当前位置: 仪器信息网 > 行业主题 > >

量子密匙分发系统

仪器信息网量子密匙分发系统专题为您提供2024年最新量子密匙分发系统价格报价、厂家品牌的相关信息, 包括量子密匙分发系统参数、型号等,不管是国产,还是进口品牌的量子密匙分发系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量子密匙分发系统相关的耗材配件、试剂标物,还有量子密匙分发系统相关的最新资讯、资料,以及量子密匙分发系统相关的解决方案。

量子密匙分发系统相关的论坛

  • 我成功验证星地之间安全量子信道可行性

    实现全球化量子网络奠定了技术基础 2013年05月03日 来源: 科技日报 作者: 吴长锋 最新发现与创新 科技日报合肥5月2日电(记者吴长锋)中科院量子科技先导专项协同创新团队,在国际上首次成功实现星地量子密钥分发的全方位地面验证,为未来我国通过发射量子科学实验卫星,实现基于星地量子通信的全球化量子网络,对大尺度量子理论基础检验,以及探索如何融合量子理论与爱因斯坦广义相对论,奠定了必要的技术基础。 相关成果5月1日发表在国际权威学术期刊《自然·光子学》上。这是该专项继去年实验实现拓扑量子纠错和百公里自由空间量子态隐形传输与纠缠分发后,取得的又一阶段性重要突破,也是量子信息与量子科技前沿协同创新中心的最新重要成果。 量子密钥分发是最先有望实用化的量子信息技术,可以带来绝对安全的信息传输方式。而实现全球化量子密钥分发网络,需要突破距离限制。目前,由于光纤损耗和探测器的不完美性等因素,以光纤为信道的量子密钥分发距离已接近极限;而由于地球曲率和远距可视等条件的限制,地面间自由空间的量子密钥分发也很难实现突破。要实现更远距离、甚至是全球任意两点的量子密钥分发,基于低轨道卫星的量子密钥分发是最具潜力和可行性的方案。但这需要克服大气层传输损耗、量子信道效率、背景噪音等问题。尤其是低轨卫星和地面站始终处于高速相对运动中,存在角速度、角加速度、随机振动等情况,如何在这些情况下建立起高效稳定的量子信道,保持信道效率及降低量子密钥误码率,成为基于低轨道卫星平台实现量子密钥分发面临的关键。 协同创新团队由中国科学技术大学潘建伟院士和同事彭承志等、中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成。 为攻克星地量子密钥分发的上述难题,创新团队进行了多年合作攻关,自主研制了高速诱骗态量子密钥分发光源和轻便收发整机,自主发展高精度跟瞄、高精度同步和高衰减链路下的高信噪比及低误码率单光子探测等关键技术。在此基础上,利用旋转平台模拟低轨道卫星的角速度和角加速度;利用热气球来模拟随机振动和卫星姿态;利用百公里地面自由空间信道来模拟星地之间高衰减链路信道,成功地验证了星地之间安全量子信道的可行性。 《科技日报》2013-05-03(一版)

  • 【分享】潘建伟小组建成世界上首个光量子电话网

    潘建伟小组建成世界上首个光量子电话网 相关论文发表于《光学快报》 [color=#DC143C](这就意味这新一代的通讯传输方式将要诞生了)[/color] 记者从中国科学技术大学获悉,日前,该校潘建伟研究小组在实用化量子通信方面取得了重大进展,在合肥建成世界上首个光量子电话网,这标志着绝对安全的量子通信由实验室走进了日常生活。 据介绍,量子通信是量子力学和经典通信的交叉学科,有着传统通信方式所不具备的绝对安全特性,在国家安全、金融等信息安全领域有着重大的应用价值和前景。从20世纪90年代开始,海内外科学家一直致力于将量子通信理论进行实用化的研究,但因实验器件的不完美性和缺乏真正的单光子源,量子通信系统的安全通信速率随着距离增加而急剧下降,量子通信系统只能停留在实验室内,不具备应用价值。 2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下,量子通信的安全速率随距离增加而严重下降的问题。2006年夏,中国潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学-维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的量子保密通信实验,其中,潘建伟小组最近完成的实验又将绝对安全通信距离延长到200公里。 此后,由中国科大潘建伟、陈增兵、彭承志等人组成的团队针对量子通信实用化展开了攻关研究,研制成功量子电话样机,并在商业光纤网络的基础上,组建了可自由扩充的光量子电话网,节点间距达到20公里,实现了“一次一密”加密方式的实时网络通话和3方对讲机功能,真正实现了“电话一拨即通、语音实时加密、安全牢不可破”的量子保密电话。该成果已于今年4月发表在国际光学领域著名期刊《光学快报》(Optics Express)上,并立即被美国《科学》杂志以“量子电话呼叫”为题进行了报道。 据悉,光量子电话网的建成,是中国科学家继自由空间量子纠缠分发、绝对安全距离大于100公里的量子保密通信之后,在实用化量子通信领域取得的又一国际领先的研究成果。

  • 加利用量子纠缠开发超精密测量技术

    科技日报多伦多6月6日电 (记者冯卫东)加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。 研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马·李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。 现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。 干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。 科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用“光纤带”的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。 这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。 研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。 总编辑圈点 光子纠缠态,早已经不再拘束于当初爱因斯坦等人提出的玄妙理论,而被应用到如量子光刻、量子图像学等技术领域。也正是这些应用,让抽象的量子力学概念能较为实在地体现在人们面前。本文中研究者以超越经典物理学的精度测量出纠缠态光子,这种高分辨率的量子态测量,不仅能带动以上应用领域的发展,亦将有助于实现相关物理参数的高精度。来源:中国科技网-科技日报 2014年06月07日

  • 新方法可生产形状尺寸可控的石墨烯量子点

    科技日报 2012年05月19日 星期六 本报讯 (记者张巍巍)据物理学家组织网5月18日(北京时间)报道,美国堪萨斯州立大学的研究人员开发出一种新方法,可生产出大量形状和尺寸可控的石墨烯量子点,这或将为电子学、光电学和电磁学领域带来革命性的变化。相关研究报告发表在近日出版的《自然·通讯》杂志上。 由于边缘状态和量子局限,石墨烯纳米结构(GN)的形状和大小将决定它们的电学、光学、磁性和化学特性。目前自上而下的GN合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放等。但这些方法都具有生产率低、形状尺寸不可控、边缘不光滑、无法轻易转移至其他基底或溶解于其他溶剂等问题。 该校化学工程系的维卡斯·贝里教授等科研人员利用钻石刀刃对石墨进行纳米切割,使其变成石墨纳米块,这是形成石墨烯量子点的前提。这些纳米块随后将呈片状脱落形成超小的碳原子片,生成的ID/IG比值介于0.22和0.28之间,粗糙度低于1纳米的石墨烯结构。科研团队通过高分辨率的透射电子显微镜和模拟证明,生成的GN边缘笔直、光滑,而通过控制GN的形状(正方形、长方形、三角形和带状)和尺寸(不超过100纳米),研究人员能够大范围控制石墨烯的特性,使其应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。 贝里表示,新型石墨烯量子点材料在纳米技术领域具有巨大的发展潜力,他们期望能通过此次研究进一步促进石墨烯量子点的发展。 总编辑圈点 石墨烯出现短短几年,产业界已有很多人预言它将成为未来电子业的中坚材料。制造纳米级的石墨烯点以代替硅晶单元,是石墨烯在电子业应用的关键一步,也是现在各国科学家竞相探索的目标。今年年初,美国莱斯大学成功利用碳纤维制造了纳米级的石墨烯圆片,效率比以往大为提高。这次堪萨斯大学实验成功的“石墨纳米切割”方式,进而能够控制石墨烯纳米点的形状,无疑开辟了一条新的技术思路。

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 我国实现量子信息百公里隐形传输

    2012年08月14日 来源: 新华网 作者: 徐海涛 我国科学家潘建伟等人近期在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。国际权威学术期刊《自然》杂志8月9日重点介绍了该成果。 量子信息因其传输高效和绝对安全等特点,被认为可能是下一代IT技术的支撑性研究,并成为全球物理学研究的前沿与焦点领域。基于我国近10年来在量子纠缠态、纠错、存储等核心领域的系列前沿性突破,中科院于2011年启动了空间科学战略性先导科技专项,力争在2015年左右发射全球首颗“量子通讯卫星”。 中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础。 “在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将能达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。”研究组成员彭承志介绍说,量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。 8月9日,国际权威学术期刊《自然》杂志重点介绍了这一成果,代表其获得了国际学术界的普遍认可。《自然》杂志称其“有望成为远距离量子通信的里程碑”、“通向全球化量子网络”,欧洲物理学会网站、美国《科学新闻》杂志等也进行了专题报道。

  • 专家创新胶体量子点太阳能电池转化效率纪录

    一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”

  • 美研发出新型固态量子冰箱

    可将比自身大得多的物体冷却至极低温2013年03月29日 来源: 中国科技网 作者: 陈丹 中国科技网讯 据物理学家组织网近日报道,美国国家标准与技术研究院的研究人员展示了他们最新研制的一款固态量子冰箱,这款制冷机利用了微型和纳米结构的量子物理学原理,可将一个比自身体积大得多的物体冷却到极其低的温度。 “这是我见过的最让人吃惊的结果之一。”项目负责人乔尔·乌洛姆说,“我们利用纳米结构的量子力学来冷却铜块,而铜几乎是这种制冷元件重量的100万倍。这是纳米或微电机装置可用来操纵宏观世界的一个罕见例子。” 更重要的是,这款量子冰箱原型的外形尺寸不过几英寸(1英寸=2.54厘米)大小,研究人员可以将任何合适的物体放置在制冷区,待冷却好以后再取走,使用方式与通用的厨房冰箱别无二样。其冷却能力却与一台能为林肯纪念堂(占地约2000多平方米)这样规模的建筑物降温的窗式空调相当。 这项技术有望提供一个紧凑、便利的制冷方式,使先进传感器的温度能够低于标准的低温学温度——300毫开尔文(MK),从而提高其性能,以用于量子信息系统、望远镜摄像机或寻找神秘的暗物质和暗能量。而在以往,这样的低温条件通常要使用液态氦才能制造出来。 据发表在《应用物理快报》上的论文描述,这款量子冰箱的制冷元件由48个利用特定材料制成的微小“三明治”组成,可以将一块边长2.5厘米、厚3毫米的铜板从290毫开尔文冷却到256毫开尔文,制冷过程历时约18小时。 制冷元件中的“三明治”结构为一层普通金属、一层1纳米厚的绝缘层和一层超导金属。当施加电压时,最热的电子会从普通金属层经过绝缘体层“隧穿”到超导金属层。普通金属层的温度急剧下降,从而耗尽被冷却物体的电子能量和振动能量,达到制冷效果。 该研究团队此前已经演示过这种基本的冷却方法,但现在已能够将其应用于冷却较大的物体。并且,他们开发了一种显微机械加工工艺,可以将冷却元件“贴”在铜板或其他物体上,制冷完毕后又能够方便地移除。 目前,将温度降低至低于300毫开尔文需要复杂、庞大而昂贵的设备。研究人员希望以此建造更为简单、紧凑的替代品,以便更容易地为先进传感器降温。(陈丹) 《科技日报》(2013-3-29 二版)

  • 【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    [align=center][b][font=黑体]微型化荧光量子产率测试系统的搭建研究[/font][/b][/align][align=center][font=宋体]魏[/font][font=宋体]巍[/font], [font=宋体]李莉,朱倩倩,李军,李艳肖[/font][/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]通过微型化荧光量子产率测试系统的搭建,可以很好地增强弱信号荧光样品的响应,对有效解决该类样品的绝对量子产率难测定等难点,微型化的积分球系统实现了快捷简便的操作,获得液体、薄膜和粉末样品绝对量子产率的测量。首次微型化积分球,对测试系统关键部件进行设计及优化,分析了测试系统存在和误差和量子效率的影响因素,进一步完善固体荧光材料量子产率测试技术,为新型量子产率体系提供理论指导。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]荧光量子产率;微型化[/font][font=宋体];荧光光谱;测试[/font][align=center][b]Construction of miniaturized fluorescence quantum yieldmeasurement system[/b][/align][align=center] WEI Wei, LI Li, ZHU Qian-qian, LIJun, LI Yan-xiao[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]Through the establishment of theminiaturized fluorescence quantum yield test system, the response of weaksignal fluorescence samples can be well enhanced, and the difficulty ofdetermining the absolute quantum yield of such samples can be effectivelysolved. The miniaturized integrating sphere system can achieve quick and simpleoperation, and the absolute quantum yield of liquid, film and powder samplescan be measured. For the first time, the key components of the test system weredesigned and optimized, the factors affecting the existence and error of thetest system and the quantum efficiency were analyzed, and the quantum yieldtest technology of solid fluorescent materials was further improved, providingtheoretical guidance for the new quantum yield system.[b]Key words:[/b]fluorescence quantum yield microminiaturization fluorescence spectra measurement[font=宋体]众所周知,光致发光([/font]Photoluminescence[font=宋体]),是指物体依赖外界光源进行照射,从而获得能量,产生激发导致发光的现象。也指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到较高能级的激发态后返回低能态,同时放出光子的过程。光致荧光发光是多种形式的荧光([/font]Fluorescence[font=宋体])中的一种。而在现阶段光致发光材料的研究中,对荧光量子产率([/font]Quantum Yield of Fluorescence[font=宋体],[/font]QY[font=宋体])的数值的准确性和重现性十分重要,因其显示光化学反应中光量子的利用率从而反映光致发光材料发光能力的重要特征。荧光技术的应用几乎涉及了生活的方方面面。材料荧光技术在工业、能源、生物医药、环境监测、军事领域等均扮演着极其重要的角色。新技术、新产品的不断涌现,对该类产品的核心参数荧光量子产率的测量也提出了越来越高的要求。[/font][font=宋体]量子产率的物理意义为单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值,用来描述荧光材料发光能力。目前测量样品的荧光量子产率有两类方法:([/font]1[font=宋体])相对量子产率:需要一种已知量子产率的标准品作为参照,通过对标准物和样品进行吸光度和荧光的测量换算得到样品的量子产率。只适用于液体样品。([/font]2[font=宋体])绝对量子产率:不需要标准样品进行对比,广泛适用于液体、薄膜和粉末样品。荧光量子产率评价指标在光电器件、生物医药、传感器等研究领域有着举足轻重的分量。国外主要的荧光仪器公司均已推出商品化的绝对荧光量子产率测试系统。绝对量子产率测定法可直接对待测试样的量子产率进行测定,对荧光材料的研制有着重大的意义。[/font][font=宋体]随着我国现代化进程的发展,对各类科研分析仪器的需求与日俱增。研制国产绝对荧光量子产率测量系统,将终结这一领域长期依赖国外产品的历史,同时降低检测成本,使得更多的实验室都用得起、用得上荧光量子产率测量技术,促进我国新材料等领域更高速的发展。[/font][b]1[font=宋体]研究背景[/font]1.1[font=黑体]选题背景[/font][/b][font=宋体]近年来,我校各类学科的持续发展,共有[u]工程学[/u][/font][u]1[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1[font=宋体]‰[/font][/u][font=宋体],农业科学、化学、材料科学、临床医学、药理学与毒理学、生物学与生物化学、环境生态学、分子生物与遗传学等[/font][u]8[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1%[/u][font=宋体]。其中,[/font]2021[font=宋体]年,我校环境生态学、分子生物与遗传学[/font]2[font=宋体]个学科新晋全球排名前[/font]1%[font=宋体]。特别是伴随理工和医学药学等学科发展,对于各类研究手段或检测技术提出了更高的要求,量子产率的测试需求也随之增多。目前,我校在研的国家自然科学基金项目有关量子产率要求的科研项目不在少数,[/font]2018[font=宋体]年[/font]7[font=宋体]项,[/font]2019[font=宋体]年[/font]8[font=宋体]项,[/font]2020[font=宋体]年[/font]9[font=宋体]项,平均年资助金额超过[/font]200[font=宋体]万元,特别在能源、医学等热门研究领域对该测试的需求量持续攀升,为我校高质量高影响力论文的发表提供了基础。[/font][font=宋体]与此对应的测试条件,目前全校可测试绝对量子产率的仪器仅我校分析测试中心拥有,该仪器为高级稳态瞬态荧光测量系统([/font]QuantaMaster & TimeMasterSpectrofluorometer[font=宋体],产品型号:[/font]QuantaMaster?40[font=宋体])。该系统于[/font]2009[font=宋体]年购置安装运行,超过十多年的服务过程,分析测试中心的服务团队根据学校各学科的测试需求开发了激发[/font]/[font=宋体]发射光谱、上转换[/font]/[font=宋体]下转换光谱、荧光寿命、近红外荧光光谱、激光诱导荧光光谱等测试服务,该些测试手段的开发和使用也获得众多的肯定,如:[/font]2018[font=宋体]年获得[u]江苏分析测试科学技术奖[b]二等奖[/b][/u],[/font]2019[font=宋体]年作为典型测试服务[u]入驻[/u][/font][u]“[/u][b][u][font=宋体]江苏高校分测联盟[/font][/u][/b][u]”[/u][font=宋体]。但面对不断提高的测试要求和日益发展的测试技术,也逐步发现量子产率测试中存在了亟待解决和改进的问题。[/font][b]1.2[font=黑体]拟改进的问题[/font][/b][font=宋体]绝对荧光量子产率的定义为样品发射的光子数除以样品吸收的光子数。相比相对量子产率不需要标准品,广泛适用于液体、薄膜和粉末样品。该数值为目前较为认可的量子产率测试。但测量时需要积分球附件(图[/font]1[font=宋体])。[/font][b][font=宋体]积分球[/font][/b][font=宋体]([/font]IntegratingSphere[font=宋体])为内表面涂层一般是高反射性材料。样品表面各个方向的激发光或者是发射光进行积分球均匀化后从出射口出来,并进入到单色器中后被检测器检测到。多年的测试经验,研究发现该系统的量子产率测试存在如下拟解决或改进的问题:[u]([/u][/font][u]1[font=宋体])积分球体积过大[/font]-[font=宋体]操作复杂;([/font]2[font=宋体])内部材料易损伤[/font]-[font=宋体]误差较大;([/font]3[font=宋体])反射背景易污染[/font]-[font=宋体]数据失真。[/font][/u][align=center][img=,486,244]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058386226_3462_5248244_3.png!w690x346.jpg[/img][/align][align=center][b][font=宋体]图[/font]1. [font=宋体]绝对量子产率测量系统及存在的难点[/font][/b][/align][font=宋体]不难发现,积分球为该测试模块中最为核心的部件,作为测量系统中收集光的器件,光在积分球内多次漫反射。从图[/font]1[font=宋体]中可以看出该球内部的涂层为全反射材质(中心的配件为硫酸钡),且球体的直径[/font]100 mm[font=宋体],而待测样品需要放置在球体中心位置,仅暂居球体的小部分体积,无疑增加了操作过程的复杂度和清洁的难度。在实际操作过程中,对液体样品来说,采用石英比色皿,只需保证液体体积和浓度在可测试范围内,多次测试扣除背景也能够获得比较可信的数据。但相比溶液样品,准确测定固体样品量子产率的难度要大。因固体样品槽和积分球本身对光都有吸收,尤其是紫外段,因此量子产率测定肯定会有误差。且内部镀层易年份已经也较易在使用过程受到损伤(硫酸钡被剥落),使用的反射背景也很易受到外部环境污染,造成数据失真等问题。目前,积分球的体积和材质造成绝对量子产率测定中存在难以避免的误差:样品槽、积分球都会吸收光,造成量子产率测定的不准确性;溶液吸光度不同,会显著影响量子产率测定值;积分球污染会产生不必要的荧光,致使量子产率无法测试。所以,如何解决以上问题,是绝对量子产率测定中所面临的巨大挑战。[/font][b]1.3[font=黑体]拟采取的研制方法[/font][/b][font=宋体]基于前期调研,研究团队拟采用耦合积分球测试理论与反向倍加计算理论,利用现有的高级稳态瞬态荧光测量系统,搭建微型化积分球测试系统,从而实现绝对量子产率的瞬时测定、多种形态样品的测定和高灵敏度探测等测试手段,在测量得到材料的反射率、漫透射率和准直透射率后,利用反向倍加算法得到其基本光学参数如散射系数、吸收系数和各向异性系数,并进一步优化测试方法,从而优于国际上公开的标准绝对量子产率测试方法。[/font][b][font=宋体]技术路线:[/font][/b][font=宋体]项目的具体技术路线如图[/font]2[font=宋体]所示。[/font] [img=,534,160]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058471471_2138_5248244_3.png!w690x206.jpg[/img][align=center][b][font=宋体]图[/font]2. [font=宋体]微型化量子产率测量系统的技术路线[/font][/b][/align][font=宋体]本项目将从量子产率的发光机理出发,基于宏观参数测量理论和基本参数计算理论等核心技术,研究内容由以下三部分组成:[/font][b][font=宋体]([/font]1[font=宋体])微型化积分球的可行性[/font][/b][font=宋体]积分球,能够确定量子产率而不依赖于某一项量子产率的标准。使用积分球是确定固体,粉末和薄膜材料的量子效率的唯一方法。设计新型微型积分球提供了一个简单的方法来测量绝对量子产率而无需重新配置硬件。[/font][font=宋体]通过引入半积分球原理来微型化积分球,用一面平面镜堵住半球开口,利用平面镜对称成像原理对半球实物成立一个全等的虚像,实物半球与虚像半球共同构建出一个完整的积分球,进而微型化积分球,构筑微型化的球体方便地取代了常规比色皿支架避免了样品室的光学干涉。球体的顶部部分可以拆除,将测试样品很快的放进去,而无需使用任何工具。它可以容纳常规比色皿,薄膜和粉末。这是一个用来表征发光半导体,玻璃,陶瓷和纳米材料的重要工具。[/font][b][font=宋体]([/font]2[font=宋体])积分球内部结构的优化设计[/font][/b][font=宋体]积分球内壁白色漫反射层的质量,对测试精度影响较大。所设计的微型积分球,其所选用的高反射涂层,采用特殊配方和特殊工艺喷涂,反射率接近[/font]100%[font=宋体],反射率随波长变化小,具有良好的耐久性、防水性、耐辐射性。同时因激发光源和样品发射荧光的强度相差较大,在测量时既要满足最大光强不溢出,又要使样品的荧光发射强度满足测试所需的最小信噪比要求,因此对积分球内部设计如:样品与光源位置的设计,夹具的设计、内部挡板尺寸和位置的选择及积分球上用于入光和出光所开的窗口等因素等都需要进行相应的研究,从而最大程度的降低测量误差。[/font][b][font=宋体]([/font]3[font=宋体])耦合积分球和测试系统与优化升级[/font][/b][font=宋体]在原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,通过上述内容的研究完成微型化积分球及内部结构的优化从而借助原系统的现有功能,完成了[/font][font=宋体]微型积分球量子产率测量系统中各个部件的设计与选取,整合各个部件,搭建完整的测试系统。考虑其灵敏度、信噪比及光谱范围,对关键部件进行选取后,根据量子效率测量原理及基于积分球的量子效率测量方案从而耦合微型化积分球和测试系统的整合达到优化升级的效果。[/font][font=宋体]由于受到光源、单色器和探测器等的光谱特性的影响,由仪器直接记录的荧光光谱并不是所测量物质的真实光谱,这样的光谱被称为未校正光谱,这种光谱的形状和最大发射峰位置等与真实光谱都有一定的区别。在对物质进行荧光量子产率测量时,就必须对所使用的荧光分光光度计仪器进行光谱校正,获取物质的真实光谱,才能得出准确的荧光量子产率。[/font][b] 2 [/b][font=宋体][b]结果与分析[/b][/font][b]2.1 [font=宋体]设计思路[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。[/font][font=宋体]为了实现上述目的,本发明采取的技术方案如下:提供一种用于量子产率测试的双光路微型积分球,所述积分球装置包括壳体、球体两部分,所述壳体的内部为球体,所述球体壁上开设有第一入光口、第二入光口和出光口,所述第一和第二入光口均在壳体中,且入光口均配有活塞可以关闭,所述第一入光口和第二入光口均可有光源通过,出光口与输出端连接。优选的,所述双光路积分球装置的外部大小依据配置的样品室调节,壳体为黑色航空铝合金箱体。优选的,所述的入光口对准积分球中心样品槽。优选的,所述的积分球表面喷砂氧化黑,内壁均设有漫反射材料层。进一步的,所述漫反射材料层可为硫酸钡涂层或聚四氟乙烯涂层。(图[/font]3[font=宋体]中,[/font]1[font=宋体]、样品架,[/font]2[font=宋体]、出光口,[/font]3[font=宋体]、第一入光口,[/font]4[font=宋体]、第二入光口。)[/font][align=center][img=,214,217]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059144920_587_5248244_3.png!w335x302.jpg[/img][/align][align=center][b][font=宋体]图[/font]3. [font=宋体]基于双光路微型积分球的量子产量测试装置的整体俯视示意图[/font][/b][/align][b]2.2 [font=宋体]实物图[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,设定图(图[/font]4[font=宋体]左),实物图(图[/font]4[font=宋体]右)。依照原有测试系统的内部格局进行了相关参数的限定,引入可调节底座,更好的符合原有系统的升级。[/font] [font=宋体]对现有参数)积分球内部结构的优化设计,进行三维建模,实际内部图和模型图如图[/font]5[font=宋体]所示:[/font][align=center][b][img=,298,166]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059207524_4542_5248244_3.png!w453x246.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]4. [font=宋体]微型化积分球的实物设计图(左)和实物图(右)[/font][/b][/align][align=center][b][img=,280,212]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059260612_4504_5248244_3.png!w425x307.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]5. [font=宋体]微型积分球的内部实物图(左)和三维建模图(右)[/font][/b][/align][b][font=宋体]([/font]1[font=宋体])主要功能[/font][/b][font=宋体]测试发光材料的[b]绝对量子产率[/b](量子效率[/font]=[font=宋体]样品发射出的光子数[/font]/[font=宋体]样品吸收的光子数),样品(固体、液体、粉末及薄膜)被放置在[b]微型化积分球[/b](相当于样品腔)内,氙灯发射出的连续光谱经过单色仪分光后再通过光纤引入到积分球内的样品上,荧光样品受激发后会发出荧光,荧光光谱通过光纤被后端的光谱探测系统接收,可实现高灵敏度的多波长实时测量。[/font][b][font=宋体]([/font]2[font=宋体])技术参数、指标要求[/font][/b][font=宋体]微型化量子产率测试系统主要技术参数、指标要求:[/font][font=宋体]([/font]a[font=宋体])光致荧光效率测试范围:[/font]200 nm ~ 900 nm[font=宋体];([/font]b[font=宋体])积分球直径<[/font]100 mm[font=宋体],便于安装操作;([/font]c[font=宋体])量子效率最小测试误差不大于[/font]1%[font=宋体];微型化积分球便于灵活使用,结构稳定,系统无需频繁校准,满足液体、薄膜和粉末样品的绝对量子产率的多次测量。[/font][b]2.3 [font=宋体]测试过程[/font][/b][font=宋体]原则上,要做两次发射扫描。而且,在数据采集时每一次都要做激发校正和发射校正。发射校正为必要检测项是因为检测系统的量子转换效率随波长变化而不同。激发校正为选作项,因为此项是用来校正灯泡功率波动和强度漂移。[/font]1[font=宋体])第一次样品的发射扫描必须同时记录下激发峰和所有的荧光发射峰。为了保持线性关系,初始强度必须低于[/font]1000,000counts/s[font=宋体](在使用狭缝和楔形光闸的情况下),选择的步长精度要能解析激发峰。当激发光谱和荧光光谱有效分离时,仪器会分两部分记录光谱扫描结果。[/font]2[font=宋体])第二次扫描激发光谱和背景曲线是在只有溶剂或缓冲液的条件下测定,作为空白对照值。[/font][b]2.4 [font=宋体]数据分析[/font][/b][font=宋体]荧光量子产率为荧光量子数与吸收量子数的比值。荧光量子数为第一次空白中曲线中全部荧光谱线的积分值。吸收量子数为激发谱线中曲线第二次样品曲线减去第一次空白曲线的面积的积分值。可通过积分软件在选择范围内积分得出两个值。“总面积”代表[/font]X[font=宋体]轴与曲线间面积的积分值。“峰面积”代表在测量范围内曲线与线性背景之间面积的积分值。在此背景下,用“峰面积”来计算比用“总面积”计算更为准确。[/font][b]3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]研制的国产绝对荧光量子产率测量系统,主机采用高级稳态瞬态荧光测量系统,样品光路设计采用积分球技术,光谱校正采用量子计数器和标准钨灯方式,配合荧光量子产率分析软件,可实现对物质荧光量子产率的绝对法测量。用已知量子产率的标准物质进行验证,通过实现绝对量子产率的升级和改造,增加现有仪器的新功能开发,提高仪器的完好率、利用率、降低维修率等;将新功能应用更好地应用于物理、化学、医药和材料科学等研究领域,以满足日益增长的科研测试需求,从而进一步反馈学校科研项目的发展和高质量科技成果的产出,系统的研制将对我国在绝对荧光量子产率测量方面取得重要进展。[/font][b][font=宋体]参考文献:[/font][/b][1][font=宋体]石广立[/font],[font=宋体]张恒[/font].[font=宋体]测量荧光量子产率的方法及装置[/font].CN201811115211.4[P].[2][font=宋体]王培虎[/font],[font=宋体]潘东杰[/font],[font=宋体]蔡贵民[/font].[font=宋体]一种使用积分球测量荧光量子产率的测量装置[/font]:CN201720505578.1[P].[3][font=宋体]张伟[/font],[font=宋体]邹贤劭[/font].[font=宋体]一种荧光量子产率测试仪及其测试方法[/font]:CN201910032496.3[P].[4][font=宋体]胡晓月屈泽华黄红香[/font].[font=宋体]积分球测量荧光量子产率的最优测试条件研究[/font][J].[font=宋体]中国测试[/font],2021, 47(10):59-62,74.[5][font=宋体]魏巍[/font],[font=宋体]束爽[/font],[font=宋体]寿邱杰[/font],[font=宋体]等[/font].[font=宋体]一种基于双光路微型积分球的量子产率测试装置[/font]:202310647492[P].[6][font=宋体]冯国进[/font],[font=宋体]王煜[/font],[font=宋体]郭亭亭[/font].[font=宋体]固体材料绝对荧光量子产率测量的研究进展[/font][C]//[font=宋体]中国计量测试学会光辐射计量学术研讨会[/font].[font=宋体]中国计量测试学会[/font], 2009.[hr/]

  • 观察量子信息新方法可及时纠错量子状态

    中国科技网 讯(记者华凌)据物理学家组织网1月15日(北京时间)报道,耶鲁大学研究人员成功开发出一种新方法,既可以观察量子信息,同时还能保持其完整性,这将给量子力学研究提供更大的控制权,以纠正随机错误,并将极大地提升量子计算机的发展前景。该研究结果发表在最新一期《科学》杂志上。 耶鲁大学应用物理与物理研究教授米歇尔和主要研究者弗雷德里克说:“盯着一个理论公式是一回事,能够真正控制一个量子对象是另一回事。这项实验是量子计算过程中必不可少的一次彩排,可以真正积极地理解量子力学。” 在量子系统中,信息是由量子比特来存储的。量子比特可以假定为“0”或“1”两个状态,这两个状态在同一时刻是叠加的。正确认识、解释和跟踪它们的状态对于量子计算非常必要。但通常情况下,监视量子比特会损害其信息内容。 新开发的这种非破坏性的测量系统可以观察、跟踪和记录一个量子位所有状态的变化,同时保持量子比特的信息价值。研究人员说,原则上,这将允许其监视量子比特的状态,以纠正随机错误。 米歇尔说:“具有与量子比特对话的能力,并且听到它在告诉你什么,这就是关键所在。量子计算机一个主要问题是量子比特存储的信息‘寿命’有限,并持续衰减,所以必须予以纠正。” 弗雷德里克说:“只要你知道过程中发生了什么错误,就可以修正。这些错误基本上是可以撤消的。” 该研究团队现在可以成功地测量一个量子比特,未来面临的挑战是一次测量和控制更多的量子比特。他们正在开发基于此目的的超高速数字电子技术。 总编辑圈点: 薛定谔那只既死又活的猫,生动地诠释了量子世界的奇妙之处:量子时刻处于“0”和“1”两个状态,而你对单个量子状态的任何“窥探”都将改变其状态。科学家的新发现如果确实是针对单个量子比特,那么无疑是量子物理领域的一大突破。它在为更精确的量子计算提供测量基础的同时,也为量子密码领域的研究人员提出新的挑战:依靠量子状态不可测来杜绝量子通信被偷窥的方法,或许要更新了。 《科技日报》2013-1-16(一版)

  • 【转贴】人类医学史的新篇章--量子光能治疗系统

    记者日前获悉,一种被誉为奈尔斯量子光能终极版的新型治疗系统在前不久正式问世。该系统通过发射620-760nm之间的红色电磁波,并通过科技手段将其聚强,对人体全身进行照射。穿透深度可达15mm,通过光量子的光电磁反应和光化学作用,深层作用于人体的血管组织、淋巴组织、神经末梢、皮下组织等部位并与人体细胞产生一系列光生物刺激作用,从而影响人类已知的9982个基因中111个基因的表达,最终增强人体细胞能量,促进细胞的增殖和抗氧化能力,增强细胞的新陈代谢的抗凋亡能力,有效清除体力自由基,增强血液携氧能力,降低血液粘稠度,彻底改善全身血液微循环等,从而对伤口愈合、糖尿病、心脑血管疾病、亚健康等起到明显的治疗作用。 该系统是奈尔斯量子光能治疗系统在经过4年的临床后推出的增强型,与原型相比较具有光照剂量更强、光生物学作用更强、治疗范围更广、治疗效果更好等特点。

  • 量子点电视

    什么是量子点电视?量子点电视听上去很高深莫测,其实就是QLED电视的另外一个名称,QLED是"Quantum Dot Light-Emitting Diode"的简写,中文译名是“量子点发光二极管”,这是一项家电厂商期待在未来取代OLED的新技术,原理是通过蓝色背光源照射照射直径不同的红色和绿色量子点,从而形成红绿蓝(RGB)三原色,然后再通过滤光膜等呈像系统和驱动系统形成图像。说白了,量子点电视其实还是一种LED电视。量子点是一种纳米材料,其晶粒直径在2-10纳米之间,量子点受到电或光的刺激会根据量子点的直径大小,发出各种不同颜色的单色光。可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光。那么什么是LED电视呢?首先我们先来说说液晶电视的根源性产品——LCD电视。LCD(Liquid-Crystal Display)最开始其实是液晶显示器,加入收看电视功能后成为LCD电视。这种电视通过背光源照射液晶面板,RGB三色液晶分子通过不同排布完成成像。请记住一点:在LCD阶段,液晶电视重要的背光源是CCFL冷阴极背光灯,可以暂时理解为我们的灯管,我们将这时的LCD电视称之为CCFL冷阴极背光源液晶电视。随后LED电视出现了,其实LED依旧是一种LCD液晶电视,它的准确名称是LED背光源液晶电视,LED电视和LCD电视的成像原理完全相同,只是背光源由CCFL改为了LED,相比而言厚度更薄、更加节能,但没有本质区别。量子点电视有何优势?要说到量子点电视的优势,首先我们得来说说OLED。OLED有机发光二极管(Organic Light-Emitting Diode)的屏幕是由有电流通过时能够发光的有机材料组成,它让电视机更轻薄,甚至可以弯曲。不过,因为成本高、良品率低、有机材料易氧化、无法适应户外和强光环境、以及某些场景下能耗过高等问题,采用OLED技术的电视一直未能普及。OLED技术当前主要掌握在两家全球最大家电厂商LG和三星电子手中。这两家韩国厂商是老对手,同时也是重要的液晶面板生产厂商。LG押宝OLED,希望借此超越三星电子的全球电视厂商老大的地位。然而因为OLED现阶段的高价,导致市场销量一直难以达到预期。此时,三星电子决定将研发重心转移到QLED上来。与OLED电视相比,量子点电视有四大优势:更宽广色域显示、更精准色彩控制、更长使用寿命以及更强节能性。由于量子点受到电或光的刺激,会根据其直径大小,发出各种不同颜色的非常纯正的高质量单色光,这一点甚至比OLED显示屏更强,众所周知OLED显示屏是通过滤镜得到纯色,而通过过滤的色彩虽然更纯、但也会有失真的情况,而量子点并不需要过滤,也就不会出现这种情况。同时可以在更低的电压下工作,能耗会降到最低。此外,由于量子点电视使用的无机材料不易被氧化,因此其显像寿命比OLED多出两万小时。当前量子点电视值得买吗?当前暂时只有TCL一家厂商推出了量子点电视,且55英寸的量子点电视的官方售价高达12999元人民币,而TCL 55英寸的4K超高清LED电视的官方零售价格只有5599元人民币。一台量子点电视的售价是同尺寸同分辨率的LED电视售价的2倍还要高。TCL此时推出量子点电视,打造自己品牌的意味更浓。而三星电子和LG要明年才能加入量子点电视阵营,届时消费者可选的余地将会更大。同样,新推出的技术还有可能有缺陷,具体如何有待市场检验,所以综上所叙,现在量子点电视并不值得购买,建议消费者持币观望。此外,业界也有观点认为,85%以上的色域普通人的肉眼实际是很难分辨的,因此厂商强调的高色域效果消费者并非都能感受到,也就是说,OLED电视的色域已经完全能满足普通用户的需求了。http://img1.mydrivers.com/img/20141222/5d677d4db4334f2d8e207c471c7bdd82.jpg

  • 【转帖】量子点的“战争”不可避免

    量子点的“战争”不可避免随着现在一种被称为量子点的纳米材料越来越多地受到电子以及生命科学产业的重视,分析人士担心在量子点技术领域复杂的专利权问题将引发一场昂贵且没有赢家的法律战争。 纽约市雷克斯研究公司的副总裁Matthew Nordan认为,“在未来三年内很有可能会发生一场针对量子点技术的法律大战。” 然而,有专家称,也许有方法可以避免这些无谓的法律战争。 Stephen Maebius是美国华盛顿纳米科技行业法律顾问公司Foley & Lardner公司的主席,他表示“研究量子点的那些公司可以通过专利交换的方式来避免由诉讼引起的干扰,把原本花在长达数年官司的百万美元投入到研究中去。” 量子点是半导体纳米微晶体,大小只有十亿分之一米,仅仅由10个原子组成。这种材料在吸收了少量的光线后能够发出明亮的荧光。科学家们能够改变量子点吸收的光线颜色,然后再对量子点的体积和结构进行调整就能让这种材料散发出颜色极为精确的荧光。例如,直径大于6纳米的硒化镉量子点能够发出红色的荧光,而直径小于3纳米的硒化镉量子点则会发出绿色的荧光。 量子点能够帮助科学家们对细胞和器官的行为成像,而成像细节级别在价值5亿美元的全球生物探测试剂市场中是前所未有的。生命科学研究中所使用的传统的光燃料分子是作为分子标签使用,帮助科学家们监测细胞与器官生长、发展,而它们通常在几秒钟内就会失去发光能力。而量子点的发光时间却更长,让研究者们能够实时监测细胞与器官在死亡与健康情况下的表现。 美国加利福尼亚州海达德地区的Quantum Dot(量子点)公司刚成立不久,它已经和诸如Genentech,, Roche 和GlaxoSmithKline几个业界巨头开始合作。 量子点还能够通过吸收光线产生电子。美国科罗拉多州戈尔登地区的国家可再生能源实验室的研究人员在五月份一期的《纳米快讯》中解释说,这将使新的太阳能系统性能提高到现有最好的太阳能电池性能的两倍。目前我们生产的太阳能电池吸收光线中的一个光子,然后,最多把它转换成一个电子,而剩下的能源就被白白浪费掉。而量子点能够将太阳光中的单个高能量光子转换成多达三个电子。这意味着,理论上来说基于量子点的太阳能电池能够将太阳能中65%的能量转换成为电能,而今天最好的电池也只能够达到33%。 纳米技术法律与商业周刊的一位编辑John Miller解释说:“现在一些公司注册的专利含盖范围很广,几乎包括了所有的半导体纳米晶体,有的公司甚至在专利申请书上仅仅描述像硒化镉这样特殊的材料。” 和Quantum Dot公司一样,另一家位于加利福尼亚州帕洛阿尔托地区的Nanosys公司声称,拥有量子点领域中除Quantum Dot独家关键专利外的所有专利。 Quantum Dot公司的执行总裁 George Dunbar表示,“如果有人阻止我们获得知识产权,那我们一定会把他们揪出来。” 然而,几家研究量子电的公司针对这些排他主义性宣言已经想出了几个对策。 纽约州托伊地区Evident科技公司的总裁Clinton Ballinger说:“我们并没有看到有关专利重叠的声明,我们感觉每向前迈进一步,都好像是跨进了新的领域。虽然花费了很多时间在这片雷区探索,但是我们觉得手中好像有一份地图在指引我们前进。在那里我们几乎没有束缚。” 例如,Evident公司发布了第一个利用非重金属制成的量子点。 “日本和欧洲都十分反对使用镉,而大多数的量子点都是由镉或铅制” Ballinger说,他还指出美国很快也会开始限制这些金属的使用。 Nordan强调说“在量子点技术领域,人们谈论最多的就是诉讼,而不是专利授权。这就像是笼罩在这一领域上空的一片黑云一样,而在诸如富勒烯这类的领域中,你所听到的大多是竭尽全力的诉讼大战,而不是专利交换授权,和平相处。正确的解决办法是专利交换授权,专利交换在信息产业领域的运行非常成功,但是你必须把自己的骄傲抛在脑后。” 虽然以生命科学应用为目的出售量子点是明显的事实,但是Ballinger认为针对量子点技术的法律大战并不会出现。他说“我们完全接受专利授权,这是理智之选。” Dunbar并没有排除采用专利交换解决问题的可能性,但是他认为:“只有和那些财务状况稳定的公司进行交易时,专利交换才有用。而据我所知,目前达到这一标准的公司并不多。” 转载出处:中国科技信息网

  • 拓展量子技术应用新维度——自旋电子学介入量子应用领域成果初现

    本报记者 刘霞 综合外电http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980109_change_chd36128_b.jpg用激光操控单个电子自旋模拟图http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980140_change_chd36126_b.jpg 今日视点 科学家们一般认为,研究微观粒子运动规律的新兴技术——量子技术主要应用于计算、通讯和加密等领域,但据物理学家组织网近日报道,现在,科学家们利用自旋电子学(其基本理念是理解和操作电子的自旋来推动技术的发展)扩展了量子技术应用领域的新维度,使他们可以利用量子力学完成一些此前没有想到过的任务,比如用激光处理量子信息以及在纳米尺度上进行温度测量。 这两项研究都建立在对钻石内的氮晶格空位中心进行操控的基础上,都利用了这一瑕疵固有的“自旋”特性。氮晶格空位中心是钻石原子结构上的一种瑕疵,钻石晶格中的一个碳原子被一个氮原子取代,使其附近空缺出一个晶格空位,围绕氮原子旋转的自旋电子就变成一个量子比特(qubit)——量子计算机的基本单位。 这两篇文章的主要研究者、美国芝加哥大学分子工程学教授戴维·艾维萨洛姆表示:“过去20多年来,科学家们一直在研究如何隔离和控制固态内单个电子的自旋,最新研究就是基于这些研究所获得的结果。科学家们的初衷是制造出新的基于量子物理学的计算技术,但最近几年来,随着研究的不断深入,我们的关注点也在不断扩展,因为我们开始意识到,量子物理学的原理也适用于新一代的纳米传感器。” 用激光操控量子比特 艾维萨洛姆和加州大学圣巴巴拉分校(UCSB)以及德国康斯坦茨大学的6名合作者一起,研发出了一项新技术,他们在发表于5月7日美国《国家科学院学报》上的一篇论文中介绍了如何借助此项技术,只用激光就实现了对量子比特的操控,包括初始化、读取电子自旋态等。新方法不仅比传统方法更能实现统一控制,而且功能更多样,为探索新型固态量子系统打开了大门,也为科学家们朝着最终制造出性能远胜传统计算机的量子计算机开辟了新的路径。 传统计算机的基本信息单位是比特(bit),只能在0和1中选择其一;而量子比特能以多个状态同时存在,也即同时为0和1,这就使得量子计算机能够进行更复杂的操作,计算能力更强。 尽管氮晶格空位中心是一种很有前景的量子比特,过去10年来一直被广泛研究,但要用工业或生长的方法造出所需钻石却是极大的挑战。 艾维萨洛姆表示,与传统技术不同,他们研发的是一种利用激光脉冲在半导体内控制单个量子比特的全光策略,其“消除了对微波电路或电子网络的需求,仅仅用光和光子就可以做一切事情”。 作为一种全光学方法,新技术也有潜力进行升级,控制更多量子比特。另外,新方法的用途更加广泛,也可以用于探索其他物质内的量子系统,否则,这些物质很难被用来做量子设备。 基于电子自旋学的温度计 此前,科学家们也用氮晶格空位中心作为量子比特,在室温下制造出了可用于磁场和电场的传感器。现在,在发表于5月21日出版的美国《国家科学院学报》上的一篇论文中,研究人员展示了另外一种操控氮晶格空位中心的方法,并制造出了一种量子温度计。艾维萨洛姆估计,基于上述研究,他们可以研发出一款多功能的探测器。 艾维萨洛姆说:“我们能用这款探测器测量磁场、电场以及温度。或许最重要的是,因为这个探测器是一个原子尺度的瑕疵,能包含在纳米尺度的钻石粒子内,因此,它可以在一些极富挑战性的环境下工作,比如测量活体细胞或微流体电路内的温度。” 最新创新的关键是,科学家们研发出了一种控制技术操控自旋,使其能更灵敏地探测温度的变化。该研究的领导者、加州大学圣巴巴拉分校物理系研究生戴维·托尼表示:“过去几年,我们一直在探索用钻石内的这种瑕疵的自旋来制造温度计。最新技术让环境噪音的影响达到了最小,使我们能进行更加灵敏的温度测量。” 而且,科学家们可以在很大温度范围内(从室温到227摄氏度)对这种自旋电子进行操控。 艾维萨洛姆还表示,这一系统也能被用来测量生物系统内的温度梯度(自然界中气温、水温或土壤温度随陆地高度或水域及土壤深度变化而出现的阶梯式递增或递减的现象),比如活体细胞内部的温度梯度。 《科技日报》(2013-06-15 三版)

  • 时间旅行可在量子尺度上实现

    科学家首次用光子模拟时间旅行证实时间旅行可在量子尺度上实现http://www.wokeji.com/shouye/zbjqd/201406/W020140625080681152943.jpg 科技日报讯 (记者刘霞)如果一名时间旅行者回到过去,破坏其祖父母之间的结合,那么,他是否也就不会出生呢?这是经典的“祖父悖论”的核心问题所在,“祖父悖论”常被人拿来论证时间旅行不可能存在,但有些科学家则不这么认为。 据英国《每日邮报》网站6月24日(北京时间)报道,澳大利亚昆士兰大学的科学家首次使用两个光量子(光子)模拟了量子粒子在时间中的旅行并对其“一举一动”进行了研究,结果表明,至少在量子尺度上,时间旅行是可以实现的。研究发表在最新一期的《自然·通讯》杂志上。 科学家们使用光子(光的单个粒子)来模拟回到过去的量子粒子并对其行为进行了研究。在实验中,他们对一个进行时间旅行的光子可能产生的两种结果进行了考察。第一种结果是:“1号光子”会通过虫洞进入过去并同以前的自己相互作用。第二种结果是:“2号光子”会在正常的时空内行进,但会通过虫洞同一颗卡在时间旅行环—封闭类时曲线(CTC,是物质粒子于时空中的一种世界线,其为“封闭”,亦即会返回起始点)内的光子相互作用。模拟“2号光子”的行为使“1号光子”的行为也能被研究,结果表明,时间旅行在量子尺度上可以实现。 该研究的主要作者、数学和物理学院的博士生马丁·瑞巴尔说:“时间旅行问题是阐释恒星、星系等大尺度世界的基本运行原理的爱因斯坦广义相对论和描述原子、分子等微小尺度世界运行原理的量子力学这两大最成功但最不兼容理论的交界点。” 爱因斯坦的理论认为,或许可以通过一条时空通道,回到时间上更早的空间上的起始点,但这种可能性让物理学家和哲学家们困惑不已,因为这似乎会导致一些悖论,比如经典的“祖父悖论”。 昆士兰大学的蒂莫西·拉尔夫表示,1991年,有科学家预测,量子世界发生的时间旅行或许可以避免这些悖论。拉尔夫说:“量子粒子的属性含糊且不确定,这或许给了它们足够的摆动空间,来避免前后矛盾的时间旅行环境。” 科学家们表示,尽管同样的模拟是否能证明更大的粒子(比如原子)或一群粒子可以进行时间旅行还是个未知数,但最新研究有助于他们更好地理解广义相对论和量子力学理论之间的相互关联。 左图 在模拟实验中,一个被卡在封闭类时曲线的光子被发现能与在正常的时空内行进的光子相互作用。 总编辑圈点 爱因斯坦的相对论不否定时空穿越——质量造成两处时空弯曲,若交汇于一点,就生出一条“虫洞”,我们由之穿越到七千万年前的仙女座星云,不是不可能——但“虫洞”只是假想,前提是广义相对论完全正确。我们的世界有时间旅行者吗?有科学家编写了软件,在网络上搜寻“未来客”存在的迹象,至今尚未找到。几年前还有科学家用光子做实验,让它携带信息到过去改变自己,结果失败了。如此看来,诸多幻想似乎只能停留在小说里。但科学家不会放过穿越主题,它至少是个很好玩的思想游戏。来源:中国科技网-科技日报 2014年06月25日

  • “量子力学在哪?你正沉浸其中”——看量子力学在真实世界中的10大应用

    新视野 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188203_change_chd2882_b.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188218_change_chd2883_b.jpg 数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途——譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种过程虽缓慢、成效却十分积极的积累中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。此后的十年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。到1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,耗电不过100瓦特。今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。而这一切都必须归功于量子力学。 二、量子干涉“搞定”能量回收 无论怎样心怀尊敬,对于我们来说,不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。而此“能量回收”就是个例子。 每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。因为在引擎点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。对于这种情况,亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。 量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效的将热量转化为电能。更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200枚100瓦灯泡的电能——尽管理论让人茫然,这数字可是清楚明白。 该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。而我们只需知道,这都是量子干涉“搞定”的。 三、不确定的量子,极其确定的时钟 作为普通人, 一般是不会介意自己的手表是快了半分钟,还是慢了十几秒。但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。这些原子钟比之前所有存在过的钟表都要精确。其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。 看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。不管是恒星还是小行星,它们都时刻处在运动当中。同时距离也是必须考虑的因素。一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。 那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。它们能够消减原子钟测量原子振动的能力。现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。它们目前正在试图将这一方法应用到所有原子钟上去。毕竟科技越发达,对准时的要求就越高。 四、量子密码之战无不胜篇 斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。借助这种方式,斯巴达的军官能够发出一条敌人看起来显得语无伦次的命令。而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。 斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。因而当合法的信息接收者检查钥匙时,就会轻易发现倪端,进而更换新的密钥。 量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d706.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d707.jpg 五、随机数发生器:上帝的“量子骰子” 所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。它们借助量子力学,能够召唤出真正的随机数。不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。 然而,在量子世界,所有的一切都是

  • 美科学家造出全新量子物质形态

    中国科技网讯 据物理学家组织网6月7日(北京时间)报道,美国斯坦福大学上周宣布,他们用金属镝(dysprosium)造出世界上第一个双极量子费米子气体。研究人员认为,该费米子气体兼具晶体和超流液二者看似矛盾的特征,是一种全新的量子物质形态。这标志着人们在理解费米子系统性质,将凝聚物质物理学中的超自然现象引入现实应用等方面,迈出了重要一步。相关论文发表在上周的《物理评论快报》上。 如果让量子效应出现在宏观世界,将有很多不可思议的现象,水会向上流、导线没有电阻、电流的磁浮作用消失等。这些现象都和传统的理论背道而驰,但在开发未来技术方面却有着巨大前景。 量子气体是迄今人类已知的最冷物质,它们的黏度为零,是一种和超流液一样的超导体。几十年来,费米子的量子效应一直难以理解。但如果能造出一种量子费米子气体,那些通常只在纳米水平才能观察到的现象,就会变得明显可见。 研究中最大的两个困难是造出64纳开的极端低温和生成强相关量子气体。研究人员在坩埚中把粒子加热到约1300摄氏度,发射到强真空中,然后用世界上最强的持续波蓝激光致冷,将粒子冷却到千分之一绝对零度。再通过激光和蒸发冷却过程,最终让气体温度降到实验所需的64纳开。一般情况下,以这种方式制冷的物质只有2个或3个能级,而镝却有140多个。 他们还将制冷技术用于磁性气体,解决蒸发制冷过程中费米子不相关的问题,使得费米子间可相互碰撞,将高能粒子撞出系统。论文领导作者、斯坦福大学应用物理学教授本杰明·列夫说,镝在周期表中是磁性最强的元素,这次所用的镝的一种费米子同位素,其磁能量比以前的冷却气体要大440倍。镝原子间超强的双磁极作用使其能通过远程碰撞而冷却到临界温度。 研究人员指出,这种费米子气体有望带来量子液晶,也就是那些构成大部分显示器所用液晶的量子力学版;或者带来一种超级固体,这是一种假设的物质态,理论上这种固体具有超流液的特征。 目前,他们正在利用这种双极量子气体的独特性质,开发一种“低温原子芯片显微镜”。这是一种磁性探测仪,能以前所未有的灵敏度和分辨率检测磁场。这种探测仪使用外部量子材料来处理信息,能让量子计算更稳定。此外,该研究还为物理学家提供了理解非传统量子效应的新目标。(记者 常丽君) 总编辑圈点 相比于传统物理学对人类物质生活的改善,量子力学对物质本源的探究则包含了更多的哲学思考和精神内涵。因此,相比于具体的产品应用,这一研究所提供的方法和模型更加重要——制造出足够多和稳定的研究对象是开展直观量子力学研究的基础。文中提到的量子液晶等只是基础研究的副产品,我们不能从传统物理学视角来功利地看待量子力学,它带来的将不只是工业产品的革新,而是翻天覆地超乎想象的变化,甚至生命形态也随之改变,所有的“超自然”都将成为“自然”。 《科技日报》(2012-06-08 一版)

  • 粉笔尘封 微光量子教学系统应运而生

    粉笔教具是目前教学的必备工具,用它来传授知识,是最原始和最传统的主要教学方法之一,粉笔从其应用到现在已有几千年的历史,对人类的教育事业作出了不可磨灭的贡献,随着历史的进步和社会的发展,人类对粉笔教具的认识不断提高,即粉笔给人类教育事业带来进步和作出巨大贡献的同时,也给从事教育事业的教师及学生带来巨大的危害。那在这领域,我们新时代的科技成果有哪些呢?  粉笔危害性日趋严重  根据全国部分调研资料显示,随着社会进步和社会节奏的加快,教师职业病率呈逐年上升的趋势,职业病呈现多样化方向发展,其中粉尘引起的尘肺以及各种急慢性呼吸道疾病是中国目前职业病中最主要,危害最严重和最广泛的一种。学生近视患病率亦逐年上升,到了异常严重的程度。如教育专家田俊于1995年对福州30所中学、6所小学的3125名中小学教师进行的问卷抽样调查结果表明,中小学教师呼吸系统慢性病患病率较高,常见为慢性咽炎和声带疾病。其中男性慢性病患病率为58.53%,女性慢性患病率为61.06%,而且均有随教龄增长而升高的趋势,教育专家牛彩英等1996年12月对开封城区240位小学教师进行调查,表明教师存在轻重程度不同的咽喉疾病,发病率为60.4%。教育专家鹿道温等于1999年对青岛162名大学教师进行疾病调查时显示:慢性咽喉炎89例,占54.94%,慢性喉炎69例,占42.59%,均存在着明显的职业病现状。据对我市57中、金水区二小等学校共219名教师调查的结果显示:教师咽炎患病率为100%、鼻炎患病率为39%、哮喘病患病率为43%、支气管炎的患病率为8%、尘肺病的患病率为11.76%、癌症患病率为2%。  另对学生由于长期黑板白字、白纸黑字、以及教室粉尘污染所引发学生近视问题的调研资料显示:我国1992年资料与1980年同类资料相比,10年间全国22个省(市、自治区)学生视力下降率平均上升了23.45%,目前我国小学生视力低下率达21.91%,初中生为55.86%,高中生为75.79%,大学生接近80%,均每年呈上升趋势。据对我市金水区二小、郑州市57中等学校共计2839名学生的调查显示:郑州市金水区二小学生弱视率为15.76%、郑州市57中初中部学生近视患病率为30.44%、高中学生近视患病率为74.7%。  国内外专家为解决粉尘问题所做的努力  鉴于上述情况,近年来,国内外许多科技工作者为解决粉尘污染,预防学生近视,致力于师生健康作出不懈努力,研制了多种替代产品和对笔、板、擦的改良产品:  ◆英国的卷帘式写字幕,随用随卷,全部用完专人清洗,虽然解决了部分粉尘,但使用成本高,费时费力。  ◆日本的电动吸尘板擦以及美国的无尘粉笔,这两者降低了粉尘的危害,但没有从根本上进行根除,而且使用成本过于高昂,自身具有局限性不能大面积推广使用。  ◆白板和白板笔,该教具在50、60年代已研制成功,这是我们大家都非常熟知的,他是在覆有釉层的板面上,用醇溶性的色彩作墨水,以彩色方式书写,但这样的普通白板因存在许多缺陷而无法推广,比如说他的板面涂层易划伤,反光率高,不能用于课堂教学,我们更多的是在公司的会议室里见到他;同时他的墨水使用的是有机溶剂,成本高,易挥发,污染环境,书写量小,渗透力强,污染板面,时间长容易留下鬼影。  微光量子环保教学仪器系统应时而生  国内外许多科技工作者为解决粉尘污染做了很多努力,却始终效果寥寥,微光量子环保教学系统把教室里的传统的黑板和白绿板彻底淘汰了,改变了以往十几年用粉笔写字的历史,而是采用无尘、无毒、无味并可以循环使用反复加墨的水性环保笔;使用了波长在550-770纳米之间的米黄色教学板面,所以,在预防近视方面得到了很大的改善;同时投影机可以直接投射在教学板上,这样,投影幕布也就不需要了;最后,老师可以手持教学笔或者手指在板面上直接进行多媒体课件的教学,具备了电子白板的所有功能。 总结起来,微光量子环保教学系统相当于把绿板、投影幕布、电子白板三种功能集于一体,让教室进入一个环保低碳健康科技整洁的教学新环境,真正进入了无尘教学新时代。

  • 我国科学家提出一种新的量子传感范式为十纳米以下芯片的缺陷检测提供技术支撑

    日前,中国科学技术大学中国科学院微观磁共振重点实验室杜江峰院士、王亚教授等人在量子精密测量领域取得重要进展,提出基于信号关联的新量子传感范式,实现对金刚石内点缺陷的高精度成像,并实时观测了点缺陷的电荷动力学。相关研究成果近日在线发表于《自然光子学》。此次工作中,研究团队提出了一种新的量子传感范式,即利用多个量子传感器之间的信号关联,提升对复杂对象的解析能力和重构精度。研究团队基于自主发展的氮-空位色心制备技术,可控制备出相距约200纳米的三个氮-空位色心作为量子传感系统,通过对随机电场探测展示了这种新的量子传感范式。金刚石是一种性能优异的宽禁带半导体材料,材料中点缺陷的电荷动力学会带来随机的电场噪声。研究团队成功对微米范围内16个点缺陷进行了定位,定位精度最高达到1.7纳米。基于这种关联分辨和精确定位的能力,他们还实现了对每个点缺陷电荷动力学的原位实时探测,为研究体材料内部点缺陷的性质提供了新的方法。研究人员介绍,这一成果展示了基于量子技术的超高灵敏度缺陷探测,甚至在一千亿个正常原子中出现一个缺陷也能探测到。这要比目前最灵敏方法的探测极限提升两个数量级以上,有望为当前十纳米以下芯片中的缺陷检测提供一种强有力的技术手段。[来源:光明日报][align=right][/align]

  • 【zz】量子计算机

    量子力学和计算机这两个看似互不相干的理论,其结合却产生了一门也许会从根本上影响人类未来发展的新兴学科——量子信息学,通常人们通俗地称之为“量子计算机”。本文将简要的介绍量子信息理论的基本概念和历史背景,量子计算机的研究进展,及对这一学科未来发展前景的展望。   在介绍量子信息论的专业知识之前,先谈谈量子计算机的提出及其产生过程。众所周知,20世纪后半页计算机技术大行其道,人类进入信息时代。随着计算机芯片的集成度越来越高元件越做越小,集成电路技术现在正逼近其极限,科学家们看到传统的计算机结构必将有终结的一天,而且尽管计算机的运行速度与日俱增,但是有一些难题是计算机根本无法解决的,例如大数的因式分解,理论上只要一个数足够大,这个难题够目前最快的计算机忙几亿年的。  几十年前,一些先驱者,如美国IBM公司的Charles H. Bennett等人就开始研究信息处理电路未来的去向问题,他们指出,当计算机元件的尺寸变得非常之小时,我们不得不面对一个严峻的事实:必须用量子力学来对它们进行描述。八十年代初期,一些物理学家证明一台计算机原则上可以以纯粹的量子力学的方式运行,之后很长一段时间,这一研究领域渐趋冷清,因为科学家们不能找到实际的系统可供进行量子计算机的实验,而且还尚不清楚量子计算机解决数学问题是否会比常规计算机快。  进入20世纪90年代,实验技术和理论模型的进步为量子计算机的实现提供了可能。尤其值得一提的是1994年美国贝尔实验室的Peter W. Shor证明运用量子计算机竟然能有效地进行大数的因式分解。这意味着以大数因式分解算法为依据的电子银行、网络等领域的RSA公开密钥密码体系在量子计算机面前不堪一击,几年后Grover提出“量子搜寻算法”,可以破译DES密码体系。于是各国政府纷纷投入大量的资金和科研力量进行量子计算机的研究,如今这一领域已经形成一门新型学科——量子信息学。量子信息的存储——量子比特(q-bit)  量子计算机为什么会有这么大的威力呢?其根本原因在于构成量子计算机的基本单元——量子比特(q-bit),它具有奇妙的性质,这种性质必须用量子力学来解释,因此称为量子特性。为了更好地理解什么是量子比特,让我们看看经典计算机的比特与量子计算机的量子比特有什么不同。我们现在所使用的计算机采用二进制来进行数据的存储和运算,在任何时刻一个存储器位代表0或1,例如在逻辑电路中电压为5V表示1,0V表示0,如果出现其他数值计算机就会以为是出错了。  而量子比特是由量子态相干叠加而成,一个具有两种状态的系统可以看作是一个“二进制”的量子比特,对量子力学有了解的人都知道,在量子世界里物质的状态是捉摸不定的,如电子的位置可以在这里同时也可以在那里,原子的能级在某一时刻可以处于激发态,同时也可以处于基态。我们就采用有两个能级的原子来做量子计算机的q-bit。规定原子在基态时记为 |0〉,在激发态时原子的状态记为 |1〉 ,而原子具体处于哪个态我们可以通过辨别原子光谱得以了解。微观世界的奇妙之处在于,原子除了保持上述两种状态之外,还可以处于两种态的线性叠加,记为 |φ〉=a |1〉+ b |0〉 ,其中a,b分别代表原子处于两种态的几率幅。如此一来,这样的一个q-bit不仅可以表示单独的“0”和“1”(a=0时只有“0”态,b=0时只有“1”态),而且可以同时既表示“0”,又表示“1”(a,b都不为0时)。  举一个简单的例子,假如有一个由三个比特构成的存储器,如果是由经典比特构成则能表示000,001,010,011,100,101,110,111这8个二进制数,即0~7这8个十进制数,但同一时刻只能表示其中的一个数。若此存储器是由量子比特构成,如果三个比特都只处于 |0〉或 |1〉则能表示与经典比特一样的存储器,但是量子比特还可以处于 |0〉与 |1〉的叠加态,假设三个q-bit每一个都是处于( |0〉+ |1〉) / (√2) 态,那么它们组成的量子存储器将表示一个新的状态,用量子力学的符号,可记做:|0〉|0〉|0〉+ |0〉|0〉|1〉+ |0〉|1〉|0〉+ |0〉|1〉|1〉+ |1〉|0〉|0〉+ |1〉|0〉|1〉+ |1〉|1〉|0〉+ |1〉|1〉|1〉   不难看出,上面这个公式表示8种状态的叠加,既在某一时刻一个量子存储器可以表示8个数。量子信息的运算——量子算法  接下来我们看看量子计算机如何对这些态进行运算。假设现在我们想求一个函数f(n),(n=0~7)的值,采用经典计算的办法至少需要下面的步骤:  存储器清零→赋值运算→保存结果→再赋值运算→再保存结果……  对每一个n都必须经过存储器的赋值和函数f(n)的运算等步骤,而且至少需要8个存储器来保存结果。如果是用量子计算机来做这个题目则在原理上要简洁的多,只需用一个量子存储器,把各q-bit制备到( |0〉+ |1〉) / (√2)态上就一次性完成了对8个数的赋值,此时存储器成为态 |φ〉,然后对其进行相应的幺正变换以完成函数f(n)的功能,变换后的存储器内就保存了所需的8个结果。这种能同时对多个态进行操纵,所谓“量子并行计算”的性质正是量子计算机巨大威力的奥秘所在。  可能有人会还担心我们怎么把所需要的数据从8个或更多个结果中挑选出来呢?对具体的问题这就要要采用相应的量子算法,例如Shor提出的大数因式分解算法,和Grover的量子搜索算法漂亮地解决了两类问题。按照Shor算法,对一个1000位的数进行因式分解只需几分之一秒,同样的事情由目前最快的计算机来做,则需1025年!而Grover的搜索算法则被形象地称为“从稻草堆中找出一根针”!尽管量子算法已经很多了,但是到目前为止真正的量子计算机才只做到5个q-bit,只能做很简单的验证性实验。  除了最基本的量子位,量子计算,量子超空间传送等概念,在量子计算机的研究中还有许多有趣的现象和新的概念,如量子编码,量子逻辑门和量子网络,量子纠缠交换等。量子计算机能做什么  量子计算机可以进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式。在利用EPR对进行量子通讯的实验中中我们发现,只有拥有EPR对的双方才可能完成量子信息的传递,任何第三方的窃听者都不能获得完全的量子信息,正所谓解铃还需系铃人,这样实现的量子通讯才是真正不会被破解的保密通讯。此外量子计算机还可以用来做量子系统的模拟,人们一旦有了量子模拟计算机,就无需求解薛定愕方程或者采用蒙特卡罗方法在经典计算机上做数值计算,便可精确地研究量子体系的特征。 展望  现在用原子实现的量子计算机只有5个q-bit,放在一个试管中而且配备有庞大的外围设备,只能做1+1=2的简单运算,正如Bennett教授所说,“现在的量子计算机只是一个玩具,真正做到有实用价值的也许是5年,10年,甚至是50年以后”,我国量子信息专家中国科技大学的郭光灿教授则宣称,他领导的实验室将在5年之内研制出实用化的量子密码,来服务于社会!科学技术的发展过程充满了偶然和未知,就算是物理学泰斗爱因斯坦也决不会想到,为了批判量子力学而用他的聪明大脑假想出来的EPR态,在六十多年后不仅被证明是存在的,而且还被用来做量子计算机。

  • NV色心 量子计算发展背景

    [b]量子计算发展背景 信息化时代,计算机已是人们生活中不可或缺的一部分,为人们的日常生活和工作带来了诸多便利。然而诞生于[font='Times New Roman','serif']1946[/font]年的第一台通用电子计算机[font='Times New Roman','serif']ENIAC[/font]体积有[font='Times New Roman','serif']170[/font]平方米,重量达[font='Times New Roman','serif']30[/font]吨,装有[font='Times New Roman','serif']17468[/font]个电子管,耗电量和发热量大,每秒仅能计算[font='Times New Roman','serif']5000[/font]次加法或[font='Times New Roman','serif']400[/font]次乘法,并且时常因过热和电子管故障而停止工作,但其数学能力和通用可编程能力仍具有划时代意义。随着集成电路的出现和迅猛发展,计算机小型化成为可能。[font='Times New Roman','serif']1965[/font]年,戈登[font='Times New Roman','serif'][/font]摩尔([font='Times New Roman','serif']GordonMoore[/font])提出了著名的摩尔定律:集成芯片上的晶体管数目,约每隔[font='Times New Roman','serif']18[/font]个月就会增加一倍,相应的性能也会提升一倍。但随着集成度的不断提升,纳米尺度已成为集成电路不可避免需要考虑的情况,量子效应将出现并逐渐占据主导地位。经典计算机的性能提升将会遇到瓶颈,但是人类的需求却是无止境的。 [font='Times New Roman','serif']1982[/font]年,理查德[font='Times New Roman','serif'][/font]菲利普斯[font='Times New Roman','serif'][/font]费曼([font='Times New Roman','serif']Richard Philips Feynmann[/font])在一个著名的演讲中提出经典计算机很难模拟量子系统演化,因为庞大的希尔伯特空间意味着数据量的庞大,而利用量子体系可以实现有效的模拟的想法。而随着一些量子算法的诞生,对于某些复杂甚至可能超过通用计算机的计算极限的问题,量子计算有着明显的优势。量子计算拥有着巨大的应用前景,将在密码分析、金融投资、气象预报、材料设计、石油勘探、药物设计、物流优化等领域带来前所未有的变革。 [b]量子计算实现的DiVincenzo准则[/b][/b][font='Times New Roman','serif']2000[/font]年,戴维[font='Times New Roman','serif'][/font]狄文森佐([font='Times New Roman','serif']DavidP. DiVincenzo[/font])提出了实现量子计算的[font='Times New Roman','serif']5[/font]条标准以及实现量子计算机之间通信的两条标准,这里我们只介绍实现量子计算的五条标准,内容如下:[font='Times New Roman','serif']1) [/font]可扩展的物理体系,并且具有良好定义的量子比特。例如电子自旋。[font='Times New Roman','serif']2) [/font]将量子比特初始化为特定的态。例如[font='Times New Roman','serif']|[/font][font='Times New Roman','serif']000…[/font]〉态。[font='Times New Roman','serif']3) [/font]一组普适的量子逻辑门。例如两比特受控非门和单比特量子逻辑门。[font='Times New Roman','serif']4) [/font]长的相干时间长,即相干时间必须远超于每个量子逻辑门的时间。[font='Times New Roman','serif']5) [/font]量子比特的测量能力。[b]金刚石NV色心量子计算体系[font=等线]金刚石[/font][font='Times New Roman','serif']NV[/font][font=等线]色心是金刚石晶体中的一种缺陷,由一个取代碳原子的氮原子和相邻一个空位(碳原子缺失)组成。[/font][font='Times New Roman','serif']NV[/font][font=等线]色心有六个电子,两个来自氮原子,三个来自与空位相邻的碳原子,另外一个是俘获的(来自施主杂质的)电子。金刚石[/font][font='Times New Roman','serif']NV[/font][font=等线]色心是一种符合[/font][font='Times New Roman','serif']DiVincenzo[/font][font=等线]标准的量子计算体系。金刚石[/font][font='Times New Roman','serif']NV[/font][font=等线]色心一般存在两种电荷状态,一种是电中性[/font][font='Times New Roman','serif']NV[sup]0[/sup][/font][font=等线],另一种带一个负电荷[/font][font='Times New Roman','serif']NV[sup]-[/sup][/font][font=等线],量子计算中用到的体系一般为后一种。如无特殊说明,本文中提到的金刚石[/font][font='Times New Roman','serif']NV[/font][font=等线]色心均为[/font][font='Times New Roman','serif']NV[sup]-[/sup][/font][font=等线]。[/font][font='Times New Roman','serif']NV[/font][font=等线]色心的基态可以等效为自旋为[/font][font='Times New Roman','serif']1[/font][font=等线]的电子自旋,其中的两个自旋能级可以用来编码量子比特。结合[/font][font='Times New Roman','serif']N[/font][font=等线]([/font][font='Times New Roman','serif']N[/font][font=等线]的两种同位素[/font][sup][font='Times New Roman','serif']14[/font][/sup][font='Times New Roman','serif']N[/font][font=等线]和[/font][sup][font='Times New Roman','serif']15[/font][/sup][font='Times New Roman','serif']N[/font][font=等线]均具有核自旋)以及相邻的[/font][sup][font='Times New Roman','serif']13[/font][/sup][font='Times New Roman','serif']C[/font][font=等线]核自旋,每个[/font][font='Times New Roman','serif']NV[/font][font=等线]色心可以看成由数个量子比特组成的量子寄存器。不同的[/font][font='Times New Roman','serif']NV[/font][font=等线]色心可以通过磁或光子的方式耦合,从而形成用以量子计算的可扩展系统。通过[/font][sup][font='Times New Roman','serif']12[/font][/sup][font='Times New Roman','serif']C[/font][font=等线]同位素富集,[/font][font='Times New Roman','serif']NV[/font][font=等线]色心中量子比特可具有长的相干时间。可以通过施加激光实现对[/font][font='Times New Roman','serif']NV[/font][font=等线]色心电子自旋的初始化和读出,通过施加微波和射频脉冲实现量子逻辑门。目前[/font][font='Times New Roman','serif']NV[/font][font=等线]色心自旋体系的单比特量[/font][font=等线]子逻辑门的保真度可达[/font][font='Times New Roman','serif']99.995 %[/font][font=等线],两比特量子逻辑门的保真度可达[/font][font='Times New Roman','serif']99.2 %[/font][font=等线]。[/font][/b]

  • 人造钻石创室温量子比特存储时间新纪录

    科技日报 2012年06月09日 星期六 本报华盛顿6月7日电 (记者毛黎)全球著名的人造钻石超材料生产商六元素公司(Element Six)7日表示,美国哈佛大学和加州工学院以及德国马普光量子研究所合作,利用该公司获得的单晶体人造钻石,创下了室温量子比特存储时间超过1秒钟的新纪录。这是人类首次实现用一种材料在常温下将量子比特存储如此长时间。 研究人员认为,人造钻石系统的多能性、稳定性和潜在的延展性有望让其在量子信息科学和量子传感器领域开拓新的应用。六元素公司位于英国阿斯科特的人造钻石研发小组用化学气相沉积技术开发出新的人造钻石生长工艺。公司创新主任斯蒂芬·库伊表示,人造钻石科学领域发展迅速,新钻石合成工艺能将杂质控制在兆分之几,这是真正的纳米工程化学气相沉积钻石合成技术。 参与合作的哈佛大学物理学教授海尔·鲁金表示,六元素公司独特的人造钻石材料是研究获得进展的核心,常温下单个量子比特存储时间超过1秒是一项十分令人兴奋的成果,它是初始化、存储、控制和测量4项需求的结合。新发现有望帮助人们开发新的量子通信和技术,在近期则有助于研发新的量子传感器。 量子信息处理涉及操纵人造钻石中单个原子尺寸的杂质和探讨单个电子自旋量子特性,新的研究成果代表着量子信息处理的最新发展。在量子力学中,电子量子自旋(量子比特)可以同时是0和1,此特性提供了量子计算的框架,同时也提出了更直接的应用,如新的磁传感技术。 总编辑圈点 谁会对1秒钟锱铢必究呢?但从量子的标准来看,这算是很长一段时间了。在量子计算的构建过程中,长期以来人们都只能局限在数公里的范围内利用量子点传输量子信息,而如果一种材料能做到捕捉、较长时间的稳定存储住继而转发信息,也就意味着扩大了量子网产生作用的区域。更何况,很多物质的量子态都要求接近绝对零度,能在室温下操作量子比特,尤显珍贵。

  • 【分享】采用量子力学研制微型纳米机械

    据国外媒体报道,美国科学家发现一种用量子力学的神奇作用力使很小的物体漂浮未来的方法。他们表示,可以用这种方法研制微型纳米机械。研究人员用彼此排斥的某些分子组合,发现并检测了一种在分子水平中扮演重要角色的力。研究人员们说,这种排斥力可被用于使分子停留在高处,实际上就是让它们漂浮起来,可据此为微型设备研制无摩擦力的部件。美国马萨诸塞州哈佛大学应用物理学家费德里克卡巴索在《自然》杂志上发表了他的研究成果,他在论文中说,他认为这种力的发现使一系列全新小机械的诞生成为可能。

  • 首个可进行因式分解的量子处理器研制成功

    中国科技网讯 据物理学家组织网8月20日(北京时间)报道,美国加州大学圣巴巴拉分校的研究人员设计和制造了一个量子处理器,可成功地将合数15分解成3和5的乘积。虽然这只是一个最基本的质因数分解运算,但这项突破是研制可进行更复杂因式分解运算的量子计算机道路上的一个里程碑,对于数字加密和网络安全具有重要意义。研究结果提前发表于《自然·物理》杂志网络版。 “15虽是一个小数字,但重要的是,我们已经证明,我们可以在一个固态量子处理器上运行彼得·肖尔提出的质因数分解算法。这是此前从未进行过的。”论文的第一作者埃里克·卢塞罗说。他目前是IBM公司实验性量子计算的博士后研究员,这项研究是他在加州大学圣巴巴拉分校攻读物理学博士时进行的。 卢塞罗是出于实际应用的目的开展这项研究的。他解释说,大数的因式分解是网络安全协议的核心,比如最常见的RSA加密算法,其目前公开的最大密钥包含超过600个十进制数字,如果利用经典计算机和最知名的经典算法,对这个密钥进行因式分解需要花费的时间可能比宇宙的年龄还要长。而数学家彼得·肖尔于1994年构造了大数的质因数分解算法,证明利用量子计算机能够在多项式时间内对大数进行分解,从而从根本上动摇了当代密钥的安全基础。 因此,如果量子计算使得RSA加密不再安全,那用什么来取代它呢?答案是量子密码。卢塞罗说:“量子密码不仅更难以被破译,而且如果有人试图盗取信息,它就会改变系统,使发送方和接收方都能够察觉。”(记者 陈丹) 总编辑圈点 二战期间,英美两国研发计算机的初衷,是破解轴心国的密码。而量子计算机一开始引起科技界的兴趣,也是因为它能不费吹灰之力破解世界上最可靠的密码,这种加密算法已经历三十多年的考验。如果有一天量子计算机投入实用,它会是一根锐利的矛,能刺透最坚固的盾。而更加坚固的盾牌则是正在研发的量子密钥,它也是银行和网站的运营者期望的理论上不可攻破的终极方案。 《科技日报》(2012-08-21 一版)

  • 【转帖】美国理学家首次实现原子间单量子能量交换

    据美国物理学家组织网2月23日报道,美国国家标准研究院物理学家首次在两个分隔的带电原子(离子)之间建立了直接运动耦合,实现了原子之间的单量子能量交换。这一技术简化了信息处理过程,可用于未来的量子计算机、模拟技术和量子网络中。相关研究发表在2月23日的《自然》杂志上。研究人员解释说,他们让两个铍离子在电磁势阱中震荡进行能量交换,这一交换中是以最小能量单位——量子来进行的。这意味着离子被“耦合”在一起,表现出像宏观世界中如钟摆、音叉那样的“和谐震荡”,做重复的来回运动。实验利用了一种单层离子势阱,并将其浸在液氦浴中冷却到零下269摄氏度。离子之间相隔40微米,漂浮在势阱表面。势阱表面装有微小电极,让两个离子靠得更近,以便产生更强的耦合作用。超低温度可以抑制热量,避免扰乱离子行为。研究人员在势阱上放了震荡脉冲来检测铍离子频率。  研究人员还用激光制冷减弱两个离子的运动,再用两束反向紫外激光束将一个离子进一步冷却到静止状态,调节势阱电极间的电压,就开启了耦合作用。经测量,离子的能量交换每155微妙仅有几个量子,而达到单个量子交换时频率更低,间隔为218微秒。从理论上讲,离子之间这种能量交换过程能一直持续,直到被热量打断。  “首先,一个离子轻微震动而另一个静止,然后震动传给了另一个离子,它们之间的能量运动是一个最小的能量单位。”论文第一作者、国家标准技术研究院博士后研究员坎顿·布朗说,“我们可以调节耦合作用,影响能量交换的速度和程度,还能控制耦合作用的开启或终止。”用电极电压来调整两个离子的频率,让它们离得更近,耦合作用就开始了。当两个离子频率最接近时,耦合作用最强。由于正电荷离子之间的静电作用,它们之间倾向于互相排斥。耦合使每个离子都具有了两个电子的特征频率。  在未来的量子计算机中,上述技术可用于解决量子系统的复杂问题,破解当今使用最广的数据加密编码。不同位置的离子直接耦合可以简化逻辑运算,有助于校正运算过程错误。该技术还可能用于量子模拟,以解释复杂量子系统如高温超导现象的原理机制。  研究人员还指出,类似的量子交换作用可以用来连接不同类型的量子系统,如离子和光子,在未来的量子网络中传递信息,如势阱中的离子可以在超导量子比特(昆比特)和光子比特之间作“量子转换器”。

  • 【转帖】我国量子计量基准研究取得新突

    日前,由中国计量科学研究院承担的“可编程约瑟夫森量子电压基准研究”课题顺利通过项目验收。该项目课题建立了基于可编程约瑟夫森结阵的量子电压基准装置,实现了直流1伏电压的测量不确定度1.9×10-9、交流幅值1伏电压(60Hz)的测量不确定度3.1×10-6,技术指标达到国际先进水平。  据悉,该项目课题是国家“十一五”科技支撑计划重点项目“以量子物理为基础的现代计量基准研究”项目中的一项。“以量子物理为基础的现代计量基准研究”项目是为应对国际单位制重大变革而设立的国家“十一五”科技支撑计划重点项目,项目分9个课题执行,内容分别涵盖了普朗克常数、精细结构常数等4项基本物理常数的精密测量及量子质量基准、量子电压基准等9套量子基准的研究。“可编程约瑟夫森量子电压基准研究”是该项目中第一个申请验收的课题。9 H# H! ?- U F  项目课题组经过3年多的研究,自主研发了低损耗微波传输系统、低热电势精密自动开关和高速结阵激励系统,大大减少了系统的噪声,建立了基于可编程约瑟夫森结阵的量子电压基准装置,使我国的量子计量基准研究又往前迈进了重要的一步。$ ^; o" b4 [; N) X$ K  据该课题负责人、中国计量科学研究院电学与量子研究所研究员高原介绍,在国际计量单位改用自然常数重新定义的改制进程中,电压基准研究的不确定度水平与7个国际单位制基本量中的两个基本量密切相关。一个是电流的单位“安培”,另一个是质量的自然基准“千克”,课题工作的成功将对这两个基本单位的重新定义发挥重要作用。  高原介绍,其中,电流的单位“安培”是国际单位制7个基本量中惟一的与电磁量有关的基本单位,国际上常用的复现电流单位的方法是根据电学中的欧姆定律,即用电压和电阻两个电学量导出电流。因此在实际量值传递中,电压和电阻起到了电学基本量的作用,用于保存和复现电流量值。

  • 量子理论!

    量子理论是一项科学的杰作,但物理学家至今仍不知道该如何来理解它。一个世纪似乎还不够整整一百年前,第一届国际物理学会议在比利时布鲁塞尔举行。会议的议题是讨论如何认识新奇的量子理论并把它同我们的日常生活经验联系起来,以期给我们一个对世界清晰自洽的描述。然而,这个问题现在依然困扰着物理学家。微观粒子所具有的一些性质实在是出乎寻常,比如原子和分子就具有可以在不同地方同时出现的神奇能力,可以同时顺时针和逆时针旋转,或者即使相隔半个宇宙也可瞬间影响到对方。问题是,我们人也是分子和原子组成的,为什么我们就没有上述性质呢?“量子力学的应用立足于何处?”牛津大学的科学哲学家哈维•布朗这样问道。尽管最终答案还未出现,人类探寻的努力还是有回报的。比如,一个已经引起高科技产业和情报机构注意的全新领域已经诞生。这就是量子信息学。量子信息学可以让我们从一个崭新的角度来探索物理终极理论,它或许还可以告诉我们宇宙的起源。对于一个被量子理论的怀疑者——阿尔伯特•爱因斯坦——嗤之为让优秀物理学家沉睡不醒的“柔软枕头”的理论来说,这已经算是硕果颇丰了。出乎爱因斯坦所料,量子理论如今已经成为一项杰作。迄今尚无实验与量子理论所做的预言相抵触,并且人们相信它可以在微观尺度上很好地描述宇宙规律。这就导致了最后一个问题:量子理论意味着什么?物理学家是用“诠释”——一种和实验完全相符的对量子理论本质的哲学思考,来试着回答这个问题的。“现在我们有一大堆诠释。”在牛津大学和新加坡量子技术中心同时任职的弗拉托克•维德勒如是说。没有一种科学理论可以像量子力学这样可以从这么多角度来理解。为什么会有这样的情况?这么多的诠释中有没有一种可以胜过其他的?举个现在被称为哥本哈根诠释的量子论诠释作为例子,它是由丹麦物理学家尼尔斯•波尔提出的。该诠释的一个观点是说,任何不通过测量来谈论电子在原子中的位置的尝试都是无意义的。只有当我们用一个非量子的或“经典的”仪器去观察的时候,它才会显示出我们称之为物理性质的属性,进而才会成为现实的一部分。接着我们还有“多世界诠释”,在该体系中量子奇异性可以通过任何事物在无数平行宇宙的多重存在性得到解释。也许你更喜好“德布罗意-玻姆诠释”,在这里量子理论被认为是不完备的:我们还缺少一些隐藏属性,如果知道它们,我们就能理解所有东西。还有许多其他的诠释,比如吉亚尔迪-里米尼-韦伯诠释,交易诠释(这其中有逆时间而行的粒子),罗杰•彭罗斯的引力诱导坍缩诠释,模态诠释……在过去的一百年里,量子世界已经变得拥挤而热闹。撇开这些熙攘热闹的景象,对大多数物理学家来说,只有少数解释至关重要。美妙的哥本哈根最受欢迎的诠释莫过于波尔的哥本哈根诠释了。它之所以受欢迎,是得益于大多数物理学家不想费神去考虑哲学问题。类似于“到底什么构成了测量”或者“为什么它可能导致现实的改变”这样的问题是可以被忽略的——物理学家只想从量子理论中得到有用的结论。这就是为什么被不加怀疑而使用的哥本哈根诠释有时也被叫做“闭嘴,乖乖计算”诠释。“考虑到大多数物理学家只是想做计算并将所得结果应用于实际,他们中的绝大多数都是站在‘闭嘴,乖乖计算’这一边的。”维德勒说。然而这种方式也有不足之处。首先它不会告诉我们任何关于实在的根本性质。那需要通过去寻找量子理论可能失效的地方来获得,而不是成功的地方。(New Scientist, 26 June 2010, p 34)“如果真要有什么新的理论出现的话,我不认为它会来自大多数物理学家工作的固体物理学领域。” 维德勒说。其次,作茧自缚式的研究也意味着不大可能出现量子理论的新的应用。我们对量子理论可以采取的多方面的视角正是新想法产生的催化剂。“如果你正在解决不同的问题,那么用不同的诠释来思考会有好处。” 维德勒说。没有其他的领域能比量子信息学更明显地表明这一点了。“如果人们没有担忧过量子物理的基础,量子信息学这个领域甚至不会存在。”奥地利维也纳大学的安东•蔡林格说。这个领域的核心是量子纠缠现象——一部分粒子的性质的信息被全体粒子所共有。这就导致了被爱因斯坦称为“幽灵般的超距作用”,即测量一个粒子的性质会瞬间影响到另一个和它纠缠的同伴的性质,不管它们之间距离有多远。当纠缠现象第一次在量子理论的方程中被发现时,它被当作过于奇怪的想法,以至于爱尔兰物理学家约翰•贝尔创造了一个思想实验来表明纠缠现象无法在真实世界中显现。而当真的可以做出这个实验真的之后,它证明了贝尔是错的,并且告诉物理学家有关量子测量的大量细节。它还为量子计算奠定了基础,通过量子计算,以前对粒子进行成千上万的并行测量才能得到的结果,现在单个的测量就可以告诉你答案。此外的应用还有量子密码学,通过利用量子测量的特殊性质来保护信息安全。不难理解,所有这些技术吸引了政府和渴望最高端技术的工业界的关注——同时防止它们落入敌手。然而物理学家更感兴趣的是这些现象可以告诉我们哪些自然界的本质规律。量子信息实验暗含的一个结论是说微观粒子包含的信息是实在的根源。哥本哈根诠释的支持者诸如蔡林格,把量子系统看作信息的载体,而用经典仪器进行的测量不过是记录和显示系统所包含的信息的过程。“测量是在更新信息。”蔡林格说。这个把信息作为实在的基本组成的新观点导致了有人猜测宇宙本身或许就是一台巨大的量子计算机。尽管哥本哈根诠释在大踏步前进,仍然有不少物理学家盯着它的弱点不放。这在很大程度上是由于哥本哈根诠释要求微观量子系统和对它的测量的经典仪器或观察者,二者必须人为区分开。例如,维德勒曾经探寻过量子力学在生物中所扮演的角色:细胞中各种各样的过程和机制本质上都是量子的,比如光和作用和光线感知系统(New Scientist, 27 November, p 42)。“我们发现世界上越来越多的东西可以用量子力学来描述——我并不认为在‘量子’和‘经典’之间有明确的界限。”他说。以宇宙的尺度来考虑事物的本性也给哥本哈根诠释的批评者提供了弹药。如果经典观察者的测量过程对于创造我们观察到的实在是必不可少的,那么是谁的观测使得现有宇宙得以存在?“你确实需要一个在系统外的观察者才能让哥本哈根诠释是合理的——但根据定义,宇宙外没有任何东西。”布朗说。这就是为什么,布朗说,宇宙学家更倾向于赞同由普林斯顿的物理学家休•埃弗里特在上世纪50年代晚期创立的诠释。他的“多世界诠释”宣称实在并不受限于测量概念。作为替代的是,量子系统固有的无限可能性在它们自身的宇宙各自显现。大卫•多伊奇,牛津大学的物理学家并曾经为第一台量子计算机拟定蓝图,说他现在只能用平行宇宙的概念来考虑计算机的运行。对他来说,其他的诠释都是无意义的。并不是说多世界诠释就没有受到批评——事实恰恰相反。新泽西罗格斯大学的科学哲学家蒂姆•莫德林很赞同放弃把测量这一概念当作一个特殊过程。但同时,他也不相信多世界诠释可以提供一个很好的框架来解释为什么一些量子结果要比其他的更有可能出现。当量子理论预言一个测量的结果出现的可能性要高十倍于另一个,反复的实验可以证明这一点。依照莫德林所说,多世界诠释认为由于世界的多重性,所有的可能都会发生,但它并没有解释为什么观察者看到的总是(通过计算算出的)最可能出现的结果。“这里有个深层问题需要解决。”他说。多伊奇说这些问题在这一两年内已经被解决。“埃弗里特处理概率的方式是有缺陷的,但这几年里多世界诠释的理论家们已经清除掉了这些缺陷——问题已经解决了。”他说。然而多伊奇的论证太玄奥了以至于并不是每个人都承认他的说法。更难回答的问题还有被多世界诠释支持者称为“怀疑眼神的反对”。多世界诠释一个明显的推论是说宇宙中有很多你的复制品——比如,猫王现在仍然在另一个宇宙中的拉斯维加斯进行表演。很少有人能接受这种想法。这个问题只有靠时间来解决了,布朗认为。“人们普遍难以接受存在许多你和其他人的复制品这种想法,”他说,“但这只是人们能否逐渐习惯的问题。”多伊奇认为当量子世界奇怪方面可以用到现实技术中时,人们将能接受多世界的概念。一旦量子计算机可以实现在同一时间在不同的状态来处理任务,我们将不会认为这些多重的世界不是物理层面的事实。“到时候人们将会很难坚持说多世界的想法只是嘴上说说而已。” 多伊奇说。他和布朗都宣称多世界的概念已经得到宇宙学家的支持。来自弦论、宇宙学和观测天文学的论证已经让宇宙学家猜测我们生活在多重的宇宙中。去年,加州大学圣克鲁兹分校的安东尼•阿奎尔,麻省理工的马克斯•蒂格马克以及哈佛大学的大卫•莱泽完成了把宇宙学和多世界的想法联系起来的大致方案。但多世界诠释并不是引起宇宙学家注意的唯一的诠释。在2008年,伦敦帝国理工的安东尼•瓦伦蒂尼指出在大爆炸之后就充满宇宙的宇宙微波背景辐射或许能支持德布罗意-玻姆诠释。在这个方案下,微观粒子具有未被发现的被称为“隐变量”的性质。(

  • 【原创大赛】量子基准代替实物基准传递的意义

    人们为了把客观世界的特性用数量表达,就需要进行测量。测量过程实质上是一种比较的过程。例如,我们用步长去测量某一段距离,就是用自己的跨步去与此段距离作比较,确定此段距离是步长的多少倍。当然此例中的测量过程比较粗糙,步长也因人而异,所以测量准确度不高。随着近代大规模机械生产的发展,对零件提出了互换性要求,这就要有统一的几何量标准。贸易活动的日益扩大也提出了建立统一的质量(mass)标准的要求。一旦这些标准建立了起来,由不同人在不同时间、地点进行的测量过程就有了统一的依据,测量的数值结果可以相互比较。也就是说,测量过程可以溯源到统一的标准。这种可以溯源到统一标准的测量就称为计量,而统一的标准就是计量标准。 计量标准一般先在一个国家的范围取得统一,以促进该国的生产和贸易的发展。秦始皇首次统一中国的计量标准(统一度量衡)是历史上我国对计量事业的重要贡献。18世纪以后由于世界性的工业革命以及国际贸易的发展,首先在欧洲形成了一种国际性的计量单位制--米制,确定了以米、千克、秒为最基本的计量单位。经过一百多年,此种单位制已发展成为目前国际上一致公认的国际单位制SI。其中规定了米、千克、秒、安培、开尔文、坎德拉、摩尔7个基本单位,其他各种单位则由这7个基本单位导出。由于7个基本单位的重要性,国际单位制中给出了它们的严格定义及准确复现单位的方法。用于保存和复现基本单位的装置就是准确度等级最高的计量标准--计量基准。 19世纪下半叶到20世纪上半叶,各国建立起了经典的计量基准。这些计量基准一般是根据经典物理学的原理,用某种特别稳定的实物来实现,故称为实物基准。例如一个保存在巴黎国际计量局(BIPM)的铂铱合金圆柱--千克原器砝码的质量就定义为质量单位千克,按X型铂铱合金米尺的刻线间距离定义长度单位米,用一组饱和式韦斯顿标准电池的端电压的平均值保持电压单位伏特,用一组标准电阻线圈的电阻平均值保持电阻单位等等。 计量基准是保证整个计量工作准确度的基础。但也正是由于其重要性,不能轻易使用。为了使产业界能够使用准确的计量量值,需要建立一种量值传递检定网。以最常见的称重计量为例,最高等级的质量计量基准是保存在巴黎国际计量局的铂铱合金千克砝码原器。每数年一次各国的中央计量机构把它们的国家基准千克砝码运到巴黎与砝码原器进行比对以得到各国基准砝码的准确量值,然后再由各国自行向下传递质量量值。我国则已建立了国家、省、市(县)等各级计量机构。这些计量机构都保存着它们的标准砝码,并按照国家级--省级--市、县级--企业的金字塔式的计量量值传递检定系统依次向下传递量值,开展日常的计量检定工作。 19世纪以来,各国的计量量值传递检定系统给产业界提供了计量服务,确实在帮助产业界提升产品品质的工作中做出了贡献。但是,随着科技及工农业的发展,这样的传统计量量值传递检定系统已不能满足现代工业和科学技术对计量准确度日益提高的要求。由于量值传递系统溯源的是实物基准,而实物基准的缺点正是在于它们是一些具体的宏观实物。由于一些不易控制的物理和化学过程的影响,实物基准所保存的量值会发生缓慢的变化,如果只从改善材料稳定性和制作工艺的方向努力,已很难大幅度提高实物基准的准确度。 随着20世纪量子物理学的飞速发展,建立量子基准以代替传统的实物基准已经成为可能,并在初步的尝试中得到了精确度较高的计量基准。量子物理学阐明了各种微观粒子的运动规律,特别是微观粒子的态和能级的概念。按照量子物理学,宏观物体中的微观粒子如果处于相同的微观态,其能量有相同的确定值,也就是处于同一能级上。当粒子在不同能级之间发生量子跃迁时,将伴随着吸收或发射能量等于能级差DE的电磁波能量子,也就是光子。而且电磁波频率n与DE之间满足普朗克公式, 即两者之间成正比,其比例系数为普朗克常数h 。也就是说,电磁波的频率反映了能级差的数量。值得注意的是,宏观物体中基本粒子的能级结构与物体的宏观参数,如形状、体积、质量等等并无明显关系。因此,即使物体的宏观参数随时间发生了缓慢变化,也不会影响物体中微观粒子的量子跃迁过程。这样,如果利用量子跃迁现象来复现计量单位,就可以从原则上消除各种宏观参数不稳定产生的影响,所复现的计量单位不再会发生缓慢漂移,计量基准的稳定性和准确度可以达到空前的高度。更重要的一点是量子跃迁现象可以在任何时间、任何地点用原理相同的装置重复产生,不像实物基准是特定的物体,一旦由于事故而毁伤,就不可能再准确复制。因此用量子跃迁复现计量单位对于保持计量基准量值的高度连续性具有重大的价值。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制