当前位置: 仪器信息网 > 行业主题 > >

快速分离四元系统

仪器信息网快速分离四元系统专题为您提供2024年最新快速分离四元系统价格报价、厂家品牌的相关信息, 包括快速分离四元系统参数、型号等,不管是国产,还是进口品牌的快速分离四元系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速分离四元系统相关的耗材配件、试剂标物,还有快速分离四元系统相关的最新资讯、资料,以及快速分离四元系统相关的解决方案。

快速分离四元系统相关的论坛

  • 【资料】Agilent 1200系列快速高分离液相色谱系统培训文档

    Agilent 1200系列快速高分离液相色谱系统培训文档安捷伦1200系列快速高分离 LC 系统,与常规 HPLC 相比,在没有牺牲分辨率、精密度和灵敏度的前提下,分析速度提高20倍,高分辨率提高60%。安捷伦1200系列快速高分离液相系统可提供最快分析速度、最高分辨率,同时最大限度地保持系统低压力而设计的。因此,它保留了常规 HPLC 仪器和方法的耐用性和工作原理。这种独特的设计使1200 RRLC成为了一种通用的液相分析流速范围适合的柱尺寸从1 到4.6-mm ID, 10 到 300-mm 柱长,粒度1.5到 10 µ m。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67227]安捷伦1200系列快速高分离系统[/url]

  • 【转帖】2008年欧盟食品和饲料快速预警系统(RASFF)新变化

    欧盟食品和饲料快速预警系统(RASFF)的法律依据是规定了食品法律总原则和要求建立欧洲食品安全局,并规定食品安全程序的(EC)178/2002号欧盟法规(见2002年2月1日的L31号官方日志)。 建立食品和饲料快速预警系统(RASFF)的目的是为当局在采取措施确保食品安全方面的交换信息提供一个有效的工具。 为帮助成员国,信息分成三类: 警告通报 警告信息是当市场上销售的食品或饲料存在危害或要求立即采取行动时发出的。警告信息是成员国检查出问题并已经采取相关措施(如退回/召回)后发出的。通报旨在给所有的成员国提供信息,检查是否这些产品出现在他们的市场上,以便他们采取必要的措施。 必须要向消费者保证警告通报里涉及的产品已经撤回或者正在撤回中。成员国自行采取措施实现上述行为,包括向媒体提供详细信息(如果有必要的话) 信息通报 信息通报是指市场上销售的食品或饲料的危害已经确定但是其他成员国还没有立即采取措施,因为产品尚未到达他们的市场或已不在市场上出售或产品存在的危害程度不需要立即采取措施。 禁止入境产品通报 禁止入境通报主要是关于对人体健康存在危害、在欧盟(和欧洲经济区)边境外已经检测并被拒绝入境的食品或饲料。通报被派发给所有欧洲经济区的边境站,以便加强控制,确保这些禁止入境的产品不会通过其他边境站重复进入欧盟。 委员会每周公布一次警告和信息通报。由于有必要达到公开商业信息和保护商业信息的平衡,因此贸易名称和各个公司的名称都没有公布。这对消费者来说并没有坏处,作为一个RASFF通报只要表达出已经采取了措施或是正在采取措施。 公众应该了解委员会除了公布这些信息外无须透露更多信息。但是在保护人的健康要求更高透明度的特殊情况下,委员会将通过惯例的联系渠道采取措施。 近期该系统最新变化有: 一、自2008年第1周起,“欧盟食品和饲料快速预警系统”除保留原有的“警告通报”和“信息通报”外,新增加了“禁止入境产品通报”。 二、自2007年第15周起,“欧盟食品和饲料快速预警系统发布的警告及信息通报”新增加了两个栏目分别是:“监控类型(Type of Control)”和“情况(Status)”。 1.“监控类型”主要分以下几类: (1)“边境监控-拒绝入境(Border Control-Import Rejected)”,即当进口货物被拒绝入境时,将其控制在欧盟(及欧洲经济区)外的边防站; (2)“边境监控-筛选抽样(Border Control-Screening Sample)”,即通过对边防站样品的分析而发出通报,但该类产品已经进入欧盟市场; (3)“市场监控(Market Control)”,即在欧盟(及欧洲经济区)内部市场上的官方控制; (4)“企业自检(Company Own-check)”,即根据某一企业向主管当局通报的自检结果而发出通报; (5)“消费者投诉(Consumer Complaint)”,即根据消费者向主管当局提出的控诉及被归入该类的食品中毒事件报告而发出通报。 2.“情况”一栏包含两层含义,即“销售情况(Distribution Status)”和“采取的措施(Action Taken)”。 (1)“销售情况”,即在通报发布时,市场上产品的可能的销售情况。此处的“市场”是指地理学意义上的“欧盟内部市场”,即并不意味着该产品已经上市销售,而通常情况下该产品尚未上市; (2)“采取的措施”,即在通报发布时,通报国已经采取的措施;如果在预警通报中没有采取措施,则通常表示该产品尚未在通报国的市场上出现,但可能已经在欧盟其他成员国的市场上出现。

  • 网络讲堂:8月20日 BioComp密度梯度制备与收集系统在生物大分子分离中的应用

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gifBioComp密度梯度制备与收集系统在生物大分子分离中的应用讲座时间:2014年08月20日 10:00 主讲人:孙福鼎 五洲东方分子生物学产品线应用工程师,负责分子成像设备以及密度梯度制备与收集产品的应用及技术支持,对密度梯度超速离心以及核糖体分离(Ribosome profiling)有着丰富的经验,目前主要致力于密度梯度超速离心在病毒分离、核糖体及叶绿体等亚细胞器分离以及其他生物学大分子分离的应用。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】1、生物学大分子分离方法2、密度梯度方法介绍及应用案例 产品应用领域应用于线性密度梯度溶液的快速制备,便于后续超速离心分离生物学样品。 产品主要特点快速高效,最快1min 内制备完成6 个离心管样品的均一线性梯度制备。程序控制,不同梯度介质及梯度范围所需程序均已内置,自动运行。适用广泛,可用于多种介质的梯度制备,包括Sucrose、Glycerol、Optiprep、Nycodenz、Ficoll、Percoll、Nacl、CsCl 等梯度介质。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年08月20日 9:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 采用气相色谱柱快速分离脂肪酸甲酯

    采用配备DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统快速分离脂肪酸甲酯。脂肪酸甲酯 (FAME) 的分析可用于鉴定食品中的脂类组分,是食品分析中最重要的应用之一。采用本方法实现快速、良好的分离效果。对油类、脂肪和含脂食品的分析是政府实验室、质量控制 (QC) 实验室或合同研究组织 (CRO) 实验室的常见任务。测定食品中的总脂肪与反式脂肪含量时,对脂肪酸及其 FAME 衍生物的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析是脂肪表征的重要工具。在许多用于食品(如食用油)检测的法规方法中,测定脂肪酸组成时都要求使用涂覆氰丙基固定相的毛细管柱对特定的顺反脂肪酸异构体进行分离。此外,实现良好的 FAME 分离还需较长的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱(100 米)和较长的分析时间(超过 70 分钟)。然而,这种方法分析效率较低且分析成本较高。而采用氰丙基固定相的 DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱,可实现 FAME 混合物的快速分离(包括分离一些关键顺反异构体),且能满足法规方法的要求。本文简述了采用 DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统快速分析FAME 混标。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033964746.png[/img]实验部分试剂与标准品FAME 36 组分混合物(部件号 5191-4276)、C4–C24 偶数碳饱和 FAME 混合物(部件号 5191-4278)和菜籽油 FAME混合物(部件号 5191-4277)均来自安捷伦科技公司。37 组分 FAME 混标(部件号 CDAA-252795-MIX-1 mL)购自上海安谱科学仪器有限公司。将 C4–C24 偶数碳饱和 FAME 混合物用己烷稀释至 500 μg/mL。菜籽油 FAME混合物为 100 mg 净混合物,用二氯甲烷稀释 20 倍。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033868195.png[/img]仪器使用配备火焰离子化检测器 (FID) 的Intuvo 9000 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行分析。使用配备 5 μL 进样针(部件号 G4513-80213)和分流/不分流进样口的 Agilent 7693A 自动液体进样器进样。实验步骤将标准样品用与之相对应的方法进行进样分析,检测方法如表1-表5所示。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033863172.png[/img]结果与讨论FAME 36 组分混标专门为模拟多种食品样品的脂肪酸组成而设计,可用于鉴定多种食品中的关键 FAME。该混标中包含 C4:0至 C24:1 范围的 FAME,包括多数重要的饱和、单不饱和及多不饱和 FAME。该混标不包含以前用作内标的一种 FAME,即二十三烷酸甲酯 (C23:0),。图 1所示为 FAME 36 组分混合物在 20 m ×0.18 mm、0.20 μm DB-FastFAME Intuvo[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱上的分离结果,图2所示为菜籽油按方法1进行分析的结果。该方法采用氦气作为载气,可在 5 分钟内实现所有化合物的分离,包括关键 AOAC 对,R s 1.5。采用这种方法获得了良好的峰形和分离度,且分析时间为 5 分钟。采用氢气作为载气,可在 4 分钟内完全分离 C4–C24 偶数碳饱和 FAME 混合物和 FAME 36 组分混合物(图 3 和图 4)。这表明使用该色谱柱可实现快速样品通量,且分离度不受影响。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033504634.png[/img]  对于使用传统 37 组分 FAME 混标验证其FAME 方法的实验室,图 5 展示了在 Intuvo9000 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]上使用 20 m × 0.18 mm、0.20 μm DB-FastFAME 色谱柱得到的色谱图。该方法采用氦气作为载气,在 8 分钟内实现了所有化合物的完全分离。  与预期结果一样,采用氢气作为载气可加快分析速度,而分离度几乎相同。图 6所示的结果表明,采用氢气作为载气可在6.5 分钟的分析时间内实现 37 组分 FAME混标中所有化合物的完全分离。[img]https://i5.antpedia.com/attachments/att/image/20200216/1581861033301731.png[/img]结论DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱可快速、出色地分离 FAME 混合物。实验表明,采用氦气作为载气时,DB-FastFAME Intuvo [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱可在 5 分钟内完全分离 FAME 36 组分混合物中的所有组分,包括关键 AOAC 对和关键顺反脂肪酸异构体。本实验也表明,此方法还能实现菜籽油的快速分析。采用氢气作为载气时,这种高效的 DB-FastFAME Intuvo[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱将运行时间缩短至 4 分钟以内,同时实现了所有化合物的基线分离。

  • 基于安卓掌上设备的近红外光谱快速分析系统研制成功

    近红外光谱具有快速、无损的优点,在农产品、化工、医药等行业有广泛的应用。近年来,小型化化、微型化近红外光谱仪已成为本领域的发展方向,用于实验室外的现场快速检测。 江苏大学陈斌教授领衔的近红外工作室(NIR Workshop,NIRW)一直致力于近光谱分析的基础与应用研究。美国JDSU公司成功研发出世界上最小的近红外光谱仪(Micro NIR 1700)。NIRW集中力量,于2013年7月开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。该系统软件包括两部分,一是辅助建模,能够建立、保存模型。二是光谱分析,能够实现光谱采集、模型加载、模型计算和结果的实时显示。 在此基础上,本团队开展基于安卓系统掌上设备的快速检测软件系统的开发研究,经颜辉、张索非的潜心功关,终获成功,在。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。 目前本系统已实现丰水梨糖度的实时检测。 后期将利用手机的定位、通信功能,实现云储存、云计算,最终形成高效的检测系统。视频链接:http://v.youku.com/v_show/id_XNjI5NjI0MDQ0.html

  • 基于安卓掌上设备的近红外光谱快速分析系统研制成功

    近红外光谱具有快速、无损的优点,在农产品、化工、医药等行业有广泛的应用。近年来,小型化化、微型化近红外光谱仪已成为本领域的发展方向,用于实验室外的现场快速检测。 江苏大学陈斌教授领衔的近红外工作室(NIR Workshop,NIRW)一直致力于近光谱分析的基础与应用研究。美国JDSU公司成功研发出世界上最小的近红外光谱仪(Micro NIR 1700)。NIRW集中力量,于2013年7月开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。该系统软件包括两部分,一是辅助建模,能够建立、保存模型。二是光谱分析,能够实现光谱采集、模型加载、模型计算和结果的实时显示。 在此基础上,本团队开展基于安卓系统掌上设备的快速检测软件系统的开发研究,经颜辉、张索非的潜心功关,终获成功,在。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。 目前本系统已实现丰水梨糖度的实时检测。 后期将利用手机的定位、通信功能,实现云储存、云计算,最终形成高效的检测系统。视频链接:http://v.youku.com/v_show/id_XNjI5NjI0MDQ0.html

  • 怎样让PY-GCMS做SIM方法时系统快速保持干净

    PY是3030的,有时要用SIM的方法测试含量低的物质进行定性,所以一定要使系统保持干净,除了不停的走空样,保持高的恒温让残余流出,对PY进行保养,跟换消耗品,衬管之类的,还有什么方法能快速的让系统保证干净??

  • HPLC二、四元泵的区别

    简单解释:二元泵是高压泵,四元泵是低压泵,二元泵的精度比四元泵好,看你的分析要求,要求不高四元泵就可以了。详细解释:泵,可组装成为二元高压梯度与四元低压梯度两种系统,两者区别如下:二元高压梯度:配置:双泵+在线混合器工作方式:双泵并联,可同时有两个流动相,按照预先设定的配比进入,再高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,提高了工作效率。同时可以做梯度洗脱,当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前次无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免遗漏重要物质的检测。四元低压梯度:配置:单泵+低压梯度阀+在线脱气机+混合器工作方式:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,由于在常压下混合所以较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户设定的配比自行改变流动相配比,将样品中所有组分分离开来,有助于提高分析准确性。做简单的分析,一般性的化合物用二元的系统就很好,如果做蛋白类,多肽等半制备或梯度洗脱还是四元系统方便,但需配在线脱气机。

  • 【转帖】欧盟食品和饲料快速预警系统发布预警及信息通报

    1.预警通报(Alertnotifications) 当具有风险的食品或饲料已上市,需立即采取行动时,由首先发现该情况并已采取相应措施(如撤出或召回)的欧盟成员国发出预警通报。告知各成员国检查通报产品是否已在其市场上出现,以便采取必要的措施;消费者可以放心,通报商品已经或正在从市场上撤出。欧盟各成员国都有相应的实施机制,必要时会通过媒体发布详细信息。 2007年2月27日,欧盟食品和饲料快速预警系统连续2次对原产于中国经荷兰转口的海藻发布预警通报。本案的通报原因为:进口的中国产海藻中的碘含量超标。通报国为德国,产品编号分别为:2007.0157和2007.0158。 2.信息通报(Informationnotification) 对于已确认存在风险,但其他成员国不必采取紧急措施的食品或饲料(还未进入其市场)进行信息通报。信息通报主要针对欧盟已检验并拒绝入境的产品。消费者可以放心,通报商品并未进入市场,或已采取了一切必要的措施。 2007年2月26日,欧盟食品和饲料快速预警系统对原产于中国的厨房用具(烤炉配件)发布信息通报。本案的通报原因为:进口的中国产厨房用具(烤炉配件)中含有铬。通报国为意大利,产品编号为:2007.AMF。 2007年2月26日,欧盟食品和饲料快速预警系统连续对原产于中国(香港)的厨房用刀发布信息通报。本案的通报原因为:进口的中国(香港)产厨房用刀中含有铬。通报国为意大利,产品编号分别为:2007.AMG。 2007年2月27日,欧盟食品和饲料快速预警系统对原产于中国的生虾尾肉发布信息通报。本案的通报原因为:原产于中国的生虾尾肉中E452-多磷酸盐含量过高,且含有E284-硼酸。通报国为西班牙,产品编号分别为:2007.AMY。 2007年3月1日,欧盟食品和饲料快速预警系统对原产于中国(香港)的餐叉发布信息通报。本案的通报原因为:原产于中国(香港)的餐叉中的镍和铬的迁移量超标。通报国为意大利,产品编号分别为:2007.ANV。 2007年3月2日,欧盟食品和饲料快速预警系统连续2次对原产于中国的葵花籽发布信息通报。本案的通报原因为:进口的中国产葵花籽有霉变现象。通报国为波兰,产品编号为:2007.ANY。

  • 【原创】关于WATERS的UPLC和AGILENT的RPLC以及其他公司的快速分离技术的一点浅解

    随着WATERS提出的UPLC仪器和快速分离的概念,发现最近提出这种技术的公司的仪器一个接一个的出来了。本人发表一点自己的看法,请大家多指教。也希望大家跟帖讨论这个问题,毕竟是新东西,越讨论越明白,大家多互相学习,学无止境嘛,更何况掏钱的咱们消费者,怎么也得搞明白点。 采用更小颗粒填料的柱子必然是色谱分离的一种趋势,因为根据理论,柱效有所提高,峰高就提高了,信噪比也就提高了,分离度也变大了,根据著名的van Deemter公式,填料颗粒变小,采用相应的最佳流速变小,柱效增加,当然带来的问题就是仪器系统需要承受更高的压力,没有计算过采用1.8um的柱子正常情况压力大概是多少PSI,不过应该仪器所需要承受的压力也不需要WATERS所宣传的15000PSI(感觉有点像是炫耀他的性能),Agilent采用提高温度的方式会缩短保留时间,减少流动相捻度,系统压力会降低到1200所能承受的范围,不至于因为柱压高造成密封圈损害,造成漏液。没看过1200系统能耐多少压力(有那位网友用过请告知),我想应该跟1100差不多,6000PSI到头,根据van Deemter公式,柱效与温度没有关系,最多保留时间变小会减小峰拓展,但是实际应用中不得不要考虑的问题是提高温度是必须考虑样品和填料的稳定性问题的。当然AGILENT既然宣传到100度的问题,肯定对他们的色谱柱在此温度下的稳定性有把握了,但是有多少样品在高温下是稳定而不分解呢? 另外一个本人比价迷惑的地方就是采用小颗粒柱效是增加了,但是柱长变短了,分辨率自然变小了。如果对于本来分离度不好的样品,但是由于柱长变短分辨率自然降低,提高柱效就能明显改善分离效果呢?没用过UPLC,不知道那位用过的网友能分析一个实际的样品比较来看看。 另外关于UPLC这个概念,据我所知,其实在WATERS之前就在蛋白质组学领域中的NANO多维液相上就已经应用这种采用更小颗粒填料的色谱柱技术了,柱压根据实际应用柱子的长度不同相差很大,有的研究人员已经采用了Pore size=300A,Colum I.D=100um,Colum length=50CM长的柱子进行多肽分析了,正常压力到6000PSI的样子,但是只有WATERS最先提出了一个UPLC概念,不愧是色谱行业老大,眼光独到!接下来跟风的公司不少,Agilent说他们03年就推出了小颗粒填料,不知真假,但还是棋差一招,没有WATERS厉害,Agilent的仪器耐不到这么高的压力,提高温度来降低压力以适用他们的仪器,同时也会缩短分析时间,达到更快速的效果,不过我还是对高温所带来的柱子和样品的稳定性问题有所怀疑,期待下次有机会去听他们的讲座,相信AGILENT下一代的仪器应该也会设计到15000PSI了。 另外就是关于van Deemter公式,填料颗粒变小,同时最佳分离流速也需要变小,柱效会增加,最佳理论踏板高度Hmin=2.48D,但实际却有所差异,因为其公式还存在一些别的因素没有考虑进去,目前van Deemter公式也在不断修正,在毛细管LC中,据说COLUMN i.d 达到2.1cm以下就会存在“管壁效应”,就像GC的毛细管,不仅仅是与填料的颗粒大小相关,如果根据van Deemter公式会得到很大偏差。LC技术还有很多很多需要探索的地方。 太唉,太累了,下次再接着探讨,欢迎大家跟帖发表意见和看法。

  • 【讨论】世界最大的源分离技术试验被搁置

    [size=4]世界最大的源分离技术试验被搁置 奥森公园“源分离”及资源化项目投运推迟  在“绿色奥运、科技奥运、人文奥运”理念的指导下,世界最大的源分离系统入驻奥林匹克森林公园,成为“三大理念”集中展示亮点之一,同时成为国家“十一五”科技支撑课题的重要部分。按照课题要求,黄水(尿液)资源化处理中心应在奥运会之前投入运行,把园内各卫生间单独收集的尿液进行处理,制成液体肥料用于公园的植物生长;处理后获得的达标中水,可以灌溉植物,补充园内湖泊的水体,实现森林公园的零排放。  今年5月30日,记者来到奥森公园,游客如织,分布各处的源分离卫生间也在使用。但不同于奥运会前的建设热潮,位于公园北部的黄水资源化处理中心处于停工状态,工地上看不到一个人。从外面看,绿色废物处理中心的外装支架已镶好,热泵管道也都铺设完工,密闭黄水处理中心预留的安装孔外露的钢筋却锈蚀斑斑,周围杂草丛生。  “黄水资源化处理中心是公园生活排污系统物质资源化的核心系统,目前建设到什么程度了?”记者问。  “土木工程都已建好,就差设备订货与安装了。开工的话,估计三个月就可投入运行了。”奥森公园设计专家组成员、北京中元工程设计顾问公司机电总工程师何伟嘉说。  “那设备什么时候能到位呢?”  “我们也不知道,在继续等消息。”  “既然中心还不能使用,公园的污水是如何处理的呢?”  “应该是用汽车拉到城市污水处理厂处理。”[/size]

  • 【原创大赛】快速炼厂气分析系统的原理简介

    【原创大赛】快速炼厂气分析系统的原理简介

    [color=black]快速炼厂气分析系统的原理简介[/color][align=center][color=black]概述[/color][/align][color=black]炼厂气分析系统——三通道快速分析方案的基本工作过程图解。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]原油一次加工和二次加工的各生产装置都有气体产出,总称为炼厂气,主要来源于原油蒸馏、催化裂化、热裂化、石油焦化、加氢裂化、催化重整、加氢精制等过程。[/color][color=black]炼厂气的组成因加工条件及原料的不同,有很大差别。除了催化重整产生的气体是以氢气为主外,其他装置产气主要为碳一(甲烷CH4)至碳四(丁烷、丁烯等)的气态烃以及少量杂质等,其中以催化裂化装置总加工量大,气体产量大,气体中的烯烃也最多。因此,催化裂化气体是炼厂气加工装置的主要来源。[/color][color=black]炼厂气常分为两个部分,碳一和碳二(乙烷、乙烯)的烃类称为干气,数量较少,一般作为燃料气供加热炉烧掉,也可利用干气中的乙烯组分制作苯乙烯等;碳三(丙烷、丙烯等)和碳四的烃类,即液化石油气,是炼厂气加工的主体。[/color][color=black]使用Shimadzu公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014,配备有双TCD检测器、单FID检测器和四支自动切换阀,设计某炼厂气分析系统,一次进样完成炼厂气样品中多组分(氢气、氧气、氮气、甲烷、一氧化碳、二氧化碳、碳二-碳六烃类、碳六以上总烃类)的分析工作,10min之内即可分析完成。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]本系统的硬件结构原理如图1所示,系统分为三个分析通道,分别采用两个TCD检测器和一个FID检测器,两个TCD检测器选用不同种类载气以满足分析灵敏度的要求。[/color][color=black]系统配置有四支自动切换阀(三支自动十通阀、一支自动六通阀)和七根色谱柱,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对四支切换阀进行精确、定时的切换,改变七根色谱柱的连接与反吹状态,实现样品的分离测定。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733557696_3114_1604036_3.jpg[/img][/align][align=center][color=black]图1 快速炼厂气分析系统(待机状态)[/color][/align][color=black]通道一使用TCD检测器,氢气或者氦气做为载气,测定炼厂气样品中的微量轻烃类物质(甲烷、乙烷、乙烯)、氧气、氮气、二氧化碳、一氧化碳和硫化氢等组分,采用十通阀进样反吹加六通阀色谱柱选择的方式连接。[/color][color=black]通道二使用TCD检测器,氩气做为载气,测定炼厂气样品中的微量氢气组分,采用较为基本的十通阀进样反吹方式连接。[/color][color=black]通道三使用FID检测器,测定炼厂气样品中的碳三至碳六烃类以及碳六以上烃类物质总量浓度,采用十通阀进样反吹方式连接,反吹出口直接连接至FID检测器,测定碳六以上的重烃类物质总量。[/color][align=center][color=black]三 工作流程[/color][/align][color=black]该系统的工作流程如下:[/color][color=black]通道一工作过程[/color][color=black]取样:[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]进样,样品预分离[/color][color=black]样品通入十通阀完全替换掉定量环中残余气体后,十通阀旋转36°,此时样品进样至色谱柱PC1中,此时系统状态如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733562003_1441_1604036_3.jpg[/img][/align][align=center][color=black]图2 进样状态下的通道1系统结构图[/color][/align][color=black]此时样品流经Car1 - loop - PC1 - C1 - C2 - - TCD1。样品在色谱柱PC1中被预分离成两部分:保留较弱的碳二以下的烃类(包括硫化氢)和永久气体(氧气、氮气、一氧化碳、二氧化碳),和保留较强的碳三以上的烃类组分。[/color][color=black]反吹,放弃碳三以上的烃类组分[/color][color=black]当样品中的碳二和永久气体组分流出色谱柱PC1之后,系统控制十通阀再次旋转36°,系统恢复到图1的状态,色谱柱PC1内部的载气流向发生反相,该色谱柱内留存的碳三以上的重烃类物质被反吹放弃掉。[/color][color=black]此状态下,载气流向为:Car1 - PC1 - Vent1(PC1中载气方向发生反转)。[/color][color=black]色谱柱选择,滞留永久气体。[/color][color=black]色谱柱PC1中流出的碳二和永久气体组分,在色谱柱C1中继续分离以增加分离度和选择性(色谱柱PC1和色谱柱C1内部填充物为不同的有机担体类固定相)。组分在C1色谱柱中被分离成永久气体(色谱柱内表现为单峰)和二氧化碳、乙烷、乙烯、硫化氢几个部分。[/color][color=black]其中永久气体类组分作为合峰完全流入色谱柱C2之后,切换阀V2旋转60度,将永久气体物质滞留在色谱柱C2之中。[/color][color=black]色谱柱C1中的二氧化碳、乙烯、乙烷和硫化氢经过阻尼R,流出至TCD1检测器,首先出峰。系统此时状态如图3所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733564744_1119_1604036_3.jpg[/img][/align][align=center]图3 永久气体被滞留在色谱柱C2中的状态[/align][color=black]5 色谱柱选择,释放永久气体类组分。[/color][color=black]当色谱柱C1中的硫化氢出峰完毕,切换阀V3再次旋转60度,通道一结构恢复至待机状态,此时色谱柱C2中滞留的永久气体类组分流出至TCD1检测器,出峰顺序为氧气、氮气、甲烷、一氧化碳。[/color][color=black]通道二的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V3旋转36度,此时样品被载气携带进入预分离色谱柱PC2中(样品流经 car3 - loop -PC2 - Column1 - TCD2)。[/color][color=black]样品在预分离色谱柱PC2(PC1柱内填充物为有机担体类固定相)中分离为较轻组分(氢气、氧气、氮气、一氧化碳)和较重组分(烃类、二氧化碳等物质)。[/color][color=black]其中保留较弱的永久气体类组分流入色谱柱C3(色谱柱内填充物为分子筛),氢气被色谱柱C3上与氧气、氮气等组分分离并在TCD1检测器上出峰。[/color][color=black]3 反吹[/color][color=black]当色谱柱PC2中的较轻组分完全流入色谱柱C3中,十通阀V3再次旋转36度,此时色谱柱PC2内部的载气反向流动,将保留时间较强的组分(二氧化碳、重烃类等物质)反吹流出系统。[/color][color=black]通道三的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V4旋转36度,此时样品被载气携带进入预分离色谱柱PC3中(样品流经 car5 - loop -PC3 - C4 - FID)。[/color][color=black]样品在预分离色谱柱PC3(填充物为非极性硅氧烷类固定相,一般会使用长度较短的毛细管柱)中分离为较轻组分(氢气、氧气、氮气、一氧化碳、碳六以下的烃类)和较重组分(碳六以上的重烃类)。[/color][color=black]其中保留较弱的各类组分流入色谱柱C4(该色谱柱为长度较大的氧化铝毛细管色谱柱),烃类物质可以在该色谱柱上实现分离,并且存在一定的保留时间。[/color][color=black]3 反吹,碳六以上组分出峰[/color][color=black]当色谱柱PC3中的较轻组分完全流入色谱柱C4中,并且所有组分并未从色谱柱C4中流出时,十通阀V4再次旋转36度,系统恢复至图1所示的状态,此时色谱柱PC3内部的载气反向流动,将保留时间较强的组分(碳六以上的重烃类)反吹流出进入FID首先出峰。[/color][color=black]然后色谱柱C4中的各个烃类组分逐次流出在FID上出峰。[/color][color=black]系统总体谱图如图3所示[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733568898_2666_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733569656_2650_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733570525_9994_1604036_3.jpg[/img][/align][align=center]小结[/align][color=black]该分析系统三个通道工作相独立,通道三的保留时间需要嵌套,分析过程较为复杂。分析系统配置三个检测器,总体运行和维护成本较高,但系统分析效率高。[/color]

  • 【求助】四元低压梯度系统的使用

    我们实验室的液相是四元梯压梯度系统,一般A通道是甲醇通道,B是水通道,C是乙腈通道,D是盐溶液通道。我要用CD两个通道测氨基酸含量,需要进行梯度洗脱,但是在工作站中梯度设置有个高压梯度和低压梯度设置,高压梯度设置里只有AB两个通道的设置(包括流速设置),低压梯度设置里有四个通道的设置,但没有流速的设置,我该如何进行设置,还有就是高压和低压梯度的区别是什么?请问哪位前辈有经验,能不能指导一下,感激不尽!

  • 【分享】欧盟食品和饲料类快速预警系统(RASFF)2011年通报

    欧盟食品和饲料类快速预警系统(RASFF)2011年第1周通报日期代号产品类型控制类型国家来源通报原因状态食品接触材料05/01/20112011.AAI食品接触材料边境拒入芬兰来自中国来自中国的咖啡壶和咖啡杯套装中发现含有铅的残余(1.4- 30 mg/dm²)和镍的残余 (2.9- 4.6 mg/dm²)产品被扣押05/01/20112011.AAJ食品接触材料边境拒入芬兰来自中国来自中国的瓷刀叉组合中发现含有铬的残余 (叉子: 5.4; 6.3 mg/dm²)市场分销(可能的话)谷物和焙烤食品04/01/20112011.0010食品通知法国来自中国来自中国的米粉中含有未经官方批准的转基因成分(Bt 63)市场分销(可能的话)03/01/20112011.AAB食品边境拒入希腊来自中国来自中国的花生仁持有虚假健康证改变产品目的国欧盟食品和饲料类快速预警系统(RASFF)2011年第2周通报 日前,欧盟食品和饲料类快速预警系统(RASFF)发布了2011 年第2 周通报,共计47 项(预警通报7 项,信息通报16 项,拒绝进口通报24 项)。其中,针对中国输欧产品8 项(不包括对香港和台湾地区的通报),占欧盟通报总数的17.0%。现将RASFF 对华通报摘译如下:表1 对华预警通报通报时间通报国通报产品编 号通报原因措 施2011-1-11法国米粉2011.0030非法转基因可能已上市销售/撤出市场表2 对华信息通报通报时间通报国通报产品编 号通报原因措 施2011-1-10意大利冷冻螃蟹2011.0028镉含量超标销售限于通报国/撤出市场2011-1-13塞浦路斯塑料车工2011.0048初级芳香胺物质迁移销售限于通报国/销毁2011-1-13塞浦路斯厨房器具2011.0049初级芳香胺物质迁移销售限于通报国/销毁对华拒绝进口通报通报时间通报国通报产品编 号通报原因措 施2011-1-10爱尔兰面条2011.AAT铝含量超标无销售/销毁2011-1-10意大利冷冻鱼虾2011.AAU—无销售/产品遣回2011-1-11希腊烤荞麦籽2011.AAV感官不良,发霉无销售/产品遣回或销毁2011-1-12波兰冷冻罗非鱼片2011.ABF卫生证书不合格无销售/产品遣注:本周欧盟未对华产品发布预警通报。欧盟食品和饲料类快速预警系统(RASFF)2011年第3周通报 日前,欧盟食品和饲料类快速预警系统(RASFF)发布了2011 年第3 周通报,共计57 项(预警通报13 项,信息通报18 项,拒绝进口通报26 项)。 其中,针对中国输欧产品8 项(不包括对香港和台湾地区的通报),占欧盟通报总数的14.0%。现将RASFF对华通报摘译如下:表1 对华预警通报[

  • 网络讲堂:7月25日基于二维色谱分离方法快速测定婴幼儿配方奶粉及其他乳品中维生素A、B12、D3和E的含量

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif基于二维色谱分离方法快速测定婴幼儿配方奶粉及其他乳品中维生素A、B12、D3和E的含量讲座时间:2014年7月25日 10:00 主讲人:张艳海赛默飞世尔公司色谱质谱部应用研究中心液相色谱应用工程师,在赛默飞一直致力于液相色谱方面的应用方法开发http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】1、介绍乳品中关于vitamins A、B12、D3和E测定的难点、主要方法及存在问题2、 基于DGLC二维色谱分离手段,构建vitamins A、D3和E测定平台 二维色谱方法主要概念、主要优势和应用领域; 介绍婴幼儿配方奶粉中vitamins A、D3和E测定的二维分离方法及DGLC平台建立; 介绍方法学验证结果,及与国标数据对比。3、婴幼儿配方奶粉中vitamin B12测定方法介绍 基于DGLC的二维系统构建 主要色谱条件和结果-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元京东卡一张哦~3、报名截止时间:2014年7月25 日 9:30 4、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 【讨论】高效&快速的色谱技术—你更看好哪一条?

    [b]1、更小粒径的填料催生了超高效液相色谱的诞生[/b]  根据色谱速率理论,粒径越小,柱效越高,而且当粒径小到亚2微米左右时,线速度的提高,其分离度就不再降低,从而改变了许久以来人们不得不在“速度和分离度之间取舍”的局面。但问题是,粒径减小带来了柱压的急剧升高,因此对系统的耐压性能要求很高。从2004年至今,前后已有沃特世、安捷伦、赛默飞世尔、Jasco、岛津、日立、Scientific Systems、戴安、Kuauer、珀金埃尔默等10家公司推出了基于亚2微米填料的超高效液相色谱,这已然成为液相色谱发展的主要方向之一。此次会议上,岛津公司推介了其最新一代超高效液相色谱系统Nexera UHPLC LC 30A,该系统将系统的最高耐压性再次提高,最高可达到130MPa。(本网曾参加该款产品的发布会,并撰写相关报道:[color=#ff0000]岛津推出新型“超高效液相色谱仪”[/color]  那么,填料的粒径会一直小下去吗?鉴于亚2微米填料所带来的对系统要求更高、更严的状况,使得用户与厂商去寻求粒径与压力的平衡点。实践中,人们发现使用粒径2-3微米的填料,可获得比常用3-5微米填料更高的柱效,但却能以60MPa的压力甚至常规液相使用压力即可驱动,由此使得2-3微米填料正在成为业界的新宠。应该说,减小粒径是提高分离效率和分离速度的一种有效手段,但不是唯一手段。[b]2、另一种提高柱效的思路——核壳型填料[/b]  核壳型填料就是从改善传质过程的角度来提高分离效率和分离速度。早在1964年,就有文献报道此种填料的制备方法,核壳型填料就是在坚实的硅胶核心上生成一个既坚稳又均匀的多孔外壳。核壳型填料颗粒并不完全多孔,这样分析物穿过色谱柱时只需要花费少量的时间便能扩散出颗粒孔中,较短的扩散路径导致更快传质的进行,并且有优异的柱效。研究表明,同样尺寸的核壳填料,柱效为亚2微米柱效的80%,压力却只亚2微米的45%。目前,生成和供应核壳型填料的厂家有安捷伦、Supleco、菲罗门、Chrome Matrix、Sigma-Aldriich。[b]3、实现快速分离的关键——以对流传质取代扩散传质之贯流色谱[/b]  在贯流色谱填料上,既有30-150nm的中孔,又有贯穿整个颗粒的,孔径约600-800nm的超大孔存在,这个贯通的超大孔可以允许流动相直接进入填料颗粒的内部并贯穿而过。贯穿孔将填料分割成很多更小的颗粒,相当于减小了填料的粒径,提高了色谱柱的柱效,并且其可以允许使用更高的流速,实现快速分离。此外,基于这个理论,一些新型的色谱填料和柱型相继开发成功:膜色谱柱、整体柱、无孔柱填料。[b]4、耐高温的填料颗粒[/b]  实现快速分离的又一途径即优化分离温度,特别是对生物大分子尤为如此。温度升高,流动相粘度降低,操作压力下降,同时还有利于快速分离。但是要求填料耐高温性能好,样品的热稳定性好。在基于亚2微米的超高效液相色谱系统中,其实对这点因素也有考虑,柱温箱的最高温度都有所提高,岛津最新推出的超高效液相色谱其柱温箱的最高温度可高达150℃。[b]5、分子印迹聚合物(molecularly imprinted polymer,MIP)[/b]  分子印迹聚合物事采用模板聚合法制备对模板分子具有选择性记忆、识别能力的高分子聚合物。通常,利用自组装在模板分子周围的烯类单体分子,经聚合、交联后,将模板分子从高聚物中洗脱取出,便可在高聚物中留下与模板分子几何形状相匹配的空穴。这些空穴对模板分子的选择性记忆能力使分子印迹聚合物与模板分子之间构成类似生物界抗体与抗原间专一的“锁”与“钥匙”的关系。 目前,该方法在蛋白分子分析中应用正方兴未艾,有着诱人的前景。但是其也面临以下几个难点:(1)蛋白分子对环境条件敏感 (2)适合于水相中反应的单体、交联剂、引发剂种类较少 (3)生物大分子表明存在众多类型的结合位点 (4)体积大,传质洗脱困难。[color=#0033ff][b][color=#000000]6、双色谱柱模式[/color][/b][/color][b]  [/b][color=#000000]色谱分析中,除了样品的分离时间外,色谱柱还需有一个平衡时间。戴安公司在其技术与应用报告会上介绍了其[/color][url=http://www.instrument.com.cn/netshow/C96498.htm][color=#000000]双三元梯度液相色谱系统[/color][/url][color=#000000],该系统配备了两个三元低压梯度泵和两个色谱柱,用户可以用一根柱子分析样品,另一个柱子平衡,通过在两者间的来回切换实现了分析的“快速”。同时其可以连接在线固相萃取装置,将样品前处理时间也大大缩短,再次实现了分析的“快速”。[b]7、色谱饼(Chromatographic cake)[/b][/color]  色谱饼是一种特殊的液相色谱柱, 其柱直径远远大于柱长,呈饼形。来自西北大学现代分离科学研究所、现代分离科学陕西省重点实验室的耿信笃教授正是用这种特殊的“色谱柱”实现整体蛋白的快速分离。通常的快速分离仅指样品从进样到样品中的组分流出色谱柱的时间,而一个连续的分析样品过程中应该包括柱平衡时间、进样和洗脱时间、柱再生时间等,此方法所实现的“快速”属于后者。  众所周知,蛋白分离的效果基本上与柱长无关,这就提供了一个用短柱分离整体蛋白,在高速条件下快速分离的可能性,当然,前提是分离度不能有显著的损失。耿教授课题组将3微米的多孔RPLC填料装在直径1厘米,厚度1毫米的色谱饼中,以10mL/min流动相流速,1分钟内分离了7种整体蛋白,实现了高速度(1分钟)、高分离度(反相分离7种蛋白)、高样品量(1mg)、高重现性。这种蛋白分离方法可以应用于临床的快速分析。8[b]、绿色液相色谱[/b]  当今,“低碳环保”已经渗透到我们生活的方方面面,那么液相色谱如何“绿色”呢?岛津公司在其技术与应用报告会上介绍了新近推出的Nexera系统只用水作为流动相分离样品。该系统配备了高温柱温箱CTO-30A,最高温度可达到150℃ ,在如此高的温度和压力下,流动相纯水处于亚临界状态,其对物质的溶解性有很大提高。目前,虽然用纯水做流动相还只能用于分析简单的样品,应用也很有限,不过,随着技术的进步,绿色液相色谱可能会有更广泛的应用前景。[b][b]9、[/b]CAD取代ELSD[/b]  “电雾式检测器(CAD)将取代蒸发光散射检测器(ELSD)检测器!”在戴安公司技术与应用报告会上,其应用研究中心梁丽娜博士提出这一说法并给出了理由:因为CAD在灵敏度、响应一致性、动态范围、重现性等方面均优于ELSD。梁丽娜博士还谈到:CAD所兼容的流速范围比较广,因而它不仅可用于高效液相色谱,还可用于超高效液相色谱,并且,CAD与质谱检测器有着应用交叉之处,即当流动相不易挥发且检测化合物没有紫外吸收时,二者都能适用,但CAD或许是更好的选择,因为它更易学易用。[size=4][color=#fe2419][u]讨论:[/u]如此几条,你更看重哪一条呢?[img]http://simg.instrument.com.cn/bbs/images/brow/em09505.gif[/img][/color][/size]

  • 快速手性分离的一种用法设想

    我们想让分析周期短一些。准备用在GC-MS上。对于不关心其手性分离的物质,能不能快速过去,只有在关心的物质区域工作一下。咨询专家,我这样的想法可行不?!目的是节约分析时间。

  • 【原创】两元高压梯度和四元低压梯度(带在线脱气)系统优劣的比较

    目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是两元高压梯度,当然是用在梯度时。那么两元高压梯度和四元低压梯度(带在线脱气)系统比较一下,各有什么优缺点。讨论范围不仅是性能,还应考虑生产成本和销售利润。大家觉得如何。我目前还是觉得这是国外厂商的一种销售技巧,从目前的售价看,四元的比二元高压并低不了太多,但他们节约的成本是不少的。我认为高压梯度在作高精度分析时优势明显。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制