刚石中碳-13原子核的原位NMR超极化。 Alexander Pines是伯克利实验室材料科学部和伯克利大学Glenn T. Seaborg化学教授席位的高级学院教授,在其主导的一项研究中,研究人员记录了第一块室温下任意磁场和晶体取向下,金刚石中碳-13原子核的原位NMR超极化。超极化的碳-13自旋信号显示NMR/MRI信号敏感度得到了相对于传统的NMR/MRI磁体在室温下通常可能的信号敏感度超出多个数量级的增强。此外,这种超极化是使用微波实现的,而不是依靠精确的磁场来进行超极化转移。 Pines是发表在《Nature Communications》上一篇关于本研究的论文的通讯作者。该论文的标题是《金刚石中光泵浦氮空位中心的室温原位原子核自旋超极化》。Pines研究小组的一位成员JonathanKing是该文的第一作者。 作者报告,观察到了百分之六的体原子核自旋极化,这是一个比热平衡大170000倍左右的核磁共振信号增强。超极化自旋信号可以通过标准NMR探针进行原位检测,不需要来回移动样品或者精确的晶体取向。作者认为这种新的超极化技术应该可以使在室温条件下对固体和液体的核磁共振研究的灵敏度得到数量级上的增强。 “我们的研究结果代表了一个与Weizmann科学研究所的Lucio Frydman和其同事在其开创性实验中得到的结果相当的核磁共振信号增强,但是是在金刚石中通过微波诱导动态原子核超极化,不需要精确控制磁场和晶体取向,”Pines说:“室温超极化金刚石打开NMR/MRI极化从一个惰性、无毒、易分离的源转移到任意样本的可能性,这是当代NMR/MRI技术长期追求的一个目标。” 同时具有化学特异性和非破坏性的特点使NMR/MRI技术在包括化学、材料、生物和医学等的广泛领域内成为一种不可或缺的技术。然而,它的敏感度问题仍然是一个持久的挑战。NMR/MRI信号是基于电子和原子核的一种被称为“自旋”的本征量子特性。电子和原子核可以像一个旋转的小磁铁棒一样被分配一个“向上”或“向下”的方向状态。NMR/MRI信号取决于被往一个方向极化的核自旋的大多数——即极化程度越高,信号越强。Pines和他的研究小组成员经过几十年的努力,已经开发了大量的方法来超极化原子核的自旋。在过去的两年中他们一直专注于金刚石晶体和一种称为氮空位(NV)中心的杂质,在氮空位中心里光学和自旋自由被耦合在一起。 “当纯金刚石晶体的晶格中相邻的两个碳原子被从晶格中删除,留下两个空隙,其中一个被一个氮原子填充,另一个保持空缺的时候,就得到了一个氮空位(NV)中心,”Pines解释说。这使得在氮原子和空位之间出现非束缚的电子,产生独特和明确的电子自旋极化态。” 在之前的研究中,Pines和他的团队发现,低强度磁场可以用来将NV中心电子自旋极化传递到附近的碳-13原子核,从而产生超极化核。这个被称为动态核极化的自旋转移过程在以前就已经被用于增强核磁共振信号,但总是在高强度磁场和低温条件下进行。Pines和他的团队通过在金刚石旁边放置一个永久磁铁消除了这些要求。 “在我们的新研究中,我们利用微波而不是磁场来匹配电子和碳-13原子核之间的能量,从而消除了一些困难的对磁场强度和对准的限制,使得我们的技术更容易使用,”King说:“另外,在我们以前的研究中,我们通过光学测量间接推断核极化的存在,因为我们无法测试是样品整体极化还是只有非常接近NV中心的核被极化。通过完全消除对磁场的需要,我们现在能够用NMR直接测量大块样品。 在《Nature Communications》的文章里,Pines, King和其他共同作者说,可以有效地集成到现有的制造技术并创造高表面面积金刚石器件的超极化金刚石应该可以为极化转移提供一个通用的平台。 “我们希望利用现有的极化转移技术——如固体中的交叉极化和液体中的交叉弛豫,或NV中心外围核的直接动态核极化——来得到液体和固体的高度增强核磁共振,”King说,应该注意到,这种转移到固体表面和液体的极化转移之前已经被Pines的研究团队用激光极化Xe-129论证过。”我们基于光学极化NV中心的超极化技术更为强大和有效,应该适用于任意的目标分子,包括必须保持在接近室温条件下的生物系统。”

  • 金刚石颗粒在两种扫描电镜下看到的颜色为什么不一样

    镶在锡盘上的金刚石颗粒在JEOL6335上是发亮的颗粒,但在日立S4800下却是黑色的颗粒,都是二次电子信号,为什么颜色不一样。按我的分析,锡是导电的,而金刚石是不导电的容易聚集电荷,并且金刚石是镶在锡盘上的,比较尖锐突出,产生的二次电子应该多,所以拍SEI模式时它应该是亮的。但为什么在S4800上确实黑色的透明的颗粒,看上去好像是一个个凹陷的小坑一样。求解。。。。。

  • 求推荐好用的金刚石池

    我单位有一台红外显微镜,透过我把样品放在溴化钾片上做,效果不佳不是信号弱就是信号超标。我看书上说金刚石池很好用,请大家帮忙推荐一下哪家的好用,谢谢!

  • 同一样品(金刚石线锯微粉),马尔文、库尔特、图像分析仪的对比

    同一样品(金刚石线锯微粉),马尔文、库尔特、图像分析仪的对比

    [b]这段时间做金刚石线锯微粉的质量控制工作,对马尔文、库尔特、图像分析仪的检测情况都研究了一下,有一点小心得,抛出来和大家讨论下。[/b]以下是我总结的报告:马尔文、库尔特和图像分析仪是线锯微粉质量检验中最常用的三种手段。马尔文是激光法,使用的是光散射理论,所测粒径一般认为是等效体积径;库尔特则是基于小孔电阻原理,所测粒径是等效电阻粒径;图像分析仪属于图像法,是利用电子技术、数字图像处理技术的一种测试方法,所测粒径是等效圆直径。[color=#ff0000]1、检测结果对比[/color]测试小样粒度6/12,是线锯专用金刚石微粉。图1是图像分析仪检测的显微图片,图2是对应的图像分析报告。从图1可以很清晰地看到磨粒的形貌、透明度、粒度分布等信息。图2是对图1采集的磨粒图像信息所做的分析报告,包括粒度分布图、粒度特征值、颗粒形状组成三部分,通过量化分析,可以方便地进行微粉的质量检验控制。显微图片和分析报告互为佐证,可以全面地反映微粉产品质量。[align=center][img=金刚石微粉,690,370]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231602_01_2747413_3.bmp[/img][/align][align=center]图1 金刚石微粉颗粒形貌显微图片[/align][align=center][img=金刚石微粉,640,627]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231604_01_2747413_3.bmp[/img][/align][align=center]图2 金刚石微粉图像分析报告[/align][align=left]图3是样品库尔特检验结果,图4是样品马尔文的检验结果。可见,无论库尔特和马尔文,只能反映粒度分布,不能对微粉形状组成(形貌)进行检测,这对微粉质量控制不利。[/align][align=center][img=金刚石微粉,690,655]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231607_01_2747413_3.jpg[/img][/align][align=center]图3 金刚石微粉库尔特检测报告[/align][align=center][/align][align=center][img=金刚石微粉,690,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231608_01_2747413_3.jpg[/img][/align][align=center]图4 金刚石微粉马尔文检测报告[/align][align=left][color=#ff0000]2、结果分析[/color][/align]对比三种检测结果,如表1所示。可见:D50的检测结果,按大小排序依次是图像法>激光法>电阻法;分布宽度的检测结果,按大小排序依次是激光法>电阻法>图像法。显然,以激光法检测粒度分布是不可取的。现在普遍认知是使用激光法检测D50,电阻法检测粒度分布,这也是有一定道理的。[align=center]表1 图像法、电阻法、激光法微粉检测结果对比[/align][table][tr][td][align=center] [/align][/td][td][align=center]D10[/align][/td][td][align=center]D50[/align][/td][td][align=center]D90[/align][/td][td][align=center]分布宽度[/align][/td][td][align=center]测试仪器[/align][/td][/tr][tr][td][align=center]图像法[/align][/td][td][align=center]8.62[/align][/td][td][align=center]9.65[/align][/td][td][align=center]10.86[/align][/td][td][align=center]23.2%[/align][/td][td][align=center]KBKL-Ⅱ图像分析仪[/align][/td][/tr][tr][td][align=center]电阻法[/align][/td][td][align=center]6.608[/align][/td][td][align=center]7.391[/align][/td][td][align=center]9.594[/align][/td][td][align=center]40.4%[/align][/td][td]Beckman Coulter Multisizer 3[/td][/tr][tr][td][align=center]激光法[/align][/td][td][align=center]5.897[/align][/td][td][align=center]8.389[/align][/td][td][align=center]11.864[/align][/td][td][align=center]71.1%[/align][/td][td][align=center]Hydro 2000MU(A)[/align][/td][/tr][/table][align=left]注:分布宽度(%)=(D90-D10)×100/D50[/align][align=left]库尔特是将所有颗粒等效为同体积的标准球形颗粒,以标准球形颗粒的粒径表示被测颗粒的粒径。适用于粒度分布窄的磨粒检测,样品浓度、分散等都会影响检测结果。库尔特最理想的情况是颗粒一个接一个通过,但实际上会出现多个颗粒同时通过的情况,还有一些颗粒通过感应区域时可能发生水平或垂直翻转的现象,这些不利于颗粒计数,测试值将小于真实值。马尔文是最常用的激光粒度仪,但目前用户对激光粒度仪的认识有一个误区,认为激光粒度仪检验结果稳定准确。其实激光粒度分析法法是一种拟合近似分析方法,而且不可校准,溯源性、可比较性差,分辨率低,对D50粒径的分析还比较准,但对D5、D10、D90 、D95粒径的分析误差就比较大,已不能满足磨料粒度分析的要求。因此激光粒度仪经常将不合格品检验成合格品,也经常将合格品检验成不合格品,所以,用户在利用激光粒度仪进行质量检验时,要特别引起注意。尤其是对于最终用户,不推荐用激光粒度仪作为磨料粒度质量把关的手段。[/align][color=#ff0000]3、感想[/color] (1)马尔文对D50粒径的分析较准,可用于对中值粒径D50检测。但由于并不反映粒度实际组成,更不能反映颗粒形貌,当微粉粒度,特别是形貌发生变化时,是无法有效发现的,而形貌变化将直接影响线锯微粉的上砂,库尔特同样不能有效反映微粉形貌的变化,所以不建议将马尔文、库尔特作为主要的微粉质量把关手段。 (2)微粉质量控制,需要制定产品质量标准,马尔文、库尔特由于无法反映形貌,可量化指标较少,无法依据它们制定有效的质量标准。带有高级图像分析功能的图像分析仪(如本试验所用仪器KBKL-Ⅱ图像分析仪),可以对粒度分布、粒度特征值、微粉形状组成等全面分析量化,以此制定质量标准,可有效控制产品质量。 (3)马尔文、库尔特测量速度快,重复性好,操作简单,但微粉变化时可靠性差,可作为常规检测手段。图像分析仪直观可靠,可作为微粉质量检测的主要手段。

  • 【求助】红外显微镜金刚石压池的使用

    本人使用红外显微镜金刚石压池做透射的时候,谱图的基线总是很扭曲。不知道有什么影响因素,比如在样品量、检测过程等方面有没有什么技巧,请高手指点一下,谢谢!!!!

  • 红外金刚石反射附件噪音大

    前两天购进了一块热电金刚石晶体附件,测定时按仪器的推荐选择了4000-525波数,但是测定时600至525波数间出现很大的噪声,这样是正常吗?分辩率从4到8也是一样,同一个样品重复做两次匹配度才有92%,如果设定4000-600就可以大于99%。热电的宣传手册写明是10000-650波数,热电销售工程师先前给的光谱图600-525波数间是没噪声。热电的配件那么贵,连个合格证说明书也没有。主机为iS50。

  • 金刚石池能两片一起使用吗?

    濡傞锛?鏈変簺鐗╄川鍘嬭杽鍚庯紝鍙栦笅涓€鐗囬噾鍒氱煶姹犲悗锛屾牱鍝佸氨璞$浜嗕竴鏍锋暎浜嗭紝娌℃硶娴嬬孩澶栨樉寰暅銆傝兘涓ょ墖涓€璧蜂娇鐢ㄥ悧锛岀洿鎺ヨ繛铻哄附涓€璧蜂笉鎷嗭紝鏀剧孩澶栨樉寰暅涓婃祴锛屽彲浠ュ悧锛?Submit=鍙戣〃鏂拌瘽棰?--------------------------------------------------------------------------------------------------以上是原文,翻译后如下:如题。有些物质压薄后,取下一片金刚石池后,样品就象碎了一样散了,没法测红外显微镜。能两片一起使用吗,直接连螺帽一起不拆,放红外显微镜上测,可以吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制