当前位置: 仪器信息网 > 行业主题 > >

纳米级三维测量仪

仪器信息网纳米级三维测量仪专题为您提供2024年最新纳米级三维测量仪价格报价、厂家品牌的相关信息, 包括纳米级三维测量仪参数、型号等,不管是国产,还是进口品牌的纳米级三维测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米级三维测量仪相关的耗材配件、试剂标物,还有纳米级三维测量仪相关的最新资讯、资料,以及纳米级三维测量仪相关的解决方案。

纳米级三维测量仪相关的论坛

  • 【资料】工业应用中的三维几何测量仪器

    机床是制造业的母机,数控机床是机床产品的先进技术体现,特别是高档数控技术是装备制造业现代化的核心技术,是国家工业发展水平、综合国力的直接体现,此次展会汇集了当今世界机床发展和先进制造技术的最新成果,全面展示了我国数控机床产业近几年来高速发展的最新产品和技术。作为数控技术的重要环节——测量设备,在这次展会上展出了一批新技术、新产品,体现了当今测试计量技术发展动向和特点。 测量精度高  随着现代科技向高精度方向发展,机床作为装备工业的基础发展更应超前,而测量设备更由传统的微米、亚微米精度向着纳米量级精度方向发展。随着超精密加工技术的需要,数控精度愈来愈高,对测量设备的精度要求更高,这次展会展示了一批纳米量级的测量设备,除各种激光干涉仪外,光栅测量技术也达到纳米量级。如海德汉的LIP382超高精度直线光栅尺,其测量步距可以达到1nm。基于测量技术的发展,纳米量级的机床成为现实,如上海机床厂展出的纳米级精密微型数控磨床成为展会的一个亮点。测量速度高  现代制造业进行的是大规模、大批量、专业化生产,需要多参数、实时在线测量,故要求测试仪器的测量速度高、设备轻便、操作界面直观。如激光干涉测量技术作为精密测量的一种重要方法,各种激光干涉测量系统向着轻巧、便携、高测速的方向发展。雷尼绍XL-80干涉仪款型小巧,可提供4m/s最大的测量速度和50kHz记录速率,可实现1nm的分辨率;激光跟踪仪可实现快速数据采集与处理,有利于测量精度的提高。各种影像测量设备利用触摸屏可以方便直观地实现特征尺寸的测量。三维测量多样化  三维测量技术向着高精度、轻型化、现场化的方向发展。传统基于直角坐标的三坐标测量机经过50年的发展,其技术愈加成熟,测量更加快捷,功能更加强大。这次参展的国内外数十家坐标测量机生产厂商,各具特色,特别是国内很多厂家推出实用廉价的各种三坐标测量机,说明三坐标测量技术在我国已经走向全面实用化、特色化发展的道路。除直角坐标测量系统外,极坐标测量仪器体现出自身独特的优势,如FARO、ROMER等厂家生产的激光跟踪仪对大尺寸结构的装备现场具有方便灵活的特点。对于小尺寸测量,FARO、ROMER等生产的关节臂测量机因其低廉的成本、较高的精度、现场方便的操作等优势,在汽车等行业展现出广阔的应用前景。测量智能化  测量设备借助于计算机技术向着智能化、虚拟化的方向进一步发展。测量仪器的虚拟化、接口的标准化以及测量软件的模块化,加速了测量技术的发展,使测量仪器的应用更加方便、直观、智能。根据测量需求以及测量对象的不同,可基于同一软件平台使用不同的仪器协同工作,采用不同的测量软件模块,实现了广普测量仪器的网络化、协同化,提高了测量的自动化水平。在这次展会上,国内一些独立的测量软件公司进行了参展,对于测量设备的智能化、网络化具有推动作用。  这次展会展示了当今工业测量设备的新技术、新产品。但也同时看到,我国在测量仪器制造特别是高精度仪器制造方面缺乏自主创新的成果,一些高精度测量仪器在国内还没有相关单位能够生产。通过这次展会,对推动我国几何量测量设备的发展具有实际意义。

  • 【分享】三维光学测量仪的特征及功能简介

    三维光学测量仪又可称为三维影像测量仪或非接触式光学测量仪,是集光学、机械、电子、计算机图像处理技术于一体的高精度、高效率、高可靠性的测量仪器。三维光学测量仪采用非接触式三维测量方式,可进行快速精密的几何尺寸和形位公差的测量,具有了良好的刚性质量比,运动平稳、精确,确保了整机精度更高。 三维光学测量仪采用国际先进的有限元分析技术设计,具有高精度、高性能高速度和高稳定性的特点。使用冷光源系统,可以避免容易变形的工件在测量是因为热变形所产生的误差,并避免了由于碰触引起的变形。三维光学测量仪可高效地检测各种复杂精密零部件的轮廓和表面形状尺寸、角度及位置,全自动地进行微观检测与质量控制;还可自动抓边、自动聚焦的功能使得最大程度减少了人为误差。 三维光学测量仪适用于航空、航天、军工、汽车、模具、电子、机械、仪表、五金、塑胶等行业中的模具、螺丝、金属、配件、橡胶、PCB板、弹簧等以坐标测量为目的一切应用领域适用范围。

  • 【求助】德国FRT纳米表面测量仪

    【求助】德国FRT纳米表面测量仪

    请问谁知道那个测试中心或者高校有下面网址展示的仪器 - 德国FRT 纳米表面测量仪http://www.beijingoec.cn/beijingoec_Product_23528.htmlhttp://ng1.17img.cn/bbsfiles/files/2012/09/201209171426_391456_1747015_3.JPG谢谢!有消息请联系我。

  • 【分享】美研发出测量纳米级材料相互作用的探针

    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗·维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。   过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。

  • 优可测国产白光干涉三维形貌测量仪-高精度高速度测量

    优可测国产白光干涉三维形貌测量仪-高精度高速度测量

    [align=center][b][color=#ff0000][/color][/b][/align][align=center][b][size=24px][color=#ff0000]AM-7000白光干涉三维形貌测量仪[/color][/size][/b][/align][align=center][/align][align=center][url=https://img1.17img.cn/ui/simg/instrument/child/2022/edm/bg/index.html?v=a1http://]点击打开链接[img=,303,734]https://ng1.17img.cn/bbsfiles/images/2022/11/202211251256261550_4854_5842670_3.png!w303x734.jpg[/img][/url][/align]

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)

    新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM) 材料2106 李昊哲新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)是一种具有创新性的技术,它在电化学领域的研究和应用中起到了重要的作用。EC-SPM采用了先进的技术和方法,可以对电化学反应进行精确的测量和分析,为科学家们提供了更为准确和可靠的数据。EC-SPM的创新之处在于其结合了扫描探针显微镜(SPM)和电化学技术,实现了对电化学反应的原位观察和测量。传统的电化学测量仪器往往只能提供宏观的电化学数据,而EC-SPM通过在电极表面放置微小的探针,可以实现对电化学反应的纳米级别的测量。这种纳米级别的测量能够更加准确地了解电化学反应的动态变化,提供了更为详细和全面的信息。EC-SPM在前处理合计数方面也进行了改进和优化。传统的电化学测量仪器在前处理过程中往往需要复杂的操作和多个步骤,容易出现误差和不确定性。而EC-SPM通过引入自动化和智能化的前处理系统,可以实现对样品的快速处理和准确计数。这不仅提高了测量的效率,还减少了人为因素对结果的影响,提高了测量的精确度和可靠性。我有幸在实验室使用了电化学扫描探针显微镜(EC-SPM),并且对其性能和使用体验有了一些真实的心得体会。我认为EC-SPM的性能非常出色。它采用了先进的扫描探针显微镜技术,可以实现纳米级的高分辨率测量。在我的实验中,我使用EC-SPM对一种新型材料进行了表面形貌和电化学性质的同时测量,结果非常令人满意。EC-SPM能够清晰地显示出样品的表面形貌,并且能够通过电流-电压曲线来研究材料的电化学行为。这对于我研究材料的结构与性能之间的关系非常有帮助,其次,EC-SPM的操作非常简便。它采用了直观的用户界面,使得操作人员能够快速上手。在我使用的过程中,我只需要按照仪器的操作指南进行操作,就能够轻松地完成测量。而且,EC-SPM还具有自动化的功能,能够实现自动扫描和测量,省去了繁琐的手动调整步骤,提高了实验效率。最后,EC-SPM的数据处理和分析功能也非常强大。它可以对测量得到的数据进行实时处理和分析,并且能够生成高质量的图像和曲线。在我的实验中,我使用EC-SPM获得了一系列的电流-电压曲线,并且通过对这些曲线进行分析,我能够得到材料的电化学性质,比如电荷转移速率和电化学反应动力学参数。这对于我研究材料的电化学性能非常有帮助。EC-SPM在电化学领域的研究和应用中取得了重要的成果。例如,在电池研究中,EC-SPM可以帮助科学家们更好地了解电池中的界面反应和电化学性能,从而提高电池的效率和稳定性。在催化剂研究中,EC-SPM可以实时观察催化剂表面的电化学反应,揭示催化剂的活性和稳定性等关键性质。此外,EC-SPM还可以应用于材料科学、生物医学等领域,实现对材料表面性质和生物分子相互作用的研究。EC-SPM作为一种新型电化学测量仪器,具有创新性的技术和方法。它通过纳米级别的测量,实现了对电化学反应的精确观察和分析。在前处理合计数方面的改进,使得测量结果更加准确和可靠。研究成果在电化学领域的应用广泛,为科学家们的研究和实践提供了重要的支持。它的高分辨率测量能力、简便的操作和强大的数据处理功能使得我能够更好地研究材料的电化学性质。我相信,随着电化学扫描探针显微镜技术的不断发展,EC-SPM将会在材料科学、电化学等领域发挥更加重要的作用。

  • 精密测量仪器热卖

    本公司专门供应各种精密测量仪器: 工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。 光学测量仪器包括:投影仪、影像二维、三坐标测量设备、显微镜等。 各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。 联系人:柴小姐 13916024531 cdyoyh@sina.com

  • 全自动影像测量仪的技术

    全自动影像测量仪是在数字化影像测量仪基础上发展起来的人工智能型现代光学非接触测量仪器,其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更精准的测量需要,解决制造业发展中的又一个瓶颈技术。全自动影像测量仪基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有“点哪走哪”自动测量、CNC走位自动测量、自动学习批量测量,影像地图目标指引,全视场鹰眼放大等优异功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰造影下辅助测高需要(亦可加入触点测头完成坐标测高)。支持空间坐标旋转的优异软件性能,可在工件随意放置的情况下进行批量测量,亦可使用夹具进行大批量扫描测量与SPC 结果分类。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而精准的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。最新推出的全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现“点哪走哪”的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,从而提高关键数据的批测精度。全自动影像测量仪人机界面友好,支持多重选择和学习修正,其优异的高速测量可达1500mm/min,重合精度: ±2μm,线性精度:±(3+L/150)μm。优秀性能使其在各种精密电子、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。SK全自动影像测量仪承续了SK数字化影像仪的以下技术特点:集CNC快速测量、CAD逆向测绘、图影管理于一身。运用了现代光学、计算机屏幕测量、空间几何运算和精密运动控制等前沿技术,是集光、机、电、软件为一体的高度智能化设备。具有三轴数控、点哪走哪、图影同步、实时校验、误差修正、工件随意放置、CNC快速测量等基础性能。具有极高的数字化程度,全部操作均由鼠标完成。柔和的三轴微米数控能力,实现“点哪走哪”、同步读数、人机合一;良好的人机界面将烦琐的操作过程有机集成,摆脱手摇时代的机械局限;实时非线性误差修正使其突破了传统设备中存在的精度与速度极限;便捷的CNC快速测量,通过样品实测、图纸计算、CNC 数据导入等方式建立CNC坐标数据,由仪器自动走向每一个目标点进行测量操作,数十倍于手摇式测量设备的工作能力下人员轻松高效。具有优异的高速性能,基于独有的高速位移传感技术,其±2um测量精度下的速度可达500mm/min,其工作效率是工具手摇式测量仪器的数十倍以上。位移驱动为0.1μm,位移解析度为0.4μm,重合精度达±2μm,线性精度±(3+L/150)μm,这些参数均优于传统设备和同类产品。具有空间几何运算能力,可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准测量变得十分简便而直观,也使分度盘这个机械时代的产物与摇柄一起成为历史。具有支持个性化的软件平台,具有图像保存、编辑、处理等图影管理功能。全新的测绘操作,可轻松描绘或导入CAD图形。还可根据客户需求扩充测量模块,从而满足个性化特点和综合测量的快速需要,使测量设备具有量身定做的软件灵魂。

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 【资料】DelsaNano C 纳米级激光粒径仪

    我们公司新买台DelsaNano C 纳米级激光粒径仪,不知各位有没有用过引仪器,我们交流下注意、关键点:1,测粒径时,与稀释用的纯水,溶剂的粘度,屈折率有很大的关系,2,最好把稀释用的纯水,溶剂温度调整到所需的温度,如25度,更能检测出准确的结果,3,样品光强调到蓝色标,如果各位有更好的、更多的心得,希望能大家交流下,

  • 【资料】全自动影像测量仪的技术应用特点

    全自动影像测量仪是在数字化影像测量仪基础上发展起来的人工智能型现代光学非接触测量仪器,其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更精准的测量需要,解决制造业发展中的又一个瓶颈技术。全自动影像测量仪基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有“点哪走哪”自动测量、CNC走位自动测量、自动学习批量测量,影像地图目标指引,全视场鹰眼放大等优异功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰造影下辅助测高需要(亦可加入触点测头完成坐标测高)。支持空间坐标旋转的优异软件性能,可在工件随意放置的情况下进行批量测量,亦可使用夹具进行大批量扫描测量与SPC 结果分类。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而精准的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。最新推出的全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现“点哪走哪”的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪人机界面友好,支持多重选择和学习修正,其优异的高速测量可达1500mm/min,重合精度: ±2μm,线性精度:±(3+L/150)μm。优秀性能使其在各种精密电子、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。SK全自动影像测量仪承续了SK数字化影像仪的以下技术特点:集CNC快速测量、CAD逆向测绘、图影管理于一身。运用了现代光学、计算机屏幕测量、空间几何运算和精密运动控制等前沿技术,是集光、机、电、软件为一体的高度智能化设备。具有三轴数控、点哪走哪、图影同步、实时校验、误差修正、工件随意放置、CNC快速测量等基础性能。具有极高的数字化程度,全部操作均由鼠标完成。柔和的三轴微米数控能力,实现“点哪走哪”、同步读数、人机合一;良好的人机界面将烦琐的操作过程有机集成,摆脱手摇时代的机械局限;实时非线性误差修正使其突破了传统设备中存在的精度与速度极限;便捷的CNC快速测量,通过样品实测、图纸计算、CNC 数据导入等方式建立CNC坐标数据,由仪器自动走向每一个目标点进行测量操作,数十倍于手摇式测量设备的工作能力下人员轻松高效。具有优异的高速性能,基于独有的高速位移传感技术,其±2um测量精度下的速度可达500mm/min,其工作效率是工具显微镜或测量投影仪等手摇式测量仪器的数十倍以上。位移驱动为0.1μm,位移解析度为0.4μm,重合精度达±2μm,线性精度±(3+L/150)μm,这些参数均优于传统设备和同类产品。具有空间几何运算能力,可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准测量变得十分简便而直观,也使分度盘这个机械时代的产物与摇柄一起成为历史。具有支持个性化的软件平台,具有图像保存、编辑、处理等图影管理功能。全新的测绘操作,可轻松描绘或导入CAD图形。还可根据客户需求扩充测量模块,从而满足个性化特点和综合测量的快速需要,使测量设备具有量身定做的软件灵魂。

  • 学位论文:纳米级镀镍晶粒屏蔽织物的研究

    是从万方下载的西安工程科技学院的硕士学位论文,其研究内容应该算是本专业的前沿了,与朋友们共享。【 摘 要 】 电子产品的普及,给人类的生活带来了极大进步的同时,却使电磁辐射无处不在,危害到了人类的健康.开发电磁屏蔽织物已成为纺织业的一个研究热点,虽然已研制出了各种纳米级的兼具导电、导磁性能吸波材料,但吸波材料与织物相结合、用于个人防护的纳米级吸波纺织品仍是一个空白.该文首次将镀镍织物制成纳米级晶粒镀镍织物,由于纳米晶粒自身的特性,具有优良的吸波性能,能制得质量轻、厚度薄、吸收的频带宽、吸收能力强的织物.该文采用碱性预处理、敏化处理、活化处理,使织物表面具有催化活性.通过正交实验确定了粗化工艺的最佳温度、浓度和时间等工艺条件.分析研究了敏化液、活化液在不同浓度和时间对金属化织物增生的影响,从而确定了最佳预处理工艺.化学镀镍溶液以碱性的次亚磷酸钠为镀液,镀液在60℃的条件下者.考察了镀液pH值、施镀温度、氯化镍、次亚磷酸钠、柠檬酸钠、硼酸的用量,以及硫代硫酸钠浓度等因素对化学镀镍反应时间、镀速、增重率的影响,确定了最佳工艺.织物镀覆开始并经过一段时间后,反应会自动停止.对镀覆后镀液成分的分析表明,反应自发停止的原因是由于镀液pH值过低或镀液中次亚磷酸钠在施镀过程中被消耗,使其浓度下降到极低所致.该段时间定义为"反应时间",镀速用增重法,镀液成分用化学滴定法确定.该文首次采用在镀液化气中加入分散剂,并在搅拌的条件下进行化学镀,分别选用了扩散剂NNO、十二烷基苯磺酸钠、聚乙二醇4000作为分散剂,用扫描电子显微镜考察了分散剂对在织物上形成的金属镍晶粒的粒径尺寸的影响.上述分散剂单独使用无法得到纳米级晶粒,考虑到表面活性剂的协同作用,故对分散剂进行复配,结果表明,扩散剂NNO与聚乙二醇4000复配的镀液化学镀得到的金属镍晶粒粒径能达到纳米级.电磁波屏蔽性能测试,证明该纳米级晶粒镀镍织物比普通化学镀镍织物有更好的屏蔽效果,而且这种结构特征使该织物具有吸波频带宽、兼容性好、质量轻和厚度薄等特点.镀镍织物的抗菌效果测试证明该织物具有抗菌效果,这为已经形成的镀层具有纳米材料的特性提供了旁证.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34313]纳米级镀镍晶粒屏蔽织物的研究[/url]

  • 纳米级尺寸电子束斑测量

    纳米级尺寸电子束斑测量

    [b]1. [font=黑体]电子束尺寸测量的意义[/font][/b][font=宋体]通常电子束光刻([/font]EBL[font=宋体],[/font]Electron BeamLithography[font=宋体])的曝光工艺,需要根据电子束的辐照密度确定曝光时间,准确测量聚焦电子束的尺寸才能得到准确的电子束辐计量。[/font][font=宋体]电子束斑测量可作为扫描电子显微镜([/font]SEM[font=宋体],[/font]Scanning ElectronMicroscope[font=宋体])、透射电子显微镜([/font]TEM[font=宋体],[/font]Transmission Electron Microscope[font=宋体])电子光学参数调校依据,可作为[/font]EBL[font=宋体]关键工艺参数。[/font][img=,364,266]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753391454_3326_5849699_3.gif!w364x266.jpg[/img][font=黑体]电子束光刻[/font][b]2. [font=黑体]电子束尺寸测量的方法[/font][/b][font=宋体]([/font]1[font=宋体])成像法[/font][font=宋体]使用电子轰击荧光屏,通过观察荧光屏判断电子束尺寸,考虑到光学传递误差,通常可观察最小电子束斑约[/font]10um[font=宋体]。[/font][img=,126,191]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753446949_597_5849699_3.png!w157x239.jpg[/img][font=宋体]([/font]2[font=宋体])扫描法[/font][font=宋体]利用法拉第杯来测量电子束电流,挡板水平运动遮挡电子束流,同时监测法拉第杯中电流变化,根据电流的微分曲线可以直接定量测量电子束的宽度,对于系统的分辨率具有较高要求。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image005.jpg[/img][b]3. [font=黑体]阿米精控测量方案[/font][/b][font=宋体]阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。[/font]AttoMotion[font=宋体]纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅[/font]/[font=宋体]电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。[/font][img=,137,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image007.jpg[/img][img=,185,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg[/img][img=,133,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg[/img][font=宋体]技术特点:超高定位精度、多轴高动态协同联动、高刚度高负载、紧凑型结构设计、轴间运动学解耦设计、多运动模式(定位[/font]/[font=宋体]扫描)、可实现正置倒置的灵活应用、真空兼容性温度使用范围广、运动行程[/font]50~200[font='Cambria Math',serif]μ[/font]m[font=宋体]。[/font][font=宋体]应用领域:扫描电子显微镜、同步辐射光源、纳米操作、光纤定位和对准。[/font][b]3.1 [font=黑体]测量装置搭建[/font][/b][font=宋体]([/font]1[font=宋体])选用[/font]SEM[font=宋体],测试过程中拔掉偏转线圈控制线或者采用点扫模式,使得电子束位置固定。[/font][img=KYKY-EM8100场发射扫描电子显微镜,383,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg[/img] [table][tr][td=2,1] [align=center][font=宋体]扫描电镜([/font]SEM[font=宋体])详细参数[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]分辨率[/font][/align] [/td][td] [align=center]3.0nm@1KV[font=宋体]([/font]SE[font=宋体])[/font][/align] [align=center]2.5nm@30KV[font=宋体]([/font]BSE[font=宋体])[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]放大倍率[/font][/align] [/td][td] [align=center]6[font=宋体]倍[/font]-1000000[font=宋体]倍[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]电子枪[/font][/align] [/td][td] [align=center][font=宋体]肖特基场发射电子枪[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]加速电压[/font][/align] [/td][td] [align=center]0[font=宋体]~[/font]30kV[/align] [/td][/tr][/table][font=宋体]([/font]2[font=宋体])三轴并联压电扫描平台[/font][img=,202,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg[/img][img=,258,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png[/img] [img=,230,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png[/img][img=,401,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg[/img][font=宋体]([/font]3[font=宋体])弱电流放大器[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png[/img][font=黑体]可变增益弱电流放大器[/font][img=,481,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][font=宋体]([/font]4[font=宋体])位移台安装[/font][font=宋体]位移台与转台绝缘,与大地相接,法拉第杯与转台相连,接弱电流前放。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][font=宋体]([/font]5[font=宋体])控制采集系统[/font][font=宋体]采用高动态数字微纳运动伺服器,电流和位置信息同步采集,采样率为[/font]10K/S[font=宋体],采集时间[/font]10s[font=宋体],纳米扫描台运动一个往复周期。[/font][img=,303,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image029.jpg[/img] [img=,177,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image031.jpg[/img][font=宋体]([/font]6[font=宋体])数据采集[/font][img=,512,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image033.jpg[/img][font=宋体]([/font]7[font=宋体])测试效果[/font][font=宋体]上方横线为硅片挡板边缘,中部方框为二次电子探测器信号。变亮时,电子被硅片挡住,增加了散射电子信号;变暗时,电子束落入法拉第杯,散射电子减小。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image034.gif[/img][b]3.2 [font=黑体]测量结果[/font][/b][font=宋体]平台拥有极高的运动精度,往复运动电流和位置曲线完美重合。利用电流和位移的微分曲线,进行高斯拟合可以直接得到电子束的测量宽度。如图所示:加速电压[/font]5kV[font=宋体],聚光镜值[/font]850[font=宋体],束斑半高宽[/font]32.4nm[img=,348,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image036.jpg[/img][img=,344,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image038.jpg[/img][font=宋体]此外,由于单次采集时间小于[/font]5[font=宋体]秒,还可以监控电子束的稳定性。如下图所示,来回测量过程中电子束发生漂移情况。[/font][img=,359,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image040.jpg[/img]

  • 混合显微镜可从三维测量生物分子

    中国科技网讯 据每日科学近日报道,最近,美国爱荷华大学与国家能源部艾米实验室科学家合作,将光学显微与原子力显微技术结合起来,开发出一种能对单个生物分子进行三维测量的方法,准确性和精确性都达到纳米级别。最近出版的《纳米快报》上详细介绍了该技术。 现有技术只能从二维平面来测量单个分子,只有X轴和Y轴,新技术称为驻波轴向纳米仪(AWAN),让研究人员能测量Z轴,也就是高度轴,样本也不需要经过传统光学或特殊表面处理。 “这是一种全新类型的测量技术,可以确定分子Z轴方向的位置。” 论文合著者、爱荷华大学物理与天文学副教授珊吉维·西瓦珊卡说,他们承担的研究项目有两个目标:一是研究生物细胞彼此之间怎样粘合,二是开发研究这些细胞的新工具。为此他们开发了新的显微技术。 研究小组用荧光纳米球和DNA单链测试了新式混合显微镜。他们把一台商用原子力显微镜与一台单分子荧光显微镜结合。将原子力显微镜的悬臂针尖放置在一束聚焦激光束上,以产生驻波纹样。 驻波是频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,称为行波;上述两列波叠加后波形并不向前推进,叫做驻波。将一个经处理发光的分子放置于驻波内,当原子力显微镜尖端上下移动时,分子表面相应于它距针尖的距离而起伏发出荧光,由此可以对这一距离进行测量。在实验中,该技术在测量分子时可以准确到1纳米内,测量可多次重复,精确度达到3.7纳米。 西瓦珊卡说,该技术可以通过显微镜来提供高分辨率数据,给医疗研究人员带来便利。还具有商业化潜力,促进单分子生物物理学的研究。(常丽君) 《科技日报》(2012-8-9 二版)

  • 目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别?

    随着中国市场的科技技术日新月异,制造业对产品的精度要求越来越高,人为测量已无法满足客户要求,大家都开始借助仪器测量。目前市面上对于尺寸的测量主要是有二次元及三次元等。那么这些测量仪的区别在哪儿呢?目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 【转帖】开发出纳米级超小型天线

    日本广岛大学的研究小组日前开发出纳米级超小型天线,它能够收发某个特定波段的电磁波。这种天线是广岛大学博士生小迫照和与教授鱼屋丰等共同开发的。天线宽75至125纳米、长500纳米,相当于把普通电视天线缩小到百万分之一。构成天线的5根“枝杈”是用金制作的,固定在透明的氧化硅板中。这种纳米级天线与普通天线工作原理相同。目前制成的这种天线能够收发波长400至800纳米的电磁波。如果改变天线“枝杈”的长度和配置,就可以收发不同波段的信号。鱼屋教授希望这项发明能够帮助开发新一代数据存取设备。此项成果已刊登在近日出版的《自然—光子学》杂志上。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104261028215628913.shtm[/url]

  • Nature Communications:纳米级光学显微镜问世

    英国和新加坡研究人员1日报告说,他们制造出能够观测50纳米大小物体的光学显微镜,这是迄今观测能力最强的光学显微镜,也是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。http://www.bioon.com/tech/UploadFiles_3081/201103/2011030214521841.jpg英国曼彻斯特大学研究人员和新加坡同行当天在新一期《自然·通信》杂志上报告了这项成果。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊的“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。论文第一作者王增波博士告诉新华社记者:“这是目前世界上唯一能在普通白光照明下直接观测纳米级物体的光学显微镜,是一个新的世界纪录。”

  • 【资料】影像测量仪的一些测量功能分析

    影像测量仪适用于电脑软件操作而且功能强大方便,可满足不同工件的不同需求。影像测量仪的一些测量功能如下:  1、影像测量仪能记录用户程序、编辑指令、教导执行;  2、测量仪能巨集指令,同一种工件批量测量更加方便快捷,提高测量效率;另一种是座标平移和座标摆正,同时也能提高测量效率;  3、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;  4、能多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;  5、测量数据直接输入到AutoCAD中,成为完整的工程图,而且测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca,等各种参数;  6、影像测量仪有大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头。  7、在影像仪下绘制的图像,可以直接保存为dxf文件,该文件可以在autocad软件中直接打开或者是导入到三维软件中;  8、影像测量仪若是在加了探针的情况下,还可以直接用探针打点然后导入到逆向工程软件做进一步处理!软件可以自由实现探针/影像相互转换!  9、平面度检测(可通过激光测头来检测产品平面度,推荐使用“七海光电”平面度检测激光测头

  • 【资料】影像测量仪按分类是咋分的?

    影像测量仪在行业内又被称为视频测量仪,前期习惯叫它二次元;它是将工件的投影和视频图像集合在一起,进行影像传送和数据测量的光、机、电、软件为一体的非接触式测量设备。适用于以二坐标测量为目的的一切应用领域,机械、电子、仪表、五金、塑胶等行业广泛使用。 影像测量仪的分类如下:  一.影像测量仪按原理分类  A、手动型:手动移动工作台,影像测量仪具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;仪器备有RS-232接口,与电脑连接后,采用专用测量软件可对测绘图形进行处理及输出。  B、全自动型:全自动光学影像测量仪是最新推出的一款光学测量仪器,专为高端全自动量测市场量身定制。大幅度减少阿贝误差,提高的测量准确度,有效保证各轴稳定性。同时引进日本伺服全闭环控制系统,采用我司最新开发的MCINS自动量测软体,具有CNC编程功能,能够大幅度提高了定位精准度及重复性、且测量速度快。    二.影像测量仪按结构分类  A、小型影像测量仪:工作台行程范围比较小,适合较小工件的检测。一般行程在150mm以内。  B、普通型影像测量仪:工作台行程150mm—600mm之间,一般Y轴方向,行程在300mm范围内性价比是最好的。  C、增强型影像测量仪:在普通型的基础上加探头,从而到达三维测量的效果,可以检测高度。  D、大行程影像测量仪:大工作平台,根据客户的需求定制,奥秋目前可以制作1200mm左右行程,交货周期一般在3个月左右。

  • 叶面积测量仪测量范围是多少

    叶面积测量仪测量范围是多少

    [size=16px]  叶面积测量仪测量范围是多少  叶面积测量仪的测量范围取决于具体的仪器型号和制造商,不同型号的叶面积测量仪可能有不同的测量能力和规格。一般来说,叶面积测量仪的测量范围通常包括以下方面:  叶片面积:叶面积测量仪主要用于测量植物叶片的表面积,其范围可以从小型植物的小叶片到大型树木的大叶片。测量范围通常以平方厘米(cm2)或平方米(m2)为单位。  叶片数量:一些叶面积测量仪具有多个测量通道,可以同时测量多片叶子的面积。这对于效率和大规模叶面积测量非常有用。  叶片形状和尺寸:测量仪通常能够适应不同形状和尺寸的叶片,包括圆形、椭圆形、线性和复杂的形状。  叶片厚度:有些叶面积测量仪还可以估算叶片的厚度,从而提供更详细的叶片特征信息。  具体的测量范围将根据仪器的设计和规格而异,所以在选择叶面积测量仪时,您应该查看仪器的技术规格和制造商提供的信息,以确保它满足您的测量需求。如果需要测量较大范围的叶面积,可能需要考虑使用专业的大型叶面积测量仪或使用多次测量的方法来覆盖整个叶片。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151025162609_7338_6098850_3.png!w690x690.jpg[/img][/size]

  • 【讨论】纳米级催化剂的过滤

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 购买量具、测量仪器的请找我

    本公司专门供应各种精密测量仪器:工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。光学测量仪器包括:投影仪、二维影像式测量仪器、三坐标测量设备、显微镜等。各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。欢迎来电垂询,索取资料。 柴小姐13916024531cdyoyh@sina.com

  • 【经验】数字化影像测量仪(CNC版)与手摇式影像测量仪的区别!!!!

    影像测量仪(又名影像式精密测绘仪)是在测量投影仪的基础上进行的一次质的飞跃,它将工业计量方式从传统的光学投影对位提升到了依托于数位影像时代而产生的计算机屏幕测量。值得一提的是,目前市面上有一种既带数显屏又接计算机的过渡性产品。从严格意义来说,这种仅把电脑用作瞄准工具的设备不是影像测量仪,只能叫做“影像式测量投影仪”或“影像对位式投影仪”。换句话说:影像测量仪是依托于计算机屏幕测量技术和强大的空间几何运算软件而存在的。影像测量仪又分数字化影像测量仪(又名CNC影像仪)与手摇式影像测量仪两种,它们之间的区别主要表现在如下几个方面:一:数字化CNC技术实现了点哪走哪:手摇影像测量仪在测量点A、B两点之间距离的操作是:先摇X、Y方向手柄走位对准A点,在用手操作电脑并点击鼠标确定;然后摇手到B点,重复以上动作确定B点。每次点击鼠标该点的光学尺位移数值读入计算机,当所有点的数值都被读入后计算机自动进行计算并得到测量结果,一切功能与操作都是分离进行的;数字化CNC影像测量仪则不同,它建立在微米级精确数控的硬件与人性化操作软件的基础上,将各种功能彻底集成,从而成为一台真正义上的现代精密仪器。具备无级变速、柔和运动、点哪走哪、电子锁定、同步读数等基本能力;鼠标移动找到你所想要测定的A、B两点后,电脑就已帮你计算测量出结果,并显示图形供校验,图影同步,既使是初学者测量两点之间距离也只需数秒钟。二:数字化技术实现了工件随意放置:手摇式影像测量仪在进行基准测量时,需要摇动工作平台,然后通过认为判断所要求的点。而数字化影像测量仪可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准距离测量变得十分简便而直观。三: 数字化技术能进行CNC快速测量:手摇式影像测量仪在进行同一工件的批量测量时,需要人工逐一手摇走位,有时一天得摇上数以万计的圈数,仍然只能完成数十个复杂工件的有限测量,工作效率低下。数字化影像测量仪可以通过样品实测、图纸计算、CNC数据导入等方式建立CNC坐标数据,由仪器自动走向一个一个的目标点,完成各种测量操作,从而节省人力,提高效率。数十倍于手摇式影像测量仪的工作能力下,操作人员轻松而高效.如有疑问请登陆www.yr17.net

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制