当前位置: 仪器信息网 > 行业主题 > >

宽带宽电压放大器

仪器信息网宽带宽电压放大器专题为您提供2024年最新宽带宽电压放大器价格报价、厂家品牌的相关信息, 包括宽带宽电压放大器参数、型号等,不管是国产,还是进口品牌的宽带宽电压放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宽带宽电压放大器相关的耗材配件、试剂标物,还有宽带宽电压放大器相关的最新资讯、资料,以及宽带宽电压放大器相关的解决方案。

宽带宽电压放大器相关的资讯

  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 普源精电:13GHz带宽数字示波器预计明年发布
    近日,普源精电在接受机构调研时称,公司13GHz带宽数字示波器相关自研芯片已经于去年成功流片,目前正处于示波器整机产品化研发进程中,符合项目进度预期,预计明年正式发布。普源精电补充道,13GHz带宽数字示波器将是一个全新的里程碑,公司技术储备可以直接覆盖,并能够向下兼容到8GHz带宽,且能够更好的覆盖高速接口测试应用,市场空间巨大。另外,关于“凤凰座”芯片应用情况,普源精电表示,目前公司“凤凰座”自研芯片组已经用于MSO8000/R、DS70000、MSO5000、DS7000等全部高端及部分中端数字示波器产品。其进一步表示,波形发生器旗舰产品DG70000系列是业内领先的具有最高12Gsa/s采样率、5GHz频率输出、16bit垂直分辨率、4Gpts波表长度的高性能任意波形发生器(简称:AWG),拥有-70dBc无杂散动态范围,为用户提供更清晰、更纯净的信号。此产品采用了公司自研芯片技术,具备一定的壁垒优势。关于“公司ASIC专用芯片组包含三颗芯片,是否可以用商用芯片进行替代”的问题,普源精电解释称,公司ASIC自研专用芯片组的三颗芯片,无法用商用芯片完全进行替代,具体如下表所示。普源精电解释称,目前看来,仅有示波器信号处理芯片有通过商用模数转换芯片替代的可行性。公司作为国内细分行业龙头企业,在国内最早使用通用商业芯片设计数字示波器并最高实现1GHz、5GSa/s的技术指标,截止到目前尚无其他国内公司达到。公司充分了解国内外商用芯片供应商的产品情况并保持长期合作交流,比如公司与德州仪器(TI)在2021年上海进博会签署了战略合作备忘录。一般情况下,通用商业芯片公司不会为“多品种小批量”的仪器公司而专门定制某种类型的芯片。综合来看,目前来看行业内尚无通过使用商用芯片实现2GHz带宽和10GSa/s采样率高端数字示波器的成功案例。关于“公司披露了自建核心芯片封测线,请问为何要自建封测线而不选择外协封测”的问题,普源精电声称,公司高端仪器所使用的自研芯片采用自主封测,主要原因有三点:其一,公司高端仪器产品具备多品种小批量的特征。如选择头部封测供应商则由于芯片颗数较少,费用较高且拒单率较高;其二,行业内领导企业都会将核心芯片封测能力视为技术壁垒之一,因此提前掌握该能力也会为公司未来发展筑牢“城墙”;最后,拥有自建核心芯片封测线,还会为公司下一代芯片研发创造极为有利的条件,比如研发人员可以随时调用该封测线并反复进行试验,而使用外协封测供应商,则往往需要较长的排期且灵活性较差,同时还会面临技术秘密外泄的风险。除高端仪器所使用自研芯片之外,常规芯片封测通过外协加工方式完成,苏州本地拥有非常好的供应链配套。关于“公司具备自研芯片能力,以后是否会考虑直接销售芯片”的问题,普源精电回应称,在自研示波器专用核心芯片组方面,公司已经积累了十多年的经验。由于是专用芯片组,设计出来的目的是和系统配合提升数字示波器整机性能。普源精电是仪器公司,会聚焦并坚持仪器这个主业。测试测量仪器公司和商业模拟芯片公司的模数转换器,尽管核心技术指标类似,但具体技术追求还是有差异的。仪器芯片追求极致的指标,不那么在乎功耗和体积。同时,由于公司的自研芯片是ASIC专用芯片,除了模数转换器功能外,还会对频响、温漂、校准等仪器系统需求进行匹配和应用。所以相对复杂度更高,客户必须具有较高的应用水平才能进行使用,因此我们更倾向于通过为客户提供芯片级和模块级解决方案满足客户需求(公司芯片级解决方案实物如下图所示),而非直接销售芯片。当然,公司自研的10GSa/s模数转换专用芯片具备较高的商业应用价值。但以行业内国际巨头为例,通常都不会直接销售其自研芯片,这也是各个厂家核心技术壁垒和差异优势所在。此外,关于公司与安捷伦的合作,普源精电表示,公司与安捷伦的合作从2004年开始到2019年结束,合作形式为公司给安捷伦提供ODM(贴牌)服务。公司自主研发、生产相关数字示波器产品,并拥有其全部核心自主知识产权。双方初次接触肇始于2004年德国慕尼黑电子展,彼时普源精电已发布DS5000系列产品,不仅是全球首家使用商业芯片达到200MHz带宽、1GSa/s实时采样率的公司,同时也是中国大陆唯一的数字示波器厂家。作为业内全球领先企业,安捷伦对公司技术和产品实力给予充分的认可,曾有过收购普源精电的谈判,但公司坚持“将中国电子测量仪器的小红旗插遍全球”的梦想,因此并未接受,双方随后展开ODM合作,通过普源精电的产品补充其经济型示波器市场。到2019年,随着公司发布自研芯片组,且推出高端数字示波器后,是德科技(安捷伦)识别到普源精电已经掌握了高端数字示波器的核心技术,在主流示波器市场会产生显著双方品牌竞争,因此经过友好协商,结束相关ODM合作。关于芯片短缺的影响,普源精电表示,目前公司受缺芯影响的主要是老工艺芯片,这对公司经济型产品产生一定程度的交期延长。芯片短缺现象从疫情开始后就已经陆续出现,今年2-3月份该情况已经明显好转。公司在去年就已经完成了短缺物料的替换调整和工程变更,且通过现货采购满足客户交付承诺和战略储备,目前已经能够较为从容的应对芯片短缺问题。公司中高端数字示波器产品主要采用自研芯片,且晶圆储备充足,因此中高端示波器产品不受市场上芯片短缺情况的影响,且今年以来销售表现亮眼,有力拉动公司利润增长。普源精电指出,国产品牌要想真正进入广阔的蓝海市场,跳出经济性市场的红海竞争,就必须在关键技术点做出突破。微波射频产品目前重点突破超宽带毫米波放大器、高分辨率高动态范围模数/数模转换器、宽带开关、高频混频器、超宽带电桥等“卡脖子”关键射频模块或芯片,同时还需要建立包括薄/厚膜工艺、微/纳米级机械加工、微组装等制造能力,这样才能达到替代甚至超越国际主流厂商的技术指标。公司微波射频产品线短期目标是在44GHz和67GHz以上频段的毫米波产品建立芯片级壁垒优势,并进一步打开未来太赫兹产品市场。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括:正要建立新电生理实验室的教授及研究人员大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC.请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与!若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 我国宽带脉宽压缩光栅研制获进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG,图1)(详见:Optical Letters,35(2010)187)。  该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱(图2),采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上(图3),在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。  全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • 我国宽带脉宽压缩光栅研制取得重要进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG)(详见:Optical Letters,35(2010)187)。  该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱,采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上,在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。  全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。br//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院)/ppbr//ppbr//p
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。  声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。  在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。  无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。  新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。  关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。  高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title="微信图片_20170518091903_副本.jpg"//pp style="text-align: center "文章封面以及毛细力构筑单热点结构示意图/p
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp style="text-align: center "img width="250" height="321" title="ea14fe0b8668f5b02fa47ae1ab982279.jpg" style="width: 250px height: 321px " src="http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border="0" vspace="0" hspace="0"//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。/p
  • 美产品超九成,高端应用仍是空白,谁能扛起国产替代大旗?
    示波器是一种用途十分广泛的电子测量仪器,是设计和测试电子设备和器件最常用的工具。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。早期的示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。随着微电子技术的发展,数字示波器逐渐成为市场和科研领域的主流,其工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器看(DSO),数字荧光示波器(DPO)和采样示波器。DPO在示波器技术上有了新的突破,能够实时显示、存储和分析复杂信号,利用三维信息(振幅、时间性及多层次辉度,用不同的辉度显示幅度分量出现的频率)充分展现信号的特征,尤其采用的数字荧光技术,通过多层次辉度或彩色能够显示长时间内信号的变化情势。示波器是电子工程师和维修人员的眼睛。没有示波器等观测仪表,判断电路工作状态是极其困难的。示波器的应用极为广泛,包括通用电子测试、工业自动化、汽车、大学的研究实验室以及航空航天 / 国防产业等。许多公司都依赖示波器来查找缺陷,从而制造出质量过硬的产品。示波器的重要性不言而喻。作为应用最广泛的测量仪器产品,数字示波器在市场规模、应用范围上均占主导地位。数字示波器自上个世纪七十年代诞生以来,其应用越来越广泛,已成为测试工程师必备的工具之一。随着近几年来电子技术取得突破性的发展,全世界数字示波器市场进一步扩大,而作为在世界经济发展中扮演重要角色的中国,飞速发展的电子产业也催生了更庞大的数字示波器需求市场。由于高校的管理模式及制度,这些仪器设备大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对示波器的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。共享示波器全国分布图北京市共享示波器分布图本次统计,共涉及示波器的总数量为302台,涉及22省(直辖市/自治区),135家单位。其中,北京市共享设备数量最多达84台,占比28%,远超其他地区。共享仪器平台主要来自科研用户上传并服务于科研用户,也因此该类仪器设备主要分布于科研院所众多的北京市。从北京市的分布情况来看,其主要分布于高校集中的海淀区,该地区共有68台共享示波器。除北京外,上海市、江苏省和广东省分别有36、35和33台仪器,数量位列二三四位。共享示波器单位性质分布图这些示波器主要属于哪些单位所有?进一步的分析表明,53.6%的用户韦高校用户,占比最多;其次为科研院所,占比为30.8%。这也表明示波器主要用于科研领域。此外,一些企业、事业单位、政府部门等也有示波器。共享示波器所属学科领域分布从仪器所属学科领域分布可以看出,这些仪器设备主要用于电子与通信技术研究中,占比约为38%。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域,实际上电子与通信技术、信息科学与系统科学研究和信息与系统科学相关工程与技术具有很大的重合度。那么这些仪器主要有哪些品牌呢?整体来看,Keysight(是德科技,原安捷伦)和Tektronix(泰克)占比最高,分别为45.2%和32.8%。这两家企业都是在电子测试测量领域深耕多年的企业,技术水平很高,特别是在高端示波器领域。是德科技的历史可以追溯到 1939 年,当时创始人比尔• 休利特和戴维• 帕卡德一起创立了最初的惠普(HP)公司。1999 年,惠普公司拆分,成立了安捷伦科技公司;2014 年,安捷伦科技公司再次拆分,独立出来的部门更名为现在的名称――是德科技。1946年,泰克创始人C.Howard Vollum与Melvin J."Jack" Murdock 发明了世界上第一款触发示波器。多年来,泰克始终专注于此,不断的在革新。图中其它部分的品牌主要为EXFO、北京正有光传输技术有限责任公司、Anritsu、Transmille和Alnair。占比前三的Keysight、Tektronix和LeCroy都是美国公司,是目前高端示波器的主流厂商,占比超九成。在图中国产示波器占比较少的原因主要是国内企业在通用电子测试测量领域起步较晚,技术积累时间较短,且高端ADC芯片进口受到限制,在产品布局及技术积累上与国外优势企业仍存在较大差距,目前主要集中于中低端产品,而科研院所对高端示波器需要更大,且共享仪器要求的是50万元以上的仪器必须登记,中低端产品价格较低,并非必须入库登记。据了解,中低端的国产设备已经有能力替代进口品牌了,但是在高端级别的应用上仍是空白需要赶追。目前市场上带宽最大的示波器是由是德科技生产的 110 GHz 的 UXR 系列示波器。国产示波器在2021年突破了 4 GHz 带宽的限制。对于高速采样,是德科技已达到256 GSa/s,国产尖端示波器采样率已达到20 GSa/s。这意味着高速数字信号的完整性、一致性分析国产仪器大多是做不了的,而高端消费电子产品的研发绝大多数要对接口进行测试,以太网、MIPI、Lora、DDR等不仅需要2GHz~8GHz以上的带宽示波器,更需要一套成熟的测试方案,来界定被测信号的好坏。在这一层面上,话语权很多是由国外品牌厂商把持决定的。国产示波器落后的重要原因在于电子元器件。国内微电子、半导体行业的基础太差,做仪器的技术瓶颈没有,只是器件买不到,都是禁运的。比如高带宽的ADC,以及高性能芯片,全是禁运的;想办法弄到的话成本太高,生产出来的东西价格超出用户接受范围也卖不了,所以不是做不出来,是现实不允许。此外,很多国产示波器生态单一,测量不仅仅是用一台示波器就完事了,越是先进的、越是复杂的,许多应用需要将示波器测量的数据通过其他仪器设备再次分析,多数国产示波器厂商产品线单一,不注重发展仪器生态,从而令数据导出后处理相对麻烦,不兼容问题令工程师最头疼。示波器的数据有可能需要保存,用信号发生器再重现,或者放大后处理、然后在工件运行状态下可能还需要用万用表同时采集电流信号,数据流格式的不统一往往在高端研发测试项目评估中直接pass掉。由于 2GHz 带宽以上示波器核心芯片无法通过公开市场进行采购,国内示波器厂商主要集中在中低端示波器产品领域。随着中国加大对上游 ADC 芯片、 FPGA 等领域的投资,上游芯片供应商发展逐步崛起,国内示波器厂商正逐渐从经济型示波器向中高端型市场发展。国内已经有示波器厂商通过自研示波器核心芯片,特别是在模拟前端芯片和 ADC 芯片上,具有了自主研发芯片的能力,逐渐突破了带宽和采样率的技术壁垒,初步具备在高端型 4GHz 以上带宽市场与国外龙头厂商竞争的能力。谁能扛起国产替代大旗?虽然距离国际先进水平差距较大,但国内企业也在不断突破,开发属于自己的技术和产品。就国内品牌影响力而言,第一梯队就数四十一所ceyear、鼎阳Siglent、普源Riglo。其中,鼎阳和普源在国内算是做的最好的,在低端市场已经有自己的位置,国外也普遍认可,正在往中端爬。如今,这两家也在需求技术突破,以期扛起示波器的国产替代大旗。2021年12月1日,深圳市鼎阳科技股份有限公司(简称“鼎阳科技”)成功登陆上海证券交易所科创板,成为国内“通用电子测试测量仪器行业第一股“。高端通用电子测试测量仪器芯片及核心算法研发项目则是本次发行募集资金投资项目之一。实质研发内容为 4GHz 数字示波器前端放大器芯片和高速 ADC 芯片、低相噪频率综合本振模块和 40GHz 宽带定向耦合器模块、宽带矢量信号源和宽带接收机中幅度和相位的补偿算法、网络分析仪的校准算法和 5G NR 信号的解调分析算法等七项内容。根据中国电子仪器行业协会公布的消息,鼎阳科技在2019年上半年拿下示波器出口总量第一,这是有史以来,中国本土企业第一次超越欧美公司,成为示波器出口总量的第一名。2020年,鼎阳科技的新产品SDS6000 PRO的推出,使得其成为了中国唯一、全球第三的2GHz带宽12bit示波器制造商。普源是目前唯一搭载自主研发数字示波器核心芯片组并成功实现产品产业化的中国企业,在高带宽高集成度示波器模拟前端芯片技术、宽带差分探头放大器芯片技术、高带宽低噪声模拟前端技术等前沿技术方向不断投入研发,持续形成和强化在高端电子测量领域的技术壁垒。2019年普源推出的基于自研“凤凰座”示波器芯片组及 UltraVision II 技术平台的 MSO8000 系列国产高端数字示波器,实现了 2GHz 带宽及更深存储、更高捕获率、全数字触发、全内存测量的特性。2020 年,普源推出全新的数字示波器 DS70000 系列标志着正式步入国际高带宽数字示波器行列,凭借自研“凤凰座”示波器专用芯片组的卓越性能,实现了最高 4GHz 带宽、20GSa/s 实时采样率。同时推出的 UltraVision III 技术平台,可实现数字示波器存储深度达到 2Gpts,刷新率高达 1,000,000 波形/秒,并支持 8bit~16bit 可变分辨率,FFT 速率达到 10,000 次/秒,综合性能在国产数字示波器领域中处于领先行列。当你需要一台示波器时,看看指标需要多少,如果低于2GHz,不妨看看国产示波器样机;当你对测试效果评估的把握不足时,可以找这一行业的技术支持,通过经验提供方案,实际看看;不是说非要用国产的,而是你知道自己对采购一台仪器设备的背后,对所牵涉的一系列问题有很全面的了解;当你的测试需求落在国产示波器范围内时,何不选择功能丰富、配件价格低廉、售后有保障的国产设备?
  • 国产宽带测量迈入新纪元:2023年度中国市场示波器新品盘点
    示波器是电子信息工业的基础设备,是应用最广泛的通用电子测试测量仪器,被誉为电子工程师的眼睛,其主要通过采集电路中的电信号并存储和显示,并对信号进行测量、分析和处理,主要用于研发领域。随着电子工业的持续高速发展,信息技术产品的智能化、网络化以及集成化程度逐步提高以及半导体、5G、人工智能、新能源、航天航空及国防等行业驱动,示波器具有良好的发展前景。Mordor Intelligence的数据显示,数字示波器在2023的市场规模达到23.18 亿美元,在2028年将达到28.7586亿美元,在预测期内的复合年增长率为 4.41%。为了满足逐渐丰富的应用场景和市场需求,电子测试测量仪器企业也在不断推陈出新,大部分主流品牌皆有输出,国产方面也多点开花。以下对2023年示波器新品进行盘点,数据主要统计自公开信息,如有遗漏、错误欢迎在留言区补充或邮件(kangpc @instrument.com.cn )。2023年示波器发布新品速览品牌产品型号国家是德科技UXR-B美国泰克科技4系列B MSO美国罗德与施瓦茨R&S MXO 5德国LecoryWaveMaster 8000HD美国电科思仪4457系列(4457E/F/G/K/EH/FH/GH/KH)中国普源精电DS80000系列中国鼎阳科技SDS800X HD、SDS3000X HD、SDS1000X HD中国鼎阳科技SDS6000 Pro中国玖锦科技PDS6184A中国优利德MSO8000X中国优利德UPO1000X中国麦科信MHO5004中国麦科信STO2002中国麦科信MDO5004中国致远电子ZUS6000中国是徳科技|UXR-B百万级超大带宽高端新品示波器2023年9月,是德科技发布了一款百万级超大带宽高端新品示波器UXR-B。是德科技UXR-B高端示波器整个硬件做了全面加速升级,CPU处理器从I5-3550S升级为I7-9700E,具有8核8线程,内存由16G升级为64G,保证强大的计算处理能力。除此之外,新的UXR-B型号示波器的标配更加强大,标配支持500Mpts内存,波形捕获提升了2.5倍,160MHz带宽的数字下变频(DDC)和实时频谱分析仪(RTSA)加速了无线信号的分析和调试。对于高速数字设计,InfiniiSim Basic去嵌入、PrecisionCable和PrecisionProbe现在是标准配置,这样的组合有助于对信道损耗进行补偿或去嵌。泰克科技|4系列B混合信号示波器(MSO)泰克公司与福迪威公司联合推出4系列B混合信号示波器(MSO),该产品具有多项高级分析功能以及贯穿所有信道的前沿测量性能,可为用户带来丝滑高效的使用体验。泰克4系列B MSO专门面向需要高精度、多功能性和易用性的嵌入式产品设计人员,其带宽为200MHz至1.5GHz,硬件12位ADC, 在高分辨率模式下实现16位的垂直分辨率和6.25GS/s的实时采样率,并可实现与先前版本的4系列同样出色的信号保真度。此外,该产品不仅继承了前代产品备受好评的触控式用户界面,而且对处理器系统进行了升级,用户界面的响应速度可达先前产品的两倍以上,且高级分析功能的运行速度也有明显提升。4系列B MSO具有多达6个输入信道,非常适合执行三相功率分析,且其特有的频谱视图功能可以实现与时域波形同步的多通道频谱分析。除了提升前面板的操作效率之外,经过升级的处理器系统还能够提升远程操作的速度。用户可以使用简单的Web浏览器、专用的TekScope PC端软件或通过自定义编程支持各种通讯接口远程访问和控制4系列B MSO。此外,4系列B MSO还配备了13.3英寸 (1920x1080)高清显示屏,并通过业界领先的光学粘合技术来实现更大的屏幕对比度和可视角度。罗德与施瓦茨|R&S MXO 5示波器罗德与施瓦茨推出了全新的 R&S MXO 5 示波器,提供四通道和八通道模式。这些示波器基于罗德与施瓦茨开发的下一代 MXO-EP 处理 ASIC 技术,该技术在 R&S MXO 4 中首次引入,新的八通道 R&S MXO 5 示波器将测量性能提升到了新的水平。R&S MXO 5是全球首款每秒采集450万次和每秒生成1800万个波形的八通道示波器,极致精确度能够捕获复杂信号细节和偶发事件,在时域和频域中显示了信号活动的更多细节。R&S MXO 5在八个通道上都具有数字触发功能,能够准确隔离小信号异常。45000次每秒快速傅立叶变换(FFT)的性能突破为工程师们提供了极致的频谱信号查看体验,非常适合EMI和谐波测试。R&S MXO 5以超高的采集速度捕获高达99%的实时信号活动,加速信号分析,并能够检测到大多数示波器无法捕捉的罕见随机事件。R&S MXO 5示波器在所有八个通道上提供了标准的500M存储深度,是同类产品存储深度的两倍,可用于大规模数据捕获。R&S MXO 5作为首款具备数字触发功能的八通道示波器,树立了信号分析的新标准。数字触发功能的灵敏度达到0.0001格。R&S MXO 5在时域和频域都表现出色。它是首款每秒进行45000个快速傅立叶变换(FFT)的示波器。并可同时显示四个不同频谱,实现该产品独有的射频信号可见性,这些高级功能均是该产品的标准配置。Lecory|WaveMaster 8000HD高带宽示波器2023年9月5日,纽约Chestnut Ridge,特励达力科今天宣布推出全新 WaveMaster 8000HD 高带宽、高精度示波器 (HDO) 平台,该平台的示波器具有 20 至 65 GHz 带宽、12 位分辨率、高达 320 GS/s 的采样率和业界领先的 8 Gpts存储深度。新型 WaveMaster 8000HD 保留了和其前代一样的无与伦比的验证和调试功能,同时增加了新的 SDA Expert 串行数据分析软件,用于测试下一代串行数据技术。新型 WaveMaster 8000HD 系列高带宽示波器为下一代串行数据技术(如 PCIe 6.0 和 USB4 v2.0)提供卓越的信号表征性能。与前代示波器相比,WaveMaster 8000HD的带宽和采样率增加了一倍多,与竞争对手的示波器相比,提供四倍以上的分辨率和存储深度 — 全带宽和采样率下业界领先的 12 位分辨率以及高达 8 Gpts 的存储深度。12 位分辨率分别为 USB4 v2.0 和 PCIe 6.0 中使用的多级 PAM3 和 PAM4 信号提供了出色的信号表征,8 Gpts 显著增强了链路协商问题的调试。电科思仪|天玑星系列数字示波器产品2023年6月28日,思仪科技在2023MWC上海世界移动通信大会发布并展示了4457系列数字示波器产品,该系列示波器共8个产品型号4457E/F/G/K/EH/FH/GH/KH,模拟通道数4、8个,带宽1GHz、2GHz、3GHz、4GHz,采样率10GSa/s、20GSa/s,垂直分辨率8bit、12bit。4457系列是思仪科技全新推出的天玑星系列数字示波器产品,在通信、工业电子和教育等领域有着广泛的应用。4457系列数字示波器采用AnyAcquire技术,提供更多仪器功能、更快的测试速度和更智能化的操控,为用户提供全新示波器使用体验。具体来讲,一、更多:多合一仪器,为用户提供更多测试功能示波器、实时频谱分析、逻辑分析仪、函数发生器、总线分析仪及数字电压表功能多合一,多达8个模拟通道、16个数字通道,可实现多通道模数混合信号的测试与分析。4457系列示波器还支持眼图与抖动分析、波特图分析、极限模板测试、功率测量与分析、波形录制与回放、参数测量直方图统计等功能,帮助用户轻松应对各种挑战。二、更快:全硬件加速处理技术,为用户提供更快的测试速度4457系列示波器高达120万个波形/秒的波形捕获率,20GSa/s的采样率,极大提高了毛刺和偶发事件捕获的概率;示波器标配了分段存储器采集,即使示波器工作在深度存储模式下,依然可以保持快速的响应速度和屏幕更新率;示波器支持硬件的参数测量功能,支持同时显示20个测量项目的统计分析,全部采集模式下支持全内存自动测量,可提供更加精确的测量结果;示波器采用叠加FFT和数字荧光显示技术使得FFT刷新频率大于40万次/秒,增强查看偶发事件的能力。三、更智能:智能化操控,为用户提供全新使用体验4457系列示波器采用智能化、可视化的区域触发技术,只需在屏幕上观察感兴趣的信号并在它周围绘制一个区域,可以迅速简便地识别想要的触发事件。支持多窗口自由设定,用户可根据观察需求自由对打开的波形窗口进行各种操作。支持快捷栏自由定义,用户可根据自己的使用习惯,将常用功能按键设定为功能区快捷按键。支持智能语音交互,用户可以通过语音向示波器发出指令,从而完成用户想要的操作,解放双手,操作更智能、更便捷。普源精电|DS80000系列数字示波器2023年9月18日,普源精电科技股份有限公司(简称:普源精电)发布公告称,普源精电科技股份有限公司首次正式公开发布13GHz带宽的DS80000系列数字示波器。DS80000系列数字示波器是RIGOL自主研发的第八代数字示波器,基于StationMAX II代平台,实现了最高40GSa/s实时采样率、13GHz模拟带宽。基于RIGOL新一代UltraVision III平台,实现最大4Gpts的存储深度,让DS80000拥有高保真的信号采集能力,并可以在高采样率下采集更长时间的波形。普源精电称,该新产品通过自研核心技术平台,首次实现国产数字示波器产品带宽达到13GHz,具备国内行业技术领先优势和核心技术壁垒。本次推出的DS80000主要对标国外同类产品,包括但不限于是德科技(KEYSIGHT)Infiniium UXR 系列、Infiniium V 系列、 Infiniium S 系列,泰克科技(Tektronix)MSO/DPO70000DX 系列、6 Series B MSO 系列,特励达力科(Teledyne LeCroy)WavePro HD 系列、WaveMaster 8Zi-B 系 列,罗德与施瓦茨(Rohde & Schwarz)R&S®RTP 系列等。鼎阳科技|SDS800X HD、SDS3000X HD及新款SDS1000X HD高分辨率示波器2023年9月26日,鼎阳科技发布两款高分辨率示波器,分别是SDS3000X HD以及新款SDS1000X HD。SDS3000X HD/SDS1000X HD系列示波器全系采用12-bit高分辨率ADC,量化等级高达4096级,高分辨率模式下(ERES)可将分辨率提升至16-bit,配合垂直&水平放大功能,助力用户更完整清晰地观测到波形的细节。比如在LLC半桥式变换电路分析时,需要通过波形观察上管和下管的驱动信号之间存在的死区时间,12-bit示波器还原后的波形细节远比8-bit示波器清晰。SDS1000X HD的ENOB高达8.4-bit,而SDS3000X HD高达8.3~8.6-bit,时间误差、频率杂散都比较小,同时宽带噪声也比较低,能够有效保证测量的精准度。SDS3000X HD最高带宽为1GHz,分辨率为12-bit,高分辨率模式下可达16-bit,波形细节清晰可见,能够观测到微小波形变化;采样率为4GSa/s,存储深度为400Mpts/ch,即使长时间捕获波形,依然不会出现波形失真;Sequence模式下能够实现每秒采集89万个波形,能够在短时间内依据大量波形得出可靠的统计结果,帮助用户快速查找罕见的异常信号,SDS3000X HD不仅支持搜索导航、频率计、万用表、历史模式、区域触发等基本功能,还支持电源分析、波特图、模板测试、混合信号分析等重要功能,能广泛应用在第三代半导体,高精度电源等测试领域。此外,为进一步满足广大用户的需求与期待,鼎阳科技将SDS1000X HD进行了软件与硬件上的升级,SDS1000X HD在保持高性价比与具有诸多基本功能的基础上,诸多指标有一定程度上的提升:采样率将由1GSa/s提升至2GSa/s,波形还原更真实,参数测量更精准;Sequence模式下,波形捕获率最高由400,000wfm/s提升至500,000wfm/s,触发事件的间隔由2.5μs提升至2μs,异常事件捕获概率更高,除此之外,还有部分功能也进行了升级。12月12日,鼎阳科技正式公开发布SDS800X HD高分辨率数字示波器。SDS800X HD系列产品垂直分辨率为12-bit,最高带宽为200 MHz,具有极佳的信号检测和显示能力,波形细节清晰可见,能够观测到微小波形变化,有助于分析信号的细节与特征;采样率为2 GSa/s,存储深度可达100 Mpts/ch,适用于观察分析长时间信号、低频信号和瞬态现象。该系列产品具有丰富的触发功能,包括边沿、斜率、延迟、建立/保持时间和多种总线触发(串行触发),支持嵌入式行业的I2C、SPI、UART协议及汽车行业的CAN、LIN协议的触发与解码,能够准确捕获并直观地将总线的协议信息以表格形式或其他方式显示,稳定进行测试。玖锦科技|PDS6184A高速数字实时示波器2023年12月28日,玖锦科技《信号的复现艺术》主题发布会正式面向全网推出了“守仁”系列产品:18GHz高速数字实时示波器PDS6184A。该款国产自研的高速数字实时示波器产品攻克了三大国际技术壁垒指标:18GHz带宽,80GSa/s采样率和640Gbps高速实时处理算法。玖锦科技PDS6184A高速数字实时示波器是基于超高速数据捕获、校正与实时处理技术及专研ADC技术研制出的一款采样率高达80GSa/s、输入带宽高达18GHz的高速数字实时示波器。PDS6184A具备640Gbps超高速数据实时分析处理能力、高达2Gpts/ch的最大存储深度以及500000wfms/s的最高波形捕获率,能更大程度保留信号的完整性,迎接更复杂的测试及设计挑战,可广泛应用于5G/6G通信与光通信、卫星导航与通信及汽车电子自动驾驶等多领域。优利德|UPO1000X数字荧光示波器、MSO8000X高带宽混合信号示波器UPO1000X系列数字荧光示波器配置100MHz/200MHz 两个级别带宽,实时采样率高达2GSa/s,全系列标配4通道,标配最大存储深度56Mpts,Fast Acquire模式下最高可达500,000wfms/s,硬件实时波形不间断录制和波形分析功能最大达12万幅波形。支持独立的DVM模块,7位数字频率计和拥有丰富的触发功能,可选配全内存硬件实时解码,让协议分析不再成为难题。2023年5月11日,优利德举办了测试仪器新产品发布会,发布了MSO8000X系列高带宽混合信号示波器,分别有带宽4GHz和2.5GHz版本,最高实时采样率20GSa/s。麦科信|MHO5004、MDO5004、STO2002平板示波器麦科信于2023年10月30日推出12位高分辨率示波器MHO系列,并同时发布第五代平板示波器MDO系列。此外,STO2002是一款全新推出的双通道示波器,并且搭配了200MHz的带宽、1GSa/s的采样率、70Mpts的存储深度;支持串行总线触发和解码;具备丰富的测量项和高级数学运算功能;结合 Micsig 独有的触控算法专利技术,以及人性化的操作系统界面,将使用体验做到了极致。在专业级便携平板示波器领域,满足了工程师更多样化的产品需求。致远电子|ZUS6000高精度智能应用型示波器ZUS6000是致远仪器最新推出的采用12bit高速ADC,实现最高1GHz测量带宽,并配备了电源分析、智能硬件时序分析、汽车总线分析、以太网眼图、X-Key等功能的高精度智能应用型示波器。ZUS6000高精度智能应用型示波器可以支持多通道的波形运算功能,提高工程师波形和数据分析效率,并能实现多通道波形的分屏显示,查看更多波形的同时保障细节显示与测量准确。近年来,国产示波器性能进步发展飞快。整体来看,2023年,国产示波器产品买入了新的里程碑。普源精电首先推出了13GHz带宽的示波器,之后玖锦科技又推出18GHz带宽的示波器。而此前,国产示波器最高带宽仅4GHz。国产示波器正逐渐向高端迈进,这主要得益于企业在ADC等核心芯片的不断研发而开花结果。
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 我国成功研制系列高准确度宽带大电流计量仪器
    近日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重大科学仪器设备开发专项“宽带大电流测量仪开发与应用”(2016YFF0102400)项目顺利通科技部高技术发展研究中心组织的项目综合绩效评价。光纤宽带大电流测量仪宽带标准电流传感器及测量分析系统 大电流计量技术在冶金、电力、高端制造、大科学装置前沿研究等领域应用广泛。由于生产连续运行,设备庞大,拆装不便,运行环境等特殊条件,现场大电流测量控制和监测设备一般无法到计量实验室校准,实验室的计量标准也很难下沉至现场,量值传递难以实现。   该项目研制的超大和高频电流校准装置,形成了产品化的标准工艺流程和质量体系,为产品的技术就绪度和可靠性提供了支撑保障。项目相关成果通过了第三方测试,测量准确度、线性度、带宽、噪声和环境适应性等技术指标实现了与国际先进产品的并跑或局部领跑,并且使我国大电流核心校准和测量能力(CMC)通过了国际同行评审,进入国际计量局等效互认数据库。   项目编制了一系列国家、行业和地方标准和计量技术规范,培养了一批高水平的研究和研发人员,帮助了承担工程化计量仪器仪表企业的发展壮大。   项目研究成果应用于EAST(全超导托卡马克装置)、ITER(国际热核聚变实验堆)大科学装置、电解铝、高压直流输电、电气设备性能检测、大型航空航天设备焊接制造、仪器仪表计量检测等领域,解决了行业用户关注的产品价格高、核心部件依赖进口,工业用不起或用不了的痛点和难点问题,以及长期未能解决的宽带大电流在线校准难题,取得了显著的经济和社会效益。   据悉,该项目自2016年立项,历时5年,由中国计量院联合国内10家单位共同攻关。项目基于Faraday磁光、电磁效应,突破了椭圆双折射传感光纤、小型化直波导相位调制器关键工艺,攻克了宽带高线性光纤电流传感,容性误差补偿、组合电磁屏蔽、分布阻抗消振、高频分流器校准方法、宽频矢量电量正交积分算法等关键技术,成功研制了最大电流450 kA,带宽高于100 kHz的柔性光纤宽带大电流测量仪和最大电流2000 A,最高频率1 MHz的宽带电磁式电流传感器及自动测量分析系统,实现了工程化。
  • 上海光机所低振荡宽带高色散镜研究取得进展
    p  近期,中国科学院上海光学精密机械研究所薄膜光学实验室在抑制色散镜震荡研究方面取得进展。课题组基于表面减反膜阻抗匹配设计思想,采用啁啾膜系加倾斜沉积雕塑结构低折射率SiO2膜层,设计和制备了低振荡高色散镜,实现单个色散镜在680-920nm近240nm带宽范围内提供平坦的-200fs2群延迟色散。这是相同带宽范围内,群延迟色散量较大的设计结果,并首次实现单个雕塑结构低振荡色散镜应用于飞秒激光器系统进行色散补偿,激光脉冲通过低振荡色散镜2次,能够获得16fs超短脉冲输出。/pp  色散镜具有反射率高及色散补偿可精确控制等优点,是超强超短脉冲激光系统中重要的色散补偿元件之一。随着超强超短脉冲技术的不断发展,要求色散镜具有很宽的工作带宽和更大的色散补偿量。由于色散镜的带宽、色散量、色散震荡存在相互制约的关系,带宽和色散量的增加必然导致色散振荡的加剧,而色散振荡会严重影响实际应用中脉冲输出质量。传统的色散振荡多采用两个镜子色散曲线相互匹配来抑制。/pp  采用倾斜沉积雕塑结构SiO2膜层,折射率可调控至1.09(@800nm),能较好地匹配空气介质,从而降低色散振荡。通过离子束溅射工艺制备Nb2O5/SiO2高低折射率材料交错的啁啾膜系,并在此基础上沉积雕塑结构低折射率SiO2膜层。将制备的获得单个低震荡宽带高色散镜应用于钛宝石激光器系统中,反射两次共提供-400fs2色散补偿,可将100fs的激光脉冲压缩至16fs。该研究发表于OpticalMaterialsExpress, 8(4)836 (2018)。/pp  该研究获国家自然科学基金委员会与中国工程物理研究院联合基金(U1630140)、中科院青年创新促进会(2017289)、中科院战略性先导科技专项(B 类)(XDB1603)等资助。/ppimg src="http://img1.17img.cn/17img/images/201807/insimg/be7bb3aa-a5d4-46d1-8ef4-8153d3e3fb54.jpg" title="04-1.png"/img src="http://img1.17img.cn/17img/images/201807/insimg/d838b3da-e885-45ff-bc55-d8a30d22d9b4.jpg" style="float: right width: 315px height: 242px " title="04-2.png" width="315" height="242"//pp  图1 低振荡色散镜的结构示意图:(a)雕塑结构低振荡色散镜最优设计膜层结构图 (b)低振荡色散镜各部分折射率示意图/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/2a255603-2928-4829-88a9-6995c5caebe4.jpg" title="04-3.png"//pp style="text-align: center"图2 雕塑结构低振荡色散镜压缩应用实验装置示意图 br//ppimg src="http://img1.17img.cn/17img/images/201807/insimg/b1a32a9b-84e1-41fa-9609-ae466adf8a49.jpg" title="04-4.png" width="316" height="224" style="width: 316px height: 224px "/img src="http://img1.17img.cn/17img/images/201807/insimg/e3bcad71-90f3-4ab7-9fff-e2fce4f8a839.jpg" style="float: right width: 303px height: 211px " title="04-5.png" width="303" height="211"//pp  图3(a)最优设计的群延迟色散曲线图和反射率曲线(红色曲线),以及除去顶层低折射率SiO2层的结构的群延迟色散曲线图和反射率曲线(黑色曲线) (b)通过2次雕塑结构低振荡色散镜后的压缩脉冲FROG跟踪/ppbr//p
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • 普源精电:攻关高端科研仪器核“芯”,全力助推数字经济建设
    随着全球科技竞争的日趋激烈,推动科技进步的高端科研仪器领域逐步得到更多的重视,并逐步被提升到了战略规划层面。2021年3月,“十四五”规划纲要指出,“依托行业龙头企业,加大重要产品和关键核心技术攻关力度,加快工程化产业化突破。”作为搭载自主研发数字示波器核心芯片组并成功实现产品产业化的中国高新技术企业,普源精电科技股份有限公司(以下简称“普源精电”)于3月17日披露了科创板上市招股意向书,正式进入发行阶段。公司专注于通用电子测量仪器领域的前沿技术开发与突破,以通用电子测量仪器的研发、生产和销售为主要业务,主要产品包括数字示波器、射频类仪器、波形发生器、电源及电子负载、万用表及数据采集器等。聚焦自主研发创新,不断提升核心竞争力自公司设立以来,普源精电一直高度重视技术创新,力争走在行业前沿。公司主要通过开发政策、联合创新和自主创新等三种方式,将研发创新与行业发展趋势相结合,在公司各个技术的交汇融合的交叉点上,积极组织各技术部门相互讨论与合作。招股书显示,2018年至2021年上半年,普源精电的研发费用占比呈增长状态,2021年上半年公司研发费用占营业收入比例达到23.91%。经过对示波器、频谱分析仪、射频/微波信号发生器等电子测量仪器的芯片、硬件和软件等方面核心技术的开发与研究,公司已形成包括芯片技术、高带宽低噪声模拟前端技术、高采样示波器数据采集技术在内的一系列具有自主知识产权的专业核心技术和相关技术储备。其招股书显示,截至2021年6月30日,公司全球范围内拥有已授权专利386项(其中发明专利346项)、集成电路布图设计4项、软件著作权101项;拥有高采样示波器数据采集技术、SiFi III高保真任意信号合成技术、Ultra-Real技术、高精度大动态范围直流电压测量以及电子负载恒流环失调校准与补偿技术等在内的20项核心技术。这些核心技术能够有效满足通用电子测量仪器的需求。打破海外芯片供应依赖,构建国产仪器关键核“芯”仪器专用核心芯片是仪器最核心零部件。普源精电坚持自主突破核心芯片技术,经过十多年的研发投入和技术积累,逐步打破美国高端芯片出口限制的制约,实现了国产厂商从中端数字示波器向高端数字示波器的进一步发展。目前采用普源精电自主研发核心芯片生产的高端产品已成为国内公司替代进口产品的方案之一。在芯片技术方面,普源精电拥有三款“国内首款”芯片:(1)国内首款示波器模拟前端芯片:公司通过高带宽高集成度示波器模拟前端芯片技术研发的国内首款示波器模拟前端芯片,带宽高达5GHz,集成了低阻抗和高阻抗两个信号调理通路。其中,高阻抗通路集成电子衰减器,过载恢复时间比非集成技术缩短60倍;(2)国内首款示波器信号处理芯片:通过高带宽高采样率示波器信号处理芯片技术研发出的国内首款量产的5GHz带宽、10GSa/s采样率、8Bit分辨率示波器信号处理芯片,可实现5GHz带宽、20GSa/s采样率数字示波器产品;(3)国内首款示波器差分探头放大器芯片:通过宽带差分探头放大器芯片技术,研发出国内首款示波器差分探头放大器芯片,带宽高达7GHz,集成片上频响校准技术。输入等效噪声低达0.35mVrms,可实现7GHz带宽示波器差分探头。普源精电表示,公司下一代仪器专用核心芯片也已加速研发,未来将逐步在产品产业化上应用。重视研发团队建设,持续优化人才结构普源精电自成立以来便十分重视人才培养和团队建设,建立了以普源书院为中心的人才甄选、培养和发展体系。并通过研发项目带动方式,公司在实战中提升团队技术能力和诚信协作;通过不断吸引优秀研发技术人才加盟以及加强与中国高校协同育人项目,逐年加大校园招聘力度,建立未来人才储备机制。据悉,普源精电通过持续优化研发团队人才结构,已逐渐形成由首席技术官、核心技术人员、高层次技术人才组成的研发梯队人才队伍;并通过推行任职资格体系建设、奖励激励制度等措施强化研发管理团队,为公司保持技术领先、攻关新技术、研发新产品打下了坚实的基础。未来,普源精电将持续加大技术研发投入,扩建北京研发中心和新建上海研发中心,引进先进的研发设备及高端研发人才,对高端数字示波器整机设计、微波射频仪器研发、模拟与数字芯片开发和现场仪表开发领域进行深入探索,一如既往的把创新能力作为持续发展的动力源泉,不断提升国产科学仪器的国际竞争力,为国家构建数字经济完善供应链体系贡献自己的一份绵薄之力。
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制