当前位置: 仪器信息网 > 行业主题 > >

落射荧光显微系统

仪器信息网落射荧光显微系统专题为您提供2024年最新落射荧光显微系统价格报价、厂家品牌的相关信息, 包括落射荧光显微系统参数、型号等,不管是国产,还是进口品牌的落射荧光显微系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合落射荧光显微系统相关的耗材配件、试剂标物,还有落射荧光显微系统相关的最新资讯、资料,以及落射荧光显微系统相关的解决方案。

落射荧光显微系统相关的仪器

  • [ 产品简介 ]蔡司推出的全新Lightsheet 7激光片层扫描显微系统,助您高效便捷地实现活体和透明化样品的多视角成像。全新设计的物镜能够精确匹配透明化样品的折射率,从厘米大尺寸的样品,到多维时空的活体成像,无论是观察长达数天的生物发育过程,还是捕捉快速运动的血流心跳,都能助您游刃有余完成。同时,无需频繁更换物镜和样品仓,“傻瓜式”上样为您解放双手,提升效率,在简单调焦中实现理想光切。无需再为制备样品而烦恼,无需再为繁琐操作而困扰,让蔡司的Lightsheet 7系统,以简便轻松的方式带您洞悉生物世界。[ 产品特点 ]&bull 成像更深、速度更快、极低的光损伤&bull 适用于不同透明化制样&bull 全新样品定位方法创建多视角 (Multiview)数据,灵活的观察视野&bull 高灵敏度,高信噪比&bull 专利扫描技术获得高质量图像[ 应用领域 ]&bull 发育生物学:胚胎发育、器官发育等动态过程快速成像&bull 大型固定样品结构成像&bull 不同透明化样品成像&bull 三维细胞培养&bull 植物学等生命科学领域研究拟南芥花的发育图像-样品:图片由捷克共和国布尔诺市马萨里克大学中欧技术研究院(CEITEC)的S. Valuchova、P. Mikulkova和K. Riha提供。用改良的iDISCO 方法对Thy1-EGFP 标记的鼠脑进行透明化处理,在高折射率溶液(RI=1.56)中用Fluar 2.5x/0.12 物镜进行成像。样品由美国加州大学欧文分校的S. Gandhi 和TranslucenceBiosystems 公司提供。神经元类器官成像,像素尺寸:222 x 222 x 567 nm。图像体积:1.66 x 0.66 x 1.6 mm。样品由奥地利维也纳市分子生物技术研究所的D. Reumann 和J. Knoblich 提供。
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • 原理介绍:GaiaMicro-G系列显微高光谱系统是将推扫型高光谱相机与显微镜结合,构成显微高光谱系统的主体,再借助显微镜的光路系统、不同倍率的物镜(可见)、不同倍率的反射物镜(红外)以及二维电控扫描平台来实现的。 可见近红外显微系统采用透射式的光路结构,在不同放大倍率物镜下,可以清楚的观察、采集到相应的显微高光谱数据,系统采用的是二维平移机构,X轴为图像扫描轴,Y轴为调焦轴,实现自动曝光、自动对焦等流程。 近红外显微系统采用半透半反射式光路结构,大功率溴钨灯输出光源能满足光谱响应范围,系统采用的方案:高光谱相机静止不动,通过控制二维平移机构的扫描轴完成图像的采集,通过特殊设计的光路结构,可以实现全透、半透半反模式的光路调整,再通过目镜来观察和手动调整焦距完成整个系统的焦距调试。 优势描述:1、自动调焦、自动曝光、自动匹配扫描速度(显微-可见近红外系统)2、反射率校准、均匀性校准、区域校准等3、二维整体精密电控平移机构4、可见近红外显微系统,可实现反射和透射式的高光谱成像,可利用GaiaField内置扫描结构带动光谱成像系统来完成,也可以借助Image-λ-V10/V10E系列相机和电控二维扫描机构来实现5、近红外显微系统,反射式显微高光谱成像系统借助Image-λ-N17E系列相机和电控二维扫描机构来实现6、高空间分辨率和光谱分辨率 显微高光谱系统主要技术参数:型号GaiaMicro-G-V10-LUGaiaMicro-G-V10E-AZ4GaiaMicro-G-N17EGaiaMicro-G-N17E-HR光谱范围400-1000nm400-1000nm900-1700nm900-1700nm光谱分辨率3.5nm2.8nm5nm5nm数值孔径F/2.8F/2.4F/2.0F/2.0狭缝尺寸30um*9.6mm30um*14.2mm30um*14.2mm30um*14.2mm探测器CCDSCMOSInGaAsInGaAs像素数(空间维*光谱维)1392*10402048*2048320*256640*512光谱通道数256(有效通道240)512(有效通道360)数据输出14 bits16 bits14 bits14 bits连接方式USB 2.0USB3.0USB2.0/GigeUSB2.0/Gige物镜平场无限远长工作距消色差金相物镜(5x、10x、20x、50x)选配:100x反射式物镜10X、40X选配:20X、30X显微系统(标配金相显微系统,透反射测试光路)无限远色差校正光学系统10X目镜30°倾斜,无限远铰链三通观察筒,瞳距调节:54mm~75mm,单边视度调节:±5屈光度,两档分光比R:T=100:0或50:50物镜转换器:内定位五孔转换器注:其它品牌如奥林巴斯、蔡司的生物、荧光、金相显微镜均可进行高光谱相机搭载,具体可与我司销售人员联系。 反射物镜: 反射物镜参数:倍率10倍20倍30倍40倍适用波长350nm~7μm350nm~7μm350nm~7μm350nm~7μm焦距f19.9mm10mm6.7mm5mmNA(数值孔径NA)0.20.350.410.49视场φ1.0mmφ0.5mmφ0.34mmφ0.25mm工作距离 WD16mm7mm5mm3.5mm机械镜筒长80~∞(可変)mm遮光率约36%约36%约36%约36% GaiaMicro-F系列显微高光谱系统GaiaMicro-F系列显微高光谱系统采用液晶可调滤光片(LCTF)为分光元件,采用高灵敏度科研级制冷型SCMOS相机为成像器件,一体化设计或直接与各种商用显微镜的相机接口(F接口)结合,无需扫描机构,具有高灵敏度、高空间分辨率的特点。 主要技术参数:
    留言咨询
  • NooneLost-3000型全自动显微/菌落计数--专为智能化微生物检测实验室而打造--全自动菌落计数器广泛应用于食品和饮料的品质和卫生检验、水质分析、乳及乳制品的检测、医院临床检验、化妆品检验和药品的品质和质量检测等工作,主要用于对微生物的菌落计数和计算等。上海科哲生化科技有限公司是分析仪器行业知名厂商,承担了科技部国家科学仪器重大专项,形成了业界领先的图像处理技术,并推出其产业化项目产品:NooneLost-3000型全自动显微/菌落计数; NooneLost-3000型全自动显微/菌落计数系统是国内性能强大的全自动菌落计数系统与显微系统的结合体,可以使用白光与强大的成像设备,整合了显微、菌落计数功能,基本可满足微生物实验室日常需要,是智能化微生物实验室的理想选择。主要优点1、计数准确,是真正能极大提高工作效率的利器;2、软件性能强大,提供定制功能,超过进口同类产品;3、配有专业的计算机图形工作站,具有极强的图像处理能力;4、使用全中文界面,符合国内使用人员习惯,并可以定制英文界面;5、带有显微图像采集与分析功能,满足微生物显微分析要求;主要特点1、采用2000万像素的高动态范围图像传感器,极大提高斑点识别能力;2、采用全封闭灯箱,彻底消除环境杂散光的干扰,为精确计数提供了必备的光学条件;3、快速读取各种涂布模式的菌落数;4、适用于所有培养基 ,手动校正所有来自培养皿的不良影响5、测定结果重现性和准确性好,避免人工计数所带来的人为误差;6、带有条码阅读器,可以可保存每一次结果,能够连接到LIMS;7、方便简单输出扩展到excel,方便进一步分析或记录等项目操作;8、完好的保存图像,并可输出成PDF文件;9、增加了手动功能,可手工校正加减菌落;10、可使用软件对亮度、对比度和灵敏度进行调节;11、可精确标记、保存标准比例尺;12、自动切去培养皿周边图像,图像更清晰;13、能进行成片的菌落自动分割等有关运算;14、自动标记每一个被计数的菌落;15、具有曝光调节功能,可有效滤掉微小杂质;16、具有数字化显微模块,满足细胞计数与测量需求;17、可加装荧光显微光源模块,用于荧光显微分析;18、可以加装冷CCD摄像头,用于微弱光成像分析;19、符合CFR21 PART 11要求,具有审计追踪功能;20、适合HACCP、GMP/GLP要求;仪器组成1、菌落计数仪主机(包括成像组件、光源组件、封闭式暗箱);2、显微成像仪主机((包括成像组件、光源组件、显微镜);3、分析软件(包括菌落分析、抑菌圈测量、抗生素效价测定);4、图像处理工作站计算机系统(Intel服务器CPU,专业显卡、大容量硬盘);5、条码识别器(选配);仪器指标1、光 源:白光,其余颜色光源可定制;2、菌落计数成像组件:像素高于2000万;3、培养皿直径:60-120mm;4、分析容器:培养皿;5、电 源:100-240V,50-60HZ;6、软件环境:Windows7/8/Vista以上;主要应用1、全皿计数:全自动菌落计数;2、抑菌圈的测定和抗生素效价(管碟法)的计算。3、显微分析:粒状细胞计数、显微测量、荧光显微分析; 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。
    留言咨询
  • Meiji 6000系列落射荧光显微镜是实验室和研发领域应用的理想选择。6000系列采用计算机辅助的人机工程学设计,提供更舒适的操作体验,更高的效率和产出。Meiji' s 全新设计的ICOS™ 无限校正光学系统可提供无与伦比的荧光图像质量,6000系列以较低的价位在性能质量上完全媲美其他德国或日本制造商的昂贵产品。6000系列标配Siedentopf 三筒或两筒显微镜头,超宽视野10倍高眼点22mm视场目镜,4个半复消色差荧光物镜F10x, F20x, F40x 及F100x. 以上光学组件可实现探达紫外激发范围的高亮度透光效果,得到明亮高对比度且具备出色色彩校正的图像。模块化的6位落射荧光照明套件带基本的蓝/绿/紫外激发模块及3个空白位。标配双照明系统:100瓦水银反射灯和带自动电压感应的30瓦卤素透射灯。右手操作(需要左手操作请说明)陶瓷涂层机械台尺寸为191mm x 128mm 带低位人机工程学控制设计。1.25 N.A. 阿贝聚光镜使用鸠尾榫接合安装可快速更换并且开关迅速方便。6000系列可提供各种附件以满足不同工作需求,包括倾斜人机工程学设计的双筒显微镜头 i各种附加镜头,聚光镜,以及用于亮场,相差,偏光,暗场等应用的附件,还包括各种数字成像,照相,录像附件。特点:计算机辅助设计机身和光学组件人机工程学设计移位控制舒适的Siedentopf 显微镜头6位荧光模块带3个滤片全新设计半复消色差荧光物镜亮场,相差,偏光,暗场,落射荧光模式30W卤素透射Koehler灯 + 100W 水银落射灯可选倾斜人机工程学设计的双筒显微镜头订购指南型号总放大倍数显微镜头目镜照明MT6200H100x,200x,400x1000x,半复消色差双筒超宽视野10倍30 mm100w水银入射,30w卤素透射MT6300H三筒
    留言咨询
  • 武汉东隆科技为德国PicoQuant的中国区独家代理,欢迎您来电垂询!单分子时间分辨共聚焦荧光显微系统MicroTime 200在许多尖端科学领域,单分子研究具有重要意义。例如分子运动的量化研究和分子交互性的研究。这些研究领域对设备仪器的灵活性和多样性提出了更高的要求。德国PicoQuant公司的Micro Time 200系统的多功能性恰好可以胜任这些工作。作为当前世界顶尖的时间分辨共聚焦荧光显微成像系统,Micro Time 200具备了针对单分子级别相关实验和分析的能力。 Micro Time 200可选配多种波长的皮秒二极管激光光源,还拥有皮秒级别的时间分辨率,支持最多4个完全独立的探测通道,可以全面支持当今生物和物理方面的单分子研究课题,如FLIM,FRET,FCS(包含自相关和互相关)以及各向异性的研究,以及同时进行AFM/FLIM或者深紫外探测。同时配备了稳定, 精确的扫描系统, 完美满足单分子应用需求。MicroTime200家族又新增了空间分辨率高达50nm的MicroTime 200受激发射减损超分辨时间分辨共聚焦荧光显微系统(STED)。该系统配套的SymPhoTime 64能够提供强大、全面的数据采集和处理功能,而且针对以上提到的实验,提供了一键式运行模块,最大程度降低了操作的复杂程度,进一步提高了实验效率,是荧光相关领域研究的绝佳选择。特点:集成激发光源, 倒置显微镜和多通道探测模块的一体化系统375nm-900nm多波段皮秒脉冲激光器最多可集成SPAD, PMT或Hybrid-PMT组成相互独立的6通道探测单元针对FCS和FLIM快速动力学研究,有时间相关单光子计数(TCSPC)和TTTR两种模式适用于2D和3D寿命成像和精确点定位的压电平移台两个额外光路输出口用于拓展应用匹配有进阶易用型数据采集、分析和可视化软件SPT64双聚焦FCS、AFM/FLIM联用和深紫外激发的独特升级可提供STED附件,用于超分辨率成像FLIMbee 振镜扫描附件,具有出色的扫描速度灵活性和优秀的空间精度可以通过使用FLIMbee振镜在X轴上进行线扫描来实现scanning FCS测量基于后口激发的“二维载流子扩散成像”套件功能:荧光寿命成像(FLIM)及深层组织FLIM荧光共振能量转换FRET 及脉冲交错激发FRET(PIE-FRET)荧光强度相关光谱(FCS)及互相关光谱(FCCS)荧光寿命相关光谱(FLCS)及互相关光谱(FLCCS)双聚焦FCS各向异性检测深紫外探测串序脉冲荧光分析(Burst Analysis)参数:激发系统光纤整合型皮秒脉冲半导体激光器(功率/重复频率可调, 最大80MHz)支持外部激光器(如钛蓝宝石激光器)375~900nm波长范围支持Solea超连续白光光源支持单通道或者多通道驱动支持266nm紫光激发显微镜OlympusIX73或IX83倒置显微镜预留左侧和背面接口,可做拓展应用(如TIRF)包含透射照明部件独特的25x25mm手动样品固定台标准样品架(用于20x20mm载玻片)可选落射荧光照明可选低温恒温器用于低温型实验可选与原子力显微镜整合物镜规格标准20x和40x物镜可选多种高端特殊物镜(水/油镜, 红外/紫外强化, 超长工作距离型等)扫描台80 μm x 80 μm规格2D压电扫描台(1nm定位精度)PIFOC 3D立体成像(行程80 μm,定位精度1nm)80 μm x 80 μm物镜扫描(1nm定位精度)可选厘米级别大范围扫描台主要光学部件最多可支持4通道的共聚焦探测模块多种规格的分光部件额外的输出接口易于更换型二向色镜支架模块用于光斑分析的CCD相机和光电二极管所有光学元件都可替换和调整探测器单光子雪崩二极管(SPAD)混合型光电倍增管(Hybrid-PMT)光电倍增管(PMT)数据采集方式基于时间相关单光子计数TCSPC 的TTTR测量模式独立4通道同步采集分析软件SymPhoTime 64
    留言咨询
  • 武汉东隆科技为德国PicoQuant的中国区独家代理,欢迎您来电垂询!正置时间分辨荧光显微系统MicroTime 100由德国Picoquant公司研发的Micro Time100是研究固体样本(晶圆,半导体或太阳能电池材料)时间分辨光致发光的理想工具。整套系统是基于常见的正置显微镜(Olympus)构建的,可以用于观测各种规格大小的样品。同时,Micro Time 100可以集成厘米或微米级别分辨率的手动扫描方式和3D平面压电扫描台。为满足研究方向的多元化,该系统提供了多种波长(375nm-900nm)的脉冲二极管激光源以及相应的多功能PDL系列驱动单元.利用单光子灵敏度的探测器,再配合皮秒级别时间分辨的技术模块,可以实现对诸如FLIM,FCS等荧光方面的研究。在软件交互方面,高度智能化的SymPhoTime64可以提供针对不同实验的一键化操作方式,包括数据的收集和分析,图像化输出等。特点:集成激发光源, 正置显微镜和多通道探测模块的一体化系统脉冲二极管激光器波长从375到1060nm可选多探测器选项,最多可达4个探测通道通过XYZ-压电扫描平台实现三维寿命成像可选大范围扫描台,扫描行程可达几厘米应用:荧光寿命成像(FLIM)磷光寿命成像(PLIM)时间分辨光致发光 (TRPL) 成像MicroPL 测量(与 PL 光谱仪耦合)反束相关(g(2))测量载流子扩散成像SHG 和 2PE 成像参数:激发模块l 带紧凑型光纤耦合单元的皮秒二极管激光器(功率/重复频率可调,最大80MHz)l 波长范围 375-1060nml 支持单通道或多通道驱动显微镜模块l Olympus BX43或其他正置显微镜l 预留左侧和背面接口,可做拓展应用(如用于宽场成像或TIRF)l 已包含透射照明部件l 手动样品固定台物镜规格l 标准20X和40X物镜l 可选多种特殊物镜(水/油镜,红外/紫外强化,TIRF或超长工作距离型等)扫描方式l 三维 XYZ 压电物镜扫描,扫描范围为 80 µ m x 80 μm x 100 µ m,标称定位精度为 1 nm,采用物镜扫描方式安装l 可选:大面积扫描工作台,扫描范围为 7.5 cm x 7.5 cm,标称定位精度为 400 nm主要光学部件l 具有多达四个用于PMA和PMA Hybrid检测器的并行检测通道,两个用于SPAD检测器的检测通道l 预对准可更换型主二向色镜架l 所有光学元件都可更换和调节探测器l 单光子雪崩二极管(SPAD)l 混合型光电倍增管(Hybrid-PMT)l 光电倍增管(PMT)数据采集方式l 基于时间相关单光子计数(TCSPC)的TTTR测量模式l 最多支持独立双通道同步采集交互软件l SymPhoTime 64(用于FLIM和FCS)l EasyTau 2 (单点的寿命测量)升级选项MicroTime 100-BXFM大大提升Z轴成像距离&bull MicroTime 100-BXFM安装在面包板或光学台上&bull 样品扫描装置(选配)可安装在立柱上,以增加Z轴到表面的距离。这样,可以轻松实现在共聚焦显微镜下安装镜片或光学机械装置,用于透射实验,例如泵浦探针。&bull XYZ压电物镜扫描装置可用于扫描或采用XY样品扫描装置用于移动样品,同时光束路径保持不变升级选项PL光谱仪耦合(配合高性能荧光寿命和稳态光谱仪FluoTime300)钙钛矿太阳能电池的TRPL成像和载流子扩散
    留言咨询
  • 教学型金相荧光共聚焦显微系统是杭州柏纳推出的高性价比荧光共聚焦显微镜,可实现宽场荧光成像, 荧光共聚焦成像,金相共聚焦成像等功能,不仅可以观察固定的细胞、组织切片,还可以对活细胞的结构、分子、离子进行实时动态观察和检测。高性价比更可用于显微系统的实验教学。主要特点:l 宽场模式和共焦模式可切换;l 高性价比:单通道荧光成像,可自行更换光源l 光路可视化l 单层实时扫描成像、单层连续扫描成像、三维层析扫描成像;l 高分辨率:XY方向上的分辨率可达到200nm,Z向分辨率可达330nml 可选配细胞样本和荧光颗粒主要应用:1. 物理光学专业实验教学:激光共聚焦显微镜原理、光路结构;显微镜宽场模式与共聚焦模式的区别;荧光特性研究;2. 生物医学专业实验教学:细胞形态学分析,三维图像重组;细胞、亚细胞结构观察定位;活细胞实时动态监测;荧光漂白实验等。主要参数:教学型金相荧光共聚焦显微系统激光光源标配:488纳米(10mW);选配:405 纳米(10mW);638 纳米(10mW); 模拟/TTL电平调制; 强度可调(0-100%); 单模光纤,FC/PC 连接器。分辨率XY方向上的分辨率可达到200nm,Z向分辨率可达330nm扫描参数双轴XY高速光学扫描振镜 扫描像素:4096 x 4096;扫描速度: 4fps(512 x 512)扫描模式XY,XYT、XYZ(FPP (固定像素和 扫描层)模式,FSP (固定扫描范围)模式)针孔选择电动针孔,无极变速,调节范围0-1mm,可控精度1umXY平移台手动XY平移台:25 × 25 mm,最小步进:1μm电控Z轴:最小步进:20nm物镜10X,40X,100x 软件功能单层实时扫描成像、单层连续扫描成像、三维层析扫描成像相机实时监测Z轴调焦图像轮廓曲线标定,图像画面调整,图像打开保存等功能
    留言咨询
  • 产品介绍随着二维材料研究的蓬勃发展,其材料性能及器件工作机制都与传统半导体材料和器件有很大差异,光电流成像显微系统成为研究材料性能和检测材料光电流强度分布的重要设备,既可以用于测量光电材料的光电响应信号,又可以表征材料的光电性质。托托科技致力于开发具有高性能、高稳定性和高灵活度的微区光电流成像显微系统,系统采用双层平台机构,空间大,提供更多组合可能性,可搭配激光合束模组、高精度XY运动台、电磁场系统、低温恒温系统、锁相放大器、光谱仪系统等。系统兼容磁场、电场、低温,实现对二维材料磁、光、电、温度的调制。我们提供完整的NI Labview控制程序以方便用户的使用。软件包将所有系统中的测试设备统一控制,可以实现四种变量任意组合的光电流测试,即可以一次性测量不同变量下的光电流信号。系统结构图增强版系统外观如下,各个产品应客户要求,略有区别。产品亮点1、超宽谱激光兼容2、高精度XY运动台3、光路准直共路4、可搭配源表/探针台5、可搭配光谱仪系统/探测器6、高稳定性,操作便捷扫描数据参考Bi2Se3薄膜的光电流扫描数据(Nat. Comm. 9, 2492 (2018)) WTe2薄膜的光电流映射数据 (Nano Lett. 19, 2647 (2019)) 系统升级选项 1、搭配低温恒温系统 (5k -500k) 2、时间分辨光电流 3、荧光测试功能 4、磁场整合关键技术指标(TTT-03-PC)成像系统显微镜Carl Zeiss 正置式显微镜照明光源LED照明光源物镜5X、20X、100X,可选配多种倍率、超长焦距物镜反射式物镜,覆盖全波段相机彩色CMOS相机 (1920*1080 像素)激光耦合输入常规波长范围400 ~ 2000 nm (典型可见光:405nm、473nm、532nm、671nm,近红外:808nm、1064nm、1342nm、1550nm、1950nm)可选波长中红外激光器:4um-12um,间隔1um其他选配光源可选配光纤接口,支持光纤导入准直激光装配类型单个激光器,或者激光合束模组(支持四个激光器准直共路)扫描平台位移台类型高负载、高精度XY运动台,直线驱动,闭环反馈扫描范围100mm*100mm扫描精度50nm双向可重复性±0.5um广泛测试环境Keithley 2400或用户需求可选配探针台或者PCB板连接源表,提供电压输入及探测可搭配电磁铁、低温恒温系统可选配锁相放大器、斩波器可搭配光谱仪系统、各种探测器等检测设备其他参数软件基于labview的全自动软件设备尺寸140 cm * 100cm * 170cm附属配件光学平台、电脑、无线鼠标备注:1、订购时指定激光类型。2、设备可配置多种电学仪表。安装要求温度20 – 40℃湿度RH 60 %电源220 V, 50 Hz应用实例系统的典型应用包括但不限于:1、表征自旋累积、自旋寿命2、表征光电流3、表征反射谱
    留言咨询
  • 激光扫描共聚焦显微镜(LSM)是生物化学,细胞生物学和其他相关生命科学领域中广泛使用的工具。 通过使用时间分辨技术,可以进一步增强这些显微镜的功能,并具有以下优点:基于荧光寿命的荧光共振能量转移(FRET)效率量化测量利用时间分辨成像测量环境参数(pH,离子浓度)寿命测量与荧光团浓度无关利用荧光寿命拆分发射光谱重叠的荧光分子减少所需检测器的数量——一个检测器足以根据不同荧光团的特定寿命通过模式匹配同时检测不同荧光团用荧光寿命区分荧光对弹性和拉曼散射及其他背景噪声造成的影响荧光寿命作为一个进一步的参数提高了分析测量的准确性该升级套件作为激光扫描显微镜升级部件,在增强了功能性的基础上,更使整个系统简单易用。作为交钥匙系统,它主要包含三个单元:皮秒脉冲激发源,单分子灵敏度检测器,以及时间相关单光子计数(TCSPC)模块。特点:FLIM, FRET, FCS的交钥匙系统紧凑、易用、免维护的组件,所有的升级系统各个配置都高度模块化,具有无限的灵活性最大4通道独立探测模块的高灵敏系统荧光寿命探测范围从100ps到微秒级别高端易用、匹配多种分析方式的数据收集和分析软件可用于各向异性和厚组织FLIM新功能:rapidFLIMHiRes——利用超快FLIM成像和出色的5 ps时间分辨率实现动态过程可视化应用:时间分辨荧光rapidFLIM - 重新定义动态FLIM成像标准荧光寿命成像(FLIM)磷光寿命成像(PLIM)荧光相关光谱(FCS)荧光寿命相关光谱(FLCS)荧光互相关光谱(FCCS)荧光共振能量转移(FRET)脉冲交替激发(PIE)激光切割/烧蚀模式匹配分析时间分辨光致发光(TRPL)TRPL 成像反聚束效应各向异性参数:激发系统激光耦合台,基于皮秒脉冲半导体激光器(功率/重复频率可调, 最大80MHz)375-900nm波长范围支持单通道或者多通道驱动可选:支持外接第三方激光器 (如钛蓝宝石飞秒激光器和超连续谱激光器)新品:采用LDH-D-TA-560的560 nm皮秒脉冲激发支持显微镜的厂家型号Nikon:AX,A1, C2+, C2, C1siOlympus: FluoView FV3000, FVMPE-RS, FluoView FV1200 (MPE), FluoView FV1000 (MPE)Scientifica:VivoScope, HyperScopeZeiss:LSM 980, LSM 880, LSM 780, LSM 710探测方式最多可支持4通道相互独立的探测模块共聚焦和NDD配置通过光纤与显微镜连接探测器单光子雪崩二极管(SPAD) 混合型光电倍增管(Hybrid-PMT) 光电倍增管(PMT)数据采集方式基于时间相关单光子计数(TCSPC)的TTTR测量模式 多达四个通道的同时数据采集采集和软件SymPhoTime 64支持显微镜的厂家型号:AX,A1,C2+, C2,C1siFluoView FV3000FVMPE-RSFluoView FV1200 (MPE)FluoView FV1000 (MPE)HyperScopeVivoScopeLSM 980LSM 880LSM 780LSM 710
    留言咨询
  • 倒置荧光显微镜 400-860-5168转3899
    倒置荧光显微镜MF52-N由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防震要求。落射荧光显微系统采用模块化设计理念,可以安全、快捷地调整照明系统,切换荧光滤光片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微观察。
    留言咨询
  • 德国徕卡显微系统Leica徕卡显微系统: Leica Microsystems徕卡显微系统是全球显微镜与科学仪器供应商。徕卡显微成像系统的历史可追溯到19世纪,作为德国的光学制造企业,徕卡显微成像系统拥有160年显微镜生产历史,逐步发展成为显微成像系统行业的全球领导厂商。徕卡显微成像系统一贯注重产品研发和新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 一、微观结构成分分析解决方案 DM6 M LIBS将目视检验和定性化学检验组合在一个工作步骤中,与使用传统 SEM/EDS 检验相比, 测定微观结构成分的时间可节省 90%。集成激光光谱功能可在一秒钟内针对您在显微镜中看到的材料结构提供准确的化学元素图谱。DM6 M LIBS 二合一解决方案可助您执行物相的结构和元素/化学分析,例如矿石、合金、陶瓷等。无需进行样品制备,也无需在 2 个或更多设备之间进行转移。整个分析工作流程全部在一台仪器上完成。LIBS:您的化学分析研究利器DM6 M LIBS 解决方案运用激光诱导击穿光谱 (LIBS) 使定性化学分析成为可能。单击即可触发分析,激光将穿透样品上的瞄准点。一个等离子体将会产生,然后分解。产生的特征光谱显示材料中的元素的分布图谱。软件将图谱与已知的元素和化合物数据集进行对比,从而确定微观结构的成分。数据集可以随着用户获得的具体材料结果得到扩充。 二、徕卡DM4 M&徕卡DM6 M正置显微镜 工业测量正置显微镜使用 Leica DM4 M 进行手动例程检查使用 Leica DM6 M 进行全自动材料分析Leica DM4 M 正是为您打造的手动编码日常检查系统。l 2-齿轮手动调焦驱动器l 6 位或 7 位编码物镜转盘l 手动 3 叠式载物台,6 个符合人体工学设计的可编程按钮l 照明管理系统l 对比度管理器l LED 照明装置可实现所有对比度模式l 相衬模式:明场、暗场、微分干涉相衬、偏振、荧光l Leica Application Suite (LAS) 软件 Leica DM6 M 正是能够实现精度和可复制性的检查系统。 l 2-齿轮高精度电动调焦驱动器l 6 位或 7 位电动物镜转盘l 手动或电动扫描平台l 触屏控制l 照明管理系统l 对比度管理器l LED 照明装置可实现所有对比度模式l 相衬模式:明场、暗场、微分干涉相衬、偏振、荧光l Leica Application Suite (LAS) 软件三、工业倒置显微镜 Leica DMi8 M / C / A徕卡倒置式显微镜助您加速工作流程徕卡倒置式显微镜可以为您节省时间和资金。区别于正立式显微镜,您可直接将样品置于载物台对其表面对焦一次,然后在所有放大倍率下对焦,并对后续样品进行操作。由于物镜位于载物台下方,与样品发生碰撞的危险大大降低。 Leica DMi8 M 系统l 受益于经济实用的 Leica DMi8 手动版l 手动 2 档l 6 位 M25 物镜转盘l UC-3D 照明装置l 对比技术:明场、偏振、微分干涉相衬 (DIC)l LED 照明装置可实现所有对比度模式l 照明控制l Leica Application Suite (LAS) 软件四、Leica DM2700 M 正置金相显微镜徕卡 DM2700 M 正置金相显微镜由高质量的徕卡光学元件以及先进的通用白光 LED 照明组成。对于金相学、地球科学、法医检查以及材料质控和研究来说,它是进行所有类型常规检查的理想工具。徕卡 DM2700 M 向您展示了显微镜高境界的简单可靠性,还能够帮助您改进工作流程。
    留言咨询
  • BM4000倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。旋转摆入摆出式聚光系统,可对高培养皿或圆筒状烧瓶进行无沾染培养细胞观察。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。主要配置参数: CD-230显微镜相机采用大靶面高性能的成像芯片,配合USB3.0数据传输接口,具有大视野、高灵敏度、高动态范围和高帧率等性能特点,可广泛应用于明暗场、相衬、偏光、DIC和荧光成像等显微成像领域,是采集高质量显微图片和进行显微图像分析的理想工具。 CD-230显微镜相机的主要特点:极弱光成像高动态范围大视野高清晰度图像极高的预览速度能清晰的观察到拍摄的弱荧光和强荧光样品解决了因样品亮度差别大而无法同时观看的烦恼视野更广阔大大的提高工作效率产品优势:2000mV-1/30s Accumulation高灵敏度和低噪声荧光图像,完全展示微弱荧光观察效果大于73dB的动态范围,可同时清晰展现亮部和暗部细节1/1.2英寸的靶面芯片高速图像预览,最大帧率可达40fpsCD-230显微镜相机的主要参数:CD-16显微镜相机的主要参数:请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • M-SIM6000结构光光切显微系统采用最新的结构光照明技术,尤其针对厚样品的高速、高质量三维成像而设计,集观察、分析于一身,为您呈现极致的微观细节,可轻松获取高分辨率的荧光图像,帮助科研人员获取更精细的样品微观结构,可广泛应用于细胞生物学、材料科学、药学、血液学、医学免疫学等领域。高分辨光切成像M-SIM6000采用独立结构光光切模块,可实现XY方向240nm,Z方向600nm光学分辨率,有效去除焦平面以外的杂散光,实现高清晰度的3D图像构建。自动化控制M-SIM6000结构光光切显微系统配备全电动显微成像平台,支持双层独立荧光光路,支持独立光学成像和光学控制,使重复性的实验操作更加简便、客观。专业高品质物镜拥有(4X-100X)等多套物镜可选,高数值孔径,长工作距离,适配不同科研需求。研究级软件平台——SRF● 图像采集:x、y、z、λ、t五维采集,多维度、全流程、自动化控制● 图像处理:3D 重建及显示,共定位处理,共定位联动,图像亮度、对比度、阈值处理,图像翻转,镜像,去背景,动态图像生成,堆栈处理,ROI 处理● 图像分析:距离、周长,面积,圆度,最大灰阶、最小灰阶等参数分析,共定位分析,细胞计数,颗粒计数,蛋白追踪,亚群分析,细胞周期分析M-SIM6000结构光光切显微系统可轻松获取高分辨率的荧光图像,帮助科研人员获取更精细的样品微观结构,可广泛应用于细胞生物学、材料科学、药学、血液学、医学免疫学等领域。
    留言咨询
  • 新一代光片显微镜明准INTOTO系统INTOTO 光片显微镜采用先进的光学设计,实现空间生物学的多尺度成像,轴向分辨率较传统光片系统有明显提升。此外,该技术还具备倒置成像、折射率匹配系统,确保从亚微米到毫米级别的跨尺度成像,该设备以其各向同性分辨率、低光损伤、高成像对比度等特点,为生物学研究提供了一个全新的观察窗口。研究&应用方向1、 三维病理形态学(H&E/PAS/MASSON及免疫组化/免疫荧光)2、 神经生物学3、 脏器、血管、淋巴管及骨骼三维结构4、 胚胎发育(线虫、斑马鱼、小鼠胚胎)5、 3D细胞培养、类器官6、 植物学
    留言咨询
  • OptoNano 超分辨光学显微系统,是以 PHAOS Optical Microsphere Nanoscopy (OMN)专利技术研制的超分辨物镜与操作系统,结合常规光学显微镜平台开发制造的面向材料科学与工业应用的超分辨光学显微镜。以 USAF 1951 标准(MIL-STD-150A) 分辨率标尺验证,配置 ONLENS-G2 超分辨物镜系统,可以实现在环境空气中 137 纳米的分辨率成像。 *ONLENS-G3 超分辨物镜系统,测试实现~100 纳米分辨率。预计 2022 年 3-4 季度量产OptoNano200做为紧凑结构设计的通用机型,ON200配置透射光与 X/Y 6.5mm行程的载物台,兼顾适用部分需要透射光观察的样品。ON200+在 ON200基础上,配置 X/Y 35mm行程的载物台,并扩展了可置样品高度到 30mm. ON200/ON200+载物台与物镜观察单元(Z轴)都由超高精度(1 μm/全程, 微进细分 1/250 Steps)电动驱动控制。
    留言咨询
  • 概述XDY-2倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。旋转摇入摇出式聚光系统,可对高培养皿或圆筒状烧瓶进行无沾染培养细胞观察。落射荧光显微系统采用模块化设计理念,可以安全、快捷地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。功能特点★ 22mm广角大视野目镜,视野更广阔。目镜筒45°倾角设计,十分舒适,可适配橡胶眼罩。★ 采用优良无限远光学系统,配置无应力长工作距离平场消色差物镜,保证观察效果,确保了图像的清晰锐利。★ 相衬聚光镜旋转摆入摆出,并可自由升降,可对高培养皿或圆柱状烧瓶进行无沾染培养细胞观察,与相衬物镜搭配使用可做相衬观察。★ 配备两组不同波段激发滤光片。★ 可拆卸机械载物台,配备3种培养器皿托盘。应用识别细胞和亚微观细胞成分和活动荧光蛋白、细菌等的分布情况研究自发荧光物质活体观察技术参数标配:目镜大视野 WF10X(Φ22mm)对中望远镜物镜无限远平场消色差物镜PLL 10X0.25盖玻片厚度1.2mm无限远平场消色差物镜PLL 20X0.40盖玻片厚度1.2mm无限远平场消色差物镜PLL 40X0.60盖玻片厚度1.2mm无限远平场消色差相衬物镜PLL 10X0.25 PHP2 盖玻片厚度1.2mm无限远平场消色差相衬物镜PLL 20X0.40 PHP2 盖玻片厚度1.2mm无限远平场消色差相衬物镜PLL 40X0.60 PHP2 盖玻片厚度1.2mm目镜筒倾斜45°,瞳距调节范围53-75mm落射荧光照明系统电源箱输入AC 100-240V汞灯 100W/DC荧光滤色组紫外+紫 组 UV 激发片波长330-400nm 发射片波长425nm V 激发片波长395-415nm 发射片波长455nm蓝+绿 组 B 激发片波长420-485nm 发射片波长515nm G 激发片波长460-550nm 发射片波长590nm调焦机构粗微动同轴调焦,微动格值:2μm,带锁紧和限位装置转换器五孔转换器载物台固定载物台尺寸227mmX208mm玻璃圆载物台板尺寸:Φ118mm机械式移动尺寸,移动范围:横向(X)114mm,纵向(Y)77mm培养皿托板1 内槽尺寸86mm(宽)X129.5mm(长),可适配圆形培养皿Φ87.5mm培养皿托板2 内槽尺寸34mm(宽)X77.5mm(长),可适配圆形培养皿Φ68.5mm培养皿托板3 内槽尺寸57mm(宽)X82mm(长)透射照明系统转盘式相衬聚光镜,工作距离55mm滤色片蓝、绿滤色片和磨砂玻璃光源6V 30W卤素灯,亮度可调选配:目镜分划目镜 10X Φ22mmCCD接头0.5X、1X、0.5X带分划摄像仪USB输出:130/300/500/900万像素Video输出:380/520电视线数码相机接头CANON(EF) NIKON(F)
    留言咨询
  • 模块化超分辨共聚焦显微系统-LiveCodim传统荧光显微镜受到光学衍射限的影响,高的分辨率为200 nm,因此很难观察细胞中的超微结构。LiveCodim是一款模块化超分辨共聚焦显微系统,能够适配大多数的倒置荧光显微镜,将现有的倒置显微镜升成为具备宽场、共聚焦、超分辨三大模式的成像系统。LiveCodim通过特的锥形衍射显微镜—— 一种强大的波束成形器,能够直接提供分辨率高达120 nm的实时活细胞超分辨共聚焦成像,同时无需对样品进行任何额外操作,结合其低光毒性,以及方便快捷的操作系统等优势,非常适合拍摄荧光成像。产品优势 超高性价比:模块化超分辨,节省成本,兼容大多数倒置显微镜 xy轴超高分辨率:120 nm z轴深度成像:具备z-stack成像能力,高成像深度50 μm 活细胞成像:低光毒性和光漂白性,适合活细胞成像 制样简单:样品无需特殊处理,无需特殊染料 全自动软件:全自动调节各种参数,简单易上手主要参数 xy轴分辨率: 120 nm z轴分辨率: 500 nm z轴成像深度:50 μm 成像视野:共聚焦模式下80 μm * 80 μm,超分辨模式下: 50 μm * 50 μm 成像模式:宽场、共聚焦、LiveCodim超分辨 四色成像通道:405 nm, 488 nm, 561 nm, 640 nm (根据需求可增加)测试数据1. MDCK细胞中线粒体的动态变化2. Hela胞的微管宽场,共聚焦,LiveCodim超分辨成像3. 细胞分裂中期的COS-7细胞3D多色超分辨成像4. 植物细胞成像:观测铃兰草的根茎5. 天然免疫分子TRIM5α作用机制研究天然免疫分子TRIM5α蛋白是人类基因中决定疾病的易感性和发病速度的重要因素,其抗病毒活性通常通过小泛素相关修饰物(SUMO)调节,但是具体的作用机制仍有待进一步研究。LiveCodim超分辨图像揭示了TRIM5α主要分布在肌小管的核膜上,同时与存在于核孔的细胞质丝上的RanGTPase激活蛋白RanGAP1有明显的共定位现象,和主要定位于核篮上的蛋白Nup153无明显共定位,说明TRIM5α主要定位于这类细胞的胞质面。部分发表文章[1] Fernandez, Juliette, et al. "Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating." Nature microbiology 4.11 (2019): 1840-1850.[2] Vargas, Jessica Y., et al. "The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes." The EMBO journal 38.23 (2019): e101230.[3] Maarifi, Ghizlane, et al. "RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif." Communications biology 1.1 (2018): 1-11.[4] Garita-Hernandez, Marcela, et al. "Optogenetic light sensors in human retinal organoids." Frontiers in neuroscience 12 (2018): 789.[5] Getz, Angela M., et al. "Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons." Scientific reports 7.1 (2017): 1-16.[6] Portilho, Débora M., Roger Persson, and Nathalie Arhel. "Role of non-motile microtubule-associated proteins in virus trafficking." Biomolecular concepts 7.5-6 (2016): 283-292.[7] Pagliuso, Alessandro, et al. "A role for septin 2 in Drp1‐mediated mitochondrial fission." EMBO reports 17.6 (2016): 858-873.[8] Fallet, Clement, and Gabriel Y. Sirat. "Achromatization of conical diffraction: application to the generation of a polychromatic optical vortex." Optics letters 41.4 (2016): 769-772.[9] Fallet, Clement, et al. "Accurate axial localization by conical diffraction beam shaping generating a dark-helix PSF." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.[10] Fallet, Clement, Arvid Lindberg, and Gabriel Y. Sirat. "Generating 3D depletion distribution in an achromatic single-channel monolithic system." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.[11] Fallet, Clément, et al. "A new method to achieve tens of nm axial super-localization based on conical diffraction PSF shaping." Single Molecule Spectroscopy and Superresolution Imaging VIII. Vol. 9331. International Society for Optics and Photonics, 2015.[12] Caron, Julien, et al. "Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging." Cell adhesion & migration 8.5 (2014): 430-439.[13] Fallet, Clément, et al. "Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy." Nanoimaging and Nanospectroscopy II. Vol. 9169. International Society for Optics and Photonics, 2014.[14] Rosset, Sybille, Clement Fallet, and Gabriel Y. Sirat. "Focusing by a high numerical aperture lens of distributions generated by conical diffraction." Optics letters 39.23 (2014): 6569-6572.用户单位 法国巴斯德研究所蒙彼利埃大学
    留言咨询
  • 广西/贵州倒置荧光显微镜MF52-N由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射 荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。广西/贵州倒置荧光显微镜MF52-N特点:灵活性优良的无限远光学系统人机工程学设计倒置荧光显微镜MF52-N参数项目规格目镜10X/22平场目镜,高眼点,其中有一个目镜可调节屈光度对中望远镜目镜筒45°倾斜,瞳距可调节,视度可调物镜平场消色差物镜 4X长工作距离平场物镜 10X/40X长工作距离平场相衬物镜 10X/20X PH长工作距离平场相衬物镜 40X PH(可选)落射荧光照明系统LED冷光源,亮度连续可调标配三组激发块,其他种类可选 激发块 激发光波长 紫外(UV) EX:375/28nm;DM:415nm;EM:460/50nm 蓝色(B) EX:470/40nm;DM:505nm;EM:535/40nm 绿色(G) EX:530/40nm;DM:565nm;EM:605/55nm调焦机构粗微调同轴,配有限位装置和锁紧装置,低手位同轴调焦手轮,微调手轮格值2μm,调焦行程11mm 物镜转换器五孔内定位转换器,滚珠轴承内定位,有防霉装置载物台机械式移动,移动范围:112mmX79mm圆形透明载物台板:外圈φ118mm,内圈φ68mm 培养皿托板一 内槽尺寸:86mm×129. 5mm,可适配圆形培养皿Ф90mm 培养皿托板二 内槽尺寸:34mm×77.5mm,可适配圆形培养皿Ф68.5mm(可选) 培养皿托板三 内槽尺寸:57mm×82mm,可适配圆形培养皿Ф60mm(可选) 培养皿托板四 内槽尺寸:29mm×77.5mm, 可适配圆形培养皿Ф35mm透射照明系统白光LED ,亮度连续可调推拉板式相差聚光镜绿滤色片荧光防护板110mm x 70mm聚光镜推拉板式相差聚光镜, 工作距离:55mm,数值孔径:0.42照明系统9W LED,亮度可调
    留言咨询
  • XD200-FL倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。旋转摆入摆出式聚光系统,可对高培养皿或圆筒状烧瓶进行无沾染培养细胞观察。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。 标准配置如下:技术规格目镜大视野 WF10X(视场数&Phi 22mm) 对中望远镜无限远平场消色差物镜物镜PLL 10X0.25 工作距离:4.3 mm,盖玻片厚度:1.2mm.PLL 20X0.40 工作距离:8.0 mm,盖玻片厚度:1.2mm.PLL 40X0.60 工作距离:3.5 mm,盖玻片厚度:1.2mm.相衬物镜PLL 10X0.25 PHP2 工作距离:4.3 mm,盖玻片厚度:1.2mm.PLL 20X0.40 PHP2 工作距离:8.0 mm,盖玻片厚度:1.2mm.PLL 40X0.60 PHP2 工作距离:3.5 mm,盖玻片厚度:1.2mm.目镜筒倾斜45˚ ,瞳距调节范围53~75mm.落射荧光照明系统电源箱 110V/230V可选择汞灯100W/DC荧光滤色片组组别类型激发片波长发射片波长紫外+紫紫外330nm~400nm425nm紫395nm~415nm455nm蓝+绿蓝420nm~485nm515nm绿460nm~550nm590nm调焦机构粗微动同轴,带锁紧和限位装置,微动格值:2&mu m.转换器 五孔转换器载物台固定载物台尺寸:227mmX208mm. 玻璃圆载物台板尺寸:Ф118mm. 机械式移动尺寸,移动范围:纵向77mm,横向114mm,培养皿托板一内槽尺寸:86mm(宽)X129.5mm(长),可适配圆形培养皿Ф87.5mm培养皿托板二内槽尺寸:34mm(宽)X77.5mm(长),可适配圆形培养皿Ф68.5mm培养皿托板三内槽尺寸:57mm(宽)X82mm(长)透射照明系统转盘式相衬离聚光镜,工作距离55mm6V30W卤素灯,亮度可调磨砂玻璃,蓝、绿滤色片
    留言咨询
  • 上海缔伦光学微生物细胞培养倒置荧光显微镜DXY-2仪器简介 DXY-2倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。旋转摆入摆出式聚光系统,可对高培养皿或圆筒状烧瓶进行无沾染培养细胞观察。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。仪器配置技术规格目镜大视野 WF10X(视场数Φ22mm)对中望远镜C接口1X通用接口 0.5X接口(选配)无限远平场消色差物镜物镜PLL 4X0.10 工作距离:4.3mm,盖玻片厚度:1.2mm.选配PLL 10X0.25 工作距离:4.3mm,盖玻片厚度:1.2mm.PLL 20X0.40 工作距离:8.0mm,盖玻片厚度:1.2mm.PLL 40X0.60 工作距离:3.5mm,盖玻片厚度:1.2mm.相衬物镜PLL 10X0.25 PHP2 工作距离:4.3mm,盖玻片厚度:1.2mm.PLL 20X0.40 PHP2 工作距离:8.0mm,盖玻片厚度:1.2mm.PLL 40X0.60 PHP2 工作距离:3.5mm,盖玻片厚度:1.2mm.目镜筒倾斜45&ring ,瞳距调节范围53~75mm.落射荧光照明系统电源箱110V/230V可选择汞灯100W/DC荧光滤色片组组别类型激发片波长发射片波长紫外+紫紫外330nm~400nm425nm紫395nm~415nm455nm蓝+绿蓝420nm~485nm515nm绿460nm~550nm590nm调焦机构粗微动同轴,带锁紧和限位装置,微动格值:2μm.转换器 五孔转换器载物台固定载物台尺寸:227mmX208mm.玻璃圆载物台板尺寸:Ф118mm.机械式移动尺寸,移动范围:纵向77mm,横向114mm,培养皿托板一内槽尺寸:86mm(宽)X129.5mm(长),可适配圆形培养皿Ф87.5mm培养皿托板二内槽尺寸:34mm(宽)X77.5mm(长),可适配圆形培养皿Ф68.5mm培养皿托板三内槽尺寸:57mm(宽)X82mm(长)透射照明系统转盘式相衬离聚光镜,工作距离55mm6V30W卤素灯,亮度可调磨砂玻璃,蓝、绿滤色片
    留言咨询
  • 研究级倒置荧光显微镜WMF-3650 一.仪器用途 WMF-3650倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,应用先进的无限远光学系统,物镜采用长工作距离平场设计,配置大视野目镜。高刚性主体紧凑稳定,解决了显微操作的防振要求。聚光系统使用旋转摆入摆出式,可对圆筒状烧瓶或高培养皿进行无沾染培养细胞观察。 WMF-3650倒置荧光显微镜采用模块化设计理念的落射荧光显微系统,可以安全、方便地调整照明系统,快捷的切换荧光滤色片组件。WMF-3650可应用于透明液态组织,细胞组织的显微分析观察。产品广泛的应用于科学研究、高校实验、橡塑生产、高分子观察、发光材料严究,染色观察,结构分析。 二.系统简介WMF-3650倒置荧光显微镜有图像输出系统。可将传统的光学显微镜与电脑计算机(数码相机)通过专业的工业相机连接,可以在目镜筒上进行直接观察,还能在电脑计算机(数码相机)等显示设备实时进行观察,可以方便的将观察画面及动态视频进行保存和打印。 三.技术参数 仪器配置型号WMF-3650目镜大视野 WF10X(Φ18mm)无限远长距平场消色差物镜(盖片厚1.2mm)物镜PLL 10X0.25 工作距离:4.3 mmPLL 20X0.40 工作距离:8.0 mmPLL 40X0.60 工作距离:3.5 mm相衬物镜PLL 10X0.25 PHP2 工作距离:4.3 mmPLL 20X0.40 PHP2 工作距离:8.0 mmPLL 40X0.60 PHP2 工作距离:3.5 mm调焦机构粗微动调焦同轴,具有锁紧和限位装置,微动格值:2μm.目镜筒倾斜45?,瞳距调节范围53~75mm.转换器五孔,滚珠内定位内弯 落射荧光照明系统 电源箱 110V/230V可选择汞灯100W/DC荧光滤色片组组别类型激发片波长发射片波长紫外+紫(UV+V)紫外 (UV)330nm~400nm425nm紫(V)395nm~415nm455nm蓝+绿(B+G)蓝(B)420nm~485nm515nm绿(G)460nm~550nm590nm透射照明系统转盘式相衬离聚光镜,工作距离55mm,6V30W卤素灯,亮度可调磨砂玻璃,蓝、绿滤色片载物台固定载物台尺寸:227mmX208mm. 玻璃圆载物台板尺寸:Ф118mm. 机械式移动尺寸,移动范围:纵向77mm,横向114mm,培养皿托板一内槽尺寸:86mm(宽)X129.5mm(长),可适配圆形培养皿Ф87.5mm培养皿托板二内槽尺寸:34mm(宽)X77.5mm(长),可适配圆形培养皿Ф68.5mm培养皿托板三内槽尺寸::57mm(宽)X82mm(长)57mm (W)X82mm (L)防霉特有防霉系统 选配件目镜10X分划广角目镜(Φ22mm),格值0.1mm/格物镜无限远平场消色差 PL 5X/0.12 W.D26.1软件专用二维测量软件电脑型1.荧光显微镜 2.适配镜 3.摄像器(CMOS) 4.计算机(选购)数码型1.荧光显微镜 2.适配镜 3.数码相机(选购)
    留言咨询
  • 基恩士 数码显微系统 VHX-7000N 产品外观产品特性1、集观察、拍摄、测量于一体轻松直观的观测。实现了相当于光学显微镜 20 倍以上的景深。镜头、相机、成像软件均由基恩士自行设计,实现了景深与亮度平衡下的观察。可以轻松、直观地进行观测。 简单高效的保存和应用内置 1TB 的 HDD,可直接保存观察图像。保存的图像可通过 LAN、USB 进行活用。使用市售软件可自动生成固定格式的报告。各种测量功能集于一身仅需操作鼠标即能进行平面测量、3D 测量。此外,粗糙度测量、清洁度测量、结晶粒度测量等也只需这一台设备就可以完成。2、细微凹凸清晰呈现、直逼 SEM 的观测图像Optical Shadow Effect Mode采用由高分辨率 HR 镜头、4K CMOS 以及照明构成的专用设计,实现了全新的观测方式。3、VHX 高精细度定制高分辨率摄像单元采用 4K CMOS 和新开发的光学系统,实现了更大景深与高分辨率的兼顾。具备明场、暗场、偏光、微分干涉等丰富的观测方法,自动对应不同的目标物。 4、可轻松拍摄出高质量图像的全新操作系统更简便的操作性将目标物置于载物台上即可全电动进行定位、调焦、倍率转换等操作。初次使用的人也能轻松地实现目标位置观察。5、显微系统实现物质确定仅需放置到载物台上从放大观察到元素判别,1 台即可实时执行。需要元素判别的人可当场即刻作业。无需破坏目标物或者导电性处理、抽真空对目标物尺寸没有限制,可在不破坏目标物的情况下直接判别。在大气中判别,无需导电性处理和抽真空。由AI支持物质确定使用者可快速判断物质元素。内部数据库存有数千种元素样本,不仅可检测出元素,还可瞬间提示该物质名。VHX系列应用案例 CMOS(×400)太阳电池(×1000)基恩士 数码显微系统 VHX-7000N在电子、半导体、锂电池、汽车、医药等众多行业应用广泛。如果想了解更多信息可留言或电话咨询,我们将竭诚为您服务。
    留言咨询
  • 一. 仪器特点与应用 BM-38XⅡD电脑倒置荧光显微镜由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。旋转摆入摆出式聚光系统,可对高培养皿或圆筒状烧瓶进行无沾染培养细胞观察。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。二. 技术规格 主要参数总放大倍数100X~400X(标准配置)物镜共轭距离∞目 镜平视场大视野目镜WF10X视场:Ф22毫米目镜接口:Ф30毫米齐焦距离:10毫米双目镜铰链双目,观察角度为45度,瞳距为53~75毫米无限远平场消色差物镜放大倍率数值孔径工作距离(毫米)盖玻片厚度(毫米)备注10倍0.254.31.220倍0.408.01.240倍0.603.51.2无限远平场消色差相衬物镜10倍0.254.31.2标“PHP2”20倍0.408.01.2标“PHP2”40倍0.603.51.2标“PHP2”转换器五孔转换器落射荧光照明系统 100W高压汞灯,需荧光电源箱驱动,电源箱电压(110V/230V)可选荧光滤色片组 组别类型激发片波长发射片波长紫外+紫(UV+V)紫外330 ~400纳米425纳米紫395~415纳米455纳米蓝+绿(B+G)蓝420~485纳米515纳米绿460~550纳米590纳米透射照明系统转盘式相衬离聚光镜,工作距离55毫米6伏30瓦卤素灯,亮度可调,配磨砂玻璃,蓝、绿滤色片载物台移动范围77毫米(纵向)X134.5毫米(横向),移动尺可拆卸培养皿托板托板一86毫米(宽)X129.5毫米(长),可适配圆形培养皿Ф87.5mm托板二34毫米(宽)X77.5毫米(长),可适配圆形培养皿Ф68.5mm托板三57毫米(宽)X82毫米(长)计算机成像系统1.专用荧光CCD(带驱动盘),带几何测量分析软件。该软件对点、线、圆及弧、直线度、圆度、面积等测量2.荧光CCD专用适配镜3.电脑自购
    留言咨询
  • 倒置荧光显微镜MF52-N由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防震要求。落射荧光显微系统采用模块化设计理念,可以安全、快捷地调整照明系统,切换荧光滤光片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微观察。灵活性采用数显LED荧光模块,光源和控制器整合在模块内,大大节省桌面空间,方便放置,LED荧光可以即开即用,光强可按1%精度精准调控和记忆,荧光通道信息和光强信息可通过数显屏幕呈现,方便量化和记录。优良无限远光学经过多次迭代的无限远独立消色差光学设计,成像清晰锐利,无场曲等光学瑕疵,高透过率镀膜,能提供高亮度、高衬度的明场成像、相衬成像和荧光成像。人体工学设计机身采用人体工学设计,操作舒适,标准配置下摄像头采用侧装形式,方便实验操作,可选三目观察头配置,搭配带显示屏的摄像头直观呈现镜下画面。倒置荧光显微镜MF52-N参数项目规格目镜10X/22平场目镜,高眼点,其中有一个目镜可调节屈光度对中望远镜目镜筒45°倾斜,瞳距可调节,视度可调物镜平场消色差物镜 4X长工作距离平场物镜 10X/40X长工作距离平场相衬物镜 10X/20X PH长工作距离平场相衬物镜 40X PH(可选)落射荧光照明系统LED冷光源,亮度连续可调标配三组激发块,其他种类可选 激发块 激发光波长 紫外(UV) EX:375/28nm;DM:415nm;EM:460/50nm 蓝色(B) EX:470/40nm;DM:505nm;EM:535/40nm 绿色(G) EX:530/40nm;DM:565nm;EM:605/55nm调焦机构粗微调同轴,配有限位装置和锁紧装置,低手位同轴调焦手轮,微调手轮格值2μm,调焦行程11mm 物镜转换器五孔内定位转换器,滚珠轴承内定位,有防霉装置载物台机械式移动,移动范围:112mmX79mm圆形透明载物台板:外圈φ118mm,内圈φ68mm 培养皿托板一 内槽尺寸:86mm×129. 5mm,可适配圆形培养皿Ф90mm 培养皿托板二 内槽尺寸:34mm×77.5mm,可适配圆形培养皿Ф68.5mm(可选) 培养皿托板三 内槽尺寸:57mm×82mm,可适配圆形培养皿Ф60mm(可选) 培养皿托板四 内槽尺寸:29mm×77.5mm, 可适配圆形培养皿Ф35mm透射照明系统白光LED ,亮度连续可调推拉板式相差聚光镜绿滤色片荧光防护板110mm x 70mm聚光镜推拉板式相差聚光镜, 工作距离:55mm,数值孔径:0.42照明系统9W LED,亮度可调
    留言咨询
  • 共聚焦拉曼显微系统RTS-mini 拥有Plug-in 特点的RTS-mini 共聚焦拉曼显微系统,可跟多种显微镜和光谱仪联用,提供最佳的灵敏度和空间分辨率。 除了在现有的显微镜上升级共聚焦系统外,通过灵活地配置光谱仪和探测器,可以打造出针对客户应用的专属系统配置。广泛用于各类工业应用,如质检,安检,刑侦,生物医疗, 制药等需要高拉曼灵敏度的应用领域,并且由于可提供免费的软件开发包,并且提供Micromanager 接口,使得系统的后续开发及联用工作可以轻松展开。 RTS-mini 由共聚焦接口盒,显微镜和光谱仪组成,可以按照客户要求进行各种配置。共聚焦接口盒,可提供532,638,785 三个波长,接口盒可直接叠加,其中532 版本的RTS-mini,搭配进口光谱仪,可获得1um 横向纵向空间分辨率,硅三阶峰信噪比20:1,四阶峰可见的灵敏度(行业测试标准),并且无明显氧气氮气峰,显示良好的共聚焦性能。 天津大学蔡司显微镜升级 共聚焦拉曼显微系统RTS-mini参数配置 激光器内置532/100mW 内置638/60mW 内置785/100mW 拉曼频移范围80-6000cm-1 80-4000cm-1 80-3200cm-1 光纤接口形式SMA to SMA SMA to SMA SMA to SMA 显微镜标配* Leica DM2700 M 10x, 50x, 100x NPlan Leica DM2700 M 10x, 50x, 100x NPlan Olympus BX53 10x, 50x, 100x Semi-Apo 光谱仪* 进口328mm 光谱仪进口500mm 光谱仪国产320mm 光谱仪进口328mm 光谱仪进口500mm 光谱仪国产320mm 光谱仪进口328mm 光谱仪进口500mm 光谱仪国产320mm 光谱仪光纤光谱仪 (SERS only) 测试对象:单晶硅测试条件: 激光器:532nm,样品上功率10mW 曝光时间:300 秒物镜:Leica 100x/0.85 CCD 像元尺寸:15um,无横向binning 英国Andor 328i系列光谱仪 英国Andor 500i系列光谱仪 北京卓立汉光 300i系列光谱仪 台湾OTO超微光学 EagleEye系列高灵敏度光纤光谱仪(仅适用于785表面增强应用)
    留言咨询
  • 倒置荧光显微镜MF52-N由LED落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远光学系统,配置长工作距离平场物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射 荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。倒置荧光显微镜MF52-N倒置荧光显微镜MF52-N参数项目规格目镜10X/22平场目镜,高眼点,其中有一个目镜可调节屈光度对中望远镜目镜筒45°倾斜,瞳距可调节,视度可调物镜平场消色差物镜 4X长工作距离平场物镜 10X/40X长工作距离平场相衬物镜 10X/20X PH长工作距离平场相衬物镜 40X PH(可选)落射荧光照明系统LED冷光源,亮度连续可调标配三组激发块,其他种类可选 激发块 激发光波长 紫外(UV) EX:375/28nm;DM:415nm;EM:460/50nm 蓝色(B) EX:470/40nm;DM:505nm;EM:535/40nm 绿色(G) EX:530/40nm;DM:565nm;EM:605/55nm调焦机构粗微调同轴,配有限位装置和锁紧装置,低手位同轴调焦手轮,微调手轮格值2μm,调焦行程11mm 物镜转换器五孔内定位转换器,滚珠轴承内定位,有防霉装置载物台机械式移动,移动范围:112mmX79mm圆形透明载物台板:外圈φ118mm,内圈φ68mm 培养皿托板一 内槽尺寸:86mm×129. 5mm,可适配圆形培养皿Ф90mm 培养皿托板二 内槽尺寸:34mm×77.5mm,可适配圆形培养皿Ф68.5mm(可选) 培养皿托板三 内槽尺寸:57mm×82mm,可适配圆形培养皿Ф60mm(可选) 培养皿托板四 内槽尺寸:29mm×77.5mm, 可适配圆形培养皿Ф35mm透射照明系统白光LED ,亮度连续可调推拉板式相差聚光镜绿滤色片荧光防护板110mm x 70mm聚光镜推拉板式相差聚光镜, 工作距离:55mm,数值孔径:0.42照明系统9W LED,亮度可调
    留言咨询
  • 仪器简介:HORIBA Scientific(Jobin Yvon光谱技术)荧光光谱仪器可提供全套稳态、瞬态和稳-瞬态以及各种偶联技术的解决方案。在细胞科学、生物物理和材料科学领域,重要变化经常会发生在时间和空间的微小尺度里。时间分辨荧光显微镜是研究细胞结构和纳米材料领域中动态事件的有效工具。与传统的荧光强度成像(由荧光显微镜获得)不同,荧光寿命是荧光基团的一个内在特性,因此它的测量不受非均匀负载,光漂白,激发光不稳定和光散射的影响。更重要地是时间分辨测试通过辨别显微点在样品中的位置获得更多关于分子运动、尺寸、所处环境、相互作用和键合的信息。借助于共聚焦显微镜的力量,可以得到清晰的样品成像、测定细胞内的局部作用和细胞结构的动力学。HORIBA科学仪器部推出的DynaMyc是基于滤光片式,全自动共焦显微镜系统,可在微观尺寸下测试荧光寿命和强度。DynaMyc采用高灵敏度的时间相关单光子计数(TCSPC)技术,荧光寿命范围100ps~100&mu s。整机包括:模块光学部件和Olympus BX51显微镜。它的成像部分包含X,Y,Z自动快速扫描平台,以及共聚焦设计,可在微米级的空间分辨率条件下实现荧光寿命成像。DynaMyc是一款灵活的研究工具,针对您的不同应用需求,可选多种波长的皮秒脉冲激光二极管光源,涵盖较宽的光谱范围(270~980nm),宽重复频率可调(CW~100MHz),多种滤光片以及不同检测器可选。可配置高动态范围、低噪声、制冷型照相机和高强度荧光照明,获得宽场荧光成像。DynaMyc由DataStation软件交互控制的一款全自动系统。基于去卷积分析后,可以生成各种参数的成像图,例如,寿命,相对振幅,平均寿命和荧光强度。DynaMyc是研究蛋白动态结合或解离及FRET的理想工具。可选附件:l 物镜(60/100X可选)l 皮秒脉冲激光二极管光源(多种波长可选)l 制冷型荧光相机技术参数:l 样平台:分辨率0.5µ m,行程范围75 x 50 mml 时间相关单光子计数(TCSPC)技术,寿命范围100ps~10&mu sl 光谱检测范围:185-650 nm/300-850 nm(TBX快速检测器)l 可配置DeltaDiode 100MHz高频率激光器,连续输出CW可选l 单点、多点和荧光寿命成像三种数据采集模式l 专业DAS6寿命分析软件能够快速数据分析l 可实现宽场荧光成像(制冷型荧光相机可选) 主要特点:l 时间相关单光子计数(TCSPC)技术,寿命范围100ps~10&mu sl 全自动紧凑光学寿命模块,可自动切换滤光片,二向色滤光片和针孔l 光纤耦合不同激光二极管(370~980nm)l 共焦头单元可自动切换针孔(100~1000&mu m)l 激光二极管(DeltaDiode),高重复频率可调(~100MHz),CW或脉冲模式可调l 直观的数据采集和分析软件l 宽场荧光成像(制冷型荧光照相机可选)
    留言咨询
  • 产品优势徕科光学研发的计算级3D超景深显微系统LK-JS8500彻底突破显微镜的光学固有限制,可以在10秒之内得到样品的三维立体图像,可以轻松的对样品不同高度进行优质成像,得到平面优质图片,继而构3D模型,并通过智能测量模式,准确测量三维空间尺寸,在得到优质平面图像/3D图像的同时,通过本产品系统还可以提供共焦点云的全自由度模型三维观察使得用户能够从任意角度观察样品,系统通过一体化的设计,可以实现高速自动显微镜3D观察、测量。本系统软件采用最新的位移矫正和边缘识别,边缘修正技术,可以彻底消除图像边缘锯齿状。是低倍(光学2000X.视频10000x)情况下电镜的理想替代。远远超出常规平面检测(包括电镜)的范围。将光学显微镜的使用提升到新的高度。是显微技术的最新发展。下图产品实景图及结构图:下图为现场安装、培训实景图:下图为合作伙伴情况:下图为服务站分布图:产品介绍产品优势1、光学与光谱共焦双模式提供高精测量2、APO复消色差镜头提供超高解析度3、多功能程控光源满足复杂检测要求4、自动平台支持3D光学拼接与3D测量5、一体可视化设计满足自动操作要求镜头技术1、12X-7000X ZOOM技术实现精准变倍2、防眩光设计保证图像采集的精准性3、光谱共焦技术极大提升Z向分辨率4、快速物镜更换装置提升检测效率5、电动变焦镜头防止人为误差功能性组件1、3D光学成像、拼接、测量2、光谱共焦大面积3D扫描3、手持自动聚焦与测量4、多角度观察支架5、快速操作手柄置观察角度全自由度观察系统电动XYZ平台与旋转支架底部二维平台可在实现平面方向的360º 旋转倾斜式观察,再配以载物台平台360º 旋转,镜头就能环绕样品观察,从而得到不同角度图像,全面的掌握样品的侧面细节。前45°后45°左45°右45°基础部件-显微相机SONY HDR :1/1.8英寸CMOS图像传感器显微成像要求:优质的显微镜成像系统下获得高清晰显微图片是超景深成像和图像快速拼接的基础,优质的显微镜成像系统应包括:高分辨率,优质色彩还原,低噪音,良好的操作性以及动态图像HDR功能,最高达到1000万像素,60帧/秒。HDR技术提供均匀图像:HDR技术能够解决视野中明暗不均问题,通过数字技术,看清常规状态下无法识别的细节,有效减轻照明所带来的干扰、SONY CMOS之优势:日本索尼公司(SONY)CMOS图像传感器,最高可以到2000万象素配合专业级DSP后端处理电路,以及顶级专业的高性能色彩引擎Ultra-FineTM数字优化处理技术、专利降噪技术和动态HDR功能使用户轻松体验到专业摄像产品的带来的无限乐趣干扰。正确的3D构建:锐利的边界、充分的细节,高保真的色彩技术,能够无损的展示微观样品的立体形貌。3D构建基础部件-高分辨率镜头连续变倍镜头:视频连续手动、电动变倍,自动识别倍数LENS物镜成像要求:显微镜物镜分辨率是显微成像的根本保证,本系统采用的数值孔径N.A值从0.015----0.9(空气介质)在正确照明下,能够得到边缘犀利,细节丰富的高分辨显微图像。APO复消色差技术的镜头:APO复消色差技术,有效的解决了镜头的色差、色散以及二级光谱,并进一步提升了成像质量,将光学分辨率提升接近理论极限。LDM长工作距离技术之优势:系统采用超长工作距离镜头,在保证分辨率为1µ 的情况下,工作距离达到34mm,除了能防止损坏、观察深孔槽之外,为系统的拓展性提供了良好基础。光谱共焦镜头(选配):基于白光色散技术的光谱共聚焦镜头,具有最广泛的测量适应性,即使在光滑的玻璃表面,研磨后的镜面材料,均能实现有效的测量,其Z向分辨率可达到10nm以下,配合高精度的压电位移台,能对样品实现大面积精准轮廓测量。得到的模型更可与光学景深图像融合,最终得到计量级的彩色3D模型。常用物镜技术参数表放大倍数规格型号数值孔径工作距离分辨率焦深NA(mm)R (μm)DF (μm)1.0xPlan Apo-1X0.015801014802xPlan Apo-2X0.05345915xPlan Apo-5X0.1211-3421410xPlan Apo-10X0.289.5-3413.520xPlan Apo-20X0.403.4-200.71.650xPlan Apo-50X0.557.50.50.9100xPlan Apo-100X0.82.10.40.6※ 50X、100X物镜为选配,其他特种物镜请技术咨询基于色散技术的光谱共焦:同轴色散技术的光谱共焦检测方式可以应对最严苛的材质与环境挑战基础部件-照明技术显微照明技术要求:优质的光源是数码成像的基础之一,正确匹配的照明模式是展现样品细节的必需条件,系统所采用的照明装置,均为机器视觉系统所用光源。具有光谱范围广,色彩真实,形态多样,长寿命(大于3万小时),根据不同用途,有多种结构设计,能组建复式照明技术,配合数字消光技术(HDR),能完美展现样品细节。1/4局部照明示意图 照明方式改变导致图像呈现明显差异:(请咨询我司技术工程师确定照明模式) 同轴照明漫射照明环形照明组合式照明技术案例同轴光与环形光组合同轴光与偏光器件组合行业应用案例一、材料腐蚀原位精加工等行业微型刀具3D形态锥孔角度测量2mm直径半球3D台阶高度伪彩螺纹腐蚀裂纹钢丝磨损断口分析图层测量基于白光色散的光谱共焦扫描案例 :镜面大径深比孔槽 光滑弧面透明体大角度倾斜面光谱共焦技术具有最广泛的材质适应性、稳定性、检测效率基于白光色散技术的光谱共聚焦镜头,具有最广泛的测量适应性,除常规材料之外,即使在光滑的玻璃表面、研磨后的镜面材料,透明胶水层、薄膜材料均能实现有效的测量,其Z向分辨率可达到10nm以下,配合高精度的压电位移台,能对样品实现大面积精准轮廓测量。得到的轮廓模型更可与光学景深图像融合,最终得到计量级的彩色3D模型。导电银浆厚度(20µ m)高宽比例为4:1的槽检测原理与基本光谱反馈由光源射出一束宽光谱的复色光(呈白色),通过色散镜头产生光谱色散,形成不同波长的单色光。每一个波长的焦点对应一个距离值。主动测量光射到物体表面被反射回来,只有满足共焦条件的单色光,可以通过微米级小孔被光谱仪感测到。通过计算被感测到光焦点波长,换算获得准确距离值。高反光电池壳突起柔性样品非接触测试电子半导体 MEMS 新能源等行业金线BONDING芯片焊盘3D形测SMT管腿观测PIN脚平面度盲孔深度测量焊锡层厚度测量器件观测太阳能栅线高度刑侦文物 建筑印刷木材等行业和田玉超景深鉴定混凝土微观形貌木材纹理结构印刷品粘接的磨粒朱墨时序鉴定产品参数留言或致电我们,获取更多方案。
    留言咨询
  • KEYENCE 基恩士 形状测量激光显微系统全新 VK-X3000纳米 / 微米 / 毫米一台即可完成测量 超越激光显微镜的限制,以三重扫描方式应对 一台即可测量纳米 / 微米 / 毫米三重扫描方式一台设备可使用激光共聚焦、聚焦变化、白光干涉等三种不同的扫描原理。根据样品工件的材料、形状和测量范围选择适合的扫描方式,进行高精度测量。 一台即可了解希望获取的信息292 种分析工具测量软件不仅可以测量高度或尺寸,还能通过多样的分析工具按照用户的想法实现进一步的分析。 激光显微系统的基本特点 实现更高一级精度[ 0.1 nm 线性标尺 ]配备超高精度线性标尺,以 0.1 nm 的高分辨率识别物镜的 Z 位置,从而实现更加细微的凹凸检测。高度测量结果基于符合国家标准的可追溯性系统。 最快 125 Hz 瞬间完成扫描[ IC : High Speed Processor 7900 ]通过深化感应技术,对 X 轴、Y 轴扫描仪进行特别处理,进一步优化测量进程。不仅可以在保证测量精度的同时进行 125 Hz 的面测量,还能在瞬间得到数值和波形的线测量中实现最高 7900 Hz 的样品测量 。 如实捕捉形状和大小的光学设计[ 远心镜头 ]VK-X3000 使用连画面边缘都少有失真的远心镜头,可在整个视野内进行高精度测量。因为可以如实捕捉目标物的形状和大小,所以在画面内能实现高测量精度。 可获取高可靠性的原始数据[ 超高灵敏度光电倍增器实现 16 bit 感应 ]对于捕捉激光反射进行测量的激光显微镜来说,如何接收激光并将其识别为高度信息是十分重要的。VK-X 采用光电倍增器作为接收激光的元件,成功地以 16 bit 的高分辨率进行感应。准确读取反射率不同的复合材料[ 16 bit(65536 灰度级)处理 ]测量数据以 16 bit(65536 灰度级)进行处理,以往难以看清的细微的颜色和明暗差异都可以如实地反映出来。陡角也可准确测量[ 基恩士传统产品 16 倍的动态量程 ]从微弱的激光反射到强烈的激光反射都能一次接收,并以基恩士传统激光显微镜 16 倍的灵敏度进行处理。对于具有陡角或复杂形状等以往难以测量的样品,或低倍率的测量等也可准确执行。 扫描的上下限设定不会出错[ 自动上下限设定 ]通过光接收量识别焦点位置。从该位置向下限方向移动,将正好位于光接收量检测界限以下时的位置设定为下限。然后向上方移动,将再次位于光接收量检测界限以下时的位置判定为上限。通过这种方法识别并设定样品的上下限,操作十分简单,可以防止人为设定偏差。 检测焦点位置并瞬间进行自动调整[ 激光自动对焦 ]由于干涉镜头对于反射率低的样品工件干涉信号会变低,所以观察画面难以对焦是一个难点。本次配备了可以高速扫描的激光和高灵敏度的检测器,能够瞬间确定焦点位置,还可自动向 Z 方向进行调整。 可检测倾斜状态并轻松进行调整[ 消零辅助功能 ]干涉仪的样品工件倾斜调整需要以条纹为参照,肉眼确认倾斜状态,并反复进行调整作业,直至工件处于水平状态。此外,由于该作业事前倾斜调整目标不明,所以进行“是否真的水平”这一艰难判断也是强人所难。消零辅助功能则可以检测工件的倾斜,并自动计算调整干涉条纹所需的补正角度。调整前可以了解操作的程度,因此能够轻松、准确、快速地进行调整。 能够放心托付的全自动测量AI-Scan 准确检测反射光量并进行扫描[ RPDII 算法 ] 自动调整光接收量,难以测量的表面状态也可支持[ AAG Ⅱ算法 ]AAG=Advanced Auto Gain 扫描条件增加到 2 条以测量复杂形状[ 双扫描 ]支持三重扫描方式的测量原理 以激光检测反射光量和高度激光光源为点光源,因此通过 X-Y 扫描光学系统扫描观察视野内,用受光元件检测各像素的反射光。在 Z 轴方向上驱动物镜,反复扫描以获取各像素在每个 Z 轴位置上的反射光量。以反射光量最高的 Z 轴位置为焦点,检测高度信息和反射光量。由此可以获取聚焦于整体的光量超深度图像和高低图像(信息)。 通过 CMOS 相机获取颜色信息另一方面,白色光源的反射光由彩色 CMOS 相机检测。每个像素都获取激光光源所检测焦点位置的颜色信息,因此实现了 SEM 难以做到的真实彩色观察 [ 何谓激光共聚焦… … ] 确定反射光量最多的 Z 位置如图所示,同一平面(1024 × 768 像素)中的各像素取得每个 Z 轴位置(Z 位置)的反射光量信息(强度),获取反射光量最高的 Z 轴位置(= 焦点位置)或此时的反射光量、颜色信息。基于这些信息构建“彩色超深度”、“光量超深度”、“高低”这 3 种图像数据。 针孔排除环境光在使用 CMOS 等作为受光元件的拟共聚焦光学系统中,因为来自焦点位置以外的反射光和对相邻像素的环境光等的影响,难以实现高精度测量和高分辨率观察。激光共聚焦光学系统完全排除来自焦点位置以外的反射光,实现了高精度测量和高分辨率观察。 [ 何谓聚焦变化… … ] 以基于景深决定的适合的移动间距从下往上移动物镜,同时检测 560 万像素高精细彩色 C-MOS 相机捕捉到的高画质图像的焦点变化(影像的散焦情况),从而求出聚焦位置的 3D 测量方式。聚焦于目标物的影像在比较相邻像素亮度时,亮度差会因影像的明暗而变大。而在没有聚焦的影像中,相邻的黑色和白色亮度差会变小。因此,通过记录亮度差最大时的镜头位置,可以记录目标物的“高度信息”。此外,物镜的位置信息受到内置线性标尺(测长器)的监控,因此可以更加准确地获得观察目标的“高度信息”。在对观察的目标物进行 3D 测量的同时,通过将聚焦于部分影像的图像重叠起来,可以合成聚焦于整体的观察图像。 [ 何谓白光干涉… … ] 通过 CMOS 元件等视觉传感器观测光的干涉图样,从而求出三维形状的测量方法。使用内置基准平面镜(参照面)的干涉物镜,将白色 LED 等白色光照射到基准平面镜(参照面)和目标物(测量面)上。这样一来,通过使各个反射光相互干涉,以基准平面镜为基准,目标物面的形状变成每个高1/2 波长的等高线,出现干涉条纹。用 560 万像素的高精细彩色 C-MOS 相机捕捉该干涉条纹,通过电脑处理求出干涉条纹强度最大的点,测量凹凸。 一台即可了解希望获取的信息包含 292 种分析工具
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制