当前位置: 仪器信息网 > 行业主题 > >

平行光管调整系统

仪器信息网平行光管调整系统专题为您提供2024年最新平行光管调整系统价格报价、厂家品牌的相关信息, 包括平行光管调整系统参数、型号等,不管是国产,还是进口品牌的平行光管调整系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平行光管调整系统相关的耗材配件、试剂标物,还有平行光管调整系统相关的最新资讯、资料,以及平行光管调整系统相关的解决方案。

平行光管调整系统相关的论坛

  • 光路调整问题,请各位高手指点

    关于紫外分光光度计光路调整问题,光从狭缝射入后,平行光始终调不出来,狭缝位于凹面镜焦点上不是应该会反射出平行光吗,为何我始终调不出平行光,请各位高手指点,谢谢了

  • 【求助】中红外平行光的产生

    专家好,本人现用普通中红外光源(碳硅灯等)做实验,可是实验要求高精度的红外平行光,而一般用凸镜的方法又达不到精度要求,而常见的平行光管又不适合中红外光源。请问各位专家还有其他什么方法或仪器可以得到中红外平行光吗?希望知道的能帮帮我,万分感激。

  • 原子吸收光谱仪的安装和调整

    一、安装场地的要求 1.环境  实验时应设置在无强磁场和热辐射的地方,不宜建在会产生剧烈振动的设备和车间附近。实验室内应保持清洁。温度应保持在1030C,空气相对湿度应小于80%。仪器应避免日光直射、烟尘、污浊气流及水蒸气的影响,防止腐蚀气体的干扰2.实验台  应坚固稳定,台面平整。为便于操作与维修,实验台四周应留出足够的空间。3.排气罩  原子吸收分光光度计的上方必须准备一个通风罩,使燃烧器产生的燃烧气体能顺利排。4.电源  各个品牌的原子吸收分光光度计以及其各种附件容许的电压范围和功率都有所不同,使用前务必按照说明书的要求进行配置。一般要求为:采用三相供电系统。一相供主机、计算机和打印机。电压为220V10%,最要接到一个大于1kVA的稳压电源。另一相为石墨炉电源,电流一般为150300A,不必通过稳压电源,可直接供电。第三相用于空气压缩机、空调和排风设备。为保证仪器具有良好的稳定性和操作安全。,仪器的地线最好接到一块直接埋入地下1m深处的金属板上。5.冷却水  最好配备水循环设备,用水质较硬的自来水容易在石墨炉腔体内结水垢。6.供气  供气钢瓶不应放在仪器房间内,要放在离主机最近、安全、通风良好的房间。二、使用高压气体的注意事项  使用高压气体必须仔细,要遵守当地的相关的法规。1.安装气瓶a.气瓶安装在室外通风处,不能让阳光直晒。b.注意气瓶的温度不能高于 40℃, 气瓶的2米之内不容许有火源。c.气瓶要放置牢固,不能翻倒。液化气体的气瓶 (乙炔,氧化亚氮,等。) 须垂直放置不容许倒下,也不能水平放置。2.乙炔a.使用乙炔时,请使用乙炔专用的减压阀,不能直接让乙炔流入管道。乙炔与铜,银,汞及其合金会产生这些金属的乙炔化物,在震动等情况下引起"分解爆炸",因此要避免接触这些金属。b.乙炔气瓶内有丙酮等溶剂。如果初级压力低于 0.5 Mpa,就应该换新瓶,避免溶剂流出。3.空气  供应干燥空气。如果使用含湿气的空气,水汽有可能附着在气体控制器的内部,影响正常操作。最好在空气压缩机或空气钢瓶出口的管路中装一个除湿的气水分离器。4.气体使用之后  气体使用之后,必须关掉截止阀和主阀。5.压力表  定期检查压力表,使保持正常。6.调压器a.使用合格的调压器和接头。b.当安装钢瓶的调压器时,要除去钢瓶出口处的尘土。c.不能用坏的漏气的接头安装调压器,否则会漏气。不要过分用力地安装调压器,实在不好安装宁可换用新气瓶。7.钢瓶的开/关a.打开钢瓶前,确认截止阀是关着的。向左转动次级压力调节阀,用专用的手柄打开钢瓶。即使主阀太紧打不开,不要用锤子和扳手敲击手柄或主阀。在打开主阀后,用肥皂水检查调压器和接头处以及主阀的连接处是否漏气。b.氧化亚氮,氩气和氢气钢瓶的主阀要完全打开。如果不完全打开,可能引起气体流量波动。c.乙炔钢瓶的主阀只能从完全关闭的状态下打开 1 圈或1.5 圈。为了防止丙酮从钢瓶流出,不要打开超过 1.5 圈。与此相反,如果乙炔主阀打开不足,则氧化亚氮-乙炔火焰 (高温火焰), 当火焰从空气-乙炔火焰切换到氧化亚氮-乙炔火焰时由于乙炔流量不够而引起回火。三、仪器的安装和调整1. 开箱与安装  新购仪器应及时开箱 , 按清单逐一查对主机、附 件、零配件和使用说明书等是否齐全 , 同时要检查仪器二表观是否有损伤。如发现问题及时向生产户家提 出 , 要注意保护现场, 以便分析损伤原因。  在开箱后和安装前 , 必须仔细阅读仪器使用说明书 , 熟悉仪器原理、结构和 使用方法 , 了解仪器对实验 , 室环境条件和装置条件的要求 1 完善条件和做好安装 前的各项准备工作 o  将主机、计算机、打印机、空压机、循环冷却水装置、石墨炉及其电源装置小心从包装 箱中取出 , 按说明书要求整体布局。主机和附件放在工作台上以后 , 调整其底脚使之平稳、受力均匀。  逐一检查主机的外光路 , 主机和配件电器及机械部分的表观状况。然后按 照说明书中的要求连接好仪器的电路、气路和水路。2.空心阴极灯位置的调整  通过调整空心阴夜灯的位置 , 使其发光阴极位于单色器的主光轴上。操作方法是:调节灯座的前后高低左右位置 , 使接收器得到最大光强,即读数最大 ( 透射比挡或能量挡 ) 或数字显示读数最小 ( 吸光度挡 ) 。调整时不必点火。  如今许多仪器(如HITACHI Z-5000、THEMO M6等)都带有自动微调功能,由计算机自动完成空心阴极灯位置的调节。3.燃烧器位置的调整  调整燃烧器位置的目的在于使其缝口平行于外光路的光轴并位于正下方 ,以保证空心阴极灯的光束完全通过火焰并会聚于火焰中心而获得较高的灵敏 度。  燃烧器的调整是在静态下进行的。 常以铜灯 (324.1nm) 作光源 , 按前述调整好灯的位置 , 调节负高压 , 使透射比为 1:100%, 然后用仪器附带的透光检验工 具或一根火柴棒插入燃烧器缝口里。当对光棒直立在燃烧器缝口的正中心时 , 透射比应接近 0%, 否则仍需对燃烧器位置作前后调整, 然后拍对光棒垂直 置于缝口两端 , 其透射比应降至 30%, 否则应改变燃烧器转角直至达到要求为止。  当静态调整完毕之后 , 若有必要 , 可在点火的情况下 , 吸喷铜标准溶液 , 调整 燃烧器的前后转角及其高度,测量不同位置时的吸光度。对应予最大吸光度的位置为最佳位置 , 但燃烧器不应挡光。  由于不同元素的最佳燃烧器高度是不同的,使用时应根据不同的元素重新调节燃烧器高度。4. 雾化器的调整  雾化器是原子化系统的核心部件,分析的灵敏度和精密度很大程度上取决于 雾化器的质量。 质量良好的喷雾器 , 应是雾滴小、雾量大、雾滴匀 、 喷雾稳 , 这取决于吸液毛细管喷口和节流嘴端面的相对位置和同心度。毛细管和节流嘴端面相对位置和同心度 , 应在放大镜下精心调节。每次调整效 果可通过观察雾化状况来判断。正常情况下 , 雾滴离开喷嘴后应沿毛细管线方向 , 向前成一锥形 , 上下左右对称地散射开。也可通过吸喷标准溶液测定吸光度 来判断 , 直至出现最大吸光度时 , 即将位置固定下来。需要指出的是 , 任何时候绝对禁止在氧化亚氮一乙烘火焰中调节喷雾器 , 否则会发生回火。  碰撞球的作用是进一步细化雾滴和提高雾化效率。碰撞球与喷嘴的相对位置 , 直接影响雾漓的细化效果。一般来说 , 碰撞球靠近喷嘴电细化效果好而噪声 大。在实际工作中, 应从成细化和稳定两个方面综合考虑,通过吸喷标准溶液,观测吸光度及稳定性来调定碰撞球的最佳位置。5. 石墨炉原子化器的调整  石墨管吸收池和光源间的对光二调整即 " 定位 ", 要比燃烧器高度的调节困难些。正确的定位程序是 , 先将元素灯对光调整好 , 再对光调整氘灯 , 使其光斑与元素灯光斑重合 , 然后调节石墨炉位置 , 使光束减弱程度至最小。两个光斑的错位往往使背景校正不 足或过度。  值得指出的是,上述的调整往往在生产车间已经完成,如果运输中没有问题,只需将各部件连接好就可达到最佳要求。(选自网络。侵删)

  • 【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    [align=center][b][color=#3333ff]太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案[/color][/b][/align][align=center]Design Proposal of Ultralow Thermal Expansion Coefficient Measurement System for Composite Truss Used in Space Telescope[/align][b][/b]摘要:太空望远镜用各种大尺寸复合材料桁架管件和镜筒普遍要求超低热膨胀系数以保证太空望远镜的热稳定性,传统热膨胀系数测试中的小尺寸试样已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出了大尺寸构件超低热膨胀系数测试系统设计方案。[align=center][img=太空望远镜超低热膨胀系数桁架管件,483,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220048_02_3384_3.png[/img][/align][align=center][color=#ff0000]上海依阳实业有限公司(www.eyoungindustry.com)[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#ff0000]1.需求背景[/color][/b] 在太空中运行的望远镜由于没有大气层保护,其工作温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,太空望远镜在空间环境中,望远镜桁架材料的热膨胀,会引起太空望远镜光学结构的尺寸变化,从而造成望远镜观测精度下降。这样对太空望远镜的某些部件和仪器的技术要求就是热稳定性要好,要求太空望远镜的大尺寸桁架结构在一定的环境温度变化范围内不因热应力产生变形或者变形极小,热膨胀系数达到E-08/K量级,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,无法满足大尺寸构件的超低热膨胀系数测量。为适应太空望远镜制造的要求,特别是对于以米为单位的大尺寸E-08/K量级部件的超低热膨胀系数,需要更加准确的测量。因此,研究太空望远镜用复合材料工程构件的超低热膨胀系数测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出大尺寸构件超低热膨胀系数测试系统设计方案,为管件的设计、生产和质量评价提供技术支撑,并为今后整体桁架结构的尺寸稳定性测试评价奠定技术基础。[b][color=#ff0000]2.超低热膨胀系数测试系统技术要求[/color][/b][color=#ff0000]2.1. 样件形式和尺寸范围[/color] (1)刚性固体复合材料制成的横截面为圆柱形、矩形和T型等形式的管件; (2)样件外径范围为70mm~150mm; (3)样件长度范围为500mm~2000mm; (4)样件端面平整度小于0.05mm; (5)样件两端面平行度小于0.05mm。[color=#ff0000]2.2. 技术指标[/color] (1)测试温度范围:0℃~40℃; (2)测温精度:≤0.01℃; (3)样件温度均匀性:≤0.05℃; (4)变形测量分辨率:0.4nm; (5)变形测量不确定度:≤30nm; (6)测温点数:1个/2℃; (7)热膨胀系数测量不确定度:≤1×10-8/K。[color=#ff0000]2.3. 验收大纲[/color] (1)验收测量长度为1m的2等量块或同等制造精度的碳纤维复合材料管件(其直径为70mm~150mm,长度为1000mm~2000mm)。 (2)以1m的碳纤维复合材料管件为验收样品,在温场均匀度优于0.05℃、测温步长为2℃条件下,5次测量结果的长度变化量优于30nm,热膨胀系数标准偏差优于1×10-8/K。[b][color=#ff0000]3. 整体结构设计[/color][/b] 大尺寸样件超低热膨胀系数测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图3-1所示。[align=center][img=大尺寸管件超低热膨胀系数测试系统,690,269]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220049_01_3384_3.png[/img] [/align][align=center][color=#6633ff]图3-1 整体结构示意图(侧视图)[/color][/align] 针对大尺寸样件,超低热膨胀系数测试系统可以根据激光干涉仪的分布位置设计为单端测量和双端测量布局两种形式。[color=#ff0000]3.1. 单端测量布局[/color] 单端测量布局形式如图3-2所示。[align=center][img=超低热膨胀系数测试系统单端结构,690,439]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图3-2 单端测量结构示意图(俯视图)[/color][/align] 单端测量布局的特点: (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。 (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试样测量。 (3)关键是可以进行空载测量,确定系统误差。[color=#ff0000]3.2. 双端测量布局形式[/color] 双端测量布局形式如图3-3所示。[align=center] [img=超低热膨胀系数测试系统双端结构,690,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_02_3384_3.png[/img][/align][align=center][color=#3333ff]图3-3 双端测量结构示意图(侧视图)[/color][/align] 双端测量布局的特点: (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。 (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。[color=#ff0000][b]4. 分系统设计[/b]4.1. 真空系统[/color] 真空系统为大尺寸样件的热膨胀系统测量提供精确恒定的真空环境,避免激光干涉测量受到气体(气压)波动的影响。[color=#ff0000]4.1.1. 真空腔体及整体布局[/color] 真空腔体及整体布局如图4-1所示。[align=center] [img=,346,200]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220043_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-1 真空腔体布局示意图[/color][/align] 真空腔体为矩形上开盖结构,因真空会使腔体变形不便做成大跨度的多试样整体结构,只能做到长矩形腔体并进行加固,减少腔体对测量影响。 今后扩展采用独立真空腔体形式,至少可在两个方向上扩展,甚至可能在三个方向上扩展。 设计中考虑了激光干涉测量系统光路扩展,留有扩展功能。[color=#ff0000]4.1.2. 光学窗口[/color] 光学窗口是实现真空条件下测量稳定性的关键,其功能是保证真空环境形成过程中对激光光路的影响最小。光学窗口的结构如图4-2所示。[align=center][img=,512,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220044_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-2 光学窗口结构示意图[/color][/align] 光学窗口设计有以下两个特点: (1)采用局部刚性密封避免石英片移动。 (2)采用弹性调节和固定方式,将光学窗口石英片水平面调节和固定在常用真空度恒定时的位置上,同时保证与激光光路垂直。[color=#ff0000]4.1.3. 真空度测量和控制系统[/color] 真空腔体内的真空度(气压)需要长时间的精确恒定控制,采用高精度薄膜电容规测量真空度,采用特制的控制器进行自动控制,真空度精确控制在100Pa,波动率小于±1%,气氛为干燥氮气。 选择真空度为100Pa是为了既能消除气体折射率波动对激光干涉测量的影响,同时还能最大限度利用气体传热能力便于试件温度快速达到热平衡。 采用干式真空泵抽取真空,降低真空泵对光学器件的污染。真空度控制系统结构如图4-3所示。[align=center] [img=,507,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-3 真空度控制系统结构示意图[/color][/align][color=#ff0000]4.2. 试验系统[/color] 试验系统整体放置在真空腔内,用于放置被测试件、加热试件、保证试件受热膨胀形成单方向变形并将试件热变形转换为光程变化。[color=#ff0000]4.2.1. 支撑平台机构[/color] 热膨胀系数测试中,被测试件无论通过什么形式都要与真空腔体底部发生连接关系,真空腔体温度变化及其不均匀性都会造成这些连接关系发生二维形变。支撑平台机构除了给试件与真空腔底部提供连接关系之外,其重要功能是为试件提供一个基准平台,此基准平台只在光学测量方向上产生一维变形。支撑平台机构如图4-4所示。[align=center] [img=,690,234]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-4 被测样件支撑结构示意图[/color][/align] 试件变形测量的基准为导轨板,导轨板水平方向上的变形必然是二维形式。通过固定在真空腔底板和导轨板一端的单向平移机构保证导轨板一维变形,通过导轨板另一端的轴承导轨结构消除掉另一个水平方向上的位移,保证导轨板单向水平移动。[color=#ff0000]4.2.2. 试件支架结构[/color] 试件支架结构如图4-5所示。[align=center][img=,526,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_03_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-5 试件支撑结构示意图[/color][/align] 为使试样尽量处于轴向自由移动状态,整个试样采用两个弧形支架支撑,尽可能减少试样与支架的接触面积。 支架采用铜材料,其中安装测温用热电阻测量试样温度。 采用氟塑料进行隔热,避免试样温度向下传递。 铜支架放置在可调节水平和高度的微调平台上,并能滑动以改变支点位置满足不同长度试件要求。[color=#ff0000]4.2.3. 试样绝对变形量传递装置[/color] 试样绝对变形量传递装置如图4-6所示[align=center] [img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-6 绝对变形量传递装置示意图[/color][/align] 绝对变形量传递装置的核心是将两个平面反射镜设法固定在试件的两个端面上,试件长度方向上的受热变形会使得平面反射镜同步线性位移。 此设计方案并未采用简陋的胶粘方式将两个平面反射镜固定在试件两个端面上,这是因为胶粘后的两个平面反射镜并不能保证相互的平行度,会给激光干涉测量带来很大误差,甚至无法进行测量。 新型绝对变形量传递的基本原理是采用弹簧机构把贴附在试件两端面上的平面反射镜拉紧固定,并采用调整机构使得两个平面反射镜相互平行,从而保证两个平面反射镜随着试件尺寸变化进行单向移动,将试件变形转换成平面反射镜的单向位移。 单端测试时采用一个平移机构,另一端平面镜固定不动。双端测试时采用两个平移机构。[color=#ff0000]4.2.4. 试样加热装置[/color] 根据技术指标要求,在大尺寸试件上要保证温度测量精度达到0.01℃和均匀性达到0.05℃,采用普通电加热和油浴加热方式都很难实现,且实现所需时间非常漫长。试样加热装置如图4-7所示。 采用分段闭合筒式加热结构,便于安装和卸载试样,并满足不同长度试件的加热需要。 加热套外部采用半导体热电器件进行温度控制,0.01℃超高精度温度控制,并通水冷却,最外部覆盖隔热材料。 加热桶壁上开小孔导入铂电阻温度传感器,并粘贴在试件上测试试件温度分布。[align=center] [img=,518,380]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-7 试件加热装置结构示意图[/color][/align][color=#ff0000]4.3. 测量系统[/color] 测量系统包括激光干涉仪测量装置、光路调整装置以及光学测量环境保障装置三部分。[color=#ff0000]4.3.1. 激光干涉仪测量装置[/color] 激光干涉仪测量装置是微位移测量的关键,在激光干涉仪选型中必须要满足以下三方面要求: (1)必须是外差式双频激光干涉仪,这样才能消除环境振动等因素对测量的影响,保证测试系统可以长时间连续运行而不受外界干扰,实现在普通实验室内的操作条件下进行微位移测量。 (2)激光干涉仪温度偏移小,否则很难实现高精度的微位移测量。 (3)外差式双频激光干涉仪抗偏移性能优良,就算测量光和参考光发射一定偏离造成干涉信号强度下降30%以上,照样可以进行测量。[color=#ff0000]4.3.2. 光路调整装置[/color] 在放入试件且抽真空后,整个光路将不能进行调整,再需调整还要充气并打开真空腔。 为了便于真空环境下的光路进一步精细调整,在真空腔内的相应位置上增加压电陶瓷驱动的微位移调节装置,从而保证起始温度下具有稳定的起始位置。[color=#ff0000]4.3.3. 激光干涉仪测量装置的密封和恒温[/color] 密封和恒温装置如图4-8所示。[align=center] [img=,467,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220047_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-8 光学系统密封和恒温结构示意图[/color][/align] 采用半导体热电控温装置对干涉仪恒温套进行恒温控制和测量,始终使干涉仪处于恒温状态避免收到环境温度的影响,减小激光干涉仪温度漂移。 激光器和干涉仪全部放置在密封箱内,通过专门进出气口对激光器通风冷却。[b][color=#ff0000]5. 结论[/color][/b] 太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案借鉴了国内外的成功经验,整个测试系统的硬件设计充分考虑了各个测量不确定度分量对应的工程内容,提出了切实可行的解决方案。 整个测试系统设计考虑了测量的准确性、可靠性、操作便利性和可扩展性,整个实施方案的技术成熟度较高、工程实现性强。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • D8的平行光

    我刚接了一台bruker的D8 Advance A25, 有聚焦光和平行光两种功能,现在用的是聚焦光做常规测试,我想换平行光做掠入射,看说明书需要换样品台,换样品台、再对光是件非常麻烦的事情,能否不换样品台?做完掠入射后能否用平行光继续做常规测试?以前老的D8加了Gobel镜后就直接是平行光了,为什么做常规测试要用聚焦光呢?

  • 【分享】如何调整火焰灵敏度?

    问题:如何调整火焰灵敏度?火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的灵敏度同以下几个方面有关:1、灯电流2、火焰组成3、雾化效率4、燃烧器长度 回答:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(以下简称[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url])在使用一段时间后,会出现灵敏度下降的现象。这直接导致仪器的检出限升高,甚至超出检定规程要求,被判为不合格。以下就以火焰原子化[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例,分析一些低灵敏度现象的起因以及相应的对策。一、光路系统 1.空心阴极灯的位置是否最佳 空心阴极灯能辐射待测元素的共振线,并且具有足够的辐射强度,以保证有足够的信噪比。如果空心阴极灯位置有偏差,光能量会在光路上被损耗。进入到检测器的光信号会相应减弱,仪器测量灵敏度就会下降。所以每次换灯后,都应调节灯架位置,使仪器能量示值达到最大。 2.是否选择了最灵敏谱线 一种元素的空心阴极灯,其发射谱线往往有许多条。测量时应选择最灵敏的一条谱线使用。有的共振谱线相互距离比较近,例如锰灯在279 . 5nm ,279 . 8nm , 280 .1 nm处各有一条谱线,而279 . 5nm处的谱线是最灵敏的。如果仪器的波长示值存在一定的误差,不仔细加以分辨是很容易混淆的。 3.灯电流设置是否恰当 空心阴极灯的光强度与灯的电流有关。增大灯的工作电流,可以增加发射强度。但工作电流过大会产生放电不正常现象,使灯光强度不稳定。灯电流过低,又会使灯的光强度减弱,导致稳定性、信噪比下降。因此必须选择适当的灯电流。最适宜的灯电流随阴极元素和灯的设计而不同。实际操作中常选择额定最大电流的1/30 4.处于燃烧器右端的光窗上的透光玻璃是否洁净 燃烧器右端正对的光窗仁的玻璃,其密封较好,可使仪器色散系统不受外界环境影响,保持良好的光学性能。同时,它要有最好的透光性,使光信号最大程度地通过,进人色散系统和检测器。长时间露置使光窗表面落灰,而且受燃烧头喷出的高温微粒沾污或腐蚀,其透光性会大受影响。因此需要及时清理。二、雾化系统 1.进样毛细管是否有堵塞 毛细管的作用是吸入试样溶液。如果进样毛细管被污物堵塞,进样速度会大大降低,无法产生较强的信号。必须用细钢丝疏通,或者更换新的毛细管。 2.压缩空气的压力是否太低 压缩空气不仅作为助燃气参与燃烧,同时使毛细管口产生负压吸人样品溶液。压缩空气的压力下降,会导致毛细管吸样口负压不足,减慢吸样速度。为此应检查空压机输出压力值是否太低,空气管路有无漏气现象,空气流量设置是否太小。 3.排废液管中是否有水封 如果排废液管中没有水封或者水封不严,排液管会与外界大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,雾化室中的负压会降低,同样会减慢吸样速度,甚至不吸样。 4.燃烧器是否沾了过多的固体污染物 燃烧器使用一段时间后,会沾上一些固体物,包括一些积炭和溶液中的无机盐。这些物质的存在会严重影响火焰的性质,出现锯齿形火焰,火焰不稳定,火焰不均匀等现象。同时会增大信号噪声,导致测量结果不稳定。因此需要及时清理。 5.撞击球 撞击球是一个表面光滑的圆球,处于雾化器内部,位置正对着进样毛细管。当溶液被高速吸人雾化器时,与正对的撞击球强烈撞击,分散成雾状。如果撞击球粘上了污染物或者受溶液腐蚀而表面变粗糙,会大大地降低雾化效率。因此,必要时可更换新的撞击球。三、光路系统与雾化系统的结合吸光度的产生,是光源发出的特征谱线被基态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]所致。基态原子数量越多,吸光度越大。当光源线通过燃烧器时,应当让光源线完全地、平行地通过火焰(即原子化层),才能产生足够强的吸收信号,测量灵敏度也会较高。因此要检查并调整燃烧器的高度和方向。 可见,影响[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测量灵敏度的因素较多。如果能及时发现和解决问题,可减少误判,使检定结果更准确。

  • 【讨论】数据不平行与石墨管的关系

    在使用石墨炉进行重金属分析时,特别是使用湿法消解的样品,有时候数据很不平行,遇到这样的情况我一般更换新的石墨管,不平行的现象就解决了,个人认为可能是石墨管老化对样品分析具有不小的影响,不知道各位同仁有没有遇到这样的问题,是不是还有其他因素的影响?

  • 【求助】我的721分光光度计从出光口出来的光线不是平行光

    我发现我的721分光光度计从出光口出来的光不是一束平行光,具体情况是,波长调到任意可见光段,用一块白纸挡在出光口上,可以看到一个长方形光斑,然后慢慢沿着光线方向移动白纸,发现光斑越来越窄,直到变成一条2毫米左右的亮线(竖直的),高度与出光口光斑高度相同,然后继续移动白纸直到接收光的窗口,光斑又慢慢变成长方形,这明显不是平行光嘛。这似乎与分光光度计原理不符,不知道这是仪器正常情况还是出现了质量问题?我曾经咨询厂家(上海宇隆仪器),他们说光线平不平行与检测结果没有关系,只要出厂检验合格就不会有问题,拒绝讨论有关原理问题。不知道谁能解释我这个疑问。[em0702]

  • 玻璃透光率在线检测系统在生产线的应用

    玻璃透光率在线检测系统在生产线的应用

    玻璃透光率在线检测仪,用于连续生产的浮板玻璃、镀膜玻璃、压花玻璃、玻璃钢瓦等透明、半透明平行平面物体的可见光透射率测试。主要用于各类玻璃生产线上,在生产过程中需要连续监控透光率指标的场合。该系统主要有如下的三部分组成:1.探测系统,主要包括平行光源,接收器和支架。2.现场显示系统,显示实时的各个测试点的透光率测试值。3.电脑实时监控采集系统(选配)特点:1.可根据客户的需求,在生产线上横向设置3,6,9,12路测量通道。2.采用光源的平行光路及接收器聚光设计,使之能够测量大厚度材料。3.操作简单、实用;系统稳定可靠,可连续长期运行。4.通讯功能,测量数据可连接电脑。电脑监控采集系统可以长期记录并分析生产状况,通过计算机系统的运算,可得出该片玻璃的透光率平均值、最大最小值及透光率偏差值,也可以考察一段时期内生产线上玻璃的透光率变化情况。主要技术参数:1.分辨率:0.1% ;2.测量范围0--100%3.测量精度:优于±2%(无色均匀透光物质);4.测试波长:380nm-760nm ;5.输入电源电压AC220Vhttp://ng1.17img.cn/bbsfiles/images/2011/12/201112301406_342824_1619730_3.jpg

  • 平行样移液管每次过火吗?

    在做菌落总数里,做平行试验的时候,移液管每次都需要过火的吗?如果过火的目的是为了灭菌,如果温度不够,达不到目的。如果温度够了,那移液管的高温会不会杀死样液中的细菌,特别是稀释100倍1000倍的时候。哪个大神来帮忙解答下,疑惑好多天了。

  • 【转帖】如何调整原子吸收灵敏度

    如何调整[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]灵敏度:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(以下简称[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url])在使用一段时间后,会出现灵敏度下降的现象。这直接导致仪器的检出限升高,甚至超出检定规程要求,被判为不合格。以下就以火焰原子化[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例,分析一些低灵敏度现象的起因以及相应的对策。一、光路系统 1.空心阴极灯的位置是否最佳 空心阴极灯能辐射待测元素的共振线,并且具有足够的辐射强度,以保证有足够的信噪比。如果空心阴极灯位置有偏差,光能量会在光路上被损耗。进入到检测器的光信号会相应减弱,仪器测量灵敏度就会下降。所以每次换灯后,都应调节灯架位置,使仪器能量示值达到最大。 2.是否选择了最灵敏谱线 一种元素的空心阴极灯,其发射谱线往往有许多条。测量时应选择最灵敏的一条谱线使用。有的共振谱线相互距离比较近,例如锰灯在279 . 5nm ,279 . 8nm , 280 .1 nm处各有一条谱线,而279 . 5nm处的谱线是最灵敏的。如果仪器的波长示值存在一定的误差,不仔细加以分辨是很容易混淆的。 3.灯电流设置是否恰当 空心阴极灯的光强度与灯的电流有关。增大灯的工作电流,可以增加发射强度。但工作电流过大会产生放电不正常现象,使灯光强度不稳定。灯电流过低,又会使灯的光强度减弱,导致稳定性、信噪比下降。因此必须选择适当的灯电流。最适宜的灯电流随阴极元素和灯的设计而不同。实际操作中常选择额定最大电流的1/30 4.处于燃烧器右端的光窗上的透光玻璃是否洁净 燃烧器右端正对的光窗仁的玻璃,其密封较好,可使仪器色散系统不受外界环境影响,保持良好的光学性能。同时,它要有最好的透光性,使光信号最大程度地通过,进人色散系统和检测器。长时间露置使光窗表面落灰,而且受燃烧头喷出的高温微粒沾污或腐蚀,其透光性会大受影响。因此需要及时清理。二、雾化系统 1.进样毛细管是否有堵塞 毛细管的作用是吸入试样溶液。如果进样毛细管被污物堵塞,进样速度会大大降低,无法产生较强的信号。必须用细钢丝疏通,或者更换新的毛细管。 2.压缩空气的压力是否太低 压缩空气不仅作为助燃气参与燃烧,同时使毛细管口产生负压吸人样品溶液。压缩空气的压力下降,会导致毛细管吸样口负压不足,减慢吸样速度。为此应检查空压机输出压力值是否太低,空气管路有无漏气现象,空气流量设置是否太小。 3.排废液管中是否有水封 如果排废液管中没有水封或者水封不严,排液管会与外界大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,雾化室中的负压会降低,同样会减慢吸样速度,甚至不吸样。 4.燃烧器是否沾了过多的固体污染物 燃烧器使用一段时间后,会沾上一些固体物,包括一些积炭和溶液中的无机盐。这些物质的存在会严重影响火焰的性质,出现锯齿形火焰,火焰不稳定,火焰不均匀等现象。同时会增大信号噪声,导致测量结果不稳定。因此需要及时清理。 5.撞击球 撞击球是一个表面光滑的圆球,处于雾化器内部,位置正对着进样毛细管。当溶液被高速吸人雾化器时,与正对的撞击球强烈撞击,分散成雾状。如果撞击球粘上了污染物或者受溶液腐蚀而表面变粗糙,会大大地降低雾化效率。因此,必要时可更换新的撞击球。三、光路系统与雾化系统的结合吸光度的产生,是光源发出的特征谱线被基态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]所致。基态原子数量越多,吸光度越大。当光源线通过燃烧器时,应当让光源线完全地、平行地通过火焰(即原子化层),才能产生足够强的吸收信号,测量灵敏度也会较高。因此要检查并调整燃烧器的高度和方向。 可见,影响[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测量灵敏度的因素较多。如果能及时发现和解决问题,可减少误判,使检定结果更准确。

  • 【公告】论坛勋章系统调整通知

    [center]论坛勋章系统调整通知[/center]社区勋章系统从今日开始调整为,在iLog中显示全部勋章,论坛帖子中只显示优秀版主、版友、技术活动和部分新颁发的娱乐性活动勋章。[URL=http://www.instrument.com.cn/bbs/shtml/20071127/1072776/]论坛勋章列表[/URL]

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。 图1 系统结构图3、 系统设计3.1 在线取样系统http://ng1.17img.cn/bbsfiles/images/2015/12/201512100948_577152_3049057_3.jpg从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577153_3049057_3.jpg 图2 通讯结构图4、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577157_3049057_3.jpg图3 现场安装图如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577155_3049057_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577156_3049057_3.jpg图7 粒度分布图图8 粒度数据监控图5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809294799_01_3049057_3.jpg 图1 系统结构图1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809315868_01_3049057_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809324531_01_3049057_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571202_3049057_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571203_3049057_3.png5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2015/12/201512021531_576005_3050076_3.jpg1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512021533_576006_3050076_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512021534_576007_3050076_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据

  • 动力电池一体化测试系统怎么判别调整

    动力电池一体化测试系统在国内新能源汽车电池测试中常见设备,无锡冠亚动力电池一体化测试系统在使用的时候需要注意其调整以及注意如何判断调整。  利用过热度来判断动力电池一体化测试系统开度是否合适,用测温计测出回气管的温度与蒸发温度对比差值(即实际过热度)与标准过热度(5-8℃之间)校核来判断调节大小是否恰当。利用压缩机的吸气压力作为蒸发器内的饱和压力,查表得到近似蒸发温度。  用测温计测出回气管的温度,与蒸发温度对比是否在正常范围5-8℃之间。必须同时读取吸气压力值和回气管温度,否则造成计算出的实际过热度不准确。  如果感到过热度太小,则可把调节螺杆按顺时针方向转动(即增大弹簧力,减小热力膨胀阀开启度),使流量减小;反之,若感到过热度太大,即供液不足,则可把调节螺杆朝相反方向(逆时针)转动,使流量增大。由于实际工作中的热力膨胀阀感温系统存在着一定的热惰性,形成信号传递滞后,运行基本稳定后方可进行下一次调整。  通过动力电池一体化测试系统热力膨胀阀结霜的形状变化来判断调节大小是否恰当,若膨胀阀体全部结霜,表明流量过小大,应调大;如调大时结霜形状没有变化,则可能膨胀阀节流孔被部分堵塞应清洗;若膨胀阀体只有出口侧结霜,表明流量过大,应调小;  若膨胀阀体出口侧及下部呈45℃斜状结霜,入口侧不应结霜,表明调节准确合适;若膨胀阀体只有入口侧结霜,表明阀体入口处过滤网部分被堵塞应清洗;若膨胀阀体完全无霜,表明无流量,可能制冷剂漏完或管路中截止阀没打开或膨胀阀感温探头毛细管漏气或膨胀阀节流孔被堵塞或阀体入口处过滤网部分被堵塞应清洗。  通过动力电池一体化测试系统压缩机吸气管处结霜的形状变化来判断调节大小是否恰当,若白霜结到吸气截止阀处,表明流量过大,应调小;若白霜结不到吸气管,表明流量过小,应调大。另外通过低压侧压力值的大小来判断调节大小是否恰当;蒸发器盘管结霜的均匀完整状况来判断调节大小是否恰当;正常情况下,膨胀阀工作时是很幽静的,如果发出较明显的丝丝声,说明系统中制冷剂不足,在调节时千万不可采取大起大落的快速调节,使制冷系统不稳定运行而掌握不好调节的功效。  动力电池一体化测试系统的选择除了上述的这些,还要需要有相应的售后服务为动力电池一体化测试系统的运行提供技术保障。

  • 【分享】直读光谱仪的色散系统

    直读光谱仪的色散系统色散系统的作用:将各种波长的复合光按波长顺序区分开来。光栅色散原理 光栅是在一个光学平面或凹面上的许多等距等宽相互平行的狭缝(或刻槽),如果光线通过这些狭缝产生衍射和干涉现象,这一类光栅称为透射光栅;如果光线从一个镀有金属的光学表面的刻槽上反射产生衍射和干涉现象,这一类光栅成为反射光栅。在直读光谱仪中用的光栅均属反射光栅。 光栅的种类按光栅刻制的方式不同:可划分机刻光栅和全息光栅按光学平面的形状不同:可划分为平面光栅和凹面光栅

  • 近红外光谱仪器的傅里叶型分光系统

    [font=宋体][font=Times New Roman]20[/font][font=宋体]世纪[/font][font=Times New Roman]70[/font][font=宋体]年代傅里叶变换技术在中红外光谱仪器上的应用使其性能得到革命性的改变。进入[/font][font=Times New Roman]80[/font][font=宋体]年代该类型的仪器已成为中红外光谱仪器的主导产品。借助于研制中红外光谱仪器的基础,通过调整光源、分束器和检测器,傅里叶变换型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器应运而生。[/font][/font][font=宋体][font=宋体]傅里叶变换型光谱仪的核心部件是干涉仪,迈克耳逊干涉仪结构如图[/font][font=Times New Roman]2-6[/font][font=宋体]所示,由移动反射镜、固定反射镜和分束器组成。其中动镜和定镜为两块相互垂直的镜面。光源发出的光经准直成为平行光,按[/font][font=Times New Roman]45[/font][font=宋体]°角入射到分束器上,其中一半强度的光被分束器反射,射向固定反射镜,另一半强度的光透过分束器射向移动反射镜。射向固定反射镜和移动反射镜的光经反射后实际上又会合到一起,此时已成为具有干涉光特性的相干光,当移动反射镜运动时,就能得到不同光程差的干涉光强。当峰峰值同相位时,光强被加强;当峰谷值同相位时,光强被抵消,在相长和相消干涉之间是部分的相长相消干涉。对于一个纯单色光,在移动反射镜连续运动中将得到强度不断变化的余弦干涉波,所以检测器检测到的是样本的干涉图,每个时刻都可得到分析光中全部波长的信息。由计算机采集此干涉图,样本干涉图函数经傅里叶变换后与空白时光源的强度按频率分布的比值即可得到样本的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图。[/font][/font][font=宋体][font=宋体]由于计算机只能对数字化的干涉图进行傅里叶变换,因此需要对其进行等间隔离散取点采样。目前,傅里叶型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]大都依靠激光协助完成,通常使用波长为[/font][font=Times New Roman]632.8nm[/font][font=宋体]的[/font][font=Times New Roman]He-Ne[/font][font=宋体]激光器。当激光通过干涉仪时,被调制成一个余弦曲线状态的干涉图,由光敏二极管进行检测。测样时,用该余弦干涉图监测测量的全过程,每当余弦波过零点时,即可触发对样本进行采样,从而获得数字化样本干涉图。此外,激光干涉图还用来监控移动反射镜的移动速度和决定移动反射镜的移动距离。以上可见,传统迈克耳逊干涉仪对光的调制是靠镜面的机械扫描运动来实现的,这决定了仪器的扫描速度不能很快。傅里叶型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]如要达到比较高的光谱分辨率,则要求加大动镜移动距离,这样会使系统比较庞大。同时它对机械扫描系统的加工、装配等精度提出更高要求。[/font][/font][img=,272,269,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251648454914_9241_4070220_3.png!w272x269.jpg[/img][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2-6 [/font][font=宋体]迈克尔逊干涉仪分光系统示意图[/font][/font][/align][font=宋体]为了提高干涉仪系统的稳定性、可靠性,降低加工和装配精度以及缩小系统体积,国际各大知名仪器制造商对经典的迈克耳孙干涉仪进行了各种改进。一方面是针对系统的抗振性能,提岀了用[/font][font=Times New Roman]60[/font][font=宋体]°或[/font][font=Times New Roman]90[/font]°角镜、猫眼反射器来代替平面反射镜、固定反射镜动态调整技术;或者在机械扫描运动系统中,釆用气浮导轨、磁浮轴承、面弹簧支撑等,以减小摩擦。另一方面,由于移动反射镜机械扫描的本质是为了改变两条光路之间的光程差,因此,也相应地提出了[font=宋体]许多改变光程差的方案,如扫描分光镜结构、钟摆结构、旋转角镜或平板介质结构、插入光楔结构、转动平面镜组结构等。例如布鲁克开发了三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了仪器的抗振能力和重复性。[/font][font='Times New Roman'][font=宋体]法布里[/font]-[font=宋体]珀罗干涉仪[/font][font=Times New Roman](Fabry-Perot interferometer[/font][/font][font=宋体],[/font][font='Times New Roman']FPI)[/font][font=宋体]:是利用多光束干涉原理产生十分细锐条纹的仪器。[/font][font='Times New Roman'][font=宋体]由上下两个镜[/font][/font][font=宋体]片[/font][font='Times New Roman'][font=宋体]夹一个介质层[/font]([font=宋体]谐振腔[/font][font=Times New Roman])[/font][font=宋体]构成[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]如图[/font][/font][font=宋体][font=Times New Roman]2-7[/font][/font][font='Times New Roman'][font=宋体]所[/font][/font][font=宋体]示。不同的介质层厚度[/font][font='Times New Roman']([font=宋体]即不同腔长[/font][font=Times New Roman])[/font][font=宋体]对不同波长的光具有选择透过性,[/font][/font][font=宋体]这[/font][font='Times New Roman'][font=宋体]相当于一个滤光片[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]使得入[/font][/font][font=宋体]射[/font][font='Times New Roman'][font=宋体]的多色光被分成几个更窄的波长带。[/font][/font][font=宋体]一般由两块相互平行的平面玻璃或石英板[/font][i][font='Times New Roman']P[/font][/i][font='Times New Roman']1[/font][font=宋体]和[/font][i][font='Times New Roman']P[/font][/i][font='Times New Roman']2[/font][font=宋体][font=宋体]组成,两板的内表面镀一层高反膜。为了获得细锐的条纹,两反射面的平面度达[/font][font=Times New Roman]1/20~1/100[/font][font=宋体]波长。两表面还应保持平行,以构成产生多光束干涉的平行板。干涉仪的两块玻璃板通常做成有一个楔角([/font][font=Times New Roman]1[/font][/font][font='Times New Roman']’~10’[/font][font=宋体]),以避免未涂层表面反射光的干扰。如果[/font][i][font='Times New Roman']P[/font][/i][font=宋体][font=Times New Roman]1[/font][font=宋体]、[/font][/font][i][font='Times New Roman']P[/font][/i][font=宋体][font=Times New Roman]2[/font][font=宋体]之间的光程[/font][/font][i][font='Times New Roman']d[/font][/i][font=宋体][font=宋体]可以调节,则是通常所谈到的法布里[/font][font=宋体]—珀罗干涉仪,如果[/font][/font][i][font='Times New Roman']P[/font][/i][font=宋体][font=Times New Roman]1[/font][font=宋体]、[/font][/font][i][font='Times New Roman']P[/font][/i][font=宋体][font=Times New Roman]2[/font][font=宋体]间放一个空心圆柱形的间隔器,则二者之间的距离固定不变,这样的装置称为法布里—珀罗标准具。在光谱学中法布里[/font][font=Times New Roman]-[/font][font=宋体]珀罗干涉仪常用作光谱线的超精细结构研究。[font=宋体]傅里叶型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的特点是光谱扫描范围宽、波长精度髙、分辨率可调、信噪比高。这类仪器的弱点是干涉仪中有可移动部件,对仪器的使用环境有一定要求,且价格较高,目前国内市场上主要是以进口的傅里叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪见多。虽然各单位提供的傅里叶近红外分析仪干涉仪型式不同,但其仪器基本性相差不多。[/font][img=,489,203]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251648523075_1840_4070220_3.png!w489x203.jpg[/img][font=宋体][/font][/font][/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2-7[/font][font=宋体]法布里[/font][font=Times New Roman]-[/font][font=宋体]珀罗干涉仪示意图[/font][/font][/align]

  • 湖北省人民政府办公厅关于印发北省2023年生态环境分区管控更新调整工作实施方案的通知

    各市、州、直管市及神农架林区人民政府,省政府有关部门:《湖北省2023年生态环境分区管控更新调整工作实施方案》已经省人民政府同意,现印发给你们,请认真抓好贯彻落实。[align=right]湖北省人民政府办公厅[/align][align=right]2023年4月28日[/align][align=center]湖北省2023年生态环境分区管控更新调整工作实施方案[/align]实施生态环境分区管控,是深入践行习近平生态文明思想的重要举措,是落实流域综合治理行动的重要内容。为认真落实省委、省政府《湖北省流域综合治理和统筹发展规划纲要》和生态环境部《2023年生态环境分区管控成果动态更新工作方案》要求,扎实做好全省生态环境分区管控工作,制定本实施方案。一、总体要求(一)指导思想。深入贯彻党的二十大精神,落实省第十二次党代会部署要求,统筹推进《湖北省流域综合治理和统筹发展规划纲要》落地落实,加强生态环境分区管控与国土空间规划衔接,从生态系统整体性和流域系统性出发,强化系统治理、综合治理、源头治理,开展生态环境分区管控更新调整工作,建立健全全域覆盖、分类管理的生态环境分区管控体系,筑牢生态优先、绿色发展的底线,为建设全国构建新发展格局先行区奠定坚实的生态环境支撑。(二)工作目标。到2023年底,全省生态环境分区管控更新调整工作全部完成,数据共享与应用系统服务功能基本完善,在重大战略决策制定、规划编制、产业布局优化和结构调整、资源开发、城镇建设、重大项目选址、生态环境管理等领域的实施应用机制基本建立。(三)基本原则。坚守底线,保障安全。更新调整以生态功能不降低、环境质量不下降、资源环境承载能力不突破为底线。原则上优先保护单元的空间格局保持基本稳定,重点管控单元的空间格局与环境治理格局相匹配,生态环境准入清单管理要求保持一定的延续性。省市协同,共建共享。按照省级统筹、上下联动、部门协同的原则,高效推进生态环境分区管控更新调整工作。省直部门和地方政府依责提供更新工作所需的数据资料。更新成果发布后,依托信息化平台,实现数据统一、信息共享。分级分类,提升效能。充分衔接国家、省、市重大发展战略、规划,落实生态保护红线、环境质量底线和资源利用上线的最新要求,分区分类动态更新生态环境分区管控方案相关成果,提升成果时效性和针对性。二、重点任务重点围绕落实《湖北省流域综合治理和统筹发展规划纲要》《湖北省国土空间规划(2021-2035年)》《湖北省生态环境保护“十四五”规划》,衔接最新法律法规和相关政策、规划,按照《生态环境分区管控动态更新技术要点(试行)》,更新调整生态环境分区管控成果,更新内容如下。(一)生态空间更新调整。依据国土空间规划和“三区三线”划定成果,更新生态保护红线。依据生态保护红线外的饮用水水源保护区等各类法定保护地变化情况,以及国土空间规划分区与用途管制、生态保护和修复规划等,科学论证、合理更新一般生态空间。(二)环境质量底线更新调整。以流域综合治理管理分区为基础,衔接国土空间开发强度、经济社会发展规划,对环境要素管控分区进行划定调整。依据省、市“十四五”环境质量目标,更新分区域分阶段的环境质量底线目标,明确管控要求。(三)资源利用上线更新调整。依据省、市“十四五”能源资源管理目标和要求,对生态环境分区管控中涉及的资源利用上线目标及管控要求进行联动更新。(四)生态环境管控单元更新调整。基于生态保护红线与一般生态空间、水环境管控分区、大气环境管控分区、土壤环境风险管控分区、资源管控分区等更新结果,对生态环境管控单元进行相应更新。(五)生态准入清单更新调整。依据产业准入及生态环境管理相关的法律法规、政策规划文件等新增、修订、废止情况,依法依规联动更新生态环境准入清单。三、工作计划(一)印发工作方案。按照《湖北省流域综合治理和统筹发展规划纲要》《2023年生态环境分区管控成果动态更新工作方案》要求,结合实际,印发生态环境分区管控成果更新调整工作方案,开展更新调整技术培训。(二)共享共用基础数据资料。系统收集重大发展战略及发展规划、国土空间规划、生态环境质量状况和保护目标、自然保护地、行政区划及产业园区边界等成果报告及矢量数据。(三)前期应用评估与衔接分析。开展生态环境分区管控落地应用评估,系统梳理落地应用中发现的问题、制约因素。衔接流域综合治理、国土空间规划等工作成果,明确更新调整的重点方向和区域,编制形成更新评估报告。(四)更新调整生态环境管控分区。依据国土空间规划和“三区三线”划定成果,更新生态保护红线。衔接最新法律法规和相关政策、规划,依据饮用水水源保护区、自然保护区、湿地公园等各类法定保护地最新成果,更新调整一般生态空间及环境要素管控分区。依据区域资源开发利用结构、效率水平和空间布局等最新规划成果,更新调整资源利用管控分区。衔接各要素分区更新调整成果,更新生态环境管控单元。(五)更新调整生态环境准入清单。衔接流域综合治理规划管控要求,系统梳理法律法规、规划政策等颁布、修订、废止情况,依法依规联动更新生态环境准入清单。(六)意见征求与修改反馈。集成生态环境分区管控更新调整成果,征求意见,深入开展与国家对接、邻近省份对接、部门对接等工作,形成《湖北省2023年生态环境分区管控更新调整成果》(送审稿)。(七)数据审核与成果审议。开展成果数据自检与专家论证,报送生态环境部进行数据规范性审核。审核通过后,按相关程序送审。审议通过后,报送成果至生态环境部备案及赋码。(八)信息化建设与应用。完善湖北省生态环境分区管控信息化平台,利用返回数据,更新平台数据,探索与湖北省国土空间基础信息平台、湖北省投资和重大项目智慧应用平台等信息化平台互联互动,实现跨部门、跨层级共享共用。具体任务分工和时间节点要求详见附件。四、更新程序省生态环境厅负责联合省直部门做好落地应用评估、提出调整需求、收集基础资料、反馈修改意见等工作。省生态环境厅牵头编制省级生态环境分区管控成果更新调整情况说明,开展成果数据自检,报生态环境部进行数据规范性审核。审核通过后,按照相关程序报请省人民政府审议、报生态环境部备案,完成数据入库与更新。市(州)负责统筹协调本地相关部门组织制定本地生态环境分区管控更新调整工作方案、编制落地应用评估报告、提出调整需求清单,同时更新生态环境准入清单报省生态环境厅审查,由省生态环境厅统一报生态环境部进行数据规范性审核。审核通过后,按照相关程序由市(州)政府审议,报省生态环境厅备案。五、保障措施(一)加强组织领导。建立生态环境分区管控更新调整工作协调机制,由省政府分管领导同志担任协调小组组长,省政府相关副秘书长、省生态环境厅主要负责同志为副组长,发改、经信、民政、财政、自然资源、生态环境、住建、交通运输、水利、农业农村、能源、林业等省直部门分管负责同志为成员,不定期组织召开会议研究更新调整工作推进情况,协调解决推进过程中存在的问题和困难,审议更新调整成果。协调小组办公室设在省生态环境厅,承担协调小组日常工作,省生态环境厅分管负责同志兼任办公室主任。办公室成员(联络员)由协调小组成员单位有关处室负责同志担任。(二)落实各级责任。省直相关部门要按照职责分工做好数据信息共享、工作联动,在应用评估、调整需求、资料提供、意见反馈等方面加强衔接和指导。各市(州)要落实主体责任,加强组织领导,比照省级建立协调机制,制定工作方案,细化工作举措,明确时间节点和责任人,加强技术及经费保障,鼓励先行试点,狠抓任务落实。形成上下联动、协调配合、共同推进的工作格局,确保扎实高效完成更新调整工作。(三)加强技术支撑。组建省级更新调整专家技术组,各相关部门确定技术支撑单位及技术负责人,负责更新调整工作的技术支持和指导,规范更新调整成果的科学论证和审查工作,切实保障更新调整成果质量,为深入实施生态环境分区管控提供科学依据。附件:湖北省2023年生态环境分区管控更新调整重点工作任务清单[align=center][img=,800,559]http://yun2.foodvip.net/file/upload/202305/09/10052019302.png[/img][img=,550,389]http://yun2.foodvip.net/file/upload/202305/09/10053082302.png[/img][img=,550,386]http://yun2.foodvip.net/file/upload/202305/09/10053778302.png[/img][img=,550,247]http://yun2.foodvip.net/file/upload/202305/09/10054458302.png[/img][/align]

  • 如何调整原子吸收灵敏度

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(以下简称[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url])在使用一段时间后,会出现灵敏度下降的现象。这直接导致仪器的检出限升高,甚至超出检定规程要求,被判为不合格。以下就以火焰原子化[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例,分析一些低灵敏度现象的起因以及相应的对策。一、光路系统 1.空心阴极灯的位置是否最佳 空心阴极灯能辐射待测元素的共振线,并且具有足够的辐射强度,以保证有足够的信噪比。如果空心阴极灯位置有偏差,光能量会在光路上被损耗。进入到检测器的光信号会相应减弱,仪器测量灵敏度就会下降。所以每次换灯后,都应调节灯架位置,使仪器能量示值达到最大。 2.是否选择了最灵敏谱线 一种元素的空心阴极灯,其发射谱线往往有许多条。测量时应选择最灵敏的一条谱线使用。有的共振谱线相互距离比较近,例如锰灯在279 . 5nm ,279 . 8nm , 280 .1 nm处各有一条谱线,而279 . 5nm处的谱线是最灵敏的。如果仪器的波长示值存在一定的误差,不仔细加以分辨是很容易混淆的。 3.灯电流设置是否恰当 空心阴极灯的光强度与灯的电流有关。增大灯的工作电流,可以增加发射强度。但工作电流过大会产生放电不正常现象,使灯光强度不稳定。灯电流过低,又会使灯的光强度减弱,导致稳定性、信噪比下降。因此必须选择适当的灯电流。最适宜的灯电流随阴极元素和灯的设计而不同。实际操作中常选择额定最大电流的1/30 4.处于燃烧器右端的光窗上的透光玻璃是否洁净 燃烧器右端正对的光窗仁的玻璃,其密封较好,可使仪器色散系统不受外界环境影响,保持良好的光学性能。同时,它要有最好的透光性,使光信号最大程度地通过,进人色散系统和检测器。长时间露置使光窗表面落灰,而且受燃烧头喷出的高温微粒沾污或腐蚀,其透光性会大受影响。因此需要及时清理。二、雾化系统 1.进样毛细管是否有堵塞 毛细管的作用是吸入试样溶液。如果进样毛细管被污物堵塞,进样速度会大大降低,无法产生较强的信号。必须用细钢丝疏通,或者更换新的毛细管。 2.压缩空气的压力是否太低 压缩空气不仅作为助燃气参与燃烧,同时使毛细管口产生负压吸人样品溶液。压缩空气的压力下降,会导致毛细管吸样口负压不足,减慢吸样速度。为此应检查空压机输出压力值是否太低,空气管路有无漏气现象,空气流量设置是否太小。 3.排废液管中是否有水封 如果排废液管中没有水封或者水封不严,排液管会与外界大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,雾化室中的负压会降低,同样会减慢吸样速度,甚至不吸样。 4.燃烧器是否沾了过多的固体污染物 燃烧器使用一段时间后,会沾上一些固体物,包括一些积炭和溶液中的无机盐。这些物质的存在会严重影响火焰的性质,出现锯齿形火焰,火焰不稳定,火焰不均匀等现象。同时会增大信号噪声,导致测量结果不稳定。因此需要及时清理。 5.撞击球 撞击球是一个表面光滑的圆球,处于雾化器内部,位置正对着进样毛细管。当溶液被高速吸人雾化器时,与正对的撞击球强烈撞击,分散成雾状。如果撞击球粘上了污染物或者受溶液腐蚀而表面变粗糙,会大大地降低雾化效率。因此,必要时可更换新的撞击球。三、光路系统与雾化系统的结合吸光度的产生,是光源发出的特征谱线被基态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]所致。基态原子数量越多,吸光度越大。当光源线通过燃烧器时,应当让光源线完全地、平行地通过火焰(即原子化层),才能产生足够强的吸收信号,测量灵敏度也会较高。因此要检查并调整燃烧器的高度和方向。 可见,影响[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测量灵敏度的因素较多。如果能及时发现和解决问题,可减少误判,使检定结果更准确。

  • 【讨论】滴定管滴定,平行样之间允许的误差是多少

    [color=#d801e5][size=4]滴定管滴定,平行样之间允许的误差是多少?是不是不同的滴定管之间的允许误差是不一样的??例如滴定标定盐酸,用25ml滴定管,双人滴定,每人4个平行,误差允许是怎么规定的???[/size][/color]

  • 【分享】如何调整火焰原子吸收灵敏度

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(以下简称[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url])在使用一段时间后,会出现灵敏度下降的现象。这直接导致仪器的检出限升高,甚至超出检定规程要求,被判为不合格。以下就以火焰原子化[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例,分析一些低灵敏度现象的起因以及相应的对策。一、光路系统 1.空心阴极灯的位置是否最佳 空心阴极灯能辐射待测元素的共振线,并且具有足够的辐射强度,以保证有足够的信噪比。如果空心阴极灯位置有偏差,光能量会在光路上被损耗。进入到检测器的光信号会相应减弱,仪器测量灵敏度就会下降。所以每次换灯后,都应调节灯架位置,使仪器能量示值达到最大。 2.是否选择了最灵敏谱线 一种元素的空心阴极灯,其发射谱线往往有许多条。测量时应选择最灵敏的一条谱线使用。有的共振谱线相互距离比较近,例如锰灯在279 . 5nm ,279 . 8nm , 280 .1 nm处各有一条谱线,而279 . 5nm处的谱线是最灵敏的。如果仪器的波长示值存在一定的误差,不仔细加以分辨是很容易混淆的。 3.灯电流设置是否恰当 空心阴极灯的光强度与灯的电流有关。增大灯的工作电流,可以增加发射强度。但工作电流过大会产生放电不正常现象,使灯光强度不稳定。灯电流过低,又会使灯的光强度减弱,导致稳定性、信噪比下降。因此必须选择适当的灯电流。最适宜的灯电流随阴极元素和灯的设计而不同。实际操作中常选择额定最大电流的1/30 4.处于燃烧器右端的光窗上的透光玻璃是否洁净 燃烧器右端正对的光窗仁的玻璃,其密封较好,可使仪器色散系统不受外界环境影响,保持良好的光学性能。同时,它要有最好的透光性,使光信号最大程度地通过,进人色散系统和检测器。长时间露置使光窗表面落灰,而且受燃烧头喷出的高温微粒沾污或腐蚀,其透光性会大受影响。因此需要及时清理。二、雾化系统 1.进样毛细管是否有堵塞 毛细管的作用是吸入试样溶液。如果进样毛细管被污物堵塞,进样速度会大大降低,无法产生较强的信号。必须用细钢丝疏通,或者更换新的毛细管。 2.压缩空气的压力是否太低 压缩空气不仅作为助燃气参与燃烧,同时使毛细管口产生负压吸人样品溶液。压缩空气的压力下降,会导致毛细管吸样口负压不足,减慢吸样速度。为此应检查空压机输出压力值是否太低,空气管路有无漏气现象,空气流量设置是否太小。 3.排废液管中是否有水封 如果排废液管中没有水封或者水封不严,排液管会与外界大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,雾化室中的负压会降低,同样会减慢吸样速度,甚至不吸样。还会造成回火。 4.燃烧器是否沾了过多的固体污染物 燃烧器使用一段时间后,会沾上一些固体物,包括一些积炭和溶液中的无机盐。这些物质的存在会严重影响火焰的性质,出现锯齿形火焰,火焰不稳定,火焰不均匀等现象。同时会增大信号噪声,导致测量结果不稳定。因此需要及时清理。 5.撞击球 撞击球是一个表面光滑的圆球,处于雾化器内部,位置正对着进样毛细管。当溶液被高速吸人雾化器时,与正对的撞击球强烈撞击,分散成雾状。如果撞击球粘上了污染物或者受溶液腐蚀而表面变粗糙,会大大地降低雾化效率。因此,必要时可更换新的撞击球。三、光路系统与雾化系统的结合吸光度的产生,是光源发出的特征谱线被基态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]所致。基态原子数量越多,吸光度越大。当光源线通过燃烧器时,应当让光源线完全地、平行地通过火焰(即原子化层),才能产生足够强的吸收信号,测量灵敏度也会较高。因此要检查并调整燃烧器的高度和方向。 可见,影响[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测量灵敏度的因素较多。如果能及时发现和解决问题,可减少误判,使检定结果更准确。

  • 【资料】如何调整原子吸收灵敏度

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(以下简称[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url])在使用一段时间后,会出现灵敏度下降的现象。这直接导致仪器的检出限升高,甚至超出检定规程要求,被判为不合格。以下就以火焰原子化[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例,分析一些低灵敏度现象的起因以及相应的对策。一、光路系统 1.空心阴极灯的位置是否最佳 空心阴极灯能辐射待测元素的共振线,并且具有足够的辐射强度,以保证有足够的信噪比。如果空心阴极灯位置有偏差,光能量会在光路上被损耗。进入到检测器的光信号会相应减弱,仪器测量灵敏度就会下降。所以每次换灯后,都应调节灯架位置,使仪器能量示值达到最大。 2.是否选择了最灵敏谱线 一种元素的空心阴极灯,其发射谱线往往有许多条。测量时应选择最灵敏的一条谱线使用。有的共振谱线相互距离比较近,例如锰灯在279 . 5nm ,279 . 8nm , 280 .1 nm处各有一条谱线,而279 . 5nm处的谱线是最灵敏的。如果仪器的波长示值存在一定的误差,不仔细加以分辨是很容易混淆的。 3.灯电流设置是否恰当 空心阴极灯的光强度与灯的电流有关。增大灯的工作电流,可以增加发射强度。但工作电流过大会产生放电不正常现象,使灯光强度不稳定。灯电流过低,又会使灯的光强度减弱,导致稳定性、信噪比下降。因此必须选择适当的灯电流。最适宜的灯电流随阴极元素和灯的设计而不同。实际操作中常选择额定最大电流的1/30 4.处于燃烧器右端的光窗上的透光玻璃是否洁净 燃烧器右端正对的光窗仁的玻璃,其密封较好,可使仪器色散系统不受外界环境影响,保持良好的光学性能。同时,它要有最好的透光性,使光信号最大程度地通过,进人色散系统和检测器。长时间露置使光窗表面落灰,而且受燃烧头喷出的高温微粒沾污或腐蚀,其透光性会大受影响。因此需要及时清理。二、雾化系统 1.进样毛细管是否有堵塞 毛细管的作用是吸入试样溶液。如果进样毛细管被污物堵塞,进样速度会大大降低,无法产生较强的信号。必须用细钢丝疏通,或者更换新的毛细管。 2.压缩空气的压力是否太低 压缩空气不仅作为助燃气参与燃烧,同时使毛细管口产生负压吸人样品溶液。压缩空气的压力下降,会导致毛细管吸样口负压不足,减慢吸样速度。为此应检查空压机输出压力值是否太低,空气管路有无漏气现象,空气流量设置是否太小。 3.排废液管中是否有水封 如果排废液管中没有水封或者水封不严,排液管会与外界大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,雾化室中的负压会降低,同样会减慢吸样速度,甚至不吸样。 4.燃烧器是否沾了过多的固体污染物 燃烧器使用一段时间后,会沾上一些固体物,包括一些积炭和溶液中的无机盐。这些物质的存在会严重影响火焰的性质,出现锯齿形火焰,火焰不稳定,火焰不均匀等现象。同时会增大信号噪声,导致测量结果不稳定。因此需要及时清理。 5.撞击球 撞击球是一个表面光滑的圆球,处于雾化器内部,位置正对着进样毛细管。当溶液被高速吸人雾化器时,与正对的撞击球强烈撞击,分散成雾状。如果撞击球粘上了污染物或者受溶液腐蚀而表面变粗糙,会大大地降低雾化效率。因此,必要时可更换新的撞击球。三、光路系统与雾化系统的结合吸光度的产生,是光源发出的特征谱线被基态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]所致。基态原子数量越多,吸光度越大。当光源线通过燃烧器时,应当让光源线完全地、平行地通过火焰(即原子化层),才能产生足够强的吸收信号,测量灵敏度也会较高。因此要检查并调整燃烧器的高度和方向。 可见,影响[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测量灵敏度的因素较多。如果能及时发现和解决问题,可减少误判,使检定结果更准确。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制