当前位置: 仪器信息网 > 行业主题 > >

纳米拉伸测试系统

仪器信息网纳米拉伸测试系统专题为您提供2024年最新纳米拉伸测试系统价格报价、厂家品牌的相关信息, 包括纳米拉伸测试系统参数、型号等,不管是国产,还是进口品牌的纳米拉伸测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米拉伸测试系统相关的耗材配件、试剂标物,还有纳米拉伸测试系统相关的最新资讯、资料,以及纳米拉伸测试系统相关的解决方案。

纳米拉伸测试系统相关的资讯

  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162
  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162官网:https://www.bmftec.cn/links/10
  • 苏州市计量测试学会立项《碳纳米管纤维及丝束 电导率的测定》两团体标准
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对中国科学院苏州纳米技术与纳米仿生研究所申报的《碳纳米管纤维及丝束 电导率的测定》、《碳纳米管纤维及丝束 拉伸性能试验方法》两项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!请标准起草单位严格按照相关要求,广泛听取意见,对标准质量严格把关,切实提高标准编制的质量和水平,增强标准的适用性和有效性,并按计划递交标准征求意见稿。 联系人及电话:胡学刚 0512-66587060电 子 邮 箱:huxg@szjl.com.cn 苏州市计量测试学会关于《碳纳米管纤维及丝束 电导率的测定》两团体标准立项的.PDF
  • 赛默飞世尔科技发布流变计平台的新型拉伸流变系统
    赛默飞世尔科技大力拓展面向高端流变计平台的聚合物系列产品——新型拉伸流变系统现已面世  德国卡尔斯鲁厄(2008年7月22日)--服务科学,世界领先的赛默飞世尔科技公司发布了一款面向Thermo Scientific HAAKE MARS流变仪平台的新型附件-SER(Sentmanat 拉伸流变仪)系统。该系统可使普通的固态旋转流变仪扩展为具备拉伸熔融和半固态材料功能的强大拉伸流变仪。     SER系统适用于HAAKE MARS流变仪,由Martin Sentmanat博士开发,Xpansion Instruments公司独家生产。测量方法是把样品夹在两个对旋的卷筒之间。SER系统支持两种测量模式:可控拉伸速率模式和可控拉伸应力模式。除了单轴拉伸外,该系统还支持固态拉伸测试、剥离撕裂测试及摩擦测试。新型SER系统的操作温度范围在0°C到250°C。与HAAKE MARS控制测试炉(CTC)组合使用,可保证样品温度快速变化、均匀分布。SER平台能完全集成到Thermo Scientific粘度仪和流变仪的Thermo Scientific HAAKE RheoWin测试和评估软件中。  新近发布的RheoScope HT(高温型)模块能同时记录高温时被测样品微观结构中的各流变特性和变化。流变测量与光学分析相结合可直观地对微观结构进行更详尽地分析,因而能获得更多的样品机械特性相关信息,如聚合物熔融或结晶情况。  Thermo Scientific HAAKE RheoScope HT高温型模块的主要特点:   可完全集成到HAAKE MARS流变仪平台中   温度范围在-5 °C到300 °C   物镜、偏振镜和摄像头通过HAAKE RheoWin软件进行控制   在线显示数据、视频序列,及存储数据供日后分析   图像分析软件,可用于确定颗粒大小、分布情况并对其进行结构分析。  热固化在行业中的应用非常广泛,范围包括粉末涂料、胶粘剂、密封剂、焊接材料、油墨等等。近来,呈现出用支持UV的热固化来取代热固化的发展趋势,其目的是通过减少启动固化反应所需的能耗等方法来同步实现产品特性改善、生产力提高、生产成本降低的目标。为了开发及测量上述样品,已专为HAAKE MARS流变仪开发了一款全新的高温UV固化测量元件。此外,标准版UV元件和可定制的圆筒形测量单元(可自由配置光导、聚光镜、玻璃片等光学部件的距离)均已有售。  支持UV的热固化测量元件的主要特点:   全面集成的UV元件,适用于控制测试炉(CTC)   通过软件触发UV光源  赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc.  Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。  关于赛默飞世尔科技  赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站:www.thermo.com.cn
  • 祺跃科技发布祺跃科技拉伸台 MINI-MTS5000新品
    产品综合介绍: 产品功能介绍: 扫描电镜原位高温拉伸台:为国家重大科研仪器设备研制专项《针对若干国家战略需求材料使役条件下性能与显微结构间关系原位研究系统》的科技成果转化产品,其特征是将宏观材料力学实验置于具有纳米分辨率的扫描电子显微镜内,实现了宏观力学性能与纳米层次结构分析的一体化。产品的性能指标达到国际一线品牌的水平。 1.1 解决了小尺度有限空间内力学加载机械单元的结构稳定性和刚度设计,实现了高稳定性加载、高精度测量 1.2 通过对称加载和高精度实时反馈控制, 解决了高倍数放大成像过程中样品受力、受热漂移问题,实现了加载加热条件下原位、实时跟踪和高分辨成像; 1.3 可与当前主流扫描电镜集成,突破了结构兼容、电磁兼容和真空兼容的限制,达到高分辨率成像、高精度控制、长时间稳定运行。该仪器也可以兼容匹配各类光学显微镜(OM)、X射线衍射仪(XRD)和原子力显微镜(AFM)等材料微观分析仪器; 1.4 空间结构布局合理、能够同时实现二次电子、EBSD高质量成像; 1.5 实现了高速数据采集与存储,显微图像和温度、力、位移等物理信号同步检测; 品牌介绍 浙江祺跃科技有限公司成立于2019年3月,坐落在杭州市桐庐县经济开发区富春江科技城,是浙江省科创新材料研究院孵化的高科技企业,主要从事基于扫描电子显微镜(兼容X-射线衍射仪、原子力显微镜和光学显微镜)的原位分析测试精密仪器的设计研发、生产销售、以及材料检测与分析服务等。 通过张泽院士主持的“国家重大科研仪器设备研制专项(11372901)”科技成果转化,公司已经开发出了在能够在扫描电子显微镜(SEM)中实现原位拉伸、加热、蠕变、疲劳、高温力学性能测试的高端科学仪器。 公司的产品目前已经在国内外高校研究所销售使用,如:清华大学、北京大学、浙江大学、中国科学院金属研究所、南京大学、南京理工大学、北京科技大学,北京航空材料研究院、中国石油大学等。 公司由院士领衔,研发人员大部分具有博士学位和高级职称,技术力量雄厚、创新能力强,专注于先进材料结构/性能关系研究的高端分析测试设备研发,加快新材料研发进程,推动我国新材料产业的发展。 产品的优势与特点 加载台: 同轴双向对称加载:观察区保持在SEM视场中心; 多级减速结构,扭矩输出平稳:高精度高稳定性测试、高质量成像; 线性加载:测试精度高,测试误差小; 传动自锁:随时起停,实时原位研究; 高强度部件:承载能力强; 结构紧凑:结构兼容性强、便于携带、易于安装。 控制器: 模块化功能单元设计; 高精度线性放大、24位AD转换模块; 数字化高速位移采集接口; 数字化驱动器,电磁兼容性强; 高效隔离加热电源,输出纹波小; 驱动双闭环反馈,响应灵敏; 全自动散热系统。 软件功能: 界面简洁,功能丰富; 数据高速存储,实时显示; 位移、力PID闭环控制。 产品应用领域 应用研究内容:显微结构、相变行为、取向变化、裂纹萌生与扩展、材料疲劳机制、断裂机制、热-力耦合行为、微结构或构件力学性能、高温蠕变、疲劳、高温氧化腐蚀、固溶时效、等… … 服务领域:航空航天、国防、汽车制造、石油化工、钢铁冶金、有色金属、船舶制造、生物医学、微型传感器、大型装备制造、微机电系统、高分子复合材料、绿色新能源产业等领域。创新点:可以根据客户扫描电镜样品室大小进行加工设计相应的原位高温微型拉伸台,周期短。可以设计不同载荷(10N,50N,100N,200N,500N,1000N,2000N,3000N, 5000N)和加热温度(0~1200℃),同时可兼容匹配光学显微镜、X射线衍射仪和原子力显微镜的原位微型高温拉伸台。适应于TESCAN、ZEISS,FEI ,KYKY,HITACHI、JEOL等各种型号电镜。产品质量一流,配件齐全,性价比高,服务能力强,响应速度快。祺跃科技拉伸台 MINI-MTS5000
  • ETT-01电子拉力试验机除了可以测试薄膜的拉伸强度还能测试薄膜的哪些性能
    在当今这个科技日新月异的时代,薄膜材料因其优良的物理和化学特性,在包装、医疗、电子等众多领域得到了广泛应用。然而,如何准确评估薄膜的各项性能,确保其在各种应用场景下的可靠性,成为了摆在科研人员和生产企业面前的重要课题。幸运的是,ETT-01电子拉力试验机的出现,为薄膜性能的全面检测提供了强大的支持。ETT-01电子拉力试验机,作为一款专业的力学性能测试设备,不仅可以测试薄膜的拉伸强度,更能深入探索薄膜的剥离强度、断裂伸长率、热封强度、穿刺力等多项关键性能。这些性能参数对于评估薄膜的耐用性、密封性以及在实际应用中的表现至关重要。首先,剥离强度是衡量薄膜材料间粘附力的重要指标。通过ETT-01的精确测试,我们可以了解到薄膜与不同材料之间的粘附性能,为产品设计和生产工艺提供有力依据。其次,断裂伸长率是反映薄膜材料在受到外力作用时变形能力的关键参数。ETT-01能够准确测量薄膜在拉伸过程中的伸长率,帮助我们判断薄膜的柔韧性和抗拉伸能力。此外,热封强度也是薄膜性能中不可忽视的一环。ETT-01电子拉力试验机能够模拟薄膜在实际应用中的热封过程,测量热封后的强度,确保薄膜在包装、密封等应用场景下具有良好的密封性能。值得一提的是,ETT-01电子拉力试验机还具备测试薄膜穿刺力的功能。通过模拟实际使用中可能出现的穿刺情况,我们可以评估薄膜的抗穿刺能力,为产品设计和质量控制提供重要参考。除了以上提到的性能参数外,ETT-01电子拉力试验机还能测试薄膜的压缩、折断力等多项性能,实现对薄膜性能的全面解析。这一功能的实现,得益于ETT-01的高精度测试系统和先进的位移控制技术。通过这些技术手段,ETT-01能够确保测试结果的准确性和重复性,为用户提供可靠的数据支持。在实际应用中,ETT-01电子拉力试验机已经成为了众多薄膜材料生产企业、科研机构以及质检部门的得力助手。它不仅能够帮助用户全面了解薄膜的各项性能参数,还能为产品设计和生产工艺提供改进方向,推动薄膜材料行业的持续发展和创新。总之,ETT-01电子拉力试验机以其全面的测试功能和精准的测试结果,成为了薄膜性能全面解析的利器。它不仅能够满足科研人员和生产企业对薄膜性能评估的需求,还能为产品的质量控制和工艺改进提供有力支持。在未来的发展中,我们有理由相信,ETT-01电子拉力试验机将继续在薄膜材料性能测试领域发挥重要作用,为行业的进步和发展贡献力量。
  • “拉伸流变学的最新进展”专题讲座 特邀MIT教授
    美国TA仪器 中国科学院化学研究所 强强联手特邀美国麻省理工大学化工系 Prof. Gareth. H. McKinley 进行“拉伸流变学的最新进展”专题讲座。随着高分子材料研究的深入,拉伸粘度的测量日益成为大家所关注的问题。以往,人们或使用直接拉伸的传统模式或使用Meissner(双辊定长法)的测量模式进行拉伸粘度的测量,但是前者不仅投资大,而且由于结构复杂,最大拉伸幅度受限,导致测试的数据极不稳定。而后者虽然解决了拉伸幅度受限的问题,但是由于样品在测试过程中极易下垂及力的精度问题,致使实际有效拉伸应变的测量也不准确。为了让国内高分子研究的学者们能够更深入了解此项技术,中国科学院化学研究所高分子物理与化学国家重点实验室与美国TA仪器联合,邀请美国麻省理工大学化工系Prof. Gareth. H. McKinley做专题讲座。作为流变学界的权威人士,Prof. Gareth. H. McKinley一直对各种体系及材料的拉伸流变学进行研究,此次他将为您报告相关拉伸流变学的最新进展。时间:2006年6月15日 上午10:00-12:30地点:中国科学院化学研究所2号楼223会议室 北京中关村北一街2号席位有限,有意者请速填写以下回执,传真或email至TA上海办事处市场专员Ms. 王冬妮, 以利我们做好更完善的安排。电话:800 820 3812传真:021-64956366E-Mail:vwang@tainstrument.comProf. Gareth H. McKinley 履历Education:Ph.D.  Massachusetts Institute of Technology  1991     Ph.D in Chemical Engineering     Thesis advisors R.A. Brown, R.C. Armstrong M.Eng. & M.A. University of Cambridge Downing College   1986          Department of Chemical Engineering advisor Prof. M.Mackley B.A.(Natural Sciences)  University of Cambridge Downing College   1985Professional Employment, Other Positions Held, and affiliations:Director, Program in Polymer Science & Technology (PPST), MIT. July 1, 2004 Director, Hatsopoulos Microfluids Laboratory, Dept. Mechanical Engineering July 1, 2002 Visiting Professor, Monash Univ. & Miegunyah Fellow, University of Melbourne Jan.-Jul. 2002 Professor of Mechanical Engineering, M.I.T. July 1, 2001 Associate Professor Massachusetts Institute of Technology 1997-2000 Associate Professor Harvard University, 1995-1997 Division of Engineering and Applied Sciences Assistant Professor Harvard University 1991-1995 PROFESSIONAL ACTIVITIES AND AWARDSFrenkiel Award of the APS, Division of Fluid Dynamics 2002 Society of Rheology Technical Program Chair, 74th Annual Meeting 2001 Executive Editor, J. Non-Newtonian Fluid Mechanics 2000-present Editorial Board, Rheol. Acta, J. of Rheology, Applied Rheology and Korea-Aust. Rheology Journal Bose Award for Teaching Excellence, M.I.T. School of Engineering 2000 Ruth & Joel Spira Award for Excellence in Teaching, M.I.T. 2000 Presidential Faculty Fellowship, National Science Foundation 1995-1998 Rosenbaum Fellowship at the Isaac Newton Institute, Univ. of Cambridge 1996 Hon. Vice President, London International Youth Science Forum (LIYSF) 1995-present Annual Award of the British Society of Rheology 1994 National Young Investigator Award, National Science Foundation 1993-1995 Representative Recent Publications (from 80+ publications)Lau, K.S.K., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W., McKinley, G.H., Gleason, K.K., Superhydrophobic Carbon Nanotube Forests, Nanoletters, 3(12), (2003), 1701-1705.Kavehpour, P., Ovryn, B. and McKinley, G.H., Microscopic and Macroscopic Structure of the Dynamic Contact Line in Spreading Viscous Drops, Phys. Rev. Lett., (2003), 91(19) DOI:196104McKinley, G.H. and T. Sridhar, “Filament Stretching Rheometry of complex Liquids”, Ann. Rev. Fluid Mech., (Annual Reviews Press, Palo Alto), (2002), 34, pp. 375-415Vazquez, M., McKinley, G.H., Mitnik, L., Desmarais, S., Matsudaira, P. and Ehrlich, D., Electrophoretic Injection within Microdevices, Anal. Chem., 74(9), (2002), 1952-1961Braithwaite, G.J.C. and McKinley, G.H., Microrheometry for Studying the Rheology and Dynamics of Polymers near Interfaces, Appl. Rheol., 9(Jan/Feb), (1999), 27-33
  • 钢铁研究总院分析测试培训中心将举办XRF、火花光谱、拉伸技术培训班
    钢铁研究总院分析测试培训中心冶培 字[2011] 11号X射线荧光光谱分析技术培训通知JS20110202 ATC 003 X射线荧光光谱分析技术各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“X射线荧光光谱分析技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110202ATC 003 X射线荧光光谱分析技术邓赛文教授  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø XRF分析技术基本概念、原理、主要设备和定性与定量分析方法   Ø WD-XRF光谱仪、ED-XRF光谱仪的基本构成、各个部件的主要用途及特点。仪器校准与检定规程、期间核查等,介绍日常分析时仪器的校准,如仪器综合稳定性检定、仪器漂移校正等 所用仪器各个系统和部件的日常维护,软件的维护,常见故障的解决,仪器安装和工作的环境条件要求   Ø XRF主要的样品制备技术。XRF分析方法在相关测试领域中的分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题   Ø 检出限计算方法,分析方法的精密度评定方法和分析结果的准确度评估方法,不确定度定义、分类及表示方法,了解XRF分析方法不确定度的评定。火花源原子发射光谱分析技术培训通知JS20110203 ATC 002 火花源原子发射光谱分析技术各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次培训,其中“火花源原子发射光谱分析技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110203ATC 002火花源原子发射光谱分析技术(直读光谱)高宏斌博士  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com  二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø SPARK/ARC-OES分析技术基本概念、光谱仪基本构成、主要部件的用途及特点   Ø 仪器操作技术:各个工作参数的设定及检查 分析程序的选择 校准曲线的标准化 控制样品的选择 仪器的校准 仪器各系统和部件的日常维护,常见故障的解决   Ø SPARK/ARC-OES分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题 重复性(短期精密度)、稳定性(长期精密度)、极差、检出限、背景等效浓度、测定下限、重复性限、再现性限、临界差等相关参数的定义和计算   Ø SPARK/ARC-OES分析方法的评价和分析结果准确度的判定。金属材料拉伸试验技术培训通知JS20110201 ATM 001 拉伸试验技术(GB/T 228.1-2010)各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“金属材料拉伸试验技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110201ATM 001 拉伸试验技术(GB/T 228.1-2010)高怡斐教授  朱林茂高工  邓星临教授  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø 金属材料拉伸试验的特点、分类以及拉伸试验技术的相关术语   Ø 讲解金属材料拉伸试验相关试验机的基本结构、检测/校准项目及相关要求,金属材料电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和维护保养、日常检查方法   Ø 讲解金属材料室温拉伸、高温拉伸、低温拉伸、液氦拉伸、弹性模量和泊松比(静态法)与薄板和薄带塑性应变比、拉伸应变硬化指数标准试验方法 了解各类拉伸试验结果主要影响因素   Ø 介绍金属材料高温拉伸、低温拉伸、液氦拉伸等相关标准,重点讲解最新发布的国家标准GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》。作为金属材料领域应用最广泛的基础试验方法标准,新版标准GB/T 228.1-2010较2002版有较大变化,增加了方法A应变速率控制方法 修改了试验结果的数值修约方法 增加了拉伸试验测量不确定度的评定方法,并增加了计算机控制拉伸试验机使用时的建议,以及考虑试验机刚度(或柔度)后估算的横梁位移速率方法。培训班将详解新版国家标准的最新变化和试验方法,以及拉伸试验结果不确定度评定和数据处理方法。  附:2011年冶金及材料分析检测人员培训报名表.doc  相关信息:  培训证书  由全国分析检测人员能力培训委员会(NTC)组织考核,考核合格者将由NTC发放相应技术或标准的《分析检测人员技术能力证书》。该证书可作为实验室资质认定、实验室认可中检测人员的技术能力证明。  培训及考核费用  本次XRF、火花光谱、拉伸技术的培训费用各为1200元/人,含资料费、培训费   考核费用为500元/人,含NTC考核费、注册费及证书费。  如需提前支付培训费的请按下列帐号或地址汇款(报到时请携带相关凭据):  银行汇款:  收款单位:钢铁研究总院  地 址:北京市海淀区学院南路76号  开户银行:工商银行北京新街口支行  帐 号:0200002909003210486-16  邮局汇款:  地 址:北京市海淀区学院南路76号  邮 编:100081  收款单位:钢铁研究总院分析测试培训中心  联 系 人:齐 欣  食宿安排  培训考核期间食宿统一安排,费用自理。  报到联络电话:010-62183362 62182652  培训签约 “北京上园饭店” 住宿特惠价:  ¥ 240元/天(普通标准间,含双早)  地址:北京海淀区高粱桥斜街40号  酒店前台电话:010-51555599   钢铁研究总院分析测试培训中心  2011年5月9日  地址:北京市海淀区学院南路76号14信箱,100081  E-mail: training@analysis.org.cn  电话:010-62183362 62182652 62183851  传真:010-62182584 62182652
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 纳米隧道电穿孔技术可对细胞精确用药
    据美国物理学家组织网10月16日报道,美国俄亥俄州立大学科学家开发出一种名为“纳米隧道电穿孔”的新技术,或称为NEP。利用其给细胞注射基因治疗药剂时,不用针头,而是用电脉冲通过微小的纳米隧道,几毫秒内就能把精确剂量的治疗用生物分子“注射”到单个活细胞内。该研究发表在最近的《自然纳米技术》杂志网站上。  长期以来,在进行基因治疗时,人们对插入细胞的药剂数量无法控制,因为人体绝大部分细胞都太小,最小的针头也无能为力。而“NEP让我们能研究药剂和其他生物分子是怎样影响了细胞的生物和基因路径的,现有其他技术都无法达到这么细微的水平。”该校化学与生物分子工程教授詹姆斯李说。他们用这种方法,将定量的抗癌基因成功插入到白血病细胞中并杀死了它们。  研究人员用聚合物压制成一种电子设备样机,用DNA(脱氧核糖核酸)单链作为模板来构建纳米隧道。詹姆斯李发明了一种使DNA链解旋的技术,并使其按照需要形成精确结构。他们给DNA链涂上一层金涂层并加以拉伸,使之连接两个容器,然后将DNA蚀去,在设备内部留下一条连通两个容器的尺寸精确的纳米隧道。  隧道中的电极将整个设备变成一个微电路,几百伏特的电脉冲从一个装药剂的容器经纳米隧道到达另一个装细胞的容器,在隧道出口处形成了强大的电场,与细胞自身的电荷相互作用,迫使细胞膜打开一个小孔,足够投放药物而不会杀死细胞。调整脉冲时间和隧道宽度,就能控制药物剂量。  为了测试NEP能否递送活性药剂,他们把一些治疗用RNA(核糖核酸)插入了白血病细胞,发现5毫秒的电脉冲能递送足够剂量的RNA杀死这些细胞 而更长的脉冲,如10毫秒,能杀死几乎所有的白血病细胞。作为对照,他们还插入了一些无害的RNA到白血病细胞中,这些细胞都没死。  詹姆斯李指出,由于这种方法一次只能给一个或几个细胞注射,更适合用在实验室。目前他们正在开发一种机械式细胞装载系统,一次能给10万个细胞注射,有望用于临床诊断和治疗。  “我们希望NEP能最终用于早期癌症检测与治疗,比如在干细胞或免疫细胞中插入精确剂量的基因或蛋白质,引导它们分化改变,不必担心过量注射带来的安全问题,然后把这些细胞放回体内作为一种细胞基础疗法。”詹姆斯李说,这种方法还可能用于白血病、肺癌及其他肿瘤。
  • 2250万!大湾区大学(筹)万能试验拉伸机、流变仪等科研设备采购项目
    一、项目基本情况1.项目编号:0809-2341DGG14216项目名称:大湾区大学(筹)光学类科研设备采购项目采购方式:公开招标预算金额:6,700,000.00元采购需求:合同包1(飞秒超快光谱):合同包预算金额:4,000,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1激光仪器飞秒超快光谱1(套)详见采购文件4,000,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后365天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后365天内交货。合同包2(稳态与瞬态荧光光谱):合同包预算金额:1,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1光学测试仪器稳态与瞬态荧光光谱1(套)详见采购文件1,500,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后180天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后180天内交货。合同包3(高精度光谱椭偏仪):合同包预算金额:1,200,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1光学测试仪器高精度光谱椭偏仪1(套)详见采购文件1,200,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后90天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后300天内交货。2.项目编号:0809-2341GDG14213项目名称:大湾区大学(筹)万能试验拉伸机、流变仪等科研设备采购项目采购方式:公开招标预算金额:3,917,000.00元采购需求:合同包1(纳米粒度及ZETA电位仪):合同包预算金额:430,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1电化学分析仪器纳米粒度及ZETA电位仪1(台)详见采购文件430,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后90天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后360天内交货。合同包2(万能试验拉伸机等):合同包预算金额:3,487,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1非金属材料试验机万能试验拉伸机1(台)详见采购文件1,700,000.00-2-2物理特性分析仪器及校准仪器流变仪1(台)详见采购文件1,510,000.00-2-3干燥机械冷冻干燥机1(台)详见采购文件170,000.00-2-4电化学分析仪器电位滴定仪1(台)详见采购文件107,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后120天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后360天内交货。3.项目编号:0809-2341GDG14195项目名称:大湾区大学(筹)拉曼光谱仪、原子力显微镜采购项目采购方式:公开招标预算金额:5,950,000.00元采购需求:合同包1(大湾区大学(筹)拉曼光谱仪、原子力显微镜采购项目):合同包预算金额:5,950,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1物理光学仪器原子力显微镜1(台)详见采购文件3,200,000.00-1-2物理光学仪器高分辨显微共焦拉曼光谱仪1(台)详见采购文件2,750,000.00-本合同包不接受联合体投标合同履行期限:关境内货物合同签订后90天内交货(如采购人有其他送货时间要求,以采购人提前通知为准);关境外货物合同签订后360天内交货。4.项目编号:M4400000707021868001项目名称:大湾区大学(筹)热分析类设备等科研设备采购项目采购方式:公开招标预算金额:5,979,000.00元采购需求:合同包1(大湾区大学(筹)热分析类设备等科研设备采购项目):合同包预算金额:5,979,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1热分析仪差示扫描量热仪1(套)详见采购文件823,000.00-1-2热分析仪激光导热系数测量仪1(套)详见采购文件1,700,000.00-1-3质谱仪热重-气相色谱质谱联用仪1(套)详见采购文件2,035,000.00-1-4热分析仪同步热分析仪1(套)详见采购文件651,000.00-1-5工业电热设备(电炉)脉冲通电加压烧结系统1(套)详见采购文件770,000.00-本合同包不接受联合体投标合同履行期限:(1)合同签订后360个日历天内,将所有设备交付到采购人指定地点;(2)所供货物交齐后,30个日历天内安装调试完毕、交付使用、培训并验收合格。二、获取招标文件时间: 2023年11月16日 至 2023年11月22日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:大湾区大学(筹)地 址:广东省东莞市松山湖国际创新创业社区A5栋联系方式:0769-228987322.采购代理机构信息名 称:广东华伦招标有限公司地 址:广东省广州市越秀区北京街道联系方式:020-831721663.项目联系方式项目联系人:广东华伦电 话:020-83172166-848
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
  • “第四届纳米压痕国际研讨会”圆满结束
    5月21日下午,第四届纳米压痕国际研讨会在西安交通大学圆满结束。本届研讨会由西安交通大学金属材料强度国家重点实验室及材料学院微纳尺度材料行为研究中心主办,美国Hysitron(海思创)公司和德祥科技有限公司支持。大会分为5个单元,从19日至21日,历时三天,包含26个大会报告。来自美国、韩国、日本、新西兰等国内外的多位知名纳米材料专家分别介绍并讨论了各自的研究成果,大家总结已有研究成果,分析存在问题,此次会议为国内外材料科学工作者提供了一次宝贵的学习、交流平台,取得了良好的效果。     参会者合影  本届会议的中方主席是西安交大“千人计划”入选者、金属材料强度国家重点实验室副主任、Hysitron(海思创)中国应用研究中心主任单智伟教授,外方主席为美国南卡罗来纳大学的李晓东教授。  会上,西安交大金属材料强度国家重点实验室主任、材料学院院长孙军教授及李晓东教授致开幕词。Hysitron(海思创)公司总裁Thomas Wyrobek 先生作了题为“Beyond nanoindentation”的开场报告,介绍了近年来纳米压痕设备的相关成就并跟大家分享了他对纳米尺度材料优异性能研究的前景展望。来自麻省理工学院的Ming Dao教授、日本东北大学陈明伟教授、Hysitron(海思创)公司副总裁兼首席技术官Oden Warren博士等专家学者担任大会相关单元的主席。  美国约翰霍普金斯大学Evan Ma教授、匹斯堡大学Scott Mao教授、日本京都大学Nobuhiro Tsuji教授、大阪大学Shigenobu Ogata教授、新西兰奥克兰大学Michelle Dickinson教授、韩国科技学院纳米压痕测试和先进材料专家Seung Min Han教授、中科院金属所张广平教授、力学所魏悦广教授、南京航空航天大学航郭万林教授等国内外纳米材料领域的专家学者也都做介绍了自己最新的研究成果,并回答了大家的疑问。Hysitron(海思创)应用科学家宋双喜博士为大家做了《在室温条件下金属玻璃产生形变后的电阻率》的报告。     Hysitron总裁Thomas Wyrobek为会议展板比赛获奖者颁奖  20日下午,与会人员参观了金属材料强度国家重点实验室及微纳尺度材料行为研究中心,观看了Hysitron(海思创)纳米力学测试设备的样品测试过程,对Hysitron(海思创)技术有了更深入的了解。Hysitron(海思创)公司是*的纳米力学检测仪器的设计和制造商,其TI-750、TI-950纳米力学测试系统及配合原子力显微镜的TS 75纳米压痕仪具有压痕测试、划痕测试、模量成像、动态力学分析、声发射检测、接触电阻测量等功能,检测准确,重复性好 另外Hysitron(海思创)公司还开发了针对扫描电镜的PI 85纳米压痕仪、针对透射电镜的PI 95纳米压痕仪,可在电镜下实时观测压痕过程,进行纳米尺度的压痕、压缩、弯曲和拉伸测试,Hysitron(海思创)仪器采用三板电容传感器,大大降低了仪器热漂移,是认识和探索材料的微纳米尺度结构、形貌和性能的重要工具。报告人及报告主题(节录) 报告人报告人单位报告主题Thomas WyrobekHysitron(海思创)公司Beyond nanoindentationMichelle Dickinson新西兰奥克兰大学Of Mice and Men-Advances in nanoindentation testing for biological materialsMing Dao美国麻省理工学院Quantifying size-dependent nanoscale heterogeneity of bone through nanoindentationGuangpin Zhang张广平中科院金属所Detecting mechanical behavior of nanoscale metallic multilayers by instrumented-indentationK.Ting台湾成功大学The measurements of nanomechanical properties and vibration modal analysis of dragonfly wingEvan Ma美国约翰霍普金斯大学Size matters for deformation twinning in single crystalsOden WarrenHysitron(海思创)公司The often overlooked time domain in small-scale mechanical property measurementsXiaodong Li李晓东美国南卡罗来纳大学Environmental effects on the mechanical behavior and function performance of nanostructures魏悦广中科院力学所A kind of trans-scale mechanics model and physical representation of materiallength scaleSeung Min Han韩国科技学院Size dependent strength and plasticity of vanadium nanopillars: Ex-situ and In-situ TEM studiesMin-Wei Chen陈明伟日本东北大学Experimental characterization of shear transformation zones for plastic deformation of metallic glassesScott Mao美国匹斯堡大学In situ TEM on discrete plasticity in metallic nanowiresShigenobu Ogata日本大阪大学First-principles modeling of deformation and diffusion at nano-scaleWanlin Guo郭万林南京航空航天大学Mechanical-Electronic-Magnetic coupling effects in nanomaterials 德祥科技有限公司作为Hysitron(海思创)产品在中国的独家供应商,愿为您提供周到细致的售前、售后服务,帮助广大科研工作者实现精确、可靠、方便的微纳尺度力学分析测试,详细信息欢迎您登陆德祥网站(http://www.tegent.com.cn/)了解相关信息,欲获得此次会议的报告资料,欢迎您跟我们联系,德祥客服热线:4008 822 822。
  • 剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度
    随着工业领域的快速发展,材料性能的检测变得越来越重要。剥离强度测试仪作为一款专业设备,被广泛应用于胶粘剂、胶粘带等相关产品的剥离、拉断等性能测试。然而,当面对无纺布胶带这一特殊材料时,我们不禁要问:剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度呢?一、剥离强度测试仪的基本原理与功能剥离强度测试仪是一种电子剥离试验机,通过模拟实际使用过程中的剥离过程,对材料的剥离强度进行精确测量。其基本原理是通过施加一定的力量,使试样在特定条件下发生剥离,从而测得剥离力的大小。剥离强度测试仪具有高精度、高稳定性等特点,能够准确反映材料的剥离性能。二、无纺布胶带的特性与拉伸强度测试需求无纺布胶带作为一种新型材料,具有优异的柔韧性和粘附性,广泛应用于包装、固定、保护等领域。无纺布胶带的拉伸强度是衡量其质量和耐用性的重要指标。在实际应用中,无纺布胶带需要承受各种外力作用,因此其拉伸强度的大小直接影响着其使用效果和安全性。三、剥离强度测试仪在测试无纺布胶带拉伸强度方面的应用虽然剥离强度测试仪主要用于测试材料的剥离性能,但在实际应用中,我们发现它同样可以用于测试无纺布胶带的拉伸强度。这是因为无纺布胶带的拉伸过程可以看作是一种特殊的剥离过程,即胶带纤维在拉伸方向上的剥离。因此,通过调整剥离强度测试仪的测试参数和条件,我们可以实现对无纺布胶带拉伸强度的测量。在测试过程中,我们需要注意以下几点:首先,选择合适的试样尺寸和形状,以确保测试结果的准确性和可靠性;其次,根据无纺布胶带的特性,设定合适的剥离速度和剥离角度;最后,对测试数据进行处理和分析,以得出无纺布胶带的拉伸强度值。四、剥离强度测试仪在测试无纺布胶带拉伸强度方面的优势与局限性剥离强度测试仪在测试无纺布胶带拉伸强度方面具有操作简便、测量精度高等优势。通过该设备,我们可以快速获得无纺布胶带的拉伸强度数据,为产品设计和质量控制提供有力支持。然而,剥离强度测试仪在测试无纺布胶带拉伸强度方面也存在一定的局限性。由于剥离强度测试仪主要用于测试剥离性能,因此在测试拉伸强度时可能无法完全模拟实际使用过程中的复杂条件。此外,不同品牌和型号的剥离强度测试仪在测试原理和性能上可能存在差异,这也可能对测试结果产生一定影响。五、结论与建议综上所述,剥离强度测试仪在一定程度上可以兼顾测试无纺布胶带的拉伸强度。然而,在实际应用中,我们还需要根据具体需求和条件进行选择和调整。为了确保测试结果的准确性和可靠性,我们建议采取以下措施:首先,选择合适的剥离强度测试仪品牌和型号,以确保其性能和精度符合测试要求;其次,根据无纺布胶带的特性,设定合适的测试参数和条件;最后,对测试数据进行综合分析和评估,以得出全面准确的结论。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 扫描电镜纳米分辨高温力学原位仪器研究获新进展
    p style="text-indent: 2em "span style="text-indent: 2em "在浙江大学张泽院士主持的国家自然科技基金委重大科研仪器设备研制专项《针对若干国家战略需求材料使役条件下性能与显微结构间关系的原位研究系统》的支持下,北京工业大学和浙江大学张泽院士、张跃飞研究员团队在扫描电镜纳米分辨高温力学原位仪器研制成果,以“A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150℃ in scanning electron microscope”为题,于2020年4月7日发表在《科学仪器评论》【iReview of Scientific Instruments/i 91, 043704 (2020) doi: 10.1063/1.5142807】杂志上,并被选为主编推荐(Editor’s Pick)亮点文章,在其杂志网站首页作为重点展示。《iReview of Scientific Instruments/i》是美国物理学会旗下的关于仪器研究方面的专业学术期刊。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 352px " src="https://img1.17img.cn/17img/images/202006/uepic/c5f78264-b188-4f17-b720-1d5ac9aec7c4.jpg" title="1.png" alt="1.png" width="600" height="352" border="0" vspace="0"//pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong研究背景:目前国际上原位高温拉伸可获得高分辨SEM图像的温度只能到800 ℃左右,远不能满足高温材料研究的需求/strong/span/pp style="text-indent: 2em "高温材料在服役过程中需要经受长期的高温和应力共同作用,因在航空、航天、核电、热发电等领域具有重要的应用,其生产研发应用水平已经成为衡量国家材料科技水平的标志之一。我国在高温材料领域如高温合金等,研发水平仍然需要寻求进一步突破,以满足国家重大战略需求。将调控、优化高温材料的制备过程、加工工艺、服役性能等环节建立在与之相应的显微结构研究与分析基础上,是指导高温材料研发的科学有效途径。/pp style="text-indent: 2em "在传统的高温材料研究模式中,由于其高温力学性能测试与显微结构研究分别独立进行,导致难以获得动态力学行为与对应实时微观组织结构演化信息。扫描电镜(SEM)是对材料进行微观组织结构分析的主要科学仪器之一,SEM具有较大的便于集成的样品室空间,国际上也在竞相发展基于SEM的原位拉伸、加热以及高温拉伸仪器,力求实现材料性能测试与相应显微结构的同步关联性研究。但是在SEM中同时进行高温-力学性能-成像三位一体测试时,span style="color: rgb(0, 112, 192) "目前国际上可获得高分辨SEM图像温度最高只能到800 ℃左右,还远远不能满足高温材料原位研究的需求。/span其主要问题是没有解决在SEM中进行高温加热时,高温热电子溢出进入SEM二次电子探测器使接收信号饱和的难题,导致原位SEM高温实验时图像发白,掩盖了样品表面形貌特征,失去微观组织分辨能力,如图1所示。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 215px " src="https://img1.17img.cn/17img/images/202006/uepic/c27210e6-3c33-4988-9876-8eddfdcc43ed.jpg" title="2.tif.jpg" alt="2.tif.jpg" width="600" height="215" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图1(a)1150℃时热电子对高温成像的影响,(b)热电子抑制后图像质量/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong研究成果:实现1200℃高温拉伸时样品微区原位、实时动态跟踪和纳米分辨、高质量的长时间成像/strong/span/pp style="text-indent: 2em "在张泽院士的带领和指导下,团队科研人员近年来一直致力于原位高温扫描电子显微学方法研究和仪器的开发工作。span style="color: rgb(0, 112, 192) "通过对SEM原位拉伸和加热测试系统的创新性结构设计、优化选材与热电子抑制技术,成功实现了1200℃高温拉伸时样品微区原位、实时动态跟踪和高分辨、高质量的长时间成像。/span科研团队在仪器开发过程中攻克并掌握了可以在SEM有限腔室空间内实现稳定运行的精密传动、准静态加载、原位视场追踪、闭环自锁、高精度测控、热源屏蔽、电磁屏蔽、真空兼容等多项核心关键技术。/pp style="text-indent: 2em margin-top: 15px "br//pp style="text-indent: 2em margin-top: 15px "script src="https://p.bokecc.com/player?vid=46BC6EBB7E77D8D99C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptbr//pp style="text-indent: 2em "图2为原位高温拉伸仪器与SEM组合的系统设计图和实物图,该原位仪器系统具有多项技术优势:配合SEM功能附件(EBSD,EDS,GIS)可实现一定环境气氛中的高温应力条件下材料的显微晶体取向和微区成分分析;同轴双向对称加载,使观察区保持在SEM视场中心;多级减速结构合理设计,扭矩输出平稳,保证了力学测试稳定性和高质量成像要求;传动自锁,随时起停,适合原位成像;消磁加热结构,电磁干扰小;高效热隔离,环境温度影响小;热电子抑制,突破了800 ℃以上的SEM高温高质量成像难题等。br//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 198px " src="https://img1.17img.cn/17img/images/202006/uepic/aac90d91-7015-4607-a4bf-bb39101ea9d2.jpg" title="3.jpg" alt="3.jpg" width="600" height="198" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图2. 位高温拉伸仪器与SEM组合的系统设计图(a)和实物图(b)/span/pp style="text-indent: 2em "凭借上述技术突破,所研制的原位高温拉伸仪器和SEM配合进行原位测试时,当样品温度保持在1150℃拉伸应力状态时,SEM在WD=25 mm长工作距离条件下仍然具备10 nm左右的空间分辨能力和31万倍放大的成像能力。如图3a所示,镍基单晶高温合金保持在1150 ℃、400 MPa拉伸状态时,扫描电 WD=22.5 mm(通常高分辨成像WD需要≤10 mm)、放大倍数为12万倍时的二次电子图像质量,图中样品表面D=10 nm的组织特征清晰可见。图3b显示了WD=25mm,镍基单晶高温合金保持在1150 ℃、530 MPa的高温拉伸状态时,放大倍数为31万倍时的二次电子图像质量,图3b是目前在高温和应力加载时所获得的放大倍数最高的SEM二次电子图像。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 278px " src="https://img1.17img.cn/17img/images/202006/uepic/f31c7d0a-586f-456f-8aaf-e4c8f77334f7.jpg" title="4.png" alt="4.png" width="600" height="278" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图3.一种镍基单晶高温合金在1150 ℃不同应力水平的SEM图像/span/pp style="text-indent: 2em "所研制的高温拉伸仪器,需要在SEM腔室内与样品台配合使用。受SEM样品台承载能力和倾转功能的限制,拉伸仪器需要体积小,重量轻。通过双丝杠传动、样品轴心平面加载等优化设计,保证了拉伸仪器小型化后加载的系统刚度要求,实现了高精度力-位移测试和快速响应。通过原位拉伸仪器测试同批次的小样品力学性并与标样证书校验结果对比,其力学性能指标与宏观标样测试结果一致,保证原位拉伸仪器测试力学性能的准确性,并与宏观测试力学性能参数具有的可比性,如图4所示高温拉伸仪器与力学性能测试校验。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 426px " src="https://img1.17img.cn/17img/images/202006/uepic/0d759570-e160-4bd0-9436-c22122db44e9.jpg" title="5.tif.jpg" alt="5.tif.jpg" width="600" height="426" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图4. 原位高温拉伸仪器与力学性能测试校验/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong成果应用:原位仪器已应用于高温合金、钛合金等的研发与性能试验,并取得系列研究成果/strong/span/pp style="text-indent: 2em "目前该仪器已经用于国内高温合金的研发与性能试验中。如图5为使用该仪器对二代镍基单晶在1150 ℃时高温拉伸力学性能和微裂纹扩展行为的研究成果,它直接揭示了镍基单晶高温合金在近服役温度下,弹性到屈服阶段微裂纹的形核与扩展行为,捕捉并阐述了微裂纹优先在冶金缺陷孔洞边缘形核长大,并且在持续应力加载过程中观察到裂纹尖端以绕过γ′,在γ基体相中扩展并发展为主裂纹的过程。相关论文发表在金属学报杂志。【金属学报, 55(8): 987-996, (2019). doi: 10.11900/0412.1961.2019.00013】。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 503px " src="https://img1.17img.cn/17img/images/202006/uepic/eeca6546-ed0c-4a87-9b57-55d5f108037f.jpg" title="6.jpg" alt="6.jpg" width="500" height="503" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图5 镍基单晶高温合金1150 ℃原位拉伸微裂纹扩展与变形行为/span/pp style="text-indent: 2em "如图5报道了在SEM腔室的真空环境中,样品温度保持在1150 ℃时,有微量氧气氛参与的镍基单晶高温合金表面初始氧化行为。使用该原位高温拉伸仪器在纳米分辨水平直接观察到了1150 ℃时镍基单晶表面氧化物的形核与长大过程,并通过对比有无应力作用时表面Al2O3生长动力学,揭示了由微量氧元素参与在接近高温合金叶片实际服役温度条件的初始氧化行为。相关论文以题为相关论文以题为“Initial oxidation behavior of a single crystal superalloy during stress at 1150° C”发表在近期iScientific Reports/i杂志上。【iScientific Report /i10,3089(2020). https: // doi.org/10.1038/s41598-020-59968-3】。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 479px " src="https://img1.17img.cn/17img/images/202006/uepic/56e0670f-9735-4ea0-b9da-193ff7826d6a.jpg" title="7.tif.jpg" alt="7.tif.jpg" width="600" height="479" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "图6 镍基单晶高温合金1150 ℃有无应力的初始氧化行为与氧化动力学曲线/span/pp style="text-indent: 2em "该仪器也可以用于原位高温拉伸EBSD研究,如图7为Inconel 740H为样品在650 ℃高温拉伸EBSD研究。实验结果表明,样品在650 ℃高温拉伸时,EBSD探头工作状态良好,花样识别率高,样品进入屈服阶段大应变量时标定率仍然可以保持在85%以上。通过该仪器与SEM和EBSD的结合,可以准确的判断晶粒的转动与变形滑移系的开启时的应力水平与对应显微组织状态,相关研究结果发表在iJournal of Alloys and Compounds/i 820 (2020) 153424。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 290px " src="https://img1.17img.cn/17img/images/202006/uepic/3eac64ed-fa07-4a13-852a-f6dc6770a6e5.jpg" title="8.png" alt="8.png" width="600" height="290" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "图7 Inconel 740H 650 ℃原位拉伸组织结构和晶粒取向的演变过程/span/pp style="text-indent: 2em "此外,利用该项目开发的仪器和研究方法,对增材制造钛合金快速凝固组织与室温和高温力学性能方面的研究也已经有系列成果发表,【iJournal of Alloys and Compounds/i 817 (2020) 152781;iMaterials Science & Engineering A/i 749 (2019) 48–55;iMaterials Science & Engineering A /i712 (2018) 199–205】。利用该项目开发的仪器和研究方法,对锂离子电池正极材料、负极材料在电化学力学耦合作用下的结构演变与性能的原位研究方面也有系列研究成果发表【iExtreme Mechanics Letters/i 35 (2020) 100635;iACS Energy Letters/i,2019,4,1907-1917;iElectrochimica Acta/i 2018, 269, 241249】。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "该仪器研发成功已经引起了国内外相关学者的广泛关注,2020年6月16日美国材料学会会刊MRS Bulletin的“News & Analysis Materials News”专栏也特别撰文对这一成果进行了介绍(In situ mechanical testing in an SEM performed at 1150° C with submicron resolution)。波士顿大学Christos Athanasiou博士评论认为“The capabilities offered are exciting for many. The developed instrument paves the way for exploring new mechanisms, which could serve as guidelines for designing ultra-tough ceramic nanocomposites for demanding environments”(开发的仪器提供了令人兴奋的测试能力,该仪器为揭示材料高温变形新的机理铺平了道路,比如可以用于指导超韧纳米复合陶瓷材料的设计等)。/span/pp style="text-indent: 2em "该仪器成果已经承接了国内重点科研单位高温材料急需的原位测试需求。同时,通过科技成果转化,仪器产品已经在国内多家重点科研单位进行了推广应用,为这些单位的研究提供了强有力的实验和数据支持,促进了高温材料的研发。/pp style="text-indent: 2em "博士生王晋、马晋遥、唐亮、桑利军,硕士生张文静、张宜旭等参与了仪器的功能开发与性能测试等,北京工业大学吕俊霞副研究员负责原位仪器的应用研究。这些工作也得到了北京市长城学者项目的支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/202006/uepic/40e51be5-453d-4bf7-8279-acb7807dd7ea.jpg" title="9.jpg" alt="9.jpg" width="600" height="450" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="text-indent: 2em color: rgb(0, 176, 240) "图8 仪器研发团队合影/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong相关文章链接:/strong/span/pp style="text-indent: 2em "a href="https://doi.org/10.1063/1.5142807" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1063/1.5142807/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1557/mrs.2020.172" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1557/mrs.2020.172/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1038/s41598-020-59968-3" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1038/s41598-020-59968-3/span/a/pp style="text-indent: 2em "a href="https://www.ams.org.cn/CN/Y2019/V55/I8/987" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://www.ams.org.cn/CN/Y2019/V55/I8/987/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1016/j.jallcom.2019.153424" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1016/j.jallcom.2019.153424/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1016/j.jallcom.2019.152781" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1016/j.jallcom.2019.152781/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1016/j.eml.2020.100635" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1016/j.eml.2020.100635/span/a/pp style="text-indent: 2em "a href="https://doi.org/10.1016/j.msea.2019.01.111" target="_blank" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "https://doi.org/10.1016/j.msea.2019.01.111/span/a/pp style="text-indent: 2em "span style="text-decoration: underline color: rgb(0, 176, 240) "a href="https://doi.org/10.1016/j.msea.2017.11.106" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "https://doi.org/10.1016/j.msea.2017.11.106/a/span/pp style="text-indent: 2em "br//pp style="text-align: right "span style="color: rgb(0, 112, 192) "【本文系仪器信息网专家约稿 ,/span/pp style="text-align: right "span style="color: rgb(0, 112, 192) "作者:北京工业大学 张跃飞 研究员】/spanbr//pp style="text-align: center "span style="color: rgb(0, 0, 0) "--------------------------------------/span/pp style="text-align: left text-indent: 2em "span style="color: rgb(0, 112, 192) "strong延申阅读/strong/spanspan style="color: rgb(0, 0, 0) "br//span/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "6月16日,张跃飞研究员在/spanspan style="color: rgb(0, 0, 0) text-decoration: underline "a href="https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline color: rgb(0, 176, 240) "“第六届电子显微学网络会议(iCEM 2020)”/span/a/span第2分会场“原位电子显微学技术及应用”会场线上报告视频回放如下,报告题目《扫描电镜原位高温-拉伸-成像进展与应用》:/pscript src="https://p.bokecc.com/player?vid=D16537227F20FE939C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script
  • 行业应用 | 生物学和生物医学领域的纳米压痕仪应用
    力学性能表征对生物医学和生物材料的研发有重要的作用。对于许多生物材料,有时不得不在非常局部或相对较小的区域内研究其力学性能。此外,临床前研究通常在小动物模型(如大鼠或小鼠)上进行。因此,测试方法必须适用于局部区域测试,以便在如此小的样本上也可以进行检测。最近几年引入生物医学的纳米压痕技术尤其适用于这类表征。本应用报告展示了纳米压痕在骨骼、牙齿和隐形眼镜性能测试中的一些应用在过去的几十年里,生物材料的力学性能表征已成为其重要的发展需求。研究人员和工程师有兴趣了解生物材料(软组织和硬组织、骨骼、肌腱、软骨、牙齿等)和人工(人造)生物材料(植入物、可溶解缝合线、永久或临时性的支架等)的力学性能。了解组织和器官等生物材料的力学性能对于开发人体内的新材料和组织以及评估不同医疗方法的效果是必要的。在以上许多应用中,需要去研究相对较小的局部区域内的表面力学性能,此外,临床前研究通常在小动物模型(如大鼠或小鼠)上进行。测试方法必须适用于局部区域测试,以便在如此小的样本上也可以轻松进行检测。纳米压痕技术在生物医学领域已经应用了大约二十年。若干研究人员使用这种方法研究骨关节炎或不同营养方案对骨骼力学性能的影响。纳米压痕技术非常有用,主要是因为与表征骨骼整体结构性能的宏观拉伸或压缩测试相比,它提供了骨骼中不同组织的微观力学性能。压痕表征材料的局部特性在研究药物治疗或病变的效果时极其重要,因为这些处理方式通常会导致生物材料局部刚度的变化。只有对健康骨骼结构的特性有很好的了解,才能在相应的药物治疗中取得好的效果。因此,除了对治疗过的骨骼进行测试外,还必须对健康骨骼进行类似的测试。此外,测试参数应该满足对应压痕测试的材料体积总是相同的(或至少非常相似)且代表可以观察到处理结果的相关的结构单元。牙釉质是另一种通过纳米压痕测试进行研究的材料。纳米压痕技术确实是对这种小样品进行力学性能测试的最适合的方法之一。尽管硬质生物材料或生物体材料的纳米压痕测试代表了很大一部分的局部力学测试,但在越来越多的应用中,需要测量更软的(生物)材料。这些软材料可以具有远低于 100MPa 的弹性模量,并且经常必须保持在流体中。此外,它们的表面可能不平整,无法通过标准方法(如切割或抛光)进行制备。这种软材料的一个典型例子是关节软骨。最近针对各种类型的支架对软骨再生的影响,开展了广泛的研究。柔性隐形眼镜因其使用简单、成本低廉而被许多人在日常生活中使用。不同隐形眼镜的刚度(以弹性模量表示)和最终蠕变可能会因所用材料的类型不同而显著变化。材料的选择受到光学性能、佩戴舒适性或镜片使用时间的影响。隐形眼镜的刚度可以使用生物压痕仪进行局部测量,该生物压痕仪能兼容在液体中进行测试。仪器压痕是一种表征生物医学和生物体材料局部力学性能的新技术。安东帕仪器化压痕测试的优势是可以测试硬质和软质生物材料和生物体材料的硬度和弹性模量。纳米压痕测试仪适用于许多类型材料的局部力学分析,比如干燥的或浸泡在液体中的,硬的或软的材料都可以被测试。
  • 安东帕推出新型高温纳米压痕测试仪
    p  安东帕近日宣布推出新型高温纳米压痕测试仪UNHT³ HTV。作为测量低载荷下纳米尺度机械性能的测试系统,UNHT³ HTV可用于测量温度在 800 ° C 以下的薄膜和涂层的硬度和弹性模量。其专利 UNHT 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201702/insimg/71016a8c-f6a0-4c09-81ab-e26ce87e40b8.jpg" title="UNHT3_HTV_w.jpg"//pp  UNHT3 HTV的核心是基于非常成功和专利的超纳米压痕试验机(UNHT)。/pp  测量头已针对高温操作进行了优化,并结合了正在申请专利的样品台,可以在工作范围内的任何温度下进行测量,并具有最高的热稳定性。这样的测量特性引发了研究人员的兴趣:/pp  环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。/pp  最高载荷框架刚度 ( 106 N/m) 和最低框架柔度 ( 0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“实际深度”和“载荷控制”模式。/pp  高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使泵振动降至最低。/pp  独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压头、参比 压头和样品加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1° C 内。/pp  符合 ISO 14577 和 ASTM E2546 国际标准/ppbr//p
  • 使用电子拉力试验机检测薄膜拉伸性能时如何避免夹具对测试结果的影响
    一、引言  在材料科学领域中,薄膜材料的拉伸性能检测是一项至关重要的工作。通过准确的拉伸性能测试,我们可以了解材料的强度、延展性等关键参数,为材料的开发、优化和应用提供有力支持。电子拉力试验机作为一种先进的力学测试设备,广泛应用于薄膜拉伸性能的测试。然而,在测试过程中,夹具对测试结果的影响往往被忽视,这可能导致测试结果的失真。因此,本文将探讨如何在使用电子拉力试验机检测薄膜拉伸性能时避免夹具对测试结果的影响。  二、夹具对测试结果的影响分析  1. 夹具夹持力不均匀  在薄膜拉伸性能测试中,夹具的夹持力需要均匀分布,以确保薄膜在拉伸过程中受力均匀。然而,由于夹具设计、制造和安装等方面的原因,夹持力往往难以做到完全均匀。这会导致薄膜在拉伸过程中受力不均,从而产生局部应力集中或拉伸变形,进而影响测试结果的准确性。  2. 夹具材料的影响  夹具的材料也是影响测试结果的一个重要因素。如果夹具材料与薄膜材料之间存在较大的摩擦系数或粘附力,那么在拉伸过程中,夹具可能会对薄膜产生额外的阻力或拉力,从而影响测试结果的准确性。此外,夹具材料的硬度、弹性模量等物理性能也可能对测试结果产生影响。  3. 夹具形状和尺寸的影响  夹具的形状和尺寸也是影响测试结果的重要因素。如果夹具的形状和尺寸与薄膜不匹配,那么在拉伸过程中,夹具可能会对薄膜产生不均匀的应力分布,导致测试结果的失真。此外,夹具的开口宽度、夹持长度等参数也可能对测试结果产生影响。  三、避免夹具对测试结果影响的措施  1. 选择合适的夹具  在进行薄膜拉伸性能测试时,应根据薄膜的材料、厚度、宽度等参数选择合适的夹具。夹具的夹持力应均匀分布,且夹具材料应与薄膜材料相匹配,以减少夹具对测试结果的影响。同时,夹具的形状和尺寸也应与薄膜相匹配,以确保测试结果的准确性。  2. 夹具的校准和调试  在使用电子拉力试验机进行薄膜拉伸性能测试前,应对夹具进行校准和调试。通过校准,可以确保夹具的夹持力、形状和尺寸等参数符合测试要求。通过调试,可以消除夹具与薄膜之间的摩擦力和粘附力等干扰因素,确保测试结果的准确性。  3. 优化测试方法  在测试过程中,可以采用一些优化方法来减小夹具对测试结果的影响。例如,可以采用多次测试取平均值的方法来提高测试结果的准确性 可以在夹具与薄膜之间加入润滑剂来减小摩擦力和粘附力 可以采用非接触式夹具来避免夹具对薄膜的直接接触等。  四、结论  在使用电子拉力试验机检测薄膜拉伸性能时,夹具对测试结果的影响是不可忽视的。为了避免夹具对测试结果的影响,我们需要选择合适的夹具、对夹具进行校准和调试、优化测试方法等措施。通过这些措施的实施,我们可以提高测试结果的准确性和稳定性,为薄膜材料的开发、优化和应用提供有力支持。
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 小知识 | 高温超纳米压痕系统
    一基本介绍高温纳米压痕仪的主要用途是获得薄膜和材料在一定温度下的微观力学性能,其力学性能随温度变化的特性具有巨大的工业和科学意义。但高温测量中存在热漂移,信号稳定性(噪声),表面氧化和尖端样品反应的困难,安东帕研发了一种新型的高温真空纳米压痕仪,该压痕仪能够完成在特定温度下的超稳定的测量,是一款商业化的高温纳米压痕仪。二工作原理该系统基于超纳米压痕测试仪(UNHT),该测试仪利用一种主动表面参照技术,该技术包括两个独立的轴,一个用于表面参照,另一个用于压痕。在这种对称结构和差分深度测量技术中使用的极硬且热膨胀系数非常低的材料导致系统的柔量可忽略不计,并且热漂移率非常低。这样就可以进行稳定且长期的测量(例如蠕变测试),而不必担心漂移和噪声。每个轴都有自己的执行器,位移和负载传感器。对于两个轴,通过压电执行器A1和A2施加位移。压头和基准上的负载是从弹簧K1和K2的位移获得的,这些位移是用电容式传感器C1和C2测量的。压头的位移是通过差分电容传感器C3相对于基准进行测量的。精确的反馈回路确保连续控制压头和基准上的法向力。三针尖与样品表面温度的匹配-热漂移最小化实验过程中热电偶读取的温度不是压头和参比端以及样品表面的真实温度。因此,压头和样品的表面温度需要精确匹配,以避免热量流过触点,从而避免热漂移。我们开发了以下3个步骤的程序来匹配此压头的尖端样品表面温度:a.将压头尖端放在距离样品表面约100微米以内的位置,并使用PID控制将样品和尖端加热到目标温度。现在,安装在压痕头上的热电偶将直接与样品表面接触。将样品表面温度调节至目标温度。温度稳定后,请切换至恒定功率模式以防止瞬时温度波动b.温度粗调:通过调整针尖加热过程中热电偶的温度,以最大程度地减大载荷压入样品表面时引起针尖的温度变化c.温度微调:进一步微调针尖加热过程中的功率,以达到零热漂移率(a) 长时间蠕变测试时的压痕温度(b) 通过粗调压头温度,以最大程度减少接触产生时的温度变化(c) 直接在热漂移测量过程中微调压头的加热功率安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 如何在800℃下进行纳米压痕测试?
    p  关于进行高温纳米压痕试验的最佳方法一直存在争议,其中热漂移、尖端腐蚀和噪声基底是阻碍此类试验的主要问题。安东帕TriTec高温超纳米压痕测试仪(UNHTsup3/sup HTV) 能够解决800℃下进行纳米压痕测试的问题。/pp  前期工作已经证明,除了氧化之外,热漂移是导致高温试验误差的关键问题之一,随着温度的升高,漂移率趋于增加。在UNHTsup3/sup HTV中解决这个问题是一个重要的发展,需要很多修改来适应所有可能的变量。/pp  基于安东帕尔在纳米压痕方面的长期经验,UNHTsup3/sup HTV的核心是基于非常成功和获得专利的超纳米压痕测试仪(UNHTsup3/sup)。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C181962.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/3bb9ac89-63a9-4c57-bf69-dffef04b3b04.jpg" title="安东帕高温高真空超纳米压痕仪 UNHT³ HTV.jpg" alt="安东帕高温高真空超纳米压痕仪 UNHT³ HTV.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C181962.htm" target="_self"strong安东帕高温高真空超纳米压痕仪 UNHTsup3/sup HTV/strong/a/pp  其测量探头经过优化,能在高温下运作,并与正在申请专利的样品台结合,使测量能够在工作范围内的任何温度下进行,具有极高的热稳定性。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C181962.htm" target="_self"img style="max-width: 100% max-height: 100% width: 500px height: 522px " src="https://img1.17img.cn/17img/images/202005/uepic/eb5e286c-e5b5-417b-afa9-c9d654bdaeda.jpg" title="UNHT3 HTV系统的示意图.jpg" alt="UNHT3 HTV系统的示意图.jpg" width="500" height="522" border="0" vspace="0"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C181962.htm" target="_self"strongUNHT3 HTV系统的示意图/strong/a/pp  如示意图所示,测量探头、光学视频显微镜和样品台安装在高真空腔室中,使用涡轮分子二次泵和一次泵抽至10sup-7/sup mbar。/pp  真空操作的两个主要优点是:/pp  (i) 去除氧化的影响,这意味着可以在试样材料的表面力学性能不因氧化物而改变的情况下进行试验。此外,也可以使用不适应氧化环境的压头材料:例如,金刚石是在室温下可选择的压头材料,但它在约400° C以上会氧化,然后软化并容易钝化,从而使其实际上无法用于纳米压痕。/pp  (ii)通过腔内对流减少热损失,从而大大有助于热稳定。/pp  真空操作的主要缺点是,阀门和泵的运行将在测量中引入额外的机械噪声,因此,已采取具体措施以尽可能减少这种噪声,包括:/pp  (a) 材料选择:框架的内部构架已经通过使用铝、铸铁和不锈钢的混合物进行了优化,从而实现了最佳的机械阻尼。/pp  (b) 在背压阀和二次泵之间连接一个真空缓冲器,允许在不需要一次泵的情况下运行数小时。这可以保持10sup-6/sup mbar真空超过10小时。/pp  (c) 采用低摩擦轴承的5轴磁悬浮涡轮分子泵,将机械振动降到最低。/pp  (d) 防振:整个真空室安装在4点防振台上,采用有效的压缩空气使真空室“浮”起来,消除了大部分振动噪声。/pp  (e)提供6 Nmmsup-1/sup的弹簧常数的弹簧,加强了UNHTsup3/sup HTV测量探头的弹簧 (与标准UNHTsup3/sup的3 Nmmsup-1/sup相比),从而保持可接受的噪底,并补偿压头和基准的额外质量。/pp  a href="https://www.instrument.com.cn/netshow/SH101011/" target="_self"strong关于安东帕/strong/a/pp  安东帕成立于1922年,如今,全世界已经有超过3200名员工从事开发、生产和销售高精度的实验室仪器和过程测量系统,并提供定制的自动化和机器人解决方案。/pp  安东帕提供从原子到宏观范围内测试各种材料的材料特性的全套仪器。除光谱、X射线等结构分析外,还提供了仪器压痕、摩擦学、划痕试验、涂层厚度测定和原子力显微镜等。此外,安东帕还提供采用化学和电化学方法用于表面电荷测定、流变学研究、粘度测定、颗粒表征等仪器。/ppstrongspan  /spana href="https://www.instrument.com.cn/zc/956.html" target="_self"关于span纳米压痕仪、划痕仪/span/a/strong/ptable border="0" cellpadding="0" cellspacing="0" style="" align="center"colgroupcol width="95" style=" width:95px"/col width="288" style=" width:288px"//colgrouptbodytr height="18" style="height:18px" class="firstRow"td height="18" width="222" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"仪器专场/tdtd width="280" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/956.html?AgentSortId=11017&SampleId=&IMShowBigMode=&IMCityID=&IMShowBCharacter=&SidStr=" target="_self"安东帕纳米压痕仪、划痕仪/a/td/trtr height="18" style="height:18px"td rowspan="6" height="108" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="213"a href="https://www.instrument.com.cn/zc/956.html" target="_self"纳米压痕仪、划痕仪/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="280"a href="https://www.instrument.com.cn/netshow/C181962.htm" target="_self"安东帕高温高真空超纳米压痕仪UNHT³ HTV/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="334"a href="https://www.instrument.com.cn/netshow/C59621.htm" target="_self"安东帕纳米划痕仪NST³ /a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="127"a href="https://www.instrument.com.cn/netshow/C179250.htm" target="_self"安东帕生物纳米压痕仪UNHT³ Bio/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="127"a href="https://www.instrument.com.cn/netshow/C59577.htm" target="_self"安东帕微米压痕仪MHT³ /a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="127"a href="https://www.instrument.com.cn/netshow/C59622.htm" target="_self"安东帕微米划痕仪MST³ /a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="127"a href="https://www.instrument.com.cn/netshow/C59623.htm" target="_self"安东帕大载荷划痕仪RST³ /a/td/tr/tbody/tablepbr//p
  • 世界首次:清华大学成功制备超长碳纳米管管束
    p style="text-indent: 2em "在国家重点研发计划“纳米科技”重点专项的支持下,清华大学魏飞教授团队与李喜德教授团队合作研究,在超强碳纳米管纤维领域取得突破,在世界上首次报道了接近单根碳纳米管理论强度的超长碳纳米管管束的制备。/pp style="text-indent: 2em "碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。span style="text-indent: 2em " /span/pp style="text-indent: 2em "如何将一根根碳纳米管组装后仍保持其单根的优异力学性能是制备超强纤维必须首先解决的问题。然而,目前已报道的碳纳米管纤维的强度只有0.5~8.8 GPa,远低于碳纳米管理论强度( 100 GPa)。主要原因是形成纤维的碳纳米管长度较短,单元体之间以范德华力相互搭接,在拉力作用下极易发生相互滑移,无法充分利用碳纳米管固有的本征高强度。/pp style="text-indent: 2em "此外,碳纳米管内的结构缺陷、杂乱的取向等都会导致纤维强度的下降。相比之下,超长碳纳米管具有厘米甚至分米以上的长度并且具有完美的结构、一致的取向和接近理论极限的力学性能,在制备超强纤维方面具有巨大的优势。/pp style="text-indent: 2em "魏教授与李教授研究团队通过采用原位气流聚焦的方法,可控地制备了具有确定组成、结构完美且平行排列的厘米级连续超长碳纳米管管束,巧妙避免了上述的限制因素。通过制备含有不同数量单元的超长碳纳米管管束,定量分析其组成和结构对超长碳纳米管管束力学性能的影响,建立了确定的物理/数学模型。提出了一种“同步张弛”的策略,通过纳米操纵来释放管束中碳纳米管的初始应力,使其处于一个较窄的分布范围,进而可将碳纳米管管束的拉伸强度提高到80 GPa以上,接近单根碳纳米管的拉伸强度。所报道的超长碳纳米管管束拉伸强度优于目前发现的所有其他纤维材料。/pp style="text-indent: 2em "这项工作揭示了超长碳纳米管用于制造超强纤维的光明前景,同时为发展新型超强纤维指明了方向和方法。相关成果于2018年5月14日在线发表于《自然—纳米技术》(Nature Nanotechnology)上。/p
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 玻璃纤维机织物拉伸断裂强力和断裂伸长的测定
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合1kN气动拉伸夹具,根据《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》,进行了玻璃纤维机织物拉伸试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应玻璃纤维机织物拉伸断裂强力和断裂伸长的试验。 关键词:鲲鹏BOYI 2025电子万能材料试验机 玻璃纤维 拉伸试验玻璃纤维布(Glass Fiber) 是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,绝缘层压板以及印刷电路等各个领域。玻璃纤维布的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,就决定了玻璃纤维布的物理性质。本应用介绍了使用电子万能材料试验机进行玻璃纤维机织物拉伸断裂强力和断裂伸长试验。鲲鹏电子万能材料试验机配备的气动拉伸夹具,有以下几个特点:首先,夹面采用专用高分子夹面,平整度好,可以避免夹伤试样,避免拉伸过程中出现夹持部位断裂的情况;其次,气动控制可以提供适当且恒定的夹持力,避免拉伸过程中出现滑移的情况;另外,夹具设有对中标识,可以辅助夹持试样,保证夹持后试样的垂直度,避免拉伸过程中出现左右两边受力不均匀的情况。 除夹具外,试验机主机的高精度以及超过1000HZ的采集频率,可以完整的拉伸过程中的所有特征数据,准确识别试样拉伸断裂点,确保给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。本篇报告参照《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》进行试验,标准要求如下: 1.样品要求:Ⅱ型试样、试样宽度25mm、有效长度100mm 2.夹持距离:100mm±1mm 3.拉伸速度:50mm/min±3mm/min 1. 实验部分 1.1仪器与夹具 BOYI 2025-001 电子万能试验机 1kN气动拉伸夹具 90°剥离夹具 Smartest软件 1.2分析条件 试验温度:室温23℃左右 载荷传感器:1kN(0.5级) 加载试验速率:50mm/min 图1 BOYI 2025-001 电子万能试验机 1.3样品及处理本次试验,选取6组国内主流的不同种类的玻璃纤维布,统一切割成GB Ⅱ型试样,宽度约为25mm的长条试样,每组样品分经向和纬向。 2.试验介绍使用BOYI 2025-001电子万能试验机进行试验,设定夹具间距为100mm,将样品分别夹持在上下夹具中,以50mm/min的速率进行试验。测量拉伸过程中的力值以及位移数据,拉伸试样至断裂,记录最终断裂强力及断裂伸长(GB要求精确至1mm),取拉伸过程中第一组纱断裂时的最大强力作为拉伸断裂强力,根据数据计算得出结果,并生成拉伸曲线。图2 测试系统图(主机、夹具) 3.结果与结论 3.1第一组玻璃纤维布试验结果 3.2第二组玻璃纤维布试验结果 3.3第三组玻璃纤维布试验结果 3.4第四组玻璃纤维布试验结果 3.5第五组玻璃纤维布试验结果 3.6第六组玻璃纤维布试验结果 从上上述数据以及断裂后试样状态可以看出,整个测试过程中,拉伸试样夹持良好,断裂部位均在试样中部,满足GB要求(断裂点距离夹口10mm以上),两个方向各5个试样结果平均值非常接近,曲线重合度再现性良好,无较低异常测试值,满足GB要求。从本次试验结果可以体现出鲲鹏BOYI 2025-001 电子万能试验机的高精度及高稳定性。4.结论 综上所述,鲲鹏BOYI 2025-001 电子万能试验机、1kN气动拉伸夹具,可以完全满足GB/T 7689.5-2013 增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得玻璃纤维布各项力学数据,且稳定可靠,这对于玻璃纤维布以及绝缘电路板材、印刷电路板的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 新品上市 | 纳米压痕测试仪 Hit 300
    新品上市高性价比操作简单高性能安东帕的表面力学表征团队花了几年时间开发现推出的纳米压痕测试仪Hit 300。负责Hit 300开发项目的产品线经理Aurelian Tournier Fillon解释说:“新产品主要针对入门级市场。这使得中小型公司可以使用强大的纳米压痕技术,同时也可以用于学校和大学的培训和研究工作”。纳米压痕或仪器化压痕测试是了解更多材料表面特性的一种复杂而重要的方法,这些特性通常与最终产品的性能直接相关。市场上没有可比性Hit 300能够完全自动测量每小时多达600个测量点。该设备操作简单直观,安装只需15分钟,用户可在一小时内熟悉所有仪器操作并可以上机独立完成测试任务。这意味着即使没有任何纳米压痕专业知识的人也能够完成测试任务。Hit 300是该类别中第一款提供集成防震台的仪器。这会主动抑制任何外部振动,以获得准确的结果。 业务部门负责人Alfred Freiberger补充道:“我们真的为开发团队在这里取得的成就感到骄傲。市场上没有可比性。”优势1:简约直观的人性化操作界面2:占地空间小的台式纳米压痕仪3:每小时可进行多达600次测量4:集成式主动减震系统5:独特的激光瞄准系统6:安装仅需要不到15分钟,而且可以即时启动仪器
  • 岛津参加2011年中国国际纳米科学技术会议
    由国家纳米科学和技术中心组织,国家纳米技术指导委员会主办,科技部、教育部、国家自然科学基金会、中国科学院、中国科学技术协会协办的&ldquo 2011年中国国际纳米科学技术会议&rdquo 于2011年9月7日-9日在国家会议中心召开。此次会议旨在探讨纳米科学技术的前沿研究,聚焦于无机纳米材料、碳纳米材料、有机和高分子纳米材料、纳米复合材料的研究和应用,纳米器件、纳米系统、纳米生物技术及纳米医药的表征以及纳米结构的建模与仿真。来自世界各地的500多名专家、学者、研究生参加了此次会议。由于纳米领域密切的国际交流,本次会议从会议主持、专家报告到代表交流,全程采用英语直接交流,也成为本次国际会议的一大特色。 会场外的大厅里是40多家纳米领域分析试验仪器厂家的展台展示,陈列着各家&ldquo 纳米金刚钻&rdquo 。提到纳米技术就不能不提扫描隧道显微镜,它由IBM研究员、诺贝尔物理学奖获得者Gerd Binning(盖尔德· 宾尼)和Heinrich Rohrer(海因里希· 罗勒)这两位科学家于1981年率先开发,能够在原子水平观察材料表面,从而奠定了纳米技术研究的基石。 所以,最先亮相的当然非&ldquo 原子力显微镜&rdquo 莫属,原子力显微镜是继扫描隧道显微镜之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。 岛津公司于2011年5月新品推出了SPM-9700扫描探针显微镜 扫描探针显微镜(SPM)是在样品表面用微小的探针进行扫描,高倍率观察三维形貌和局部物理特性的显微镜总称。SPM-9700更是性能高、速度快、操作简单的新一代扫描探针显微镜。 专利技术的头部滑动机构,高稳定性&高速分析的保证样品交换时也可保持激光稳定照射悬臂。照射稳定性优异,分析时间也大幅度缩短。 鼠标操作即可表现丰富的3D图像显示可从不同角度放大拉伸图像进行确认。鼠标操作简单,更可进行3D断面形状分析。 X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,下称XPS)是广泛应用于材料科学领域的高技术分析仪器,主要用于固体材料的表面(2~3nm深度)元素成分和价态的定性和定量分析,与成像功能和离子溅射刻蚀相结合,也可以用于固体表面元素成分及价态的二维面分析和深度剖析,在纳米材料、高分子材料、材料的腐蚀与防护、各类功能薄膜的机理研究、催化剂研究与失效等方面具有不可替代的作用。 通常情况下,纳米材料的颗粒直径均在100nm左右,原子排列仅具备短程序而无长程序,其表面特性与块状材料有很大不同。由于颗粒过于微小,其他分析手段如SEM或EPMA的信息深度在1&mu m左右,测量结果只能是多个颗粒由表及里的平均结果,因而只能使用XPS等表面分析手段进行材料最外层数个原子层的成分与价态表征。 相信岛津纳米分析领域的扫描探针显微镜(包含原子力显微镜、扫描隧道显微镜功能)、X射线光电子能谱的应用会令您的纳米研究如虎添翼!
  • 重磅通知 | 纳米压痕测试仪Hit 300新品上市
    纳米压痕测试仪Hit 300新品上市安东帕新品纳米压痕测试仪Hit 300已正式上市!是世界上现今推出的一款高性价比且应用范围极广的纳米压痕测试仪。Hit 300不仅适用于工业生产体系中各环节快速且全面的材料表征及品控监测,更为科研人员对材料的研发提供极大的助力。邀请用户加入本次研讨会,您将发现简化直观的纳米压痕操作界面以及便于使用的高性能仪器硬件,并还能了解Hit 300的典型应用。总的来说,Hit 300非常适合于小型大学、企业、技术学校等,但其功能也能满足仪器压痕测试领域的专家。Hit 300–简单与高性能的完美融合:简化的用户界面每小时进行600次测量主动减振独特的激光瞄准系统信息2021-11-18, 16:00 - 17:00语言: English培训师: Mr. Aurélien Tournier-Fillon, Evelin Frank注册:点击“阅读原文”,报名参加培训师介绍Evelin Frank是安东帕压痕和涂层厚度测试仪的产品经理,毕业于奥地利格拉茨理工大学生产科学与管理硕士。在加入安东帕之前,在TU-Graz担任研究助理,并在汽车行业担任机械工程师。!注册:iphone手机需复制链接,浏览器打开安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制