当前位置: 仪器信息网 > 行业主题 > >

颗粒液滴测量系统

仪器信息网颗粒液滴测量系统专题为您提供2024年最新颗粒液滴测量系统价格报价、厂家品牌的相关信息, 包括颗粒液滴测量系统参数、型号等,不管是国产,还是进口品牌的颗粒液滴测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒液滴测量系统相关的耗材配件、试剂标物,还有颗粒液滴测量系统相关的最新资讯、资料,以及颗粒液滴测量系统相关的解决方案。

颗粒液滴测量系统相关的资讯

  • 聚焦颗粒和液滴测量技术——第12届中国多相流测试学术会议分会场侧记
    仪器信息网讯 2021年5月15-16日,中国计量测试学会多相流测试专业委员会第十二届年会暨中国多相流测试学术会议在吉林成功召开。会议由中国计量测试学会多相流测试专业委员会主办,东北电力大学能源与动力工程学院、吉林省电机工程学会共同承办。15日下午,5个不同主题的分会场同期举办,会期1天,吸引了相关领域与会者的热烈关注。颗粒和液滴测量技术分会场共设置4个特邀报告和26个主题报告,精彩纷呈;由8位分会场主席相继主持。以下为部分精彩报告摘要。颗粒和液滴测量技术分会场天津大学教授 谭超报告题目:《超声/电学双模态层析成像系统》多相流广泛存在于自然界和工业生产中,是一种复杂和时变的流体结构,被测参数多,测量人员难以在非扰动的条件下准确、可靠地获取关键过程参数,实现流动过程的可视化动态监测。其中,流态分布的多变性、流态转变的瞬态性以及流场与测量场的耦合性是制约多相流参数检测技术发展的瓶颈问题。报告详细介绍了谭超及其研究团队在过程层析成像方面的研究进展;团队采用模块化设计,通过电阻层析成像、电容层析成像、超声层析成像多模态组合方式,可获得多相流电导率、介电常数、声阻抗、传播时间、多普勒频移等更丰富的信息。中国科学院上海高等研究院副研究员 赵陆海波报告题目:《气液鼓泡体系多尺度气泡可视化实验及模拟研究》气液鼓泡体系反应器因其结构简单、传质传热性能好等优点被广泛应用于能源和环境等领域,如费托合成、加氢反应、羰基化反应、CO2吸收转化、废水处理等过程,核心是对于气泡流动过程多尺度现象认识及流控、传质和反应过程强化的应用。赵陆海波与研究团队采用光场成像等可视化测量方法研究多尺度气泡尺寸时空分布,并结合群平衡模型(Population Balance Model—PBM)建立可预测多尺度气泡鼓泡过程预测的CFD模型,通过电阻层析成像(Electrical Resistance Tomography—ERT)验证了模型的准确性,初步建立了可应用于多相反应过程强化研究的可视化测量及数值模拟方法。中国矿业大学副教授 董良报告题目:《数字孪生智能选矿中的多相流测试技术》全球步入以智能制造为主导的时代,选矿技术也应顺应国家战略规划需求,向智能化方向发展。数字孪生以数字化方式创建物理实体的虚拟模型,通过虚实交互反馈、数据融合分析、决策迭代优化等手段,可为选矿过程提供更加实时、高效、智能的运行或操作服务。报告重点阐述了智能选矿过程涉及的重介质分选过程智能化、浮选过程智能化、粗煤泥分选智能化等关键技术,并对颗粒粒度、密度、浓度等在线测试技术提出数字孪生智能选矿中的多相流智能感知需求,为智能选矿提供技术指导。上海理工大学副教授 于海涛报告题目:《基于高斯光束入射下彩虹散射的液滴测量研究 》雾化广泛应用在燃烧、医药、农业、消防、日常生活等领域,在雾化燃烧、雾化干燥、雾化冷却等众多过程中,测量液滴粒径大小及分布、速度、温度、蒸发速率等参数,对雾化过程中气液流动、传热机理的研究极为重要。在众多液滴测量技术中,彩虹测量技术是液滴测量的重要方法之一,可以实现液滴粒径、折射率和温度的同步测量。于海涛及其研究团队专注于高斯光束入射下彩虹散射的液滴测量研究,报告基于德拜级数展开理论和广义洛伦兹-米理论研究液滴的彩虹散射特性,并根据彩虹散射计算液滴的折射率和粒径。现场精彩一览伴随着分论坛的结束,大会圆满闭幕。第13届中国多相流测试学术会议将由中国计量大学承办,2022年杭州再会!
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 /3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • Phenom 飞纳颗粒统计分析测量系统在中国计量院的应用
    最近实验室买了一批 PS 聚苯乙烯小球做实验模板,形状非常规则,直径也非常均匀,标称直径分别为 1.5 μ m 和 10 μ m 。为了验证其准确性,我们使用复纳科学仪器(上海)有限公司北京实验室的 Phenom 飞纳台式扫描电镜观察并统计。在本试验中,利用 Phenom 飞纳电镜的颗粒统计分析测量系统帮助我们获得了漂亮的统计结果,同时极大简化实验流程,加快了实验进度。下图为北京实验室的 Phenom 飞纳台式扫描电镜,小而精致,左边的显示器用于呈现样品在扫描电镜下的微观形貌,右边的电脑及软件可以做能谱分析,超大视野全景拼图,3D 粗糙度重建,纤维统计分析测量,颗粒统计分析测量,孔径统计分析测量等,每个软件在完成统计后,会输出相应的报告,本文截取颗粒统计分析测量系统的部分报告说明。实验室的 Phenom 飞纳台式扫描电镜在使用颗粒统计分析测量系统之前,先借助扫描电镜观察 PS 聚苯乙烯小球的微观形貌。这个过程类似于搜集样本,借助 Phenom 飞纳电镜的光学导航,自动马达样品台,找样的过程非常简单。光学导航相当于有了地图,从而有了找到最佳位置的方向,自动马达样品台可以在瞬间将视野移动到需要观察位置,只需点击该位置一次。借助 Phenom 飞纳电镜颗粒统计分析测量系统可以一次处理大量数据,该软件最多可以一次读取 400 张扫描电镜图片,完成对所有图片的分析统计,给出统计结果的图表报告。如果一次需要几百张扫描图片作为样本的话,不用担心拍照取照时间过长,结合 Phenom 飞纳电镜超大视野全景拼图,可以自动完成拍照取照的功能,原因是飞纳电镜有光学导航,自动聚焦,和自动马达样品台,这些设计通过计算机的指令控制,可以自动连续扫描指定大小区域,每分钟可采集超过 100 张 1024 x 1024 分辨率的图像,这些图像自动存储在电脑的指定文件夹内,同时,这些图像可以自动拼合为一副全景图像。Phenom 飞纳电镜颗粒统计分析测量系统可以快速读取指定文件夹内的图像,即可以读取由 Phenom 飞纳电镜超大视野全景拼图自动采集的图像。因此可以快速处理样本量大的统计工作,节省人力。以下是本次实验中使用的 PS 聚苯乙烯小球在 Phenom 飞纳台式扫描电镜下的部分图片,低倍下可以观察到小球的排列情况,高倍可以观察小球表面的细节。PS 聚苯乙烯小球放大倍数:1万倍PS 聚苯乙烯小球放大倍数:2万倍样本准备好后,开始用 Phenom 飞纳电镜颗粒统计分析测量系统进行试验,我们最先使用标称直径 1.5 μ m 的 PS 聚苯乙烯小球试验。上图为标称直径 1.5 μ m的 PS 聚苯乙烯小球的识别效果,识别得非常完美,5 秒钟快速给出结果,同时给出关于该小球的众多如长轴,短轴,面积,周长等参数,大大方便了我们去识别买来的 PS 聚苯乙烯小球的质量。下图为其众多参数,可以看到该小球的平均直径为 1.4 μ m,总的来说质量还不错。并且该软件还能给出所有小球直径的直方图,直观方便,如下图所示可知大部分的颗粒直径是接近 1.5 μ m 的。我们又对 3 μ m 和 10 μ m 的 PS 聚苯乙烯小球颗粒做了统计,效果一样完美,如下图所示,给出其平均直径分别为 2.73 μ m 和 9.72 μ m。 Phenom 飞纳台式电镜的颗粒系统帮助我们快速准确地完成对 PS 聚苯乙烯小球直径的统计工作,省去了一个小球一个小球测量的麻烦,希望他们以后做出其他好的软件,大大提高我们做科研的效率!直径 3 μ m 的 PS 聚苯乙烯小球统计结果直径 10 μ m 的 PS 聚苯乙烯小球统计结果
  • 全新升级|在线式颗粒计数器 现场测量油液污染度
    霍尔德上市新品啦!2024年01月09日上市了一款在线式颗粒计数器【在线式颗粒计数器←点击此处可直接转到产品界面,咨询更方便】配电变压器多暴露在露天环境中,其绝缘油(变压器油)受外部杂质、空气接触以及设备高温运行的影响,逐渐变质。一旦绝缘油变质,它原有的灭弧、冷却和绝缘功能就会丧失。为了防止因油质变差导致的安全运行问题,我们必须对正常运行的配电变压器定期进行油样化验分析,并根据分析结果采取相应的处理措施,确保油质的稳定,从而保障变压器的正常运行。在线式颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 安东帕在颗粒度测量领域的完美解决方案
    安东帕在颗粒度领域不断提高市场知名度,即去年的Litesizer 500系列上市到今年PSA系列激光粒度仪的上市,原子力显微镜的上市,在颗粒测量领域更具有竞争度。近期第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会在广州举办,安东帕的展台也获得关注,并在大会上做了专题报告。报告题目:安东帕Litesizer TM系列和90系列激光粒度仪的介绍 安东帕应用工程师在颗粒测试学术会议上做报告,主要介绍了安东帕LitesizerTM系列和90系列两个激光粒度仪产品,其中LitesizerTM系列包含Litesizer TM500和Litesizer TM100,该系列采用了专利的cmPALS技术,可实现更短测量时间,更低施加电场降低样品和电极的影响、污染。90系列即990/1090/1190系列,于2017年上市,源于法国Cilas公司,具有湿法条件下粒度大小和形态可同时测定等特点。 安东帕MCR模块化智能型高级流变仪和litesizer 500纳米粒度分析仪形成互相补充的测试技术,最完美得匹配。使用Litezizer粒度仪获得有价值的颗粒度和胶体稳定性观察,现在你可以改进你的流变性能测试。了解颗粒度可以帮助你选择正确的测试系统,zeta电位表征你样品在更高剪切速率的稳定性。-更加专业的流变性能测试-对结果的更进步评估-对样品的更全面理解为进一步扩大公司颗粒表征的产品线,安东帕收购法国CILAS公司PSA业务。PSA系列激光粒度仪是在今年9月份推出的新品。 该系列产品包括PAS 990、PSA 1090和PSA 1190这三个型号。 PSA系列仪器扩展了基于动态光散射的当前粒度测量仪器组合,是LitesizerTM系列仪器的极佳补充。 PSA系列激光粒度仪最大的特点在于可一键切换干湿法,用户无需进行硬件的切换,只需一键点击鼠标便可轻松切换,无需重新验证或重新调准灵敏的光学器件。本次讲座将对PSA990/1090/1190基本应用情况,特点进行阐述。 化繁为简,为真正的工业AFM开辟道路安东帕进入原子力显微镜市场,推出一款专为工业用户设计、满足各种需求的 AFM 产品 Tosca™ 400。它独一无二地将先进技术与简单易用的操作完美结合,使得这款 AFM 既适合工业用户,也适合科学工作者。自动化和工作流导向的控制分析软件植入到机器的每个操作层级,进一步提高了效率并简化AFM测量操作。
  • 普洛帝成功挺进了剥离液中颗粒计数的领域
    普洛帝成功挺进了剥离液中颗粒计数的领域,并为剥离制造业的发展注入了新的活并为剥离制造业的发展注入了新的活力。剥离液中的颗粒管控方案一直是工业制造领域中备受关注的问题。随着技术的不断进步,对剥离液中的微小颗粒进行精确计数和管控显得尤为重要。在这方面,普洛帝液体颗粒计数器凭借其卓越的性能和广泛的应用领域,成为了一个备受推崇的解决方案。 在剥离液颗粒管控的实际应用中,普洛帝液体颗粒计数器以其独特的测量原理和高精度检测能力,展现出了强大的实力。它采用先进的激光散射技术,能够准确测量剥离液中颗粒的尺寸和数量,为颗粒管控提供了可靠的数据支持。同时,计数器还拥有智能化的操作界面和便捷的数据处理功能,使得用户能够轻松掌握剥离液中的颗粒分布情况,从而制定更为精准的管控方案。 浙江半导体体制造企业,引入了普洛帝液体颗粒计数器对剥离液中的颗粒进行监测。在实际应用中,计数器不仅成功实现了对剥离液中颗粒的精确计数,还通过数据分析,帮助企业发现了生产过程中潜在的污染源。针对这些问题,企业及时采取了相应的措施,有效降低了剥离液中颗粒的含量,提高了产品的质量和稳定性。此外,普洛帝液体颗粒计数器还广泛应用于其他工业领域,如化工、制药、食品等。在这些领域中,同样需要对液体中的颗粒进行精确管控,以确保生产过程的顺利进行和产品质量的稳定。普洛帝液体颗粒计数器的广泛应用,不仅提高了生产效率,还为企业创造了更多的价值。
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong SARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约 span style=" color: rgb(0, 176, 240) " strong 上海理工大学蔡小舒教授 /strong /span 为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。 /p p style=" text-align: justify text-indent: 2em " 在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下): /p p style=" text-align: justify text-indent: 2em " 颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。 /p p style=" text-align: justify text-indent: 0em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" / /p p style=" text-align: justify text-indent: 2em " 颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。 /p p style=" text-align: justify text-indent: 2em " 在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。 /p p style=" text-align: justify text-indent: 2em " 目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等; /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等; /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等; /p p style=" text-align: justify text-indent: 2em " 4.& nbsp 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。 /p p style=" text-align: justify text-indent: 2em " 5.& nbsp 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。 /p p style=" text-align: justify text-indent: 2em " 在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法: /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 光散射在线测量方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" / /p p style=" text-align: justify text-indent: 2em " 根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 前向静态光散射法: /span /strong 这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。 /p p style=" text-align: justify text-indent: 2em " 基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光法: /strong /span 当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " 由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 光脉动法: /strong /span 在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。 /p p style=" text-align: justify text-indent: 2em " 这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" / /p p style=" text-align: justify text-indent: 2em " 根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度, span style=" text-indent: 2em " 进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光起伏相关光谱法:& nbsp /strong /span 与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 后向散射法: /span /strong 对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。 /p p style=" text-align: justify text-indent: 2em " 合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" / /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em " 作者简介: /strong br/ /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 300px height: 217px float: left " src=" https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title=" 蔡小舒.jpg" alt=" 蔡小舒.jpg" width=" 300" height=" 217" border=" 0" vspace=" 0" / 蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。 /p p style=" text-indent: 2em text-align: justify " 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span br/ /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " 欲知相关仪器可点击进入 /span span style=" text-indent: 2em text-decoration: underline " a href=" https://www.instrument.com.cn/zc/670.html" target=" _self" style=" color: rgb(0, 176, 240) " span style=" text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) " 在线粒度仪 /span /a /span span style=" text-indent: 2em " 专场 /span /strong /p
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 岛津发布动态颗粒图像分析系统新品
    岛津动态颗粒图像分析系统 iSpect DIA-10采用微量池技术和先进的光学系统精确、高效地检测颗粒。如果使用普通镜头,颗粒的可检测尺寸会受到颗粒与镜头之间距离的影响。iSpect DIA-10使用远心镜头可保持恒定的图像放大倍率,这意味着无论颗粒 位于视野中的哪个位置,系统都可以准确地确定颗粒粒度。自动对焦功能提高了成像效率,从而确保能够精确 检测异物并获得重复性高的计数浓度。 粒子计数和图像测量可以用一台仪器来实现iSpect DIA-10提供了先进的粒子分析技术,将单个粒子的图像信息添加到精确的粒子计数中。采用宽聚焦区域的远心镜头与微流池技术相结合,可聚焦整个流路,大幅度减小了颗粒漏检,实现了精确的颗粒计数和可靠的颗粒检测。 可有效分析大量粒子准备样品时,用微量移液枪吸取分散在液体中的样品,将移液枪枪头固定在仪器上,然后在软件上完成数据测量。 检测能力强,几乎不会漏检iSpect DIA -10也可以检测到含有极少量的粒子,也可以检测大量粒子中的少量粗颗粒。通过检测每个粒子的检测结果和图像,可以对粒子的来源进行估计。 创新点:本产品整合了粒度和图像分析技术,在两分钟内完成颗粒成像、尺寸分析、异物检测、粒度分布同时可以得到准确的粒子计数浓度 ?超过90%的高效图像采集效率 与传统的池技术和镜头技术相比,微量池技术可以更清晰地显示颗粒图像,同时减少通过成像区域以外的颗粒数量,传统仪器图像采集效率小于10%,DIA-10采集效率超过90% ?± 5%以内的计数浓度重复性 由于颗粒图像采集效率高,几乎所有粒子都被捕捉到,因此可获得超高重复性 ?简单易用 具有无需样品即可实现自动对焦功能,只需放置样品、选择分析方法、点击测量三步即可完成测试查看结果 动态颗粒图像分析系统
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。   细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。   1. 外泌体提取及方法学评价   到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。   1.1 离心法   这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。   1.2 过滤离心   过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。   1.3 密度梯度离心法   密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。   1.4 免疫磁珠法   免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。   1.5 色谱法   色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。   2. 外泌体测量各种方法的比较   2.1 电子显微镜   扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。   2.2 动态光散射技术   动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。    图1 大颗粒和小颗粒光强波动及相关曲线   在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。   2.3 纳米微粒追踪分析术   纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。   NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。 图2 NTA激光光路图      激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。   根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径   在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。   由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。   NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。 图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关   NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量   由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。   3. 总结   外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。   (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)   注:文中观点不代表本网立场,仅供读者参考。
  • 硫酸铜产线颗粒管控利器——普洛帝硫酸铜液体颗粒计数器
    硫酸铜生产线上的颗粒管控,历来是确保产品纯度与品质的关键环节。而今,这一领域迎来了一位革新性的守护者——普洛帝硫酸铜液体颗粒计数器,它不仅是生产线上的科技明珠,更是提升生产效率与产品质量的智慧之钥。 普洛帝,以其精准的测量技术与非凡的创新设计,颠覆了传统颗粒检测的方式。这款液体颗粒计数器,专为硫酸铜溶液量身打造,如同一位精密的侦探,能在微观世界中捕捉每一粒可能影响产品纯净度的微小颗粒。其采用先进的光学传感技术,结合智能算法分析,能够实时、准确地计数并分类溶液中的微小颗粒,确保每一滴硫酸铜都纯净无瑕。在繁忙的生产线上,普洛帝展现出了无与伦比的稳定性与高效性。它能够连续工作,不间断地监测硫酸铜溶液的颗粒状况,为生产人员提供即时、可靠的数据支持。这不仅大大降低了人工检测的误差与成本,更使得生产线能够迅速响应颗粒污染问题,采取有效措施加以控制,从而保障了产品的整体质量。 普洛帝硫酸铜液体颗粒计数器的出现,无疑是硫酸铜生产领域的一次重大飞跃。它以其卓越的性能与广泛的应用前景,赢得了业界的广泛赞誉与信赖。在未来的日子里,普洛帝将继续以其专业的精神与不懈的努力,为硫酸铜生产线的颗粒管控贡献更多的智慧与力量。
  • 普洛帝油液监测新品上市---PMT液体颗粒计数器
    普洛帝油液监测新品展播二PMT液体颗粒计数器2017年6月6日英国普洛帝分析测试集团对外推出液监测家族新品-PMT系列液体颗粒计数器,这是继英国普洛帝油液监测家族新品PQ系列铁量仪展播后又一力作。2017年6月至9月是普洛帝油液监测技术型产品集体亮相的时间,普洛帝油液监测家族将汇集油液颗粒监测、油液物性监测、油液化学特性监测和油液磨损监测等相关监测设备及技术,集中向大家展示。英国普洛帝分析测试集团推出全新一代PULUODY/普洛帝PMT系列液体颗粒计数器,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,本系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨两个大单位级,是微纳米检测相融合的全新品类的技术型产品。可用于微米、纳米等微粒检测的PMT系列液体颗粒计数器是液样颗粒分析测试技术型硬件,该产品广泛应用于电子半导体、超纯水、医疗、液压、航空、航天等领域。英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,并与2017年3月伦敦、纽约、北京三地同时上市,2017年6月开放所有行业订购渠道。PULUODY/普洛帝PMT-系列液体颗粒计数器是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨三大单位级,是毫米、微米和纳米检测相融合的全新品类的技术型产品。具有非常高的灵敏度、准确性和重复性,在几秒钟内就可以测量出各种液样中的颗粒含量。近期我司将向广大客户开展油液监测技术报告会,详情请关注公司新闻:简述:油液监测技术的应用与发展,明确油液监测定义,回顾油液监测历程,剖析油液监测正面临的现状,例举离线、现场、在线等技术的特点和趋势。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。产品链接:润滑油铁量仪、润滑油量铁仪、润滑油铁浓度检测、液压油监测设备、颗粒计数器、润滑油监测设备、车用油监测设备、润滑脂检测设备、油液水分、粘度、密度传感器,专注测控 用心服务普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!
  • 光刻管控新仪器-普洛帝光刻胶液体颗粒计数器
    光刻管控新纪元——普洛帝光刻胶微粒鉴识者的华丽登场 在科技浪潮的汹涌澎湃中,普洛帝光刻胶液体颗粒计数器的璀璨问世,不仅铸就了半导体制造精密控制艺术的又一巅峰,更如同一束曙光,照亮了产品质量飞跃与生产效率腾飞的康庄大道。这不仅仅是一款仪器,它是智慧的结晶,是精准与效率的代名词,正悄然成为各大芯片制造巨擘手中那把开启未来之门的钥匙。 普洛帝光刻胶液体颗粒计数器,这位光刻胶微粒世界的“显微镜大师”,以其无与伦比的敏锐洞察力和超凡脱俗的精准度,穿梭于微纳米世界的浩瀚之中。它仿佛一位严谨的科学家,时刻紧盯着光刻胶的每一个细微角落,不放过任何一粒可能扰乱光刻图案纯净与精准的“不速之客”。在它的守护下,芯片制造的每一寸土地都沐浴在纯净与精确的光辉之下,确保了每一块芯片的诞生都承载着对完美的无尽追求。 其流体力学设计的精妙绝伦,如同溪水潺潺,确保了样品在检测过程中的平稳流淌,减少了任何可能的波澜,让测量结果更加贴近真相。而激光散射技术的运用,更是将检测灵敏度推向了前所未有的高度,即便是纳米级的微小颗粒,也难逃其法眼,无所遁形。更令人叹为观止的是,普洛帝还融入了人工智能的智慧之光。它如同一位智慧的导师,能够自动识别并分类不同尺寸的颗粒,为工艺优化提供了宝贵的数据宝藏。这些数据如同繁星点点,指引着生产团队在质量控制的征途中不断前行,快速定位潜在污染源,精准调整工艺流程,让质量控制之路越走越宽广,越走越坚实。展望未来,随着5G、物联网等新兴技术的风起云涌,对芯片性能与可靠性的要求已不再是简单的数字堆砌,而是对极致与完美的无尽追求。普洛帝光刻胶液体颗粒计数器深知此道,它将以更加开放的姿态,拥抱量子传感、机器学习等前沿科技,不断迭代升级,以应对更加复杂多变的生产环境与挑战。同时,它也将积极拓展其应用版图,从半导体制造的深邃蓝海,驶向生物医药、精密机械等更广阔的高精度制造领域,为全球工业升级的壮阔画卷添上浓墨重彩的一笔。
  • 岛津iSpect DIA-10 带您遨游中药口服液的颗粒世界
    导 言由于生产过程的独特性,中药口服液中不可避免的会残留有一些颗粒物,这些颗粒物或吸附细菌,或发生聚集沉淀,从而影响口服液的保质期、口感、疗效和安全性。对于中药口服液的生产者和使用者来说:口服液的微观颗粒世界里,测得准确,制药良心;看得真切,服用放心。且看岛津iSpect DIA-10如何带您遨游中药口服液的颗粒世界吧! 中药口服液想必大家都不陌生,如市面上的藿香正气水、双黄连口服液、抗病毒口服液等,想必很多人都喝过,中暑、发烧感冒来一支,方便又省时,对于偏爱中药的朋友来说,是不错的选择。这些中药口服液的生产过程包括中药材提取、净化、浓缩、过滤、精制、灭菌和封装等,但在提取过程中不可避免地会引入药物残渣,因此必须对这些残渣进行滤除,使药物口服液澄清,但口服液中或多或少还会残留一些中药颗粒,颗粒越大越粗糙,其吸附细菌的可能性越大,会影响口服液的稳定性和保质期。此外,这些颗粒物可能会在药物存储运输过程中发生聚集沉淀,从而影响口服液的口感、治疗效果和安全性等。我们再来看看岛津iSpect DIA-10是如何探视这些口服液中的微观世界的:取市售的某品牌藿香正气水和抗病毒口服液,样品不需要任何特殊处理,用移液枪直接吸取口服液上样测试即可。 iSpect DIA-10是何方神器?如何具备这么强大的功能?就让小编带着你和你的好奇心,去扒一扒这款探测内心的仪器吧!岛津动态颗粒图像分析系统iSpect DIA-10 iSpect DIA-10是岛津新品动态颗粒图像分析系统。这是一款采用微量池流通技术对颗粒进行测试的仪器。其原理是让颗粒通过狭窄的成像区域,被高速照相机拍摄,将获得的所有图像进行计算分析和统计,再输出有关颗粒物粒度、粒形和颗粒数量等信息。它不仅能直观获得颗粒物粒度,还能逐一观察颗粒物的粒形状况,并得到颗粒物的数量信息,为全面了解药物口服液的质量特性提供重要依据,是测试口服液中颗粒物的有力工具。 分析条件表1. iSpectDIA-10分析条件(1)藿香正气口服液中颗粒物测试结果下图为藿香正气口服液中的颗粒图像,按面积等效直径从大到小排列,从图上我们可以直接观察到溶液中存在形状各异的颗粒,可通过圆度*-面积等效直径分布图和粒径分布图对溶液中的颗粒进行统计分析。(注*:圆度用来描述颗粒接近圆形的程度,越接近1表示颗粒越圆。)藿香正气口服液颗粒粒形图藿香正气口服液中颗粒圆度-面积等效直径分布图(上)和粒径分布图(下) (2)抗病毒口服液中颗粒物测试结果对抗病毒口服液中颗粒物进行测试,按颗粒最大长度对图像进行排列,获得的颗粒图像信息如下图所示。从图上我们可以发现,抗病毒口服液中存在许多条状颗粒物,这与藿香正气口服液中的颗粒很不一样。抗病毒口服液颗粒粒形图抗病毒口服液中颗粒最大长度-面积等效直径分布图(上)和粒径分布图(下) 经对比,两种中药口服液所含有的颗粒物粒度、粒形和颗粒数量等均不相同。可发现两种口服液中均存在少量大颗粒,其中抗病毒口服液中有许多条状物,且颗粒数量远大于藿香正气口服液。 结论我行故我上,颗粒我知道。利用岛津动态颗粒图像分析系统iSpect DIA-10对中药口服液进行分析,可同时获知口服液中颗粒物粒度、粒形和颗粒数量等信息,为全面了解药物口服液的质量特性提供重要依据。 撰稿人:李青龙
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style=" text-align: justify text-indent: 2em " 说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " strong 显微投影仪 /strong /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " (友情提示:移动端用户下方点击阅读全文, /span /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " 再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受) /span /p p style=" text-align: justify text-indent: 2em " 图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title=" 图像2.png" alt=" 图像2.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。 span style=" color: rgb(0, 176, 240) " strong 由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line) /strong /span 。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图像法在线测量原理示意图 /strong /p p style=" text-align: justify text-indent: 2em " 与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。& nbsp 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling& nbsp shutter)和全局快门(global& nbsp shutter)2类。 span style=" color: rgb(0, 176, 240) " 为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门 /span 。 /p p style=" text-align: justify text-indent: 2em " 作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。 /p p style=" text-align: justify text-indent: 2em " 在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于 strong span style=" color: rgb(0, 176, 240) " 远心镜头 /span /strong 的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。 /p p style=" text-align: justify text-indent: 2em " 在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。 strong span style=" color: rgb(0, 176, 240) " 对于离焦颗粒图像,可以有2种处理方法 /span /strong ,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title=" 图像4.png" alt=" 图像4.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。 /p p style=" text-align: justify text-indent: 2em " strong 图像法与RGB三波段消光法融合在线测量 /strong /p p style=" text-align: justify text-indent: 2em " 受光学原理和硬件的限制, strong span style=" color: rgb(0, 176, 240) " 图像法在线测量下限一般在2-3微米 /span /strong 。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以 strong span style=" color: rgb(0, 176, 240) " 将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度 /span /strong 。 /p p style=" text-align: justify text-indent: 2em " 彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 同时存在大小颗粒的图像 /strong /p p style=" text-align: center text-indent: 0em " strong 图像法与后向光散射融合测量大气颗粒和排放烟尘浓度 /strong /p p style=" text-align: justify text-indent: 2em " 图像法不仅可以测量成像的颗粒的粒度,还可以 strong span style=" color: rgb(0, 176, 240) " 与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度 /span /strong 。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。 strong span style=" color: rgb(0, 176, 240) " 该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关 /span /strong 。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title=" 图像6.png" alt=" 图像6.png" / /p p style=" text-align: justify text-indent: 2em " strong img style=" max-width: 100% max-height: 100% float: left width: 125px height: 125px " src=" https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title=" 蔡小舒_.jpg" alt=" 蔡小舒_.jpg" width=" 125" height=" 125" border=" 0" vspace=" 0" / span style=" color: rgb(0, 176, 240) " 作 /span span style=" color: rgb(0, 176, 240) " 者简介: /span /strong 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p
  • Haver CPA(光学视图颗粒分析系统)升级产品重装登场
    在传统的颗粒分析领域,Haver&Boecker作为筛分机的制造商,一直引领着行业的发展。90年代早期,Haver&Boecker率先在这一领域进行创新革命,通过引入强大的计算机技术,揭开了颗粒分析领域发展的全新历史篇章。发展到现在,Haver CPA已经成为目前科技发展的最尖端产品。从标准实验室仪器到工业定制品,从药物、食品、矿石、塑料到工业肥料,Haver CPA已经拥有最广泛的应用。 由Haver & Boecker推出的HAVER CPA测量系统是您进行颗粒粒径及其粒形*分析的首选。 HAVER CPA测量仪器基于数字图像处理的原理。高分辨率的线性摄像机以LED光阵列为背景对自由落体颗粒进行拍照,其记录频率*可达每秒28,000次。CPA将所有的扫描整合起来,形成了一个连续不间断的数据记录。在测量的同时,颗粒投射的阴影在HAVER REAL TIME中得到实时评估。每秒可对高达10,000个颗粒进行检测分析,并且可以得到测量范围的所有颗粒的粒径和粒形的结果。因此,HAVER CPA是普通振筛机的理想替代品。 HAVER CPA CONVEYOR主要是为分析长条的物料而研发的,这是由于图像分析时物料重叠或旋转会带来测量结果的偏差。在使用CPA CONVEYOR时,物料被加载到一个计量通道上而后转运到一高速运转的传送带上。物料的速度差异使其得到有效分离,并在扫描分析前,将其带入稳定的方向运转。 HAVER CPA CONVEYOR的测量在真正意义上消除了颗粒在测量过程中随机旋转所带来的误差。 多种规格的HAVER CPA,可以满足实验室、工业以及科研等广大领域的使用需求。所有CPA系统均具有结果的高重现性、极其省时、可提供其它粒形参考值以及自动化方案等特点,让您尽享成本降低和效率提高的双重利益! 欢迎来电咨询或索取HAVER CPA样本!
  • 智易时代发布双通道颗粒物连续监测系统新品
    双通道颗粒物连续监测系统 如今,大气颗粒物自动监测的方法主要有:光散射法、β射线吸收法、微量天平振荡法等。其中,β射线吸收法以其依照国家标准,数值监测精度高、准确性强、动态观测、智能测量等特点逐步得到了用户广泛的认可。但,目前市场上的大多数β射线法大气颗粒物监测仪均为单通道监测仪器,只能实现一个参数的测量,获取两个或更多的参数则需要多台仪器,大大提高了监控成本。为使相关部门及企业能够以更经济的形式同时进行不同粒径颗粒物浓度的测量,我司在原有单通道β射线法颗粒物在线监测仪的基础上,设计研发了双通道颗粒物在线监测仪器,用户可根据实际需求在同一台设备上加装任意两个粒径的颗粒物切割器采样头,轻松掌握环境中不同粒径颗粒物的浓度值。 智易时代ZWIN-YCB06-D双通道颗粒物连续监测系统采用β射线法监测原理,利用低能量C14作为β射线源,根据β射线穿过清洁滤纸和采集有颗粒物的滤纸时的变化量来计算在滤纸上采集到颗粒物的质量,即而求得空气中的颗粒物浓度。主要应用于大气质量监测网络、移动监测站、长期背景环境研究、工矿企业、科研院所等领域,广泛适用于环境空气中颗粒物浓度的测量。 产品特点? 采用国标法β射线检测原理,数值更准确? 双通道监测,可同时测量两个粒径的颗粒物浓度(PM2.5/PM10/TSP,三选二),使用方便,性价比高? 大屏幕液晶显示,全中文菜单,人机互动更友好? 产品集成度高,设计合理,美观大方,安装方便,易于维护? 内置空调,保证产品内部恒温,数值更稳定? 质量流量计测量流量,恒定流量采样,测量精度更高? 内部故障自动诊断和报警提示,也可以通过远程诊断并修复错误? 智能化程度高,来电设备自动重启,开机滤纸自动移至空白区 产品参数? 测量范围:(0-1000)μg/m3、(0-10000)μg/m3可选? 检测限:≤2μg/m3? 测量准确度:±2%? 重现性:≤2%? 工作电源:电压AC220V±22V、频率50Hz±1Hz? 工作环境温度:20℃~50℃? 工作相对湿度:不大于80% 创新点:双通道监测,可同时测量两个粒径的颗粒物浓度(PM2.5/PM10/TSP,三选二),使用方便,性价比高 双通道颗粒物连续监测系统
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION® 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 便携式油液颗粒计数器新品上市
    油品使用后不可避免地会受到不同程度的污染。检测油污的方法有定性、半定量、定时等多种,应根据具体情况进行选择。对污染重、颜色深的油品,可采用抽检法,也可采用按一定规则规划的专用网格滤纸半定量法,并可采用部分油品快速分析仪。这些方法的特点是简单、快速,与其他检测项目匹配性好,具有实用价值。颗粒计数器可用于油污染的定量分析。得利特A1035油液颗粒计数器能准确测量单位体积油中微粒的准确值,适用于对清洁度要求高的油品(如液压油)的检测。下面跟随小编来详细了解一下这款仪器吧!A1035便携式颗粒计数器,采用国际液压标准的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。便携式颗粒计数器功能特点:1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度3、可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气4、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级5、管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测6、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护7、内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准8、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准9、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能10、可设定任意报警级别,实现污染度或洁净度检测11、内置微水传感器和温度传感器12、中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷13、超大存储,可选择存储在仪器内部或外部存储设备中14、嵌入式设计,高强度外壳,便于携带,适合各类工程机械
  • 普洛帝颗粒计数器助力油田增产增效
    普洛帝颗粒计数器在油田增产增效方面发挥着至关重要的作用。随着油田开发的不断深入,对油田增产增效的需求也日益迫切。在这一背景下,普洛帝颗粒计数器的引入成为了提升油田生产效率和经济效益的关键手段。 普洛帝DPC-1511油气田回注水颗粒仪,作为一款高精度、高可靠性的仪器,契合了SY/T5329--2022碎屑岩油藏注水水质指标技术要求及分析方法中的相关规定。该仪器不仅满足了5.3.1颗粒计数测定的要求,同时也符合5.3.2激光粒度测定的技术标准。在颗粒计数测定方面,普洛帝DPC-1511油气田回注水颗粒仪采用了先进的激光散射技术,能够快速、准确地测定水样中的颗粒数量、大小及分布情况。其独特的算法和数据处理系统,确保了测量结果的准确性和可靠性,为油藏注水水质监测提供了强有力的技术支持。而在激光粒度测定方面,普洛帝颗粒计数器同样展现出了卓越的性能。其高精度的激光粒度分析系统,能够准确测量颗粒的粒径分布,为油藏注水水质的精细管理提供了重要依据。这一功能的实现,不仅提高了水质监测的效率和精度,更为油藏的长期稳定开发提供了坚实保障。综上所述,普洛帝颗粒计数器凭借其卓越的性能和精准的测量能力,完全符合SY/T5329--2022碎屑岩油藏注水水质指标技术要求及分析方法中的相关规定。它不仅为油藏注水水质的监测和管理提供了强有力的技术支持,更为整个石油行业的可持续发展注入了新的活力。普洛帝颗粒计数器以其高精度、高效率和高度自动化的特点,为油田增产增效提供了有力支持。该设备能够准确快速地检测和分析油田水样中的颗粒物质,为油田生产过程中的水质监控和颗粒污染控制提供了有力保障。通过实时监控水质状况,油田可以及时发现问题并采取相应的措施,确保油田生产的稳定性和持续性。同时,普洛帝颗粒计数器还可以帮助油田优化生产流程,提高生产效率。通过对颗粒物质的分析,油田可以更加精确地了解生产过程中存在的问题和瓶颈,从而有针对性地进行优化和改进。这不仅有助于提高油田的生产效率,还能够降低生产成本,实现经济效益的最大化。此外,普洛帝颗粒计数器的引入还有助于提升油田的环保形象。随着环保意识的日益增强,油田生产过程中的环保问题也备受关注。普洛帝颗粒计数器通过精确检测和分析颗粒物质,有助于油田实现生产过程中的减排和降污,为油田的绿色发展贡献力量。总之,普洛帝颗粒计数器在提升油田增产增效方面发挥着至关重要的作用。它不仅为油田生产提供了有力保障,还能够助力油田实现经济效益和环保效益的双赢。随着技术的不断进步和应用范围的扩大,普洛帝颗粒计数器将在油田增产增效领域发挥更加重要的作用。
  • 普洛帝发布第八代颗粒检测技术
    2018年9月20日,英国普洛帝分析测试集团分析仪器事业部在伦敦和西安两地向液体颗粒检测行业发布其新一代升级技术-第八代颗粒检测技术,其第八代双激光窄光颗粒检测传感器技术结合工业4.0进行了创新性的研究,通过使用物联网、数据分析、机器学习和AI技术,使用户准确得到液体颗粒检测数据,将检测中的参数设定,校准标定,测试信息数据化、智慧化,最后达到快速,有效,个性化的的不同场景的创新应用。PULUODY公司以提供液体颗粒检测技术具有50余年的历史,不断推出各类高精度、高稳定性的分析装置,全面满足各领域的要求。其中,普洛帝液体颗粒监测技术第八代双激光窄光检测器科实现快速、准确以及出众的稳定性,是面向未来的多领域分析技术,是新一代颗粒检测科研成果。PULUODY利用公司自有的物联信息系统(Cyber—Physical SystemV8.0简称CPSV8.0)和液体颗粒监测技术第八代双激光窄光检测器有效结合,具有低能耗、进样重现性优异、分析精度高、准确性好等性能,并且支持多品类、多样品分析。检测通道可达1200个通道,可连续执行680次检测,分度值可达到纳米级别。 PULUODY此次在第八代颗粒检测技术基础上推出第八代双激光窄光颗粒检测器,可对颗粒进行自动测量、计数、分布、质量、百分比分析,可拓展水分、粘度、密度和颗粒形态及成分分析。第八代双激光窄光颗粒检测器由PLDMC伦敦、西安两地研发中心与CALDEE、PULL、PULUODY等公司共同合作开发,主要用于支持液体中颗粒大小与数量分析、粒度分布、污染物形态测试、物理表征等领域的研究。它可以自动定位及鉴别颗粒分子,适合分析诸如航空红油、航空燃料油、航空蓝油、清洁液压油、高纯试剂、齿轮油、痕量物质、液态药品、化学品、高纯水、电子行业清洗溶剂及过滤器上捕获的汽车零部件污染物和大气污染物等颗粒。第八代双激光窄光颗粒检测器(PCF-8A)的操作流程非常简单,首先定位颗粒,其次统计颗粒大小/形状,然后根据大小/形状筛选候选颗粒,最后再按照国际上相关标准采集污染度、清洁度和颗粒度。它可以与PLDMC的LabPC8软件进行完美的结合。后者是一款简单易用、功能强大的软件包,可提供完备的仪器操作、审计追踪、电子记录、电子签名、数据采集、数据处理分析及报告生成等。现在,将双激光窄光颗粒检测器(PCF-8A)入到LabPC8软件包后,系统能自动定位颗粒,自动判定清洁度等级,并统计颗粒的大小/形状及获取颗粒的化学属性等信息,这使得LabPC8的分析功能更为强大,工作效率也得到大幅度提升。第八代双激光窄光颗粒检测器(PCF-8A)和PLDMC全系列的油液颗粒度分析、不溶性微粒检查仪、液体颗粒计数分布仪等结合,将会给使用PLDMC液体颗粒检测设备进行颗粒表征的分析人员带来新的自动化操作体验,将复杂的试验变得简便。此外,第八代双激光窄光颗粒检测器还拓展了PLDMC颗粒检测系统的分析能力。不管是紧凑稳固、“一键点击分析”型的PLD-0203油液污染度监测仪,还是具有多功能全自动、多测量范围、先进的清洁度评判功能的PLD-0201油液颗粒度分析仪,还是携带审计追踪、电子记录、电子签名功能的PLD-601药典不溶性微粒检查仪,还是具有颗粒大小、多少、分布百分比等的PSD-890液体颗粒计数分布仪都可以使用第八代双激光窄光颗粒检测器(PCF-8A)。目前第七代双激光窄光颗粒检测器(PCF-8A)技术已经正式发布,如需了解更多信息,请联系普洛帝服务中心,获取“第八代双激光窄光颗粒检测器(PCF-8A)”最新资讯,或者联系您当地的PLDMC以获取升级资料及软件演示等更多信息。
  • 赛默飞推出全新颗粒物排放连续监测系统
    上海,2014年3月3日— 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新的颗粒物排放连续监测系统 (PM CEMS),使工业污染排放的颗粒物连续监测成为可能,为节能减排和PM2.5来源分析提供了又一有利工具。 Thermo ScientificTM颗粒物排放连续监测系统综合了光散射法和质量微天平方法的优点,测量结果是可溯源至NIST标准的真正质量浓度,可以满足日益严格的精度要求,是一套在动态湿烟气条件下真正的质量浓度测量系统。 赛默飞世尔科技中国总裁兼全球环境和过程监测业务总裁迈世福先生表示:“近期,中国频频遭受雾霾天气,PM2.5再次成为全国乃至全世界关注的焦点。专家指出,在PM2.5的贡献中,工业排放占据了重大比例。赛默飞此次推出的颗粒物排放连续监测系统可以连续测量可过滤颗粒物,提供精确的测量结果,为节能减排和PM2.5分析提供有力武器。未来,赛默飞将继续为中国和全球市场提供有助于改善环境的技术和产品,帮助解决在经济发展过程中带来的环境问题。”Thermo ScientificTM颗粒物排放连续监测系统不受颗粒物大小、化学组成变化的影响,通过重量参比法进行线性修正。受电厂燃料、工艺过程、控制参数的影响,烟气颗粒物的变化性和动态特性变化非常强,该系统可以辨别质量浓度变化和其他特性变化。锥形微量振荡天平是质量传感器,对连续测量的光散射设备进行内部参比校正。系统采用稀释抽取法,允许更低的传输温度,可以减少维护量,提高系统使用寿命和运行时间。它由稀释抽取探头、Model 3880i探头控制器和气动电气管束组成。烟道流速可以通过模拟量、数字化通讯方式输入进入系统,仪表气清洁系统和机箱空调都是可选项。该系统的设计满足美国EPA性能规范PS 11和质量保证程序Procedure 2的要求,并通过了审核程序Method 5或17的验证。欲了解更多详情关于颗粒物排放连续监测系统(PM CEMS),请浏览:?http://www.thermo.com.cn/Product7030.html 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3,800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2,000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 提质增效,节能降本:百特在线颗粒级配智能监测系统
    日前,原材料工业司会同科技司、节能与综合利用司及审查专家组就GB175《通用硅酸盐水泥》强制性国家标准修订工作召开标准技术审查会,经讨论审议,专家组一致认为该标准符合《强制性国家标准管理办法》的规定以及相关政策要求,建议修改完善后,尽快提请发布。有相关行业专家对水泥人网表示:预计《通用硅酸盐水泥》新标准实施后,我国水泥质量控制的水平会迎来新一轮的提高,其中,水泥粒度分布(颗粒级配)作为决定水泥性能的关键因素,其检测工作将会越来越严格。然而,当前仍有很多水泥厂采用人工取样与实验室检测的方法进行水泥生产过程质量控制,频繁的取样不仅耗费了化验员大量的工作时间,还因实验室化验结果的滞后性导致不合格水泥产出。为克服人工取样实验室检测的弊端,丹东百特仪器有限公司(以下简称“丹东百特”)本着高度的社会责任感,多年来不断加大科研投入,研制成功了BT-Online1在线激光粒度监测系统,为实时智能监测水泥颗粒级配提供了一个完美解决方案。据丹东百特相关技术人员介绍,BT-Online1在线激光粒度监测系统是一种应用于包括水泥等工业粉体生产线上的实时智能颗粒级配监测与控制系统。它采用激光散射技术测量粒度,通过自动取样技术实现智能测量、回收和数据处理,并向控制中心实时传输颗粒级配数据,并可通过DCS等系统控制生产设备,从而为水泥生产线提供 24 小时颗粒级配监测与控制。相较于传统的人工检测,具有以下优越性能:自动取样与自动测试。BT-Online1在线激光粒度监测系统的取样器可直接插到水泥斜槽里或磨机出料口等处,通过负压直接将样品抽取到激光粒度仪进行测量,测量后的样品还能直接送回,从而实现自动、实时和零排放测试。实时控制功能。本系统除进行监测粒度外还具有控制功能。控制的方式是根据监测的颗粒级配数据传输到控制中心,通过DCS、OPC或4-20mA信号等方式,控制磨机、分级机参数,实现对设备闭环控制,从而达到了提质增效、节能降耗的目的。自动运行,无人值守。百特BT-Online1在线激光粒度监测系统直接安装到生产设备旁边,通过双气幕防镜头污染系统、抗干扰系统、不间断供电系统等,实现了长期、连续的粒度监测与控制,保证了监测数据的准确性和连续性。免维护连续运行时间长达180天。可靠的采样系统。BT-Online1的采样系统采用了文丘里结构,通过多点取样以及防堵(反吹)设计,保证了测试的实时性、准确性和连续性。系统的综合性能。具有断电保护和气压异常保护功能,使系统在异常情况下能有序自动停止运行;电路和机械系统设有抗干扰功能,适应生产现场复杂的电磁环境;具有自动对中功能,保证测量系统始终处于最佳状态。此外,值得一提的是,BT-Online1在线激光粒度监测系统具有高度的重复性和准确性。长时间连续运行的同时,自动对中系统使仪器始终保持在最佳状态,保证采样速度达3500次/秒,有效减少少数异常数据;68个探测器,使得无论样品是单峰、双峰还是多峰都能准确自动测试。同一样品不同时间段测试结果长时间运行的重复性系统的准确性优异的准确性、重复性和长期稳定性,使得BT-Online1在线激光粒度监测系统一经推出,便迅速得到了水泥等行业的瞩目和好评。目前BT-Online1在中建材、南方、海螺、金隅冀东、华润、华新、红狮、三峡、鲁中等多家水泥集团获得成功使用。并出口到德国、韩国、美国、俄罗斯、印度、巴西等国家和地区。如今,在国内水泥产能明显过剩的大背景下,降低水泥制造成本,提高产品质量是决定企业生存的两大秘籍。BT-Online1在线激光粒度监测系统是水泥企业提质增效的利器,值得大力推广使用。
  • 普洛帝颗粒计数器助力钻采设备腐蚀评价
    在科技飞速发展的今天,普洛帝中国研发中心再次站在了行业的前沿,创新性地推出了一款激光散射与激光诱导击穿光谱双技术融合的综合油液监测监测系统。这款系统的出现,不仅打破了传统油液监测的局限性,更以其独特的双技术结合,为油液分析领域带来了变革。 该系统凭借激光散射技术,能够精准地检测液体中的颗粒数量、大小以及分布情况,从而为我们提供了关于油液清洁度和磨损程度的宝贵信息。而激光诱导击穿光谱技术,则能够深入液体内部,揭示其元素成分的奥秘,进一步帮助我们判断油液的性质和状态。 值得一提的是,这款系统首次在油田采出液中得到了应用。在石油勘探与开发领域,油田采出液的监测对于确保钻采设备的正常运行和维护至关重要。而这款系统的引入,正是为这一领域注入了强大的科技力量。它不仅能够实时监测采出液中的各种参数,还能够为钻采设备的腐蚀评价提供有力的数据支持。 普洛帝颗粒计数器,这位钻采设备腐蚀评价领域的“隐形守护者”,发挥着无可替代的角色。钻采设备,如同探险家手中的指南针,指引着石油、天然气等地下资源的开采之路,其稳定运行直接关系到生产效率和安全。然而,恶劣的工作环境让设备时常面临腐蚀的侵袭,这如同隐形的敌人,悄悄侵蚀着设备的性能,甚至可能引发安全事故。 普洛帝颗粒计数器的出现,犹如科技领域的明灯,为钻采设备腐蚀评价带来了变革。它凭借卓越的技术和精准的检测能力,成为设备腐蚀状况评估的得力助手。它运用先进的激光散射和激光诱导击穿光谱技术,如同拥有千里眼的侦探,精准而迅速地捕捉水中的元素成分、颗粒数量、大小以及分布情况。这些微小的颗粒,如同设备腐蚀的“指纹”,它们的存在与否以及数量、大小等指标,直接映射出设备的腐蚀状况。 与传统的腐蚀检测方法相比,普洛帝颗粒计数器展现出更高的灵敏度和准确性。传统的腐蚀检测方法如同事后诸葛亮,往往需要在设备出现明显腐蚀现象后才能采取行动,而普洛帝颗粒计数器则能够在腐蚀初期就发出警报,为设备的维护和保养提供更早的预警。此外,它还具备高度的自动化,减少人工操作的繁琐和误差,如同高效能的机器人,提升了检测效率和准确性。 普洛帝颗粒计数器的引入,使得钻采设备腐蚀评价变得更加科学和便捷。它不仅提升了设备的运行效率和安全性,更为企业的可持续发展提供了坚实的技术支撑。展望未来,随着科技的飞速进步和创新,普洛帝颗粒计数器有望在更多领域大放异彩,为人类社会的发展贡献更大的力量。 通过普洛帝颗粒计数器的精确测量,工作人员如同拥有了洞察秋毫的慧眼,能够及时发现腐蚀迹象,为采取应对措施赢得了宝贵的时间。同时,该设备还能提供详尽的颗粒数据,如同细心的侦探,帮助分析腐蚀原因,为改进设备设计和制造工艺提供有力支持。此外,普洛帝颗粒计数器的应用还极大地提高了腐蚀评价的准确性和可靠性。传统的腐蚀评价方法往往依赖于人工观察和经验判断,而普洛帝颗粒计数器的出现,使得评价过程更加客观、科学,如同给评价领域注入了一股清泉,使其焕发出新的生机和活力。 总而言之,普洛帝颗粒计数器在钻采设备腐蚀评价中扮演着举足轻重的角色。它不仅提高了评价的准确性和效率,更为保障钻采设备的安全运行提供了有力保障。随着科技的不断发展,相信普洛帝颗粒计数器将在更多领域展现出其强大的应用潜力,如同璀璨的明星,照亮科技发展的未来之路。 随着这款综合油液监测监测系统的广泛应用,我们有理由相信,它将为石油勘探与开发领域带来更加精准、高效的监测解决方案,助力我国石油工业的蓬勃发展。
  • PMT-2液体颗粒计数器在活性炭中颗粒管应用案例
    PMT-2液体颗粒计数器在活性炭中颗粒管应用案例一、方案背景在环保与水处理领域,活性炭作为高效吸附剂,其性能直接关乎水质净化效果。然而,活性炭在制备、运输及使用过程中,易吸附并滞留微小液体颗粒,这些杂质不仅降低活性炭的吸附效率,还可能成为二次污染源。因此,制定一套科学严谨的活性炭中液体颗粒管控实践方案,对于保障水质安全、提升净化效率具有重要意义。二、方案目标本方案旨在通过精细化管理与先进检测技术,实现对活性炭中液体颗粒的全面、准确监测与控制,确保活性炭在使用前达到既定清洁标准,最大化其吸附效能,减少对后续处理工艺的负面影响,从而守护水质纯净的每一道防线。三、仪器与试剂普洛帝PMT-2液体颗粒计数器是一种用于检测液体中颗粒数量的仪器,它采用光散射原理,能够精确测量液体中颗粒的大小和数量。在活性炭的制备过程中,通过使用液体颗粒计数器,可以实现对活性炭中颗粒的精确管控。普洛帝PMT-2液体颗粒计数器,让活性炭颗粒管控更轻松,更精准!四、检测步骤1. 样品预处理:采用物理方法,有效去除活性炭表面杂质,避免干扰因素。2. 分散与染色:利用专用分散剂将活性炭中的液体颗粒均匀分散,并借助染色剂增强颗粒可视性。3. 检测分析:运用高精度仪器对样品进行多维度扫描,精确测定液体颗粒的数量、大小及分布。4. 数据记录:详细记录检测过程中的各项参数与观察结果,为后续分析提供可靠依据。五、数据报告六、实验结论通过本方案的实施,可实现对活性炭中液体颗粒的有效管控,显著提升活性炭的纯净度与吸附性能。同时,也为活性炭在环保领域的广泛应用奠定了坚实的基础,推动了水处理技术的持续进步与发展。
  • FlowCam发布流式颗粒成像分析系统FlowCam Macro新品
    应用领域:食品和饮料中的颗粒物表征纤维表征聚合物,晶体材料,分体和其他化学品表征压裂支撑剂分析快速识别浮游生物和其他粒径最大至5mm的颗粒在FlowCam技术基础上,FlowCam Macro对大颗粒(300μm到5mm)的表征进行优化。它提供了快速颗粒表征,不仅仅是颗粒粒度,而且是直接的,基于图像的粒径和形态的测量。FlowCam Macro颗粒将多成分组成的混合物中不同类型的颗粒进行区分。测量分析颗粒粒径范围:300μm到5mm可达到每分钟200~400ml样本处理量颗粒的成像可达17mm长,5mm宽分析后的样本可回收使用可进行颗粒计数和浓度测量颗粒大小和形状,对每一个成像的颗粒进行超过30种形态学测量。通过卓越的图像质量和基于图像的测量,可以快速和准确地获得结果,并支持定量数据证明通过快速处理统计相关结果,从而可以实现在每分钟内处理数万个颗粒。利用自动的,基于统计学意义的识别软件,将不同类型的颗粒进行分门别类,从而提高工作效率创新点:在FlowCam技术基础上,FlowCam Macro对大颗粒(300μ m到5mm)的表征进行优化。它提供了快速颗粒表征,不仅仅是颗粒粒度,而且是直接的,基于图像的粒径和形态的测量。FlowCam Macro颗粒将多成分组成的混合物中不同类型的颗粒进行区分。 流式颗粒成像分析系统FlowCam Macro
  • 颗粒分析的新维度 | DIMENSIONS LS for SYNC
    Microtrac颗粒分析的新维度颗粒分析的新维度通过SYNC颗粒分析仪,麦奇克将其高精度的三激光衍射分析仪技术与多功能动态图像分析功能相结合,为颗粒表征研究者提供独特的测量体验。获得专利的同步测量技术允许用户在同一样品池中同时对单个样品进行激光衍射测量和图像分析测量:&bull 同一样品&bull 同一管路&bull 同一样品池&bull 一次分析SYNC激光粒度粒形分析仪非常适合常规QC应用。它还为研究人员开发新材料和新工艺提供了有价值的信息。功能强大的分析仪软件既提供粒度分布信息,又提供多种形态学颗粒参数。获得专利的 BLEND 程序允许用户检查从0.01μm到4000μm的各种尺寸的材料。通过设计实现最高性能&bull 激光粒度分析仪采用专利的三激光设计(提供红色和蓝色激光器)&bull 覆盖 0 – 165°的检测器阵列&bull 频闪光源和集成摄像头,用于动态图像分析&bull 激光衍射和图像分析于一体的相同主机工作台和分散系统&bull 干湿两用分析,切换非常方便Microtrac最新发布的软件DIMENSIONS LS 用于同步测量DIMENSIONS LS软件由六个结构清晰的工作区组成,用于方法开发、SYNC仪器操作、结果呈现和多项分析的评估。在分析期间,用于结果评估的工作区仍可访问。&bull 简单的方法开发&bull 结构清晰的结果呈现&bull 各种评估选项&bull 直观的工作流程&bull 简单的数据导出&bull 多用户功能 Microtrac广泛适用研究和工业每个行业解决方案&bull 油漆/色素&bull 陶瓷&bull 化学试剂&bull 工业矿物&bull 金属粉末&bull 建筑原料&bull 化学品&bull 药品&bull 玻璃/玻璃珠&bull 涂层&bull 食物&bull 3D打印&bull 食品原料&bull 乳剂&bull 聚合物&bull 电池材料
  • 普洛帝发布液体消光颗粒光谱图谱集
    普洛帝,作为一家在流体颗粒监测技术领域深耕多年的创新型企业,近日正式发布了一套液体消光颗粒光谱图谱集。这套图谱集的诞生,不仅标志着普洛帝在光谱分析领域的一次重要突破,更为相关行业带来了前所未有的便利和可能。这套图谱集聚焦于液体消光颗粒的光谱特性,通过精密的实验与数据分析,将颗粒在不同波长下的消光特性以图谱的形式呈现出来。图谱中,每一个数据点都凝聚着普洛帝科研团队的心血与智慧,它们共同构成了一幅幅精细的光谱画卷,展现了液体消光颗粒的独特魅力。这套图谱集不仅具有高度的专业性和精确性,更在实用性上表现出色。它能够帮助科研人员更深入地了解液体消光颗粒的光谱性质,为相关领域的研究提供有力的数据支持。同时,图谱集也为工业生产中的质量控制提供了可靠的依据,有助于提升产品的性能和品质。普洛帝发布这套液体消光颗粒光谱图谱集,不仅展示了其在颗粒光谱技术领域的领先地位,更体现了其对推动行业发展的责任和担当。未来,普洛帝将继续深耕光谱技术领域,不断探索创新,为相关行业的进步贡献更多力量。可以说,普洛帝发布的这套液体消光颗粒光谱图谱集,不仅是一次技术成果的展示,更是一次对光谱技术领域未来发展的美好憧憬。它必将为相关行业的研究和生产带来更加深远的影响。
  • 新品发布|便携式油液颗粒计数器简介【霍尔德】
    霍尔德上市新品啦!2024年01月04日上市了一款便携式油液颗粒计数器【便携式油液颗粒计数器←点击此处可直接转到产品界面,咨询更方便】对润滑油颗粒度的评估,我们通常从两个方面展开:颗粒尺寸分布以及颗粒浓度。通过细致地检测和分析,我们可以深入了解润滑油的清洁度、颗粒污染程度,以及颗粒的细致尺寸和分布情况。通过这样的评估,我们可以精确判断润滑油的有效寿命,洞察设备的健康状况,从而制定出更合适的维护计划。这就好比为设备进行定期体检,提前预警可能存在的问题,预防潜在的故障。而定期监测和控制润滑油颗粒度,无疑是维护设备性能、延长设备寿命的重要手段。这就像是为设备提供了一份全面的保健方案,确保其始终处于最佳状态。便携式油液颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。自动颗粒计数器主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度;3.可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气;4.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;5.管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测;6.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;7.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;8.内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准;9.内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能;10.可设定任意报警级别,实现污染度或洁净度检测;11.内置微水传感器和温度传感器;12.中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷;13.超大存储,可选择存储在仪器内部或外部存储设备中;14.嵌入式设计,高强度外壳,便于携带,适合各类工程机械技术指标:光 源:半导体激光器;检测速度:20-60mL/min;离线检测样品粘度:≤100cSt,粘度高时可选配压力舱;在线检测压力:0.1~0.6Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~500μm;接口:USB接口、电源接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵 敏 度:0.8μm或4μm(c);极限重合误差:40000粒/ml;计数体积:1~999ml;计数准确性:误差<±10%;防护等级:IP67;测试时间间隔:1秒~24小时;检测样品温度:0~80℃;水活性参考值:0~1aw(±0.05aw);水含量:0~360ppm(±10%);工作温度:-20~60℃;供 电: AC 220V±10%、50/60Hz;重量:2.5kg; 体积:275×220×107mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制