当前位置: 仪器信息网 > 行业主题 > >

其林贝尔脱色摇床

仪器信息网其林贝尔脱色摇床专题为您提供2024年最新其林贝尔脱色摇床价格报价、厂家品牌的相关信息, 包括其林贝尔脱色摇床参数、型号等,不管是国产,还是进口品牌的其林贝尔脱色摇床您都可以在这里找到。 除此之外,仪器信息网还免费为您整合其林贝尔脱色摇床相关的耗材配件、试剂标物,还有其林贝尔脱色摇床相关的最新资讯、资料,以及其林贝尔脱色摇床相关的解决方案。

其林贝尔脱色摇床相关的资讯

  • GS-Smart小型自动凝胶染色仪与台式水平脱色摇床在CBB染色法中的应用对比
    GS-Smart小型自动凝胶染色仪与台式水平脱色摇床在CBB染色法中的应用对比 台式水平脱色摇床是生物学实验室常见的仪器设备,常用于普通凝胶电泳条带固定、考马斯亮蓝(CBB)染色脱色、硝酸银染色、蛋白质免疫印迹(Western Blot)、细胞培养和放射自显影等实验中。一般的台式水平脱色摇床主要是通过调节定幅载具的摆动频率,从而控制样品在溶液中的摆动快慢,这既是该仪器的基本工作原理,也是她在以上实验中主要发挥的作用。在普通考马斯亮蓝染色、脱色实验中,台式水平脱色摇床是科研工作者们经常会用到的设备。一般是设定工作池的摇摆频率后,先后加入CBB染色液、脱色液,使摇床工作池持续摇摆,再置入蛋白凝胶使其在摇摆的液体中充分浸润洗涤,从而实现染色脱色。但一般的台式水平脱色摇床除了工作池的摆动频率可调外,没有其他参数能设置,虽然某些型号摇床还增加了定时功能,但也无法设置自动完成复杂的步骤。因此,前期进液、换液和排液都需要实验人员手动操作,另外,染色、脱色时间也只能靠实验人员自己把握。再者,台式水平脱色摇床的工作池一般裸露在外,摇摆过程中,有可能溅出溢出CBB染色液、脱色液,还有可能挥发出有毒化合物。这样不仅容易造成污染,甚至可能产生安全隐患,进而危害实验人员的健康。相比之下,鼎昊源GS-Smart小型自动凝胶染色仪无论在功能上、设计上还是外观上均领先台式水平脱色摇床,例如:1.智能编程功能:GS-Smart内置3种标准的染色程序,可编程存储47个自定义程序,可以轻松实现进液、换液、出液、定时摇动和废液回收等步骤,无人值守,让实验全程自动完成,这将为那些还在使用传统台式水平脱色摇床做CBB染色脱色实验的科研工作者们节省大量时间精力。2.可封闭可定制的染色池:GS-Smart染色池可封闭,既能防止液体溅出溢出、阻隔挥发物质,还可选择并定制各种尺寸。有些科研工作者为实现&ldquo 快速&rdquo CBB染色脱色,习惯将CBB染色液或脱色液加热至沸腾然后进行染色脱色处理,而高温状态的液体会加速挥发甲醇乙酸等化合物,如果此时使用台式水平脱色摇床,无疑具有一定的安全隐患。3.机身与储液瓶一体化设计:该设计属于国际首创,与市场同类产品相比,减少了分散在外的瓶瓶罐罐,从而整机占地面积与普通台式水平脱色摇床相当。不仅节省了实验室空间,同时也美化了整体外观。 综上,在CBB染色脱色实验应用方面,鼎昊源GS-Smart小型自动凝胶染色仪无论在功能上、设计上还是外观上均全面领先于台式水平脱色摇床。事实上,GS-Smart从2013年春季推出之初,就定位成了一款为考马斯亮蓝染色脱色实验而生的仪器,她的最终使命是全面取代CBB染色脱色实验中的台式水平脱色摇床,从而让所有CBB染色脱色自动进行! 本文关键词:摇床,脱色摇床,水平脱色摇床
  • GS-Smart小型自动凝胶染色摇床在考马斯亮蓝染色实验中的应用
    GS-Smart小型自动凝胶染色摇床在考马斯亮蓝染色实验中的应用 考马斯亮蓝染色法(CBB染色法)是目前蛋白质染色实验中相当常用的方法,它既克服了氨基黑染色灵敏度不高的限制,号称目前灵敏度最高的蛋白质测定法之一,而又比硝酸银染色等其他方法更简便且更加容易操作,因而得到了广泛应用。考马斯亮蓝染色法的全实验过程有两个关键且耗时较长的步骤,分别是染色和脱色。通常,为了让蛋白凝胶能够充分的染色和脱色,一般会先后将CBB染色液、脱色液加入持续摇摆的脱色摇床工作池,再置入凝胶使其充分浸润洗涤,从而实现染色脱色。普通的脱色摇床除了工作池的摆动频率可以调节外,并没有其他参数可以设置,进液、换液和排液等步骤都必须由实验人员手动完成。而且启动后,由于工作池一般是持续不停的摆动,因而染色、脱色时间也只能靠实验人员自己把握。所以,普通考马斯亮蓝染色脱色实验一般都需要有实验人员值守。此外,为固定蛋白质和维持CBB在染色前的酸性环境,同时也为了去除前期电泳残留物质对染色的干扰,通常配置的CBB染色液或脱色液中有时会加入具有神经毒性的甲醇和强刺激性的乙酸,且配好的CBB染色液一般总体呈棕黑色(CBB R-250)。而普通脱色摇床的工作池完全敞开暴露,所以摆动过程中有可能溅出溢出CBB染色液、脱色液,还有可能挥发出有毒化合物。这样不仅容易造成污染,甚至可能产生安全隐患,进而危害实验人员的健康。鼎昊源GS-Smart小型自动凝胶染色摇床(又名自动凝胶染色仪)可以很好地解决以上普通考马斯亮蓝染色脱色实验所面临的问题,同时也能带来更多便利。首先,她的智能编程功能可以实现进液、换液、出液、定时摇动、废液回收的自动运行,全过程无需人员值守,从而真正全自动完成CBB染色脱色实验。其次,她配备了可封闭的染色池,能有效防止CBB染色液、脱色液溅出溢出,阻隔挥发物质,从而大大降低污染风险,保护实验人员的健康。染色池还有多款尺寸可选,甚至可以定制,从而尽可能多地满足不同科研工作者对考马斯亮蓝染色脱色实验的不同需求。第三,鼎昊源GS-Smart小型自动凝胶染色摇床操作起来也十分简单方便,只需&ldquo 加入溶液、置入凝胶、设置管路程序、点击运行&rdquo 四个简单的步骤,便可轻松搞定考马斯亮蓝染色、脱色的全过程,省时省力省心。另外,再值得一提的是,鼎昊源GS-Smart小型自动凝胶染色摇床还拥有国际外首创的机身与储液瓶一体化设计,与市场同类产品相比,减少了分散在外的瓶瓶罐罐,节省了实验室空间,同时也美化了整体外观。总体来看,鼎昊源GS-Smart小型自动凝胶染色摇床一款专为自动凝胶染色量身打造的仪器,非常适合考马斯亮蓝染色脱色实验。由她替代传统脱色摇床,势必掀起CBB染色脱色自动化的革命浪潮,将为广大科研工作者带来满意的实验结果和便捷愉悦的实验体验。 本文关键词:染色摇床,自动凝胶染色摇床,考马斯亮蓝染色,CBB染色
  • 逗点生物推出皮革脱色专用柱
    逗点生物推出皮革脱色专用柱对皮革样品进行脱色以便检测六价铬皮革鞣制工艺中常用的三价铬鞣剂硫酸铬,经氧化后形成具有致癌性的六价铬。国家标准中采用分光光度法测定皮革和毛皮中的六价铬含量。为避免色素对后续检测形成干扰,需使用合适的吸附剂对萃取液进行脱色处理。 皮革脱色专用柱经专门优化,帮助您快速而可靠地处理皮革样品,保护消费者健康。特点:专为皮革脱色而优化 回收率和重复性优于现有产品符合国标要求应用:检测皮革中六价铬含量相关标准:GB/T 22807-2008 皮革和毛皮 化学试验 六价铬含量的测定DIN EN ISO 17075 Leather - Chemical tests - Determination of chromium(VI) content (ISO 17075:2007)
  • 新春大促,这款摇床五年质保!
    不是每一款圆周摇床都有三偏心轴;不是每一款圆周摇床都有程序运行和参数调用功能;不是每一款圆周摇床都标配多功能托盘,可以直接安装各种夹具、试管架等;更不是每一款圆周摇床,都能给客户两年以上的质保,而奥豪斯全新上市的 Endeavor&trade 5000 轻负载圆周摇床,2024年为您提供:五年质保!!!(详情请关注奥豪斯微信公众号)哪家常春藤没台奥豪斯?多少欧美的生物企业选择奥豪斯实验室设备?就像我们的天平、水分仪、pH计、离心机和涡旋振荡器一样,百年历史的奥豪斯期待成为您持久可靠的合作伙伴。就像那台在Thorofare实验室里,已经连续摇了10年的摇床一样,我们期待品质和服务成为我们合作最坚实的基础。全新上市的 Endeavor&trade 5000 轻负载圆周摇床,包括三个型号:脱色摇床、微孔板摇床和高速圆周摇床,均配备三偏心轴平衡驱动系统和直流无刷电机,确保稳定、准确、长时间工作;过载保护和不平衡检测功能,确保实验安全。依托智能、更高效、更可靠的设计和品质,奥豪斯致力于打造又一爆款摇床。 Endeavor&trade 5000 轻负载圆周摇床采用多用途设计理念,标配多功能托盘,可直接安装烧瓶夹、弹力绳、橡胶防滑垫、粘垫、试管架等各种选配件,广泛适用于各种实验;同时支持扩容,提供丰富的实验选择。支持程序运行,通过旋钮可轻松编程,支持多达5个梯度、多至8组的程序存储,让复杂的问题简单化,实现无人值守、自动运行多梯度程序支持数据传输和远程控制,满足实验室数据管理及法规要求!支持参数调用,滚动存储最近5次不同的单步运行参数,选中可一键快速调用;已存储的多步骤实验程序,可通过Program菜单调用程序、节约宝贵时间。 更值得、更智能、更高效、更可靠的Endeavor&trade 5000 轻负载圆周摇床,可靠地为您服务每一天! 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 新品上市 | 奥豪斯Endeavor™ 5000 轻负载圆周摇床
    全新上市的 Endeavor&trade 5000 轻负载圆周摇床,包括三个型号:脱色摇床、微孔板摇床和高速圆周摇床,均配备三偏心轴平衡驱动系统和直流无刷电机,确保稳定、准确、长时间工作;过载保护和不平衡检测功能,确保实验安全。依托智能、更高效、更可靠的设计和品质,奥豪斯致力于打造又一爆款摇床。OHAUS更值得、更智能更高效、更可靠Endeavor&trade 5000 轻负载圆周摇床更值得!多用途设计理念,标配多功能托盘,可直接安装烧瓶夹、弹力绳、橡胶防滑垫、粘垫、试管架等各种选配件,广泛适用于各种实验;同时支持扩容,提供丰富的实验选择。更智能!支持程序运行,通过旋钮可轻松编程,支持多达5个梯度、多至8组的程序存储,让复杂的问题简单化,实现无人值守、自动运行多梯度程序;还支持数据传输和远程控制,满足实验室数据管理及法规要求!更高效!支持参数调用,滚动存储最近5次不同的单步运行参数,选中可一键快速调用;已存储的多步骤实验程序,可通过Program菜单调用程序、节约宝贵时间。更可靠!提供更稳定的三偏心轴平衡驱动机构,确保摇床在运行过程中平台上各位置的样品震荡的均一性,进而保障混匀效果;过载保护和不平衡检测,关注实验安全;直流无刷电机设计,机器长久耐用!更值得、更智能、更高效、更可靠的Endeavor&trade 5000 轻负载圆周摇床,可靠地为您服务每一天!奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 奥豪斯摇床选择,知道这五条就够了
    摇床是很多实验室必备设备之一,常见于化学合成、细胞培养和微生物学等应用中。对于实验室研究人员来说,了解购买实验室摇床时的注意事项至关重要,那么,哪些关键因素需要考虑呢?实验室摇床的应用或混匀方式是什么? 购买实验室摇床时首先要考虑的因素是它的应用类型。选择一款能为实际应用提供适当振荡和混合程度的摇床至关重要。圆周式摇床,例如:脱色摇床提供温和的圆周运动模式,适合哺乳动物细胞等生物样品。对于需要较高速度混合小体积样品,通常使用高速圆周摇床或微孔板摇床,这种摇床速度较快、圆周直径较小(3-4mm)。而对于需要混合较大体积样品时,速度较慢、圆周直径较大(20-50mm)的大负载圆周式摇床更为理想。往复式摇床搭配分液漏斗平台,是使用分液漏斗混合分离样品的理想选择。还可根据实验需求选择相关附件搭配摇床使用,如锥形瓶夹、试管架等。 2D摇摆摇床提供温和的2D摇摆运动模式,常用于生物和生化领域,如细胞培养和蛋白质纯化等。 3D波动摇床提供平滑、样品不易起泡的三维波动模式,适用于混合血液样本、印迹技术、凝胶染色、去渍以及杂交等领域应用。 培养摇床、冷冻恒温培养摇床 通常用于在37℃下培养细菌,或在16℃下进行蛋白质研究。 样品混匀使用何种容器和批次数量是多少 ? 第二个要考虑的因素是摇床的容量或一次可混匀的样品总数。研究人员在决定购买时需要考虑实验工作批量,是否需要小批量或大批量或提升批量。摇床占地面积和平台尺寸越大,可容纳的样品数量越多重量就越大。重要的是要根据常见的烧瓶尺寸(如50mL、250mL、500mL、1L或2L)选择平台容量。奥豪斯大负载摇床是大容量样品振荡的理想选择,共有8种型号,最大载重量从16公斤到68公斤不等。您需要温度控制吗?第三个要考虑的因素是混匀样品时的温度控制能力。大多数摇床都是"开放"型,样品暴露在室温下,而培养型摇床可以提供高于或低于室温的精确温度控制。常见的温度是 37 º C,但根据样品类型或实验方案的不同,培养环境的温度可能需要低于环境温度。对于需要恒温的样品,要选择在整个培养室内提供均匀温度的培养摇床。当对温度精确性有需求时,奥豪斯大负载圆周式培养摇床是非常值得的选择。通过强制空气或循环空气系统和温度校准功能,以此实现温度均匀性和精确性,适用于敏感应用。您需要在二氧化碳环境中使用摇床吗? 第四个要考虑的因素是摇床的耐用性和可靠性。实验室摇床是一项重大投资,因此必须选择信誉良好、生产的实验室设备性能优异的制造商生产的摇床。选用高质量材料制成的摇床能经受实验室使用的严格考验。所有奥豪斯开放式摇床都能经受冷藏室和相对湿度为80%,非冷凝的培养箱的考验。对于更极端的条件,如在相对湿度为 100% 的 CO₂ 培养箱中,奥豪斯极端环境摇床是首选型号。在如此极端的环境条件下,该极端环境摇床的独特结构可提供出色的速度控制、高精确性和强耐用性。安全性和便捷性重要吗? 第五个因素是摇床的安全性能和使用方便程度。奥豪斯摇床配备了过载保护、不平衡检测、声光报警和微处理器控制等安全功能。过载保护通过限制摇床的负载能力来防止设备故障或损坏。如果摇床运行不正常,需要调整或维修,不平衡检测功能会向用户发出警报。通过视听警报提示用户注意潜在的安全问题,如负载异常。最后,通过微处理器调节速度和振动强度,防止意外发生。有了这些安全功能,实验室摇床在科学研究中将是一款可靠的工具。实验室摇床的界面应该直观,并配备清晰明了的控制按钮和操作说明。此外,由于实验室摇床在研究环境中使用频繁,它们应易于清洁和维护。总之,选择合适的实验室摇床对实验室研究的成功至关重要。实验室研究人员应从应用类型、容器和容量、温度控制、二氧化碳环境以及易用性等多方面进行综合考量,并最终选择到符合实验需求并能产出可靠结果的摇床。摇一摇 特色实验室摇床摇床选择指南如何找到适合您应用的摇床!摇床选择基础知识市场上有太多的实验室摇床,要选择一款适合您工作流程的摇床可能会让您无从下手,但我们可以提供帮助!
  • 线上新品发布会:多款摇床、培养箱同步上市
    疫情限制了我们的出行,阻止不了我们创新、前进的脚步。Antylia旗下Cole-Parmer多款摇床、自然对流和强制对流培养箱全新上市,诚邀您和我们一起云聚会!5月18日10:00-11:30,直播间新品闪亮登场,惊喜享不停!01多款摇床全新/升级面世从微量离心管到培养皿、培养板到锥形烧瓶,几乎所有容器都可以使用摇床。摇床常见的振荡方式有3D运动、跷板运动、轨道式运动和往复运动,此外还有模拟手摇晃烧瓶产生的剧烈摇晃运动的腕式运动。其中3D运动比较轻柔,适合精细的细胞培养、染色和脱色;跷板运动可在样品中产生波浪运动,非常适合清洗;轨道运动可对样品提供涡旋作用,非常适合曝气;线性振动筛更具攻击性,使其非常适合萃取等应用;腕式烧瓶振荡摇床可将运动直接施加到样品容器上,而不是通过平台施加,将样品容器(通常是烧瓶)固定在颈部周围,并以枢转的方式摇动,模仿了用手摇晃烧瓶时会产生的剧烈摇晃动作,非常实用萃取。此次,Cole-Parmer共计10个型号摇床产品全新/升级面世,包括大/小型轨道式摇床、大型往复式摇床、3D式摇床、跷板摇床、微孔板振荡混合器摇床、腕式烧瓶振荡摇床等。摇床资料请至资料下载页查看。02自然对流和强制对流培养箱自然对流确保腔内温和、自然的空气热量循环;减少样品间的交叉污染;温和、自然的空气循环不会对培养造成压力,可以保证培养的一致性。强制对流保持腔内持续空气热量循环,以实现更有效的热量分布;由于持续的空气循环,加热速度更快,温度一致性更好。Cole-Parmer自然对流和强制对流培养箱,可以用于细胞培养、组织培养、生化研究、发酵研究、荧光显微镜用抗体和细胞、基因工程,通过保持有利的条件和稳定的环境,促进细胞和微生物培养物的生长。相较于一般的培养箱,Cole-Parmer自然对流和强制对流培养箱具有如下特性:自然对流独有特性自然热流的重力对流,确保腔室内温和、自然的空气循环,避免样品的潜在交叉污染容量:16L/35L/50L/115L/210L可选强制对流独有特性有效热分布的机械对流,确保更快的加热时间和更好的温度均匀性容量:16L/35L/50L/80L/160L/270L/ 420L可选420L具有双门和脚轮培养箱资料资料请至资料下载页查看。关于 AntyliaAbout usAntylia Scientific是生命科学领域的全球开拓者,多样化的产品涵盖了实验室仪器与耗材、试剂标准品、诊断和环境类产品等,致力于服务制药、医疗、科研院所、环境以及各类工业细分市场。前身为科尔帕默,我们拥有广受市场认可的知名品牌和产品组合,如环境采样和测试创新者EnvironmentalExpress;可追踪的实时监测和冷链储存专家Traceable;我们的标液和诊断测试专家SPEX和ZeptoMetrix ;以及我们的实验室通用仪器与耗材品牌Cole-Parmer。
  • 产品推荐 | 微孔板培养摇床,奥豪斯狂飙突进
    百年企业奥豪斯,一直以摇床品类齐全、功能完备而著称,其产品广泛应用于细胞培养、发酵、杂交、生物化学反应、酶或组织细胞的培养、脱色或者基本混匀操作等。想用户所想微孔板摇床作为奥豪斯摇床拳头品类之一,更是因其有颜能打和强大的应用支持而备受经销商和用户好评。实验无小事,称心奥豪斯!从过载保护、缓慢升速、防溢设计、警报器、高温警示到更宽的控温范围,再到各种离心管、试管、管型瓶和培养试管的兼容,奥豪斯每一步都想用户所想。今天小编带您了解三款奥豪斯“爆品”微孔板摇床01轻负载微孔板圆周式摇床SHLDMP03DG聚焦安全:过载保护、缓慢升速、防溢设计可承载多达4个微孔板,且支持深微孔板带声音提示的定时器02恒温微孔板培养圆周式摇床ISLDMPHDG/L聚焦安全:过载保护、缓慢升速、防溢设计、警报器提供合适的温度,并有高温警示提供遮光盖,保护光敏感型样品03冷冻恒温培养圆周式摇床ISICMBCDG聚焦安全:过载保护、缓慢升速、防溢设计、警报器、高温警示可以加热最 高至65℃,冷却至环境温度以下10°,支持温度校准标准支持微孔板,除此之外还可以选多种模块,以容纳各种离心管、试管、管型瓶和培养试管等“奥豪斯提供更多摇床供您选择提供控温和非控温的摇床,载重量覆盖从3.6kg到68kg,运动方式涉及有圆周式、往复式、2D摇摆和3D波动,提供大量选配件以适配多种离心管、锥形瓶、容量瓶等。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 紫色旋风追旧梦---- ZHICHENG寻找中国最古老的智城摇床
    ZHICHENG----创建于上世纪90年代国内研发制造恒温培养摇床的专业制造商,在过去的近二十年里,为我国生命科学领域提供了近十万台的各类摇床。不久前,ZHICHENG收到一条微信,一位十年前曾在上海瑞金医院某研究所工作的医学专家发来短信,他说,因工作关系他又来到该研究所,他突然惊奇地发现,2001年由他亲自订购的两台ZHICHENG牌摇床,在时过十五年后竟然还在正常运行,惊奇之下他拍下设备的照片发给了ZHICHENG公司。是啊,这可是远超报废年龄的记录啊! ZHICHENG人得知这一消息欣喜不已,大家还在议论,在我国无以计数的国家生物重点实验室内,在遍及各地的高校生命科学院、生物工程研究院内,在生化制药企业的研发室和生产车间内,还有多多少少这样的奇迹尚未被发现?因此,ZHICHENG公司决定在全国范围内开展“紫色旋风追旧梦,寻找智城老摇床“的活动。一、活动时间:2016年6月1日起至2016年7月31日止二、活动对象:仍在正常运行的十年以上智城摇床的拥有者三、参与方式:扫描智城官方微信二维码→关注“上海智城”→进入微信公众平台→在对话窗口上传以下信息:1、产品正面照、背部带铭牌照,产品型号;2、产品拥有者名称、固定电话;3、参与者姓名、手机联系信息。智城微信二维码四、活动规则:1. 凡是拥有智城10年以上摇床,并且仍然在使用的均可参加。符合条件的单位或个人请于2016年6月1日起在规定的时间段内,进入上海智城官方微信活动页面提交相关信息参与活动。2.具体参赛方式详见上海智城官方微信网站,也可咨询智城公司上海总部,电话:021-67190545或33658587-80233. 为示公允,本公司员工、签约代理商及经销商都不得参加本次活动,也不可通过其他方式变相参加本次活动。 4.凡是入选的每台摇床均可获得抽奖机会,且参与活动的个人均可获得精美礼品一份。5. 每个实验室可以提交多台10年以上依旧在正常使用的摇床产品信息,并可获得多个抽奖机会。五、抽奖时间:本活动于2016年8月8日进行幸运大抽奖。中奖名单将在ZHICHENG微信公众平台以及官方网站上公布。六、奖项设置:1、单位一等奖1名获奖者将无偿换取智城同型号紫色最新款摇床一台。2、单位二等奖2名赠送同型号摇床产品价值5000元的配件。3、单位三等奖3名赠送同型号摇床产品价值2000元的配件。4、单位参与奖入选的每台老摇床产品均可按最优惠的价格换购一台同型号产品。5、个人幸运奖抽出20名参与者,获赠家用厨房家电一台。6、个人鼓励奖参与者每人获赠智城精美小礼品一份。七、本活动最终解释权归上海智城公司所有。
  • “紫色旋风追旧梦,智城寻找老摇床” 活动评选结果公布
    由上海智城公司举办的为期两个月的紫色旋风活动,现已拉下帷幕,衷心的感谢广大客户积极踊跃的参加。智城在全国范围内寻找最古老的摇床,截止到7月31日,共收到23家单位用户,报送的35台目前仍在正常运行的十年以上的智城摇床参加此次活动。经过公司公开透明的评选,现将获奖结果公布如下:一、单位一、二、三等奖的获奖情况如下: 二、单位参与奖获奖单位23家,名单按照参与活动时间先后排序如下: 天津德丰食品有限公司 北京奥瑞金种业股份有限公司 天津农学院 中国科学技术大学 中国科学技术大学 四川省中医药科学院 江西师范大学生命科学学院 江西师范大学 北京同仁堂制药有限公司 华中农业大学生命科学技术学院 新疆农垦科学院 浙江工业大学 南昌大学 成都医学 南昌大学生命学院 江西科技师范大学 中国科学技术大学 天津科技大学 山东大学药学院免疫药物学研究所 中国科学院遗传所 天津商业大学 广西大学化学化工学院 四川大学华西医院消化外科研究室 以上入选单位均可按最优惠的价格换购一台同型号产品。 个人幸运奖所有参与活动的个人均可获赠由上海智城公司赠送的家用厨房小家电一台。个人幸运奖名单如下(排名不分先后):序号所属单位获奖人1天津德丰食品有限公司杨晰雅2北京奥瑞金种业股份有限公司 宋哲3天津农学院王玉4中国科学技术大学任艳敏5中山大学生命科学学院孙琪6天津理工大学秦松岩7天津理工大学张芹8四川省中医药科学院魏巍9江西师范大学生命科学学院张志斌10江西师范大学龙老师11北京同仁堂制药有限公司王老师12华中农业大学生命科学技术学院刘德芳13新疆农垦科学院李全胜 14浙江工业大学应优敏15浙江工业大学药学院王芳16南昌大学生命科学学院吴兰17成都医学院阳泰18南昌大学生命学院薛喜文19山东新时代药业有限公司赵利萍20江西科技师范大学朱立鑫21中国科学技术大学岳剑22天津科技大学郭学武23山东大学药学院免疫药物学研究所王东云24中国科学院遗传所杨崇林25瑞金医院黄秋花26天津商业大学杜刚27天津商业大学吴子健28广西大学化学化工学院马丽29四川大学华西医院消化外科研究室周斌恭喜以上获奖用户! 本活动最终解释权归上海智城公司所有。上海智城分析仪器制造有限公司2016年8月8日
  • 江西某单位批量采购28种仪器设备
    江西某单位投标,批量采购以下仪器设备,要求国产,能做的厂商请联系,具体清单如下:序号设备名称数量1紫外分光光度计12红外光谱13微量旋光仪14制冰机15Western blot仪26酸度计27多功能凝胶成像系统18水平电泳系统19荧光定量PCR仪110多功能酶标仪111旋涡混合器112其林贝尔磁力搅拌器113其林贝尔TS-8型转移摇床114其林贝尔TS-200型水平摇床115组织匀浆机116eppendorf微量加样器1017超低温冰箱118家用冰箱(单、双)219二氧化碳恒温培养箱120普通PCR121流式细胞仪122原子吸收分光光度计123气相色谱仪124ATP荧光检测仪125荧光分光光度计126组织芯片制作仪器127加样器628冰冻切片机1 联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • IKA 两款摇床荣获红点大奖--翻转式试管混匀器、滚轴摇床
    IKA "Trayster" 翻转式试管混匀器以及"Roller digital" 滚轴摇床获得红点大奖-2015产品设计奖. 两款产品均在去年上市。来自56个不同国家,1994个参赛单位,4928个入围产品共同角逐这一荣誉。这些产品由国际评委进行评选,评判基于产品的创新性、功能性、技术质量、人体工程学、耐用性、人文内涵、产品配套、功能简便性以及对环境的影响。 Trayster翻转式摇床转速范围在5-80rpm,运动方式为垂直旋转。因而,适用于温和高效地混匀生物样品如血液。最大50ml的粉末及液体样品在Eppendorf或Greiner管中也可以得到混匀。Trayster可最大装载3块不同的夹具同时转摇以适合各种应用。 Roller digital数显型滚轴摇床通过摇摆及滚动的运动方式, 用于温和地混匀试管中的样品。得益于转棍可轻易被取出,样品出现泼洒的时候亦可进行快速清洁。该滚轴摇床非常耐用,适用于长时间连续工作。一个特别之处在于具有侧板,可防止样品管从侧面滑落。IKA滚轴摇床具有“Roller 6”和“Roller 10”两种型号,每个型号均有基本型和数显型的版本。IKA 顶置式搅拌机欧洲之星40数显型、欧洲之星200控制型,T10基本型、T25数显型分散机,以及已获专利的批次研磨系统UTTD控制型,曾在2012年获得红点大奖。在2013年,LR1000实验室反应釜也获得这一殊荣。 关于红点大奖( www.red-dot.org)“红点奖”为举世公认的针对卓越设计的最具分量的奖项之一。从1955年,德国著名设计协会给国际上出色的产品设计颁以其出色的红点标记。该奖涵盖时尚以及消费电子界的设计,乃至汽车、家居用品以及家具。目前,生产厂家以及工业产品设计师可以在红点的31个类别中投放作品。 关于 IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板,恒温循环系统, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 298.7万!成都珂睿等中标江西省赣州市章贡区中医院医疗科研仪器项目
    一、项目编号:GZRL2021-ZG-G003-1(招标文件编号:GZRL2021-ZG-G003-1)二、项目名称:医疗科研仪器三、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 江西省翔嘉科技有限公司 液相色谱仪 成都珂睿 APUS 4套 253000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 江西纳拓科技有限公司 核酸片段分析仪 Bioptic Qsep100NGS 1套 352000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 3 南昌格云科技有限公司 荧光定量PCR仪 Life QuantS tudio3 2套 329000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 4 江西多奥科技有限公司 细胞计数仪 countstar IC 1000 5套 37750 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 5 赣州智晓贸易有限公司 全温恒温摇床 玛德特 YCL-170B 9张 19000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 6 南昌格云科技有限公司 荧光计等科研仪器设备 赛默飞、IKA等 Qubit 4.0、Smart2pure12UV/UF等 1批 519200 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 7 江西多奥科技有限公司 涡旋振荡器等科研仪器设备 其林贝尔、上海良平等 VORTEX-5、B-6002等 1批 86730
  • 奥豪斯培养摇床与混匀器全新上市及促销
    奥豪斯作为一家百年历史的仪器厂商,拥有多系列实验室设备产品。近日,奥豪斯隆重推出了生命科学实验室设备。在前两期微信中,小编已经为大家做了新产品的概览和部分产品的介绍。今天着重为大家探秘的是奥豪斯培养摇床和混匀器! 为什么说这些产品是走心的呢?一款好的产品,不仅仅是依托于品牌的价值,更多的是背后的研发工艺和产品独一无二的特点。奥豪斯给您带来走心产品,让您获得更多走心的体验,帮助您一站式获得最全的产品信息,保证您的应用需求。 进口电机,品质保证本次带来的培养摇床和混匀器均为美国制造、原装进口,大部分配备源自瑞士、德国、美国的高品质电机,其中圆周式摇床采用高端三偏心轴驱动电机,2D/3D摇床采用精准控制步进电机。 全球标准,精益求精全系列产品不仅是美国制造原装进口,而且都通过了严苛的CE、UL测试并经德国TUV认证。奥豪斯始终秉持“精益求精、臻于至善”的态度与理念,确保能为全球用户提供精致、可靠的用户体验。 明星产品,所向无敌 2D/3D 恒温培养摇床,拥有超凡且与众不同的产品特性,作为一款极其走心的产品,它是全球唯一一款可在运行过程中自动调整倾斜角度的摇床,不需要停机,不需要任何工具。精准控制的步进电机,即使有外界因素影响到摇床的运作,它也会根据实际情况进行自动调整并恢复正常运行。 除了2D/3D恒温培养摇床这一款明星产品外,本次上市的培养摇床和混匀器还有很多值得称赞的特点,让小编为您一一介绍:恒温混匀器 完美应用于需在恒温、摇荡速度高的条件下培养的样品*模块自动识别,自带1.5毫升温度模块,共有11个不同温度模块可选择*机器可存储5个程序,每个程序最多5步*USB端口轻松存储更多程序,并可传输数据及软件升级*多年先进的电子设计研发经验,确保机器温度控制准确度绝佳恒温培养轻负载圆周式摇床节约实验室空间的圆周式摇床*微处理控制器可实现持续一致的摇荡动作*三偏心轴平衡驱动提供可靠服务和持续负载*安全功能包括缓慢升速设计和过载保护冷冻恒温培养圆周式摇床节约培养箱的冷冻恒温圆周式摇床*微处理控制器可实现持续一致的摇荡动作*三偏心轴平衡驱动提供可靠性能和持续负载*安全功能包括缓慢升速设计和过载保护2D摇摆恒温培养摇床、3D波动恒温培养摇床台式2D摆动摇床、3D波动摇床可节约培养箱空间*操作面板带有独立显示温度、速度、倾斜角度与时间的LED屏*带有PID温度控制的微处理控制器,可实现温度精确控制*设备正在运行时倾斜角度可电动调节 看了这么多新系列产品,您是否有心动呢?目前更有大力促销等您来购!快随小编继续看下去哦! 大力促销,势不可挡活动内容凡在活动期间购买实验室设备(列表单价人民币6000元及以上)的终端用户,即可获赠STARBUCKS随行杯一个 活动时间即日起至2017年12月31日 奥豪斯提供的走心培养摇床和混匀器系列产品,能够让您在实验室应用环节做到持续有效的工作状态,提高您的实验室效率、确保人员安全。
  • 如何正确的选择摇床振幅
    什么是摇床的振幅?摇床的振幅指托盘在做圆周运动时候的直径,有时候我们也叫“振荡直径”或“轨道直径”符号:?。作为标准,Infors提供振幅为3mm,25mm和50mm的摇床。什么是氧气传递效率(OTR)?氧气传递效率是指,氧气从大气中传入到液体中的效率。 OTR数值越高,氧传递效率越高。振幅和转速的影响这两个因素都会影响培养瓶中培养基的混合。 混合效果越好,氧传递速率(OTR)就越好。遵循这些指导原则,可以选择最适合的振幅和转速。一般来说,选择25mm振幅可以作为万能振幅应用于所有培养。正因为如此,大多摇床的振幅都是25毫米。在一些应用中,如果对氧传递/细胞生长有特殊的限制,可能会选择一些特殊的振幅。细菌,酵母和真菌培养:摇瓶中的氧气传递效率比生物反应器低得多。多数情况下氧传递可能是摇瓶培养的限制因素。 振幅与锥形培养瓶的大小相关:大瓶使用大振幅。建议:25mm振幅应用于从25毫升到2升的锥形培养瓶50mm振幅应用于2升至5升的锥形培养瓶细胞培养:然而,哺乳动物细胞培养对氧气的需求相对较低,较低的功率输入即可。* 对于250mL摇瓶,在较为宽广的振幅和振速范围(20-60mm振幅;100-300rpm)都可以提供足够的氧气传递。* 如果直径较大的烧瓶(Fernbach烧瓶)推荐使用50毫米振幅* 使用一次性培养袋,推荐使用50mm振幅。 微孔板和深孔板:对微孔板和深孔板有两种不同的方法可以获得最大的氧气转移!* 使用50mm振幅,转速不低于250rpm * 使用3mm振幅,转速在800-1000rpm 请注意以下几点在许多情况下即使选择了合理的振幅,也未必能增加生物培养量,因为培养量的增加会受到多个因素影响。举例:如果十个因素中有一两个不理想,那么无论其他因素有多好,培养量的增长都是有限的,或者可以这样说,如果培养量的受限因素只有氧传递时,振幅的正确选择会得到明显的培养箱增加。比如,碳源若是受限因素,无论氧传递效果多好,也不会达到理想的培养量。振幅和转速振幅和转速都会对氧传递造成影响。如果在转速很低(比如100rpm)的细胞培养中,振幅的不同对氧传递几乎没有明显影响。要达到最高的氧传递效果,首先是尽可能的提高转速,托盘会适当的平衡转速。并不是所有的培养物都能够在高速震荡下良好生长,一些对剪切力敏感的培养物,高转速会导致培养物死亡。 其他影响因素其他因素对氧传递也会有影响: * 装液量:锥形烧瓶的装液量为不超过总体积的三分之一。如果要达到最大氧传递,装液量不能超过10%。永远不要将装液量达到50%。* 扰流板:在所有类型的培养中,扰流板都有效提高氧传递。有些厂家推荐使用“超高产量”培养瓶。这种瓶的扰流板会增大液体摩擦力,摇床可能会达不到最大设定转速。 振幅和转速的关联关系摇瓶中的离心力可以通过下面公式计算:FC=rpm2 ×振幅离心力和振幅间存在线性关系:如果使用25mm振幅 到 50mm振幅(转速相同),离心力增加了2倍离心力和转速存在平方关系:如果转速提高到2倍(振幅相同),离心力提高4倍。如果转速提高到3倍,离心力则提高9倍!如果用振幅25mm,在给定的速度下,进行培养。如果希望用振幅50mm,达到相同的离心力,转速应该用1/2的平方根计算,因此您应该使用70%的转速,达到形同的培养条件。 请注意上述只是理论上的计算离心力的方法。现实应用中会有其他影响因素。这种计算方法可以得到近似值,供操作参考。
  • 智城为最老摇床颁奖 新老摇床并肩服役
    上海智城公司自上世纪90年代开始研发制造恒温培养摇床,有近20年的历史,已经为我国生命科学领域提供了近十万台各类摇床设备。如今的智城已经拥有了种类更齐全的智能摇床、生物安全柜、培养箱和超净工作台等四大类产品。不论产品的核心技术,还是外观设计,不断攀登新高。 智城已经不是过去的智城,而智城摇床没变 今年,一条来自用户的微信,鼓动了智城人的心。一位医学专家因缘重访自己十年前的工作单位——上海瑞金医院血液病研究所时,惊奇地发现:他2001年亲自订购的两台智城摇床还在服役中。惊喜之余,他拍下摇床照片,微信给智城公司。这条令智城人欢欣鼓舞的微信,勾起了大家的好奇心。智城公司决定在全国范围内寻找这样的老当益壮的摇床?于是诞生了“紫色旋风追旧梦,智城寻找老摇床”的用户有奖参与活动。瑞金医院2001年购置的智城ZHWY211型摇床 智城开奖 瑞金医院老摇床中头奖 今年8月份,为期两个月的“紫色旋风追旧梦,智城寻找老摇床”活动开奖啦。此次活动共收到23家单位用户,报送的35台“十岁”以上智城摇床。智城找到了最老的智城摇床,上海瑞金医院血液学研究所凭借一台型号为ZHWY-211的“15岁”老摇床荣获本次活动的“单位一等奖”。(“紫色旋风追旧梦,智城寻找老摇床”活动评选结果公布)“单位一等奖”奖品:最新款智城ZWY-211B型摇床 11月21日,智城“紫色旋风追旧梦,智城寻找老摇床”活动颁奖的日子。本网编辑通过电话采访了该研究所的黄老师。黄老师说智城已经送到并安装好他们承诺的奖品——一台ZWY-211B(原ZHWY-211)最新款摇床。黄老师坦诚地说摇床是她们实验室里较基础的仪器,她对获奖这台智城摇床并没有什么特别的感受。这台摇床每天都在使用,从购买到现在已经使用15年多了,期间也遇到过小故障,智城的工人师傅都及时维修或更换配件了。本编相信ZHWY-211能使用15年之久,与瑞金医院工作人员规范化的使用,以及智城公司售后维护都是分不开的。一等奖获奖单位:上海瑞金医院血液学研究所 我想,对于一台15年之前出厂的老摇床,用户说对它没感觉,或许是对它最好的评价。如果说智城老摇床的特点是默默无闻、朴实耐用的话,智城新款摇床可以说是秀外慧中。 智城的成功 把摇床做到极致 智城人敏锐地捕捉实验室工作人员的使用需求,孜孜不倦创新摇床的设计,在智能化、自动化等方面有了很多改进,满足操作者的各项需求。如ZWYC-290A型精密细胞培养智能摇床具有指纹门锁、手机APP等特征;ZWYF-290B型在线光密度检测摇床配置有非侵入式多通道光度检测器,能在实时测量培养液OD值。小编曾和一位从事发酵工程的老师聊起国产摇床的这些进展,老师高兴地说这才是他们最需要的摇床! 除了扎扎实实地研制产品,智城人把售后服务看得和产品一样重要,给用户“360° +2”的阳光服务。智城的维修工程师把自己管区内的用户分布在地图上标记出来,形成一个360° 的环,如果客户没有维修要求,维修工程师会按照环形线路开展巡回免费保养服务。工程师标配的工具包里有两样特殊工具:一块抹布和一瓶清洗液,无论机器有无故障,智城工程师都会把机器擦得干干净净。
  • 关于参加“2017诺贝尔奖获得者医学峰会暨质谱技术与临床医学主题论坛”的通知
    p style="text-align: center "a href="http://2017.nobelsummit.com/dhyc/111.html" target="_self" title=""img src="http://img1.17img.cn/17img/images/201707/insimg/f420d84f-0976-497a-b9f0-d696ecd96316.jpg" title="1.png"//a/pp  由诺贝尔奖得主国际科学交流协会主办的“2017年诺贝尔奖获得者医学峰会”将于2017年9月14日-16日在贵阳隆重召开。本次峰会包括“第二届国际精准医学高峰论坛”、“质谱技术与临床医学主题论坛”等若干论坛。大会委托中国质谱学会承办的“质谱技术与临床医学主题论坛”拟定于9月16日(半天)同期召开。/pp  作为医学的发展前沿,精准医学引起世界各国的高度重视。我国推动精准医学的战略意义是提升疾病诊治水平,促进医学健康前沿发展,增加我国医学国际竞争力,发展医疗生物技术,形成新的经济增长点、带动大健康产业的发展。质谱技术在生命组学、精准医疗研究及其临床医学中发挥着越来越大的作用。因此,本届峰会增设“质谱技术与临床医学主题论坛”,其目的为质谱技术和临床医学及其相关领域专家、学生提供交流平台,促进质谱技术与临床医学的交叉融合、推动质谱技术在精准医学、转化医学发挥更大作用等。/pp  2016年,诺贝尔奖获得者医学峰会暨第一届国际精准医学高峰论坛,著名质谱学者分享最新研究亮点,获得医学专家及参会人员的良好反馈。本次论坛将邀请国内知名质谱技术专家、临床医学专家或临床质谱应用专家等一起交流,在此我们诚挚地邀请您拨冗参加。因论坛规模有限,希望相关领域专家、学生积极报名。/pp  主办单位:诺贝尔奖得主国际科学交流协会/pp  承办单位:中国质谱学会/pp  协办单位: 安特百科(北京)技术发展有限公司/pp  支持媒体:仪器信息网(a href="http://www.instrument.com.cn" target="_self" title=""www.instrument.com.cn/a)/pp  会议地点:中国贵阳· 贵阳国际生态会议中心/pp  会议时间:2017年9月14日-9月16日/pp  会议议程:见链接:a href="http://2017.nobelsummit.com/dhyc/111.html" target="_self" title=""http://2017.nobelsummit.com/dhyc/111.html/a/pp  其中,“质谱技术与临床医学主题论坛”(9月16日)/pp  会议住宿及交通:请关注如下链接/pp  a href="http://2017.nobelsummit.com/chzc/jdjt/105.html" target="_self" title=""http://2017.nobelsummit.com/chzc/jdjt/105.html/a/pp  参会费用:会议注册费1000元(如果只参加质谱技术与临床医学主题论坛,则为500元),请大家通过银行汇款和网上缴费,不接受现场缴费。(报名限额 150人)/pp  缴费方式:通过银行汇款(账户信息如下):/pp  开户行:北京银行燕园支行/pp  户名:安特百科(北京)技术发展有限公司/pp  账号:0109 0327 8001 2010 2310 193/pp  进行银行汇款时,请备注发票抬头和会议费缴纳人员姓名 如缴纳多人会议费或需开具增值税专用发票,请详细填写附件中的开票信息,并邮件发送给会议费事宜联系人。/pp  2 通过网上支付缴费/pp  在线缴费链接:a href="http://www.antbuyhot.com/shop/item-503209.html" target="_self" title=""http://www.antbuyhot.com/shop/item-503209.html/a/pp  登录页面,点击立即购买,注册获取用户名和密码,并登陆按提示缴费,若缴纳多人会议费,买家留言处备注缴费人员姓名(我们会与注册系统核对),提交订单付费即可。/pp  会议费事宜联系人:/pp  刘会兰 电话:18942663827邮箱:huilan_liu@antpedia.net/pp  会议注册:请登陆光谱网(http://www.sinospectroscopy.org.cn)注册您的参会个人信息(希望大家留下联系方式,以便会务组与大家联络),具体步骤:/pp  1. 登录光谱网填写您的个人信息,获取用户名和密码:a href="http://www.sinospectroscopy.org.cn/register.php" target="_self" title=""http://www.sinospectroscopy.org.cn/register.php/a/pp  2. 提交参会信息,点击如下链接,输入用户名和密码/pp  a href="http://www.sinospectroscopy.org.cn/CHMsg.php?mid=22" target="_self" title=""http://www.sinospectroscopy.org.cn/CHMsg.php?mid=22/a/pp  进入后选择我要参会,提交即可。/pp  会议联系人:/pp  谢孟峡 010-58807981 xiemx@bnu.edu.cn/pp  张瑞萍 13911901683 rpzhang@imm.ac.cn/pp style="text-align: right "  主办单位:诺贝尔奖得主国际科学交流协会主办/pp style="text-align: right "  承办单位:中国质谱学会 (中国物理学会质谱分会)/pp style="text-align: right "  协办单位: 安特百科(北京)技术发展有限公司/pp style="text-align: right "二〇一七年七月/ppbr//pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201707/ueattachment/505c048d-637b-4d82-a17b-58a52e3080e1.doc"附:开票信息.doc/a/pp style="text-align: left "br//p
  • 奥豪斯开放式摇床全新上市
    今天小编着重为您介绍的就是奥豪斯全新开放式摇床,我们热忱欢迎您选购奥豪斯开放式摇床,把最佳的应用体验带进您的实验室内。让我们一起走近奥豪斯开放式摇床的世界里:进口产品,美国制造作为一个拥有百年历史的美国仪器厂商,奥豪斯为您提供专业的实验室设备产品,本次推出的开放式摇床系列产品均在美国生产和制造,为您的产品质量保驾护航。超全产品线,全球领先本次上市的开放式摇床系列产品,全系列拥有多达18余款产品可供用户选择。作为目前市场上台式摇床产品线最长的实验室设备厂商之一,奥豪斯能够让您体验全球领先的丰富产品应用。 极致工艺,非凡品质非凡品质源于极致的工艺,奥豪斯本次上市的开放式摇床带有瑞士直流无刷电机,此工艺精良独特,奥豪斯为用户带来高性价比的同时拥有绝对的高品质体验。奥豪斯开放式摇床拥有诸多特点,那么每个系列的摇床还有什么令人惊奇的特性,让我们继续看看:轻负载圆周式摇床、2D摇摆摇床3D波动摇床各4组产品型号选择,满足客户各种情景下的需求微处理控制器可实现持续一致的摇荡动作三偏心轴平衡驱动提供可靠的服务和持续的负载操作安全功能包括缓慢升速设计和过载保护可在设备运行时调整倾斜角度和速度大负载圆周式摇床全球仅少数品牌拥有的最大负载重量:从16kg到68kg Accu-Drive专利摇荡系统可确保出色的速度控制、准确性与有效性可分别显示速度和时间的LED显示屏,操作人员可同时查看两种设置安全功能包括缓慢升速设计和过载保护极端环境摇床全球少有的可适用于湿度高达100%苛刻环境的摇床 Accu-Drive专利摇荡系统可确保出色的速度控制、准确性与有效性控制器可放在恒温培养箱外部保证不会干扰培养箱的温度可分别显示速度和时间的LED显示屏,操作人员可同时查看两种设置往复式摇床无刷直流电机确保稳定、一致的震荡动作 可分别显示速度和时间的LED显示屏,操作人员可同时查看两种设置安全功能包括缓慢升速设计过载保护过载保护系统检测障碍物和托盘过载奥豪斯提供稳定可靠的开放式摇床系列产品,能够让您在实验室应用环节做到持续有效的工作状态,提高您的实验室效率、确保人员安全,并且产品拥有高质量、高性价比。
  • 生命精灵的守护者——奥豪斯摇床在血液处理中的那些故事
    血液作为一种以水为载体的不可或缺的人体体液,如同充满奇异生命能量的微小生灵一般在体内流转,保持身体的健康和旺盛的精力。如今,作为人道主义精神的发扬,无偿献血已经成为衡量一个社会文明程度的标志,也是世界卫生组织、国际红十字会、国际红新月会、国际输血协会所推崇的献血形式,备受各国政府的重视和关心。这些血液通常存储在血库中,由医疗单位、血站保管,以备需要者输血时使用。而如何储存血液,保证血液的质量则是问题的核心和关键。 脱离人体的血液在常温下会在一段时间内自然发生凝结,因此血库中的血液必须经过一定的处理才能够长时间保存。而关于血液处理流程背后的故事,小编甚感兴趣,今天就带大家来一探究竟! 走进“神秘”的血站 小编举旗带领大家参观的是一家位于中国西南地区某市的中心血站,主要进行全区血源统一管理,提供临床用血、应急用血,搞好血源质量监控,并开展输血科研、教学及采血工作。 在血站系统的成分科,主要会涉及到制备各种血液成分制品,而最常见的就是保存血小板环节。为了防止血浆样品中的血小板凝结,需要在其中加入一种名为二甲基亚砜的防冻剂,然后使用往复式摇床开始进行定时定速混匀,一般是以100rpm的转速摇荡5分钟,摇匀后把血浆放进冰箱里保存,可以保存一年的时间。在保质期内使用,可保证血浆样品新鲜如初。 此外,在血站系统的检验科,为制备“甘油化红细胞”,需要用到振荡混匀设备,有时候就需要用到往复式摇床。“甘油化红细胞”是“冰冻红细胞”的前身,是制备“冰冻红细胞”的关键操作环节。甘油作为目前冰冻保存红细胞最为常用的保护剂,在减少冰冻后红细胞损伤方面起到重要作用,主要功能是为了保证红细胞内外的渗透压平衡,避免发生红细胞破裂溶血。我国大多数血站以“低温慢冻法”制备冰冻红细胞,即复方甘油保存液与红细胞混合后的终浓度为40%,在-65℃以下的环境中冰冻保存,有效期长达十年。【1】 在血浆与防冻剂混合的过程中,需要以一致、均匀的转速持续对样品进行混匀,之前该血站采用的混匀方法效果欠佳,稳定性和可控性不能保证,因此样品容易发生凝结。然而,当选用了奥豪斯数显控制往复式摇床后,能够通过一致和均匀的摇荡动作来保证血浆样品摇荡结果的准确性与重复性——这一切都归功于整台仪器的“神经中枢”——微处理控制器和负载传感器。微处理器所拥有的缓慢升速设计能将速度缓慢安全地提升至目标设定值,以免开放式的样品溅出,同时可显示最后一个设置点,能够在断电后重新启动;负载传感器能够灵敏地检测出不平衡状态,并自动降低至安全速度以保护样品。整个过程大大提升了仪器产品的全自动性,从而节约了人工监视操作的成本。 奥豪斯摇床是怎样炼成的 奥豪斯数显控制往复式摇床除了上述特点外,还具有以下特性,使其产品更加智能,数据管理更加方便: 1. 三偏心轴驱动永久润滑滚珠轴承以及无需维护的无刷直流电机确保可靠运行和连续工作; 2. 智能LED显示屏触控式操作面板带易于读数据、独立显示速度和运行时间的LED屏。特别是定时器可将已用时间编程为用户定义的限值,当时间归零时设备自动关闭; 3. 适应极端环境的运行条件设备可在冷冻室、培养箱或温度℃、湿度高达80%的非冷凝二氧化碳环境中操作; 4. 轻松便捷的数据通信机身配备接口,可为数据记录和设备控制提供双向通信。 看了上述吸引人的特点以后,您是不是有点心动啊,当然可能有不少人要说小编又开始自吹自擂了,那我们就看看用过产品的血站工作人员们是怎么说的吧:“相比我们之前使用过的别的品牌的摇床,奥豪斯美国全进口往复式摇床功能强大,易于上手操作,稳定性和可控性都能得到保证,关键是混合过的血液样品质量均匀,从来没有变质的现象发生,大大提升了整个血液处理的工作效率,绝对是一款超高性价比的产品。我们会向血站系统的其他部分进行推广!” 怎么样,看了上述客户的评价,有没有让您对小编的话多了一份信服呢?如果您想了解更多摇床系列或奥豪斯其他实验室设备的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议。 【1】参考文献:李延成. 影响“甘油化红细胞”制备质量的关键操作步骤[J]. 中国综合临床,2015,12月
  • 2011年诺贝尔化学奖揭晓
    北京时间10月5日下午5点45分,2011年诺贝尔化学奖揭晓,以色列科学家达尼埃尔谢赫特曼Daniel Shechtman获奖,获奖理由是“发现准晶体”。今年诺贝尔化学奖奖金共1000万瑞典克朗(约合146万美元),由谢赫特曼一人独享。  2011年诺贝尔生理学或医学奖揭晓   2011年诺贝尔物理学奖揭晓 达尼埃尔谢赫特曼(Daniel Shechtman)   非凡的原子“镶嵌”  在准晶体中,我们发现迷人的阿拉伯镶嵌艺术在原子水平的重现:规则但从不重复的模式。然而,准晶体构型的发现曾被认为是不可能的,因而Daniel Shechtman只得对已知的科学发起强烈的挑战。2011年诺贝尔化学奖已经从根本上改变了化学家如何想象固体物质。  1982年4月8日的早上,一幅违反自然定律的图像出现在Shechtman的电子显微镜中。在所有的固体物质中,原子被认为均匀地分布在晶体中,并周期性地进行重复。对于科学家来说,为了获得晶体,这种重复是必需的。  然而,Shechtman眼前出现的图像却显示,该晶体中的原子排列模式是无法重复的。这种模式曾被认为是不可能的,就像不可能单纯用六角形制造足球,因为同时需要五角形和六角形。他的发现引起了极大的争议。在为自己的发现辩护期间,他被要求离开了自己的研究小组。不过,他的坚持最终迫使科学家重新考虑他们对于物质属性的概念。  非周期性“镶嵌”,比如在西班牙阿尔罕布拉宫和伊朗Darb-i Imam神殿中发现的中世纪伊斯兰镶嵌艺术,帮助科学家理解了准晶体在原子水平的特征。在这些镶嵌中,比如准晶体,模式是规则的——它们遵循数学法则——但它们从不重复自己。  当科学家描述Shechtman的准晶体的时候,他们使用一个来自于数学和艺术的概念:黄金比例。这一数字在古希腊的时候就已经引起了数学家的兴趣,经常出现在几何学中。举个例子来说,在准晶体中,原子间不同距离之比同黄金分割相关。  跟随Shechtman的发现,科学家已经在实验室中制造了其它种类的准晶体,并从来源于俄罗斯一条河流中的矿石样本中发现了天然准晶体。一家瑞典公司也从某种形态的铁中发现了准晶体。科学家们目前正在实验于不同产品中使用准晶体,比如煎锅和柴油机。  Daniel Shechtman,以色列公民。1941年出生于以色列特拉维夫。1972年从以色列理工学院获得博士学位。以色列理工学院菲利普托拜厄斯讲席教授。  ■ 人物 谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系  ——美国化学协会主席纳西杰克逊  当我告诉人们,我发现了准晶体的时候,所有人都取笑我。  ——谢赫特曼  “那时,所有人都取笑我”  因为挑战当时的“常识”,谢赫特曼被斥“胡言乱语”、“伪科学家”  “胡言乱语”、“伪科学家”,当30年前谢赫特曼发现“准晶体”时,他面对的是来自主流科学界、权威人物的质疑和嘲笑,因为当时大多数人都认为,“准晶体”违背科学界常识。  “当我告诉人们,我发现了准晶体的时候,所有人都取笑我。”谢赫特曼在一份声明中说。1982年,41岁的谢赫特曼正在美国霍普金斯大学从事研究工作。  “的确,那时候的人们压根不会接受那种晶体的存在。”美国化学协会主席纳西杰克逊说,“因为他们认为这违反自然界‘规则’。”  因为这些“规则”被视为真理,胆敢“捋虎须”的谢赫特曼自然就备受排挤。  发现“准晶体”后,谢赫特曼花费了好几个月的时间,试图说服他的同事,但一切均徒劳,没人认同他的观点。不仅如此,他还被要求离开他所在的研究小组。无奈之下,谢赫特曼只有返回以色列,在那里,他的一个朋友愿意帮助他,将“准晶体”的有关研究成果公开发表。  最开始,这篇论文也没能逃脱被拒绝的命运,但在谢赫特曼和他朋友的艰苦努力下,1984年,论文终于得以发表,也立即在化学界引发轩然大波。一些化学界权威也站出来,公开质疑谢赫特曼的发现,其中包括著名的化学家、两届诺奖得主鲍林。  “他(鲍林)公开说:达尼埃尔谢赫特曼是在胡言乱语,没有什么准晶体,只有‘准科学家’。”谢赫特曼后来说。  近30年后,勇敢质疑“常识”的谢赫特曼终于获得全世界最权威的科学认可。“谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。”纳西杰克逊说。  ■ 背景 固体家族“另类哥”  20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。  根据固态物质构成的原子排列规律,晶体内原子应呈现周期性对称有序排列,非晶体内原子呈无序排列。1982年4月8日,谢赫特曼在铝锰合金冷冻固化实验中首次观察到合金中的原子以一种非周期性的有序排列方式组合,具有这种原子排列方式的固体在当时理论下是不可能存在的。  由于原子排列不具周期性,准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。鉴于其“强化”特性,准晶体材料可应用于制造眼外科手术微细针头、刀刃等硬度较高的工具。此外,准晶体材料无黏着力并且导热性较差,其应用范围还包括制造不粘锅具、柴油发动机等,应用前景广阔。  附:诺贝尔奖网站官方公告  5 October 2011  The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2011 to  Daniel Shechtman  Technion - Israel Institute of Technology, Haifa, Israel  "for the discovery of quasicrystals"  附录:近10年诺贝尔化学奖得主及其主要成就  2011年,以色列科学家达尼埃尔谢赫特曼因发现准晶体而获奖。准晶体是一种介于晶体和非晶体之间的固体,准晶体的发现不仅改变了人们对固体物质结构的原有认识,由此带来的相关研究成果也广泛应用于材料学、生物学等多种有助于人类生产、生活的领域。  2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究成果而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。  2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。  2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。  2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。  2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。  2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。  2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。  2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了开创性贡献而获奖。  2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希因发明了对生物大分子进行识别和结构分析的方法而获奖。
  • 2014诺贝尔奖陆续揭晓
    梅- 布里特· 莫泽  约翰· 奥基夫  赤崎勇  爱德华· 莫泽  中村修二  天野浩  生理学或医学奖垂青&ldquo 大脑GPS&rdquo   本报讯(记者冯丽妃)&ldquo 这简直不太可能,我从未预料到,这是一项崇高的荣誉。&rdquo 10月6日,2014年诺贝尔生理学或医学奖获得者之一约翰· 奥基夫在接受记者采访时仍然非常激动。当得知获奖时,他正在家里的办公桌前像以往一样工作。  瑞典卡罗琳医学院6日在斯德哥尔摩宣布,将2014年诺贝尔生理学或医学奖授予拥有美英双国籍的科学家约翰· 奥基夫以及两位挪威科学家梅-布里特· 莫泽和爱德华· 莫泽,以表彰他们发现大脑定位系统细胞的研究。  诺贝尔奖评选委员会在声明中说,今年获奖者的研究成果解决了困扰科学界几个世纪的难题,发现了大脑的定位系统,即&ldquo 内部的GPS&rdquo ,从而使人类能够在空间中定位自我,有助于进一步了解人类大脑空间记忆的中枢机制。  布里特在采访中表示,在接到瑞典诺贝尔生理学或医学奖委员会秘书长电话得知喜讯后,她喜极而泣。让她感到有些沮丧的是,丈夫爱德华当时正在飞机上,不能在第一时间与他分享这个消息。  &ldquo 12:30飞机落地后,我走出机舱,有一个机场代表捧着鲜花接我坐车,当时我还一头雾水。&rdquo 爱德华说,看到朋友们发来的150封邮件和75条短信后,他才知道自己获得诺奖。  今年诺贝尔生理学或医学奖奖金共800万瑞典克朗(约合111万美元),奥基夫将获得奖金的一半,而莫泽夫妇将共享奖金的另一半。  非热门的&ldquo 真贡献&rdquo   10月6日下午,2014年诺贝尔奖首个奖项&mdash &mdash 生理学或医学奖揭晓。  美国及挪威的三位科学家约翰· 奥基夫(John O&rsquo Keefe),莫泽夫妇&mdash &mdash 梅-布里特· 莫泽(May-Britt Moser)和爱德华· 莫泽(Edvard I. Moser)因&ldquo 发现构成大脑定位系统(GPS)的细胞&rdquo 获奖。  不过,大奖一出即引来争议,有专家认为,其研究并非&ldquo 独领风骚&rdquo 。同时,专家呼吁,中国脑科学计划不宜再&ldquo 议而不决&rdquo 。  揭开世纪之谜  数世纪以来,一直有个问题困扰着哲学家和科学家&mdash &mdash 大脑是怎么构造出一幅描述我们所处环境的地图,我们又是如何在复杂环境中找到线路的?  &ldquo 这是很重要的未解问题。&rdquo 中国科学院外籍院士、中科院上海生科院神经科学研究所所长蒲慕明在接受《中国科学报》记者采访时说。  就在两周前,蒲慕明在法兰克福马普脑研究所的一个会议上,与O&rsquo Keefe、E. Moser再次相遇。在蒲慕明看来,他们能获得诺贝尔奖是在意料之中的。  &ldquo O&rsquo Keefe的工作为研究大脑如何决定动物体自身在空间中位置开创了新的实验范式,指出了海马区在空间定位中的重要性。Moser夫妇对网格细胞的发现,是近年来O&rsquo Keefe实验范式下的最重要发现之一。&rdquo 蒲慕明说。  在他看来,Moser团队目前显然是这个领域最活跃的,&ldquo 他们在奥斯陆Kavli研究所的所有研究组都围绕这个领域展开&rdquo 。  对于获奖成果的意义,中国科学院院士杨雄里在接受《中国科学报》记者采访时评价,该研究对于人类认识自身基本生理功能,阐明脑的高级复杂功能有典型意义 其次,他们的研究首先具有哲学层面的意义,为康德的先验论提供了神经生理学证据 此外,该研究对与老年痴呆症等大脑疾病的治疗、诊断对策的研发也可能会有所启示。  &ldquo 神经科学领域一直是诺贝尔奖的得奖大户。这项研究揭示了关于生命最基本的知识信息,让我们能够更加理解人类自己,这也符合诺贝尔奖的一贯原则,即奖励给对人类知识有真正贡献的科学研究。&rdquo 第二军医大学教授孙学军告诉记者。  获奖存在争议  不过,在杨雄里看来,这样的结果还是有些&ldquo 出人意料&rdquo 。  &ldquo 他们的工作并非&lsquo 独领风骚&rsquo 。&rdquo 中科院院士杨雄里告诉记者,尽管获奖者在大脑的定位系统方面的研究做得很出色,但是这样类型的研究工作很多,达到这种研究水平的,也不只这么一家。  在杨雄里看来,诺奖到底授予谁,见仁见智,&ldquo 但还是出乎我的意料&rdquo 。  有同样感受的,不只是杨雄里。此奖项颁发当天就引来争论。10月6日晚,由北京大学教授饶毅等三位学者主编的《赛先生》发文表示:&ldquo 今年生理奖不一定有广泛共识&rdquo &ldquo 有观点认为脑内各种细胞都有,比这些细胞更有趣的如&lsquo 镜像神经元&rsquo &lsquo 祖母神经元&rsquo 等,所以发现细胞不够重要,确定其功能,了解其机理更为重要。&rdquo   此前,汤森路透的&ldquo 诺奖预测&rdquo 根据论文的引文分析,共筛选出了三项可能获奖的研究,关于大脑定位系统细胞的研究未在其列。  就脑科学领域的研究热点来看,脑细胞空间定位功能的研究也只不过是众多脑功能研究的一个方向。&ldquo 目前,脑科学领域研究中,最受关注的是各种脑功能相关的神经环路的结构和工作原理,比方说有哪些神经细胞组成怎样的环路结构,在进行各种脑功能时回路中的各个神经细胞是如何处理电活动信息的编码、储存和提取。&rdquo 蒲慕明说。  &ldquo 对大脑定位系统的研究是当前脑科学研究很重要的一个方面,但并非&lsquo 炙手可热&rsquo 。&rdquo 杨雄里说。  中国差距&ldquo 相当大&rdquo   今年3月,蒲慕明、杨雄里等一批神经科学家召开了以&ldquo 我国脑科学研究发展战略研究&rdquo 为主题的香山科学会议,呼吁尽快启动中国脑科学计划。  &ldquo 但是半年过去了,进展情况不如人意。&rdquo 杨雄里感慨,细致、谨慎的讨论非常重要,但需要果断的决定和妥善的安排,以扎实的措施推进脑计划的实施。  近20年来,杨雄里亲眼见证了中国神经科学的发展。他认为,随着国家对脑科学支持力度的加大,研究人员数量增加,研究水平不断提高,中国的神经科学近年来取得了&ldquo 相当迅速的&rdquo 发展。  &ldquo 但是,我们应该看到,我们得到支持的力度与发达国家相比,仍有相当差距 我们的研究水平在神经科学的几个分支,比方说神经系统的可塑性研究、感觉的研究等方面,达到了国际先进水平,但从整体来讲,力量还比较薄弱,研究水平的差距还相当大。&rdquo 杨雄里说。  蒲慕明也表示,整体上,我国脑科学研究在高水平、有竞争力的实验室数量,科学成果总量和影响力等方面,与先进国家相比都有很大差距。目前我们也没有脑科学领域里主要的、推动前沿发展的团队。  今年1月,中国科学院脑科学卓越创新中心正式揭牌成立,将进一步聚焦脑科学的重要前沿方向。  &ldquo 未来数十年里,我国神经科学家是有可能做出像O&rsquo Keefe和Moser夫妇的工作那样突破性的成果。要达到这个目标,关键在于科研问题的选择,我们的青年科学家要能有胆识去选择重要的未解难题,我们的科研环境也要能鼓励支持青年科学家冒险攻关,尤其是组成团队攻关。&rdquo 蒲慕明说。  物理学奖花落&ldquo 蓝光LED&rdquo   本报讯 (记者冯丽妃)瑞典皇家科学院10月7日宣布,将2014年诺贝尔物理学奖授予85岁的日本科学家赤崎勇、54岁的天野浩和60岁的美籍日裔科学家中村修二,以表彰他们发明了节能高效的&ldquo 蓝色发光二极管&rdquo 。  红光LED和绿光LED早已发明,但长期以来制造蓝光LED成为一个难题,缺少了三原色中的蓝色,就无法获得可用于照明的白色LED光源。此次获奖成果解决了这个问题,瑞典皇家科学院在新闻公报中说:&ldquo 随着LED灯的问世,我们现在有更持久和更高效的替代光源。&rdquo   颁奖结果公布后,诺奖委员会物理学会主席在接受媒体采访时间回应称:&ldquo 这是一项真正有益于大多数人的发明。&rdquo   赤崎勇现任日本名城大学终身教授、名古屋大学特聘教授。天野浩现任名城大学、名古屋大学教授。中村修二现任美国加州大学圣塔巴巴拉分校教授。三名获奖者将平分800万瑞典克朗(约合111万美元)的诺贝尔物理学奖奖金。  &ldquo 在我的大学时代,半导体工业在各类工业领域独领风骚。今天,以硅为基础的大规模集成电路(LSI)在各类投资中极具竞争力。而复合半导体尽管极具发展潜力,但它们的很多物性尚未被发掘。我们很幸运,因为我们还有更多的研究机遇。&rdquo 名古屋大学的个人主页上,天野浩给学生的信中写道。  &ldquo 小职员&rdquo 的大成就  白炽灯点亮了20世纪,21世纪注定将是LED(发光二极管)灯的天下。  北京时间10月7日下午5点45分,2014年诺贝尔物理学奖揭晓,日本及美国三位科学家赤崎勇(Isamu Akasaki)、天野浩(Hiroshi Amano)和中村修二(Shuji Nakamura)获奖。获奖理由是&ldquo 发明了高效蓝光二极管,带来了明亮而节能的白色光源&rdquo 。  呼声很高  早在颁奖之前,复旦大学物理学系教授施郁就在猜测是否会将今年的奖颁发给LED,&ldquo 很多其他重要应用成果都得奖了,而LED还没有&rdquo 。  全球四分之一的电能用于照明。而传统的白色光源在环保以及效能和明亮度上都越来越受到诟病。一直以来,寻找一种更持久更高效的方式来代替旧有的光源,成为众多研究者追逐的目标。  红色和绿色二级管早已存在,但是若没有蓝光,就无法制造白色灯管。虽然有很多人为此努力,但在科学界和工业界,30年来蓝光二极管一直是个重大挑战。  直到上世纪90年代早期,当赤崎勇、天野浩和中村修二从半导体中制造出明亮蓝色光束时,他们为制光技术触发了根本性转变。利用蓝光二极管,白光可通过新的途径被创造出来。随着LED灯管的出现,现代的灯不仅寿命长,而且更节能。  &ldquo LED灯泡的发明将大大减低能耗,节约成本。&rdquo 中科院光电研究院研究员、北京中视中科光电技术有限公司总工毕勇表示,高效蓝光二极管如果能够大规模应用的话,能够节电50%以上。  对于三位获奖者,其实业内早就有期待。中科院苏州纳米技术与纳米仿生研究所研究员徐科说,2002年左右,相关的呼声就已经很高。  获奖者之一的中村修二被称为&ldquo 蓝光之父&rdquo ,他是高亮度蓝色发光二极管与青紫色激光二极管的发明者。2006年,中村修二获得千禧年创新奖。能够获得此奖,是业界非常大的荣誉。  &ldquo 业界对他非常看重。&rdquo 中科院院士欧阳钟灿说,美国加州大学圣塔巴巴拉分校校长杨祖佑曾三次亲自前往日本拜访中村修二,请他去美国担任教授。  而另外一位获奖者赤崎勇也可谓是众望所归。他开发了氮化镓结晶化技术,并完成世界第一个高亮度的蓝色发光二极管。2009年11月10日,赤崎勇获得了京都奖尖端技术领域的奖项。而京都奖素有&ldquo 日本诺贝尔奖&rdquo 之称。  瑞典皇家科学院诺贝尔奖评委会常务秘书斯泰方· 诺尔马克表示,本次诺贝尔物理学奖因循&ldquo 奖励为人类福祉作出重要贡献的发明&rdquo 的精神而颁出。  &ldquo 我们老是差一步&rdquo   上世纪70年代初,世界范围内掀起了对氮化镓的研究热潮,而利用它开发出蓝色发光二极管被认为是一个大胆设想,一旦开发成功,应用范围广阔。赤崎勇当时从事的便是这一领域的研究。  但是提高氮化镓品质和控制其性质并非易事。到上世纪70年代末,当大多数科学家都放弃了氮化镓系蓝色发光二极管的研究时,赤崎勇继续不懈研究,在经历了多次失败后,终于在世界上首次实现氮化镓的PN结,为利用氮化镓材料制造蓝色发光二极管奠定了基础。  徐科指出,与国外相比,国内的研究在力量上虽然不弱,但是在进展上&ldquo 老是差一步&rdquo 。  &ldquo 日本在LED方面的研究已经做到了理论上的极限。&rdquo 毕勇说。日本已经研制出超过200流明/瓦的商业用器件,中国则为100流明/瓦~120流明/瓦。  流明是光通量的单位,即每输入一瓦的电,能够获得的光的数量。流明量越高,发光效率越高。  事实上,在商业化的应用上,中国与其的差距正在缩小,差距主要在实验室研究上。毕勇说:&ldquo 目前,我们实验室的最高水平是150流明/瓦,日本已经到了240流明/瓦。日本下一步更多地是往商品的应用上去转换。&rdquo   &ldquo 过去近30年半导体的发展都是在其他工作的基础上慢慢发展。&rdquo 徐科表示,在LED方面,目前我们已经有很好的研究基础,有较大的产业规模,未来要在国际上具有核心竞争力,必须在基础研究和技术开发上作出中国自己的贡献。  小职员何以登上大舞台  得奖虽是众望所归,但是获奖者的身份却再次让不少人啧啧惊叹。  中村修二曾经只是一个普通公司的职员,生活在日本一个叫阿南的小城市里,因为与工厂闹矛盾才离开。而之前,他也只是一个不知名大学毕业的硕士生。  2002年,田中耕一获得诺贝尔化学奖也是如此,一时间化学界并不知道这个人是谁。寻究起来才发现,他只是一个拥有本科学历的小职员。  小职员何以登上大舞台,一次次创造奇迹。中科院宁波材料技术与工程研究所研究员黄庆表示,这与他们在科学道路上的坚守和探索精神密不可分。  1988年,中村修二提出要制备氮化镓蓝光发光二极管,而此时,所有的人都还在十年如一日地生产磷化钾砷化镓。没有实验员没有助手,中村修二却在短短四年时间内获得了理想的试验结果。  已经80多岁的赤崎勇也曾是在神户工业公司(现富士通公司)和松下电器产业公司从事科研工作的一名职员。在许多研究场合,他都强调不懈和不气馁的精神。  在一次对年轻研究人员的讲话中,他说道:&ldquo 即使是失败,也绝对不要放弃。想做一件全新的事情,失败会如影随形。在失败的情况下,不要气馁、不言放弃非常重要。另外,对研究来说,直觉也非常重要,而直觉需要在经历无数次失败的过程中培养。&rdquo   而在国内,专家们表示,LED的发展进程其实是我国科学界急功近利的一个体现,也是迟迟难以获得国际性突破的原因。  &ldquo 上世纪80年代坐冷板凳,90年代跟随大潮开始热,但是原创性上却一直落后。&rdquo 对于这点,徐科有点遗憾。  黄庆表示,目前我国科学领域也演变成急功近利的舞台,沉溺于影响因子、SCI、量化指标,而不是充满冒险、乐趣、坚守和风险的探索之旅。
  • 2020年诺贝尔奖10月5日起陆续揭晓!让我们回顾下重要诺贝尔生理学或医学奖!
    div class="span14"div class="pl-10 pr-10 View-div"div class="view-content t-35 news-view clearfix"p style="text-align:center "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 据诺贝尔奖官网消息,/spanstrongspan style="font-size:16px line-height:2 "2020年诺贝尔奖将于10月5日至10月12日陆续揭晓/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 诺贝尔基金会首席执行官拉尔斯· 海肯斯滕日前表示,受新冠疫情影响,今年12月不再举行传统的诺贝尔奖颁奖典礼,将在斯德哥尔摩市政厅线上直播颁奖仪式。/span/pp style="text-align:justify "br//pdiv style="text-align:center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/496a45bb-b0bd-4260-8548-a1c0f758762a.jpg" title="5f75f232d542d.png" alt="5f75f232d542d.png"/img src="/Uploads/2020-10-01/5f75f232d542d.png" alt="" width="400" height="141" title="" align=""/br//divp style="text-align:center "span style="font-size:14px color:#A0A0A0 line-height:2 "图片来源:诺贝奖官网/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 诺贝尔奖(瑞典语:Nobel priset,英语:Nobel Prize)是指根据诺贝尔/spanstrongspan style="font-size:16px line-height:2 "1895年/span/strongspan style="font-size:16px line-height:2 "的遗嘱而设立的五个奖项,包括:物理学奖、化学奖、和平奖、生理学或医学奖和文学奖,旨在表彰在物理学、化学、和平、生理学或医学以及文学上“对人类作出最大贡献”的人士;以及/spanstrongspan style="font-size:16px line-height:2 "瑞典中央银行1968年设立的诺贝尔经济学奖/span/strongspan style="font-size:16px line-height:2 ",用于表彰在经济学领域杰出贡献的人/spansupspan style="font-size:16px line-height:2 " [1-2] /span/supspan style="font-size:16px line-height:2 " 。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 金秋10月,诺贝尔奖将至。从1901年开始颁发至今,已过百年。而且诺贝尔基金会主席Lars Heikensten 9月24日表示:/spanstrongspan style="font-size:16px line-height:2 "今年的诺贝尔奖奖金将增加100万瑞典克朗至1000万瑞典克朗(约11万美元-110万美元)/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 接下来让我们回顾下那些对人类有重要影响的诺贝尔生理学或医学奖:/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px "span style="line-height:2 " /spanstrongspan style="line-height:2 "2015年:青蒿素每年“拯救2亿人口” /span/strong/span/pp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人之一:/span/strongspan style="font-size:16px line-height:2 "屠呦呦/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 受中国典籍《肘后备急方》启发,/spanstrongspan style="font-size:16px line-height:2 "屠呦呦成功提取出治疗恶性疟疾的青蒿素/span/strongspan style="font-size:16px line-height:2 ",被誉为“拯救2亿人口”的重大发现。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 青蒿素已被广泛/spanstrongspan style="font-size:16px line-height:2 "用于疟疾/span/strongspan style="font-size:16px line-height:2 "肆虐地区。仅在非洲,这就意味着每年超过10万人因此得救。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2011年:树突状细胞在后天免疫系统中有重要作用/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "朱尔· A· 奥夫曼和布鲁斯· 博伊特勒/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 树突状细胞被发现,并且这是影响免疫的关键调节器。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2010年:试管婴儿助更多家庭尽享天伦/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "罗伯特· 爱德华兹/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 1978年7月25日,/spanstrongspan style="font-size:16px line-height:2 "“试管婴儿之父”/span/strongspan style="font-size:16px line-height:2 "——英国生理学家罗伯特· 爱德华兹帮助世界上第一个试管婴儿来到人间。他发现了/spanstrongspan style="font-size:16px line-height:2 "人类受精的重要原理/span/strongspan style="font-size:16px line-height:2 ",成功实现人类卵细胞在体外受精。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 全世界大约有10%的夫妇遭受不育症的折磨,这一切都随着体外受精技术的问世而得到解决,每年数以百万计的家庭因此受益。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2008年:乳头状瘤病毒(HPV)是宫颈癌的病原体& HIV破坏了人体的免疫系统/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "哈拉尔德· 楚尔· 豪森、弗朗索瓦丝· 巴尔· 西诺西和吕克· 蒙塔尼/span/pp style="text-align:justify "br//pp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 人类乳头状瘤病毒/span/strongspan style="font-size:16px line-height:2 "对全球公共健康体系造成了很大的负担,全世界所有的癌症百分之五是因为人们持续感染这一病毒所致。人类乳头状瘤病毒是最常见的性病致病病毒,这影响了人类人口的百分之五十至八十。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 哈拉尔德· 楚尔· 豪森用了十多年时间终于发现某些类型的/spanstrongspan style="font-size:16px line-height:2 "乳头状瘤病毒(HPV)就是宫颈癌的病原体/span/strongspan style="font-size:16px line-height:2 ",这一发现/spanstrongspan style="font-size:16px line-height:2 "为开发出宫颈癌疫苗打下了基础/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 弗朗索瓦丝· 巴尔-西诺西和吕克· 蒙塔尼从淋巴结肿大的早期病人的淋巴细胞和晚期病人的血液中确定了病毒复制。他们根据形态、生物化学、免疫特性将这种反向病毒定为首个人类已知慢病毒。由于大量的病毒复制和对淋巴细胞的细胞破坏,HIV破坏了人体的免疫系统。/spanstrongspan style="font-size:16px line-height:2 "这一发现对于了解艾滋病的生物学和抗病毒治疗是一个前提。/span/strongspan style="font-size:16px line-height:2 "由于这一病毒已感染了全球百分之一的人口,这一成就具有非凡的意义。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2005年:幽门螺杆菌是胃病的罪魁祸首/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "巴里· 马歇尔、罗宾· 沃伦/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 以前的学者普遍认为胃酸不可能让细菌存在,也一直未找到治疗胃病的根本方法。两位来自澳洲的科学家罗宾· 沃伦和巴里· 马歇尔证实,/spanstrongspan style="font-size:16px line-height:2 "幽门螺杆菌导致了胃炎和胃溃疡。/span/strong/pp style="text-align:justify "span style="font-size:16px line-height:2 " 溃疡病从原先难以治愈、反复发作的慢性病,变成一种短疗程抗生素和抑酸剂就可治愈的疾病。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2003年:核磁共振成像技术助力医学诊断/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "彼得· 曼斯菲尔德、保罗· 劳特布尔/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 利用这种技术,可以诊断以前无法诊断的疾病,特别是脑和脊髓部位的病变;可以为患者需要手术的部位准确定位,特别是脑手术更离不开这种定位手段;可以更准确地跟踪患者体内的癌变情况,为更好地治疗癌症奠定基础。此外,由于使用这种技术时不直接接触被诊断者的身体,因而还可以减轻患者的痛苦。/span/pp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 核磁共振成像技术的最大优点/span/strongspan style="font-size:16px line-height:2 "是能够在对身体没有损害的前提下,快速地获得患者身体内部结构的高精确度立体图像。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 2000年:多巴胺本身就是一种神经递质/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "阿尔维德· 卡尔森/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 在此之前,科学家们普遍认为多巴胺只是另一种递质去甲肾上腺素的前体。卡尔森发明了一种高灵敏度的测定多巴胺的方法,/spanstrongspan style="font-size:16px line-height:2 "发现多巴胺在大脑中的含量高于去甲肾上腺素/span/strongspan style="font-size:16px line-height:2 ",尤其集中于脑部基底核,而后者是控制运动机能的重要部位。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 他的研究成果使人们认识到帕金森症和精神分裂症的起因是由于病人的脑部缺乏多巴胺,并据此可以/spanstrongspan style="font-size:16px line-height:2 "研制出治疗这种疾病的有效药物/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 1990年:第一例双胞胎成功器官移植开创人体器官移植先例/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "约瑟夫· 默里、唐纳尔· 托马斯/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 1956年,唐纳尔· 托马斯成功地应用双胞胎间的骨髓移植治疗白血病。约瑟夫· 默里完成了第一例成功器官移植手术,该手术在双胞胎之间进行。/spanstrongspan style="font-size:16px line-height:2 "托马斯医生的贡献在于骨髓移植,而默里则为肾脏移植的开创者/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 肾脏移植的进展也带动了人体其他器官移植的进展,如肝、胰、心脏、肺脏等,其成功率也日益改善。而骨髓移植也为血液病患者带去福音!/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 1986年:“神经生长因子”和“表皮生长因子”被发现/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "丽塔· 列维-蒙塔尔奇尼/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 20世纪50年代初发现动物在受伤以后会/spanstrongspan style="font-size:16px line-height:2 "用舌头去舔伤口,而伤口便很快会愈合/span/strongspan style="font-size:16px line-height:2 "。她从分析动物的这一行为入手,于1951年从小白鼠唾液中发现能促进动物皮肤表皮细胞生长发育的物质,和能促进神经细胞生长发育的物质——/spanstrongspan style="font-size:16px line-height:2 "神经生长基因(NGF)/span/strongspan style="font-size:16px line-height:2 "。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 2012年4月22日,/spanstrongspan style="font-size:16px line-height:2 "作为史上最长寿的诺贝尔奖获得者/span/strongspan style="font-size:16px line-height:2 ",丽塔· 莱维· 蒙塔尔奇尼度过了103岁的生日。据媒体披露,/spanstrongspan style="font-size:16px line-height:2 "她的长寿秘诀也许在于她每天都喝一种不寻常的饮料/span/strongspan style="font-size:16px line-height:2 ",虽然它的剂量只有眼药水那么少。那是一定剂量的神经生长因子,而这正是蒙塔尔奇尼和美国搭档斯坦利· 科恩因于1951年6月在华盛顿大学的实验室中发现的科研成果。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 1979年:X射线断层成像技术出现,可对人体轴向层析/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "阿兰· 麦克莱德· 科马克、高弗雷· 豪斯费尔德/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 70年代之前,人体软组织或不同密度的组织层的x射线成像一直是个问题。70年代初,他们建立起计算机化扫描的数学和物理学基础,发展了/spanstrongspan style="font-size:16px line-height:2 "计算机化轴向层析x射线摄影法(CAT)/span/strongspan style="font-size:16px line-height:2 "这一新型诊断技术。/span/pp style="text-align:justify "br//pdiv style="text-align:justify "span style="font-size:16px line-height:2 " strong 1945年:青霉素让人类不再恐惧细菌感染/strong/span/divp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "亚历山大· 弗莱明、恩斯特· 伯利斯· 钱恩、霍华德· 弗洛里/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 " 曾经,人类对细菌感染束手无策,无数人因此丧命。直到青霉素被发现,人类才开始逐渐脱离被细菌感染支配的恐惧,/spanstrongspan style="font-size:16px line-height:2 "平均寿命得以显著延长/span/strongspan style="font-size:16px line-height:2 "。在他们共同努力下,青霉素从实验室走向现实生活、造福人类。/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px "span style="line-height:2 " strong /strong/spanspan style="line-height:2 "strong1923年:胰岛素为糖尿病患者带来曙光/strong/span/span/pp style="text-align:justify "strongspan style="font-size:16px line-height:2 " 获奖人:/span/strongspan style="font-size:16px line-height:2 "弗雷德里克· 班廷、约翰· 麦克劳德/span/pp style="text-align:justify "span style="font-size:16px "br//span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 糖尿病是一种常见的内分泌代谢疾病,在二十世纪之前,糖尿病被看做不治之症。/span/pp style="text-align:justify "span style="font-size:16px line-height:2 " 1922年夏天,班廷与麦克劳德从/spanstrongspan style="font-size:16px line-height:2 "狗的体内/span/strongspan style="font-size:16px line-height:2 "分离出消耗糖所需的活性物质,并把这种物质注入一条患有糖尿病、濒临死亡的狗,/spanstrongspan style="font-size:16px line-height:2 "这条狗的病情很快就出现了好转/span/strongspan style="font-size:16px line-height:2 "。这种物质正是胰岛素。/span/pp style="text-align:justify "br//pp style="text-align:justify "span style="font-size:16px line-height:2 "看完这么多的诺贝尔奖案例,诺贝尔奖得主对人类贡献巨大,也期待越来越多的诺贝尔奖出现!/span/p/div/div/div
  • 中药研发科学化、现代化——屠呦呦获诺贝尔生理学或医学奖为中医药发展迎来新的契机
    2015年10月5日,瑞典斯德哥尔摩,诺贝尔委员会举办新闻发布会,宣布2015年诺贝尔生理学或医学奖得主。中国药学家屠呦呦,爱尔兰科学家威廉坎贝尔、日本科学家大村智分享该奖项。图1 2015诺贝尔生理学或医学奖得主 至此,屠呦呦成为首位获得诺贝尔科学类奖项的中国科学家、首位获得诺贝尔生理医学奖的华人科学家。屠呦呦发现的对抗疟疾的神药青蒿素也引起举世瞩目。 青蒿素的发现表明,中医药是一个伟大的宝库,有宝贵的财富,需要我们去发现、挖掘和研究。而屠呦呦此次因其发现青蒿素的突出贡献获得诺贝尔奖也为中药发展迎来新的契机。图2 中国药学家屠呦呦肖像照和其工作描述图  创腾科技作为国内资深的生命科学信息提供商,基于数据库、分子模拟与分子设计平台Discovery Studio以及强大的信息整合和流程定制的科学平台Pipeline Pilot,能够为中药研发的科学化和现代化助上一臂之力。 中药化合物数据信息的提供 中药化学数据库 (Traditional Chinese Medicines Database , TCMdb)是创腾科技有限公司和中国科学院过程工程研究所联合开发的综合性中药数据库,是支持新药研发和中药现代化研究的有力工具。 TCMdb目前收集了化合物23033种,每种化合物下列12项数据:唯一代码、CAS登录号、中文名称、英文名称、别名、分子式、分子量、二维结构式、植物来源、药理活性(即药理模型实验结果,近8000多种化合物有此数据)、物理化学性质(晶体形态、熔点、沸点、旋光度等,14000多种化合物有此数据)和参考文献。TCMdb涉及到的中药药用植物有6735种,使用的参考文献有5507篇。图3 TCMdb数据库中收集的青蒿素信息 中国天然产物数据库(Chinese Natural Product Database,CNPD)是创腾科技有限公司和中国科学院上海药物研究所联合开发的综合性天然产物数据库。CNPD收集、整理、分析了从中国国产的植物中分离鉴定出的天然产物的物理性质、生物活性剂化学结构等信息,为中国的新药、天然产物及相关领域的研究与开发工作提供了一个不可多得的好工具。 CNPD目前共收集了五万七千多个天然产物,涵盖天然产物的三十七个类别,有70%的分子是类药性分子。同时CNPD还收集了天然产物相关的各类信息,主要包括:天然产物的二维分子结构及三维分子结构;天然产物的名称、分子式、分子量、熔点、旋光度等理化性质、天然产物的CAS号;天然产物的生物活性信息及其参考文献;天然产物的自然来源及其参考文献;原植物或其同属重要在中国传统医药中的应用等。图4 CNPD数据库中收集的青蒿素信息 特定靶标中药的虚筛 针对特定的药物靶标,筛选新的活性化合物是药物科研工作者和各大制药公司奋斗的目标。获得先导化合物的一个重要来源就是天然产物。我国在天然产物的药物发现研究中做出了杰出的贡献,典型的例子就是抗疟药物青蒿素。但是要收集这些天然产物需要大量的经费和时间,随着计算机在药物发现中逐渐发展成为不可缺少的手段,在计算机上利用软件针对某靶标从中药化学数据库或者天然产物数据库中用虚拟筛选(virtual screening,VS)方法搜寻活性化合物,继而集中提取几个至几十个化合物进行药理筛选,是发现新型先导化合物结构的一种经典且高效的途径。 Discovery Studio (简称DS),作为权威的药物设计与模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与优化工具。 对于中药的虚拟筛选,DS可以提供多种不同的虚筛方法: 以靶标结构为基础,通过分子对接技术和片段设计技术,模拟中药数据库与靶标分子间相互作用,从而虚拟筛选出潜在活性分子 以已知同一靶标的活性化合物为基础,通过构建药效团模型并以此作为检索模式来筛选潜在活性化合物 联合不同模拟技术进行虚拟筛选。 针对上述每种虚拟筛选策略,DS都能提供多种算法以供研究者根据不同的研究体系进行选择,同时对于活性的评价也提供多种打分函数。结合TCMD和CNPD,DS为中药的虚拟筛选提供有力的保证。图5 中药的虚拟筛选示意图 中药的成药性评价 中药成药性评价方面,Discovery Studio提供专业的类药性评价工具和ADME/T性质预测工具,可快速、准确预测化合物相关的各项成药性指标。 类药性评价工具。主要包含两种常用半经验方法,类药五规则和veber规则,从氢键供体、氢键受体、分子量、LogP等方面来进行类药性的判定; ADME/T 性质预测工具。提供多种ADMET性质预测模型,可以对中药的吸收、代谢、分布、排泄、毒性等性质进行预测。 化合物的水溶性 血脑屏障穿透性 人细胞色素P450 2D6抑制性 肝毒性 人肠吸收性质 血浆蛋白结合能 潜在发育毒性(Developmental Toxicity Potential,DTP) 致突变型(Mutagenicity(Ames test)) 啮齿动物致癌性(Rodent Carcinogenicity)包括 NTP及FDA 数据集 大鼠长期口服最低毒副反应水平(Rat Chronic Oral Lowest Observed Adverse Effect Level, LOAEL) 皮肤致敏性(Skin Sensitization (GPMT)) 皮肤刺激性(Skin Irritancy ) 大鼠口服LD50(Rat Oral LD50 ) 大鼠最大耐受剂量(Maximum Tolerated Dosage) 黑头呆鱼LC50(Fathead Minnow LC50 ) 大型溞EC50(Daphnia Magna EC50 ) VlogP 眼刺激性(Ocular Irritation) 大鼠吸入LC50(Inhalational LC50) 好养生物降解性能(Aerobic Biodegradability)图6 青蒿素的ADMET Descriptors预测结果图7 青蒿素的TOPKAT预测结果 中药靶向原理、有效成分的预测中药的现代化,应该是真正理解其有效成分、药效机理、靶向原理,知其然并知其所以然。图8 青蒿素潜在靶标的预测示意图 对于未知靶标的中药有效成分,可以基于如下三种方法进行反向找靶,从而预测其作用机制。 药效团模型搜索( Compound Profiling )Discovery Studio为研究者提供基于受体或基于受体-配体相互作用构建代表受体活性口袋化学和几何信息的药效团模型的算法。 图 9 基于受体 - 配体复合物产生药效团 基于药效团模型来搜索潜在靶标的方法,就是将中药有效成分与多个代表各靶标蛋白的药效团模型相互匹配,最终按照匹配打分的高低来判定潜在作用靶标。Discovery Studio中包含目前市场上最大的受体-配体复合物药效团数据库 PharmaDB,该数据库是基于scPDB(2012)中7028个复合物晶体结构构建的,共含117423个药效团模型,并且这些模型已根据不同的靶标类型进行了分类。Discovery Studio中自带的流程Ligand Profiler可自动实现多个分子和多个药效团模型的快速匹配并进行匹配度打分排序。因此,结合PharmaDB,Discovery Studio可以快速有效且全面地进行靶标搜寻、中草药有效成分的确定以及毒副作用评价。图 10 基于药效团模型的反向找靶示意图,“对号”代表命中的模型 反向分子对接( Target Fishing ) 传统的分子对接方法可以帮助科研工作者预测靶标分子与待研化合物的相互作用模式,并借助打分函数评价分子的构效关系。然而,借助计算流程编辑与管理平台Pipeline Pilot以及分子模拟平台Discovery Studio中的分子对接算法、打分函数,创腾科技为国内医药研究者提供基于分子对接方法的化合物反向找靶策略。图 11 基于分子对接的化合物反向找靶计算流程图整个设计思路分为三个步骤:1. 读取用户的小分子结构 读入的文件格式可能不同:sdf、mol、mol2、skc等 实现读入小分子的二维/三维结构转化,结构标准化,加氢,结构优化等2. 反向对接及打分(等于多个正向对接) 遍历蛋白数据库文件,获得每个蛋白的文件路径和结合位点 LibDock参数自动设置和填写(图示流程整合了DS中的LibDock对接模块,如需要,也可替换其它对接程序) 自动循环,使小分子与每个蛋白受体对接 打分、筛选和排序3 结果报表输出 柱状图显示靶标打分和最终排序 对接结构和打分情况 图 12 基于 DS+PP 反向找靶流程的结果示意 其中,靶标可来源于scPDB数据库(http://bioinfo-pharma.u-strasbg.fr/scPDB ),该数据库收集了标准PDB数据库中含有药物结合位点的蛋白,可根据配体、蛋白、结合方式为特征进行搜索。 基于 小 分子相似性分析 (Ligand Similarity Search) Discovery Studio为研究者提供基于分子指纹的分子结构相似性搜索,即DS可以计算中药活性成分与已包含化合物生物活性以及靶标注释的化合物数据库中小分子化合物的Tanimoto系数等,从而进行相似性评价,进而预测其潜在靶标。如果输入的分子能够在数据库中搜索到它本身,则可以获得其已知靶标;如果输入的分子能够在数据库中搜索到与其相似的化合物,则根据与其结构相似的分子靶标可推测输入分子的靶标信息。图13 根据同已有靶标分子相似性的分析进行未知分子靶标的预测流程示意图
  • 大型摇床可定做哦,欢迎来电咨询!
    大型摇床特点和用途:l 大型摇床,是为大专院校,科研机构,化工等单位的实验室,生产的同类产品的先进摇床。造型美观,转速可任意调节和设定。l 本仪器是大型摇床,在原有的基础上重新设计了光路、电路和外形结构.l 采用大功率直流盘式电机,功率大,可靠性好l 有变通调速和数显恒速二种供科研单位及生化实验室人员选择所有夹具都配有:专用不锈钢夹具。托盘用不锈钢制作,质量好,防腐蚀性能好。 EYC-2双层摇床技术参数:l 振荡方式:上下摇摆型l 采用大功率直流盘式电机,功率大 l 有模拟调速和数显恒速二种供用户选择l 专用不锈钢夹具。托盘用不锈钢制作l 工作尺寸:定做mml 单层高度:30mml 振荡幅度:50mml 三层的夹具,可以根据用户的要求选择不锈钢专用夹具,也可以选择:弹簧万能夹具。l 2000ml× 20只/一层  l 或者弹簧万能夹具,主要用于试管。l 数量可根据用户需要任意选配l 市场价格:18000元l 优惠价格:10000元
  • 细数近12年诺贝尔生理学或医学奖
    p  诺贝尔奖是根据诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构 (瑞典3个,挪威1个)评选。1901年12月10日即诺贝尔逝世5周年时首次颁发。诺贝尔在其遗瞩中规定,该奖应授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”。/pp  诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。/pp style="text-indent: 2em "span style="text-indent: 2em "小编为大家盘点了生理学或医学自2007年来诺贝尔奖的获奖情况,供读者阅览、思考。/span/pp style="text-indent: 2em text-align: center "strong style="color: rgb(0, 112, 192) text-indent: 2em "2018 免疫调节治疗癌症/strongbr//pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/1a18bb9f-f362-4adb-a3a5-9edf28be128d.jpg" title="2018nuo.png" alt="2018nuo.png" width="283" height="212" style="text-align: center width: 283px height: 212px "//pp style="text-indent: 2em "美国的詹姆斯艾利森(James Allison)与日本的本庶佑(Tasuku Honjo) ,以表彰他们“发现负性免疫调节治疗癌症的疗法方面的贡献”。br//pp  艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。/pp  本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。/pp style="text-align: center "strong style="text-align: center text-indent: 2em "span style="color: rgb(0, 112, 192) "2017 发现控制昼夜节律的分子机制/span/strong/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/d67d767e-d3b5-496e-8dfc-5607e5389ea1.jpg" title="2017诺贝尔奖.jpg" alt="2017诺贝尔奖.jpg" style="text-align: center width: 288px height: 293px " width="288" height="293"//pp style="text-indent: 2em "2017年诺贝尔生理学或医学奖授予杰弗理· 霍尔(Jeffrey C Hall)、迈克尔· 罗斯巴希(Michael Rosbash)、迈克尔· 杨(Michael W Young)。br//pp  三位科学家的获奖理由是:发现控制昼夜节律的分子机制。/pp style="text-indent: 2em "研究人员对生物钟进行了深入研究,阐明了其内在工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜规律,一边能够和地球的旋转同步。研究人员以果蝇作为模式动物,分离到了一种能够控制动物日常正常生物节律的特殊基因,这种基因能够编码一种特殊的蛋白,此种蛋白在夜间积累、白天降解;此外他们还发现了一种额外的蛋白组分,同时还阐明了指导细胞内部自我维持时钟(self-sustaining clockwork)的特殊机制。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2016 细胞自噬/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6e3c6a0e-c088-486e-af4a-39c0d4ba0c64.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em "2016年的诺贝尔生理学或医学奖授予了日本科学家大隅良典(Yoshinori Ohsumi),获奖理由是“发现了细胞自噬机制。”br//pp  尽管人类认知自体吞噬过程已经超过50年了,但自20世纪90年代研究者大隅良典发现自噬作用后,其在生理学和医学研究中的关键角色和作用才被发现。自噬能够消灭外来入侵的细菌和病毒,对胚胎发育和细胞分化也很关键,自噬基因的突变会引发多种疾病发生。br//pp  这项成果目前在产业方面的应用前景主要包括:帕金森疾病、2型糖尿病、癌症及衰老等领域。相关研究正在紧密展开中,以期开发相关标靶自噬药物治疗多种疾病。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2015 寄生虫疾病/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/598b0719-3bc6-4743-b54c-3cbac2d13026.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em "2015年的诺贝尔生理学或医学奖授予了爱尔兰科学家威廉· 坎贝尔、日本科学家大村智和中国药学家屠呦呦。/pp  这其中,一半共同授予威廉· 坎贝尔和大村智,以表彰他们发现针对蛔虫感染的新疗法(伊维菌素和阿维菌素的发现) 另一半则授予屠呦呦,以表彰她发现针对疟疾的新疗法(青蒿素的发现)。br//pp  如今,伊维菌素广泛被用于牛、羊、马、猪的胃肠道线虫、肺线虫和寄生节肢动物,犬的肠道线虫,耳螨、疥螨、心丝虫和微丝蚴以及家禽胃肠线虫和体外寄生虫的预防和治疗 阿维菌素则被广泛作为农用或兽用杀菌、杀虫、杀螨剂 青篙素被开发成治疗肿瘤、黑热病、红斑狼疮等疾病的衍生新药,并正在探索其治疗艾滋病、恶性肿瘤、利氏曼、血吸虫、涤虫、弓形虫等疾病以及戒毒的新用途。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2014 大脑GPS/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/df0d7258-2e18-480e-af30-a01a2ab8f43a.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em "2014年的诺贝尔生理学或医学奖授予了美国及挪威三位科学家约翰· 欧基夫、迈-布里特· 莫泽和爱德华· 莫索尔获奖。获奖理由是“发现构成大脑定位系统的细胞”。他们发现,大鼠海马区形成的回路在大脑中构成了一个广泛的定位系统——大脑GPS。/pp  这一研究促进了脑成像系统的进展,以及阿尔茨海默症等神经疾病的治疗提供了新思路,为理解记忆、思考、计划等认知过程,开辟了新的途径。br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2013 细胞囊泡运输调控机制/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/02549e22-d115-4faf-9c5d-20ad6bf124e8.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em "2013年的诺贝尔生理学或医学奖授予了美国科学家詹姆斯-E. 罗斯曼和兰迪- W. 谢克曼、德国科学家托马斯- C. 苏德霍夫,以表彰他们发现细胞内部囊泡运输调控机制。/pp  该研究揭示了“囊泡”周围细胞货物如何在正确的时间被运送到正确的细胞靶点。如果没有囊泡这个精确而奇妙的组织,细胞会陷入一片混乱,患者的囊泡转运都出现缺陷,从而会导致上述疾病。br//pp  目前,该研究被运用于神经系统疾病、糖尿病、免疫疾病等疾病的病程生理调控。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2012 体细胞重编程技术/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/f57529db-f511-4336-8bfa-23f7a8416efb.jpg" title="5.png" alt="5.png"//pp style="text-indent: 2em "2012年的诺贝尔生理学或医学奖授予了英国科学家约翰· 格登和日本医学教授山中伸弥,以表彰他们在“体细胞重编程技术”领域做出的革命性贡献。其中,山中伸弥利用基因技术,通过对小鼠的成熟细胞重编程,诱导成功具有分化能力的诱导多能干细胞。/pp  这项技术的价值在于建立长期稳定传代的患者特异细胞系,用以进行个体化药物筛选 以及将从患者体细胞获得的干细胞作为细胞治疗的材料,在疾病模拟、药物筛选和细胞治疗中有着巨大的应用前景,被人们视为细胞疗法的新希望。br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2011 免疫系统激活的关键原理/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7d7870f0-8d78-4bc0-831a-0834976a593a.jpg" title="6.png" alt="6.png"//pp style="text-indent: 2em "2011年的诺贝尔生理学或医学奖一半归于布鲁斯· 巴特勒和朱尔斯· 霍夫曼,理由是“先天免疫激活方面的发现” 另一半归于拉尔夫· 斯坦曼,理由是“发现树枝状细胞及其在获得性免疫中的作用”。/pp  免疫系统是人体和动物健康“防线”,用以抵御细菌和其他微生物。他们发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识,为驱使人体自身细胞和免疫进程来阻止传染病、自体免疫紊乱、过敏、癌症和器官移植排异提供了可能性,例如癌症治疗疫苗的开发。span style="text-align: center "  /span/pp style="text-align: center "strong style="text-align: center "span style="color: rgb(0, 112, 192) "2010 试管婴儿技术/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0158c112-8ec9-4f2b-8e88-67b73d0a95ef.jpg" title="7.png" alt="7.png"//pp style="text-indent: 2em "2010年的诺贝尔生理学或医学奖授予了被誉为“试管婴儿之父”的英国科学家罗伯特· 爱德华兹,因其“在试管受精技术方面的发展”。br//pp  罗伯特· 爱德华兹让治疗不育症成为可能,全球超过10%的夫妇因此获益匪浅。1978年7月25日,世界上第一例试管婴儿的诞生,就是对爱德华兹的不懈努力的最好表彰。他的贡献代表着现代医学史上的又一座里程碑。br//pp  如今,试管婴儿技术不断创新,从一代试管婴儿、二代试管婴儿迈向三代试管婴儿,造福千万家庭。strong style="text-align: center "span style="color: rgb(0, 112, 192) " /span/strong/pp style="text-align: center "strong style="text-align: center "span style="color: rgb(0, 112, 192) "2009 端粒和端粒酶保护染色体/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/b471b1ce-986d-44fc-b4ea-213850889547.jpg" title="8.png" alt="8.png"//pp style="text-indent: 2em "2009年的诺贝尔生理学或医学奖授予了美国加利福尼亚旧金山大学的伊丽莎白· 布莱克本、美国巴尔的摩约翰· 霍普金医学院的卡罗尔-格雷德、美国哈佛医学院的杰克· 绍斯塔克,以表彰他们发现了端粒和端粒酶保护染色体的机理。/pp  他们解决了生物学的一个重大问题:在细胞分裂时染色体如何完整地自我复制以及染色体如何受到保护以免于退化。解决办法存在于染色体末端—端粒,以及形成端粒的酶—端粒酶。br//pp  这项细胞基本机制的发现,提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于新兴治疗措施的发展,尤其是在抗衰老和抗癌方面的疗法开发。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2008 HPV和HIV病毒的发现/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e894ec77-8930-4cd8-9298-fba357252691.jpg" title="9.png" alt="9.png"//pp style="text-indent: 2em "2008年的诺贝尔生理学或医学奖授予了发现给发现宫颈癌的人乳头状瘤病毒(HPV)的德国科学家Harald zur Hausen以及发现艾滋病病毒(HIV)的法国科学家Franç oise Barré -Sinoussi和Luc Montagnier。/pp  HPV病毒的发现是进行疫苗研究的基础,为人类攻克宫颈癌提供了更为明确的“靶点”,如今科学家们在这一基础上研制出宫颈癌疫苗,这不仅是为全球女性送上的一份“科学礼物”,也对今后人类防治其他癌症具有重要借鉴意义。目前,全球共有3种HPV疫苗上市,分别是二价、四价和九价。br//pp  正是因为HIV病毒的发现,才开发出了用于诊断艾滋病的血液检查新方法和试剂,并开发出抗HIV病毒的药物,进而极大延长了艾滋病患者的生存期。span style="text-align: center " /span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong style="text-align: center "2007 利用胚胎干细胞引入“基因打靶”技术/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/580a1953-7a57-4e88-aaad-c721aa058162.jpg" title="10.png" alt="10.png"//pp style="text-indent: 2em "2007年的诺贝尔生理学或医学奖授予了在“小鼠基因打靶”技术研究的三位科学家,美国犹他大学Eccles人类遗传学研究所科学家Mario R. Capecchi 、美国北卡罗来纳州大学教会山分校医学院教授Oliver Smithies 与英国科学家卡迪夫大学卡迪夫生命科学学院Martin J. Evans因在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。/pp  这项在老鼠身上进行的“基因打靶”技术,极大地影响了人类对疾病的认识,已被广泛应用在几乎所有生物医学领域。br//pp  科学家几乎能实现所有小鼠基因的敲除,构建许多不同类型的人类疾病小鼠模型,为心血管疾病、糖尿病、癌症、囊肿性纤维化等疾病的对症下药提供了证据。/pp  以上就是2007年来诺贝尔生理学或医学奖在临床应用中的进展。明年它将会花落谁家呢?让我们拭目以待。/p
  • 谁是诺贝尔科学奖项最大赢家
    p style="text-indent: 2em text-align: justify "今年国庆假期开始后的三天里,2018年度诺贝尔奖的自然科学类奖项陆续揭晓。生理学或医学奖授予了发现免疫疗法的科学家;物理学奖颁给发明了光学镊子和啁啾脉冲放大技术的科学家;化学奖表彰了将进化论引入实验室的科学家。/pp style="text-indent: 2em text-align: justify "有趣的是,无论是生理学或医学奖、物理学奖,还是化学奖,都把智慧贡献给了最大的赢家——生物医学。/pp style="text-indent: 2em text-align: justify "生理学或医学奖:/pp style="text-indent: 2em text-align: justify "“临床应用发现此方法已经延长了很多患者的寿命”/pp style="text-indent: 2em text-align: justify "生理学或医学奖与生物医学的关系自不用说。/pp style="text-indent: 2em text-align: justify "这次获诺奖的美国得州大学奥斯汀分校免疫学家詹姆斯· 艾利森(James P. Allision)和日本京都大学教授本庶佑(Tasuku Honjo),早在两年前就因为开创了“对肿瘤负性免疫调节的抑制治疗方法”而获得复旦大学的“复旦—中植科学奖”。/pp style="text-indent: 2em text-align: justify "“尽管目前还没有证据证明这种方法可以应用于治疗所有的癌症,但这是一个很好的开端,并且目前临床应用发现此方法已经延长了很多患者的寿命。”中国科学院北京基因组研究所研究员于军在接受《中国科学报》记者采访时说。/pp style="text-indent: 2em text-align: justify "美国科学家艾利森从上世纪80年代就开始做T细胞免疫方面的研究,90年代发现了CTLA-4在T细胞的抑制效应,从此便在这个领域持续耕耘30多年。CTLA-4分子最初发现时还不被人重视,但随着它的治疗性抗体表现出明确、稳定的疗效,人们才意识到这是一个开创性的成就。/pp style="text-indent: 2em text-align: justify "日本科学家本庶佑是第一个发现PD-1的人,此后因PD-1、活化诱导胞苷脱氨酶的有关研究闻名,如今成为日本在18年内诞生的第18位诺奖得主。日本从2001年起制定了50年诞生30位诺奖得主的目标,如今时间才过去五分之二,这一目标已经完成过半。/pp style="text-indent: 2em text-align: justify "这个奖项还让美国耶鲁大学教授陈列平的科研成果备受关注。科学网博主王俊等科研人员“为陈列平教授鸣不平”,不过也有科学家认为“诺奖只颁给最早发现者,其他人虽也有很多贡献,但不是最早的发现人”。/pp style="text-indent: 2em text-align: justify "物理学奖:/pp style="text-indent: 2em text-align: justify "能搬细胞,还能用来做近视眼手术/pp style="text-indent: 2em text-align: justify "就像光学显微镜技术的提升曾经带来过很多重要基础研究成果一样,今年的诺贝尔物理学奖涉及的“激光物理学领域开创性的发明”虽然看起来是技术,却与基础研究特别是生物医学有着密切联系。/pp style="text-indent: 2em text-align: justify "今年诺贝尔物理学奖项的一半授予了96岁的美国贝尔实验室科学家阿瑟· 阿什金(Arthur Ashkin),表彰其在“光学镊子及其在生物系统中的应用”领域所做的工作。/pp style="text-indent: 2em text-align: justify "“阿瑟开辟了这项技术后,一直坚持研究光镊对细胞、单分子、单个颗粒的应用。光镊技术的‘鬼斧神工’对于生命科学的意义,正如阿瑟所说:将细胞器从它正常位置移去的能力,为我们打开精确研究细胞功能的大门。”中国科学技术大学光镊研究组教授李银妹告诉《中国科学报》记者。/pp style="text-indent: 2em text-align: justify "另一半奖金由法国巴黎综合理工学院科学家杰拉德· 莫柔(Gé rard Mourou)和加拿大滑铁卢大学的女科学家唐纳· 史翠克兰(Donna Strickland)共同分享,以表彰他们在“产生高强度、超短光脉冲方法”方面的贡献。物理学奖为此迎来了它的第三位女科学家,也是55年来的第一位女科学家。/pp style="text-indent: 2em text-align: justify "“在医学领域,超短超强激光可以产生一些新的成像技术,并用于近视眼手术,其产生的高能量质子束、高强度X射线可用于癌症的早期诊断与治疗。”中国科学院物理研究所光物理重点实验室研究员魏志义说。/pp style="text-indent: 2em text-align: justify "当然,这些技术并不仅限于生命科学领域的应用,比方说,光学镊子在精密测量领域可以大显身手,超短超强激光在工业领域还可以用于特殊材料的高精度加工。/pp style="text-indent: 2em text-align: justify "化学奖:/pp style="text-indent: 2em text-align: justify "“奖励的是一场基于进化的革命”/pp style="text-indent: 2em text-align: justify "掌控进化,是今年诺奖化学奖的关键词。“今年的诺贝尔化学奖奖励的是一场基于进化的革命。”诺贝尔化学委员会主席克拉斯· 古斯塔夫松(Claes Gustafsson)说。/pp style="text-indent: 2em text-align: justify "美国女科学家弗朗西丝· 阿诺德(Frances H. Arnoid)、美国科学家乔治· 史密斯(George P. Smith)和英国科学家格雷戈里· 温特(Sir Gregory P. Winter)因为将“进化”引入实验室创造出新型化学品而获得诺贝尔化学奖。/pp style="text-indent: 2em text-align: justify "中国工程院院士、北京化工大学校长谭天伟认为,诺贝尔化学奖多次授予与化学有关交叉学科,也许侧重点或者出发点是从生物角度,但是其实很多都是跟化学有关的,例如原先的PCR(聚合酶链式反应)。/pp style="text-indent: 2em text-align: justify "中科院院士、中国科学院上海有机化学研究所所长丁奎岭表示,无论是物理学家还是生物学家,他们都为分子水平认知世界提供了创新的工具和方法,所研究的领域本质上其实还是化学研究的分子科学范畴。这次获奖体现了生物与化学的交叉与融合,尽管是生物学家做出的事情,但他们促进了从分子水平认知生物体的变化。/pp style="text-indent: 2em text-align: justify "总之,今年的诺奖自然科学奖说明人类为更好的生活而付出的努力。这些奖项的背后,是人类命运共同体向生命的未知探出的触角。诺奖的最大赢家是生物医学,更是整个人类。/pp style="text-indent: 2em text-align: justify "而对于中国来说,我们的差距有多大呢?以物理学奖为例,“如果问和世界水平有多大差距的话,可以说差距不大。不过,诺奖是给原创者的,而我国的超短脉冲、超高功率激光器,技术上没有很大创新,如果我们要获诺奖,还需要从源头上创新,而不是追求某些技术指标。”北京大学信息科学技术学院教授张志刚说。/p
  • 领先于病毒进化:北大“鹏程神农”入围戈登贝尔新冠特别奖
    11月17日,美国计算机协会(ACM)公布2022年度戈登贝尔新冠特别奖评选结果。北京大学深圳研究生院信息工程学院与鹏城实验室、山东大学组成的联合研究团队在自行研发的鹏程神农生物信息研究平台上完成的“领先于病毒的进化——通过人工智能模拟预测未来高风险新冠病毒变异株”研究项目成功入围2022年度“戈登贝尔新冠特别奖”,也是本次入围的唯一来自中国团队的项目。北大主要参与者是来自信息工程学院的田永鸿教授、陈杰副教授和博士研究生聂志伟和来自数学科学学院的杨超教授。该成果由美国华盛顿大学医院院长John Lynch教授、捷克查尔斯大学Martina Koziar Vasakova教授、西湖大学周强教授提名推荐。入围该奖的其余两个团队为:美国阿贡国家实验室、英伟达、芝加哥大学、加州理工学院联合团队及美国橡树岭国家实验室团队。鹏程神农团队于众多世界级顶尖强队中脱颖而出,名列前茅,足见中国人工智能在计算集群和科研创新领域已处于全球顶尖水平。鹏程神农是基于“鹏城云脑Ⅱ”超大规模算力集群和昇思Mind Spore AI框架联合打造的面向生物医学领域的新一代数据密集型生命科学精准计算平台。该平台依托生物大数据、计算生物学理论和技术、人工智能算法和计算集群,实现新药创制和病毒演化预测。团队研发了首个面向新冠病毒RBD区域变异的全环节模拟流程,通过多层次优化的计算策略、国际领先的新冠病毒变异体精准评价筛选算法,实现了对高风险变异株的演化模拟及精准预测。图1. 首个面向新冠病毒RBD区域变异的AI模拟工作图2. 依托“鹏城云脑Ⅱ”的大规模并行病毒变异模拟全流程为了在高维变异空间中实现高性能预测,团队充分融合专家知识,复刻病毒在真实世界中的变异规律,构建基于神农大模型的变异体生成器。生成的海量变异体通过多层次的精准病毒关键性质预测算法,进行高通量筛选,以模拟病毒在真实世界变异过程所面临的筛选压力,每秒可生成、筛选超百万条变异体,每天可生成、筛选超1011条变异体。同时通过递进循环微调的范式,逐步缩小病毒的变异空间,最终实现病毒的全流程变异模拟。团队在两天内实现了新冠病毒Alpha、Beta、Gamma、Delta、Omicron BA.5等主流毒株的变异模拟,且可以准确预测大多数的高风险监测变异株,包括BF.7、BQ.1、BA.4.6等。病毒变异不断冲击着人类抗疫战线。在新冠病毒新变种不断出现的情况下,对潜在高风险变异株的预测有助于疫苗和药物研发的提前部署,为疫情防控决策提供有力支撑。图3. 神农AI大模型在两天内实现了对高风险变异株的演化模拟和精准预测关于戈登贝尔奖:设立于1987年的“戈登贝尔奖”是国际上高性能计算应用领域的最高学术奖项,主要颁发给高性能应用领域最杰出成就,被称为“超算领域的诺贝尔奖”。在2016年之前,美国、日本曾垄断该奖项长达近30年。该奖项由ACM每年评选和颁发。由于新冠肺炎疫情的暴发,ACM于2020年首次设立了“戈登贝尔奖新冠特别奖(ACM Gordon Bell Special Prize for HPC-Based COVID-19 Research)”,以表彰在“超算抗疫”领域取得杰出成就的研究成果。
  • 恒温摇床研发再创佳绩 上海比朗隆重推出
    来自上海媒体最新报道:上海比朗仪器设备有限公司做为国内最大从事恒温实验设备和超声波实验设备,恒温摇床,研发、生产、销售于一体的高科技技术企业。近年来在巩固和扩大仪器市场的基础上,积极开发个性化&ldquo 亮点&rdquo 产品,实现了恒温摇床市场等多领域发展的新突破,赢得了越来越广阔的发展空间。  目前,上海比朗仪器设备有限公司恒温摇床研发取得重大突破,再创佳绩。上海比朗仪器设备有限公司的市场和竞争格局发生巨大变化,为在激烈的竞争中立得一席之地,上海比朗仪器设备有限公司研发的恒温摇床不仅持久耐用,而且品质效果良好,受到业界一致好评!  上海比朗仪器设备有限公司研发的恒温摇床具体介绍:  恒温摇床外观图  比朗品牌COS-100B 恒温摇床具有不锈钢万用夹具、数显控温、无级调速和良好的热循环功能,是一种多用途的生化器,是植物、生物、微生物、遗传、病毒、环保、医学等科研,教育和生产部门作精密培养制备不可缺少的实验室设备,适用于各大中院校、油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。  恒温摇床技术参数:  产品型号BILON-COS-100BBILON-COS-100C  旋转频率40~400rpm40~300rpm  频率精度± 1 rpm± 1 rpm  摆振幅度¢25mm¢25mm  标准配置50ml× 4支100ml× 4支 250ml× 3支 500ml× 3支 100ml× 9支  最大容量50ml× 20支 100ml× 16支250ml× 12支 500ml× 9支 50ml× 12支 100ml× 9支 250ml× 6支  托盘尺寸450mm× 370mm280mm× 220mm  定时范围0~999小时0~999小时  温控范围环境温度+5℃~60℃环境温度+5℃~60℃  温控精度± 0.1℃± 0.1℃  温度均匀度± 1℃± 1℃  数显方式LCDLCD  托盘数量1块1块  外型尺寸600mm× 580mm× 510mm440mm× 410mm× 390mm  净 重72KG31KG  容 积440mm× 405mm× 270mm(70L)320mm× 295mm× 190mm(70L)  功 率580W310W  电 源AC220V~240V 50H60Z~60HZAC220V~240V 50H60Z~60HZ  恒温摇床主要特征:  1、集恒温培养箱与振荡器于一体,节约空间占地小,功能多投资少。  2、外壳为ABS工程塑料制作、腔体全镜面不锈钢组件,永不生锈。  3、倾斜式人性化的控制面板,大屏幕背光液晶显示屏,更具良好的视觉效果。  4、设有运行参数记忆功能,避免繁琐操作并密码锁定,杜绝人为误操作。  5、设有来电恢复功能,不受电源间断影响,设备可自动按原设定程序恢复运行。  6、实测温度偏离设定温度超过3℃时,自动停止加热并发出声光警报。  7、具有强劲快速的制冷系统,使降温要求瞬间实现并具有自动化霜功能  8、最先进大力矩电机保证持续工作毋须保养。  9、整机静音设计,静电喷塑箱体,钢化玻璃超大可视窗,造型豪华美观。  10、升温速度可以根据实验的具体要求进行加快或减慢。  后来记者从上海仪器仪表协会得知上海比朗的具体情况,上海比朗仪器设备有限公司是专业生产,恒温摇床、恒温槽、低温恒温槽、恒温水槽、恒温油槽、超声波细胞粉碎机。其研发生产的恒温摇床达到了世界先进水平。  更多详情请链接:http://www.bilon100.com
  • 诺贝尔科学奖花开中国起码还要10年
    2013年的诺贝尔生理学或医学奖授予了美国耶鲁大学的詹姆斯&bull 罗斯曼、美国加州大学伯克利分校兰迪&bull 谢克曼及德国的托马斯&bull 苏德霍夫,因为他们解释了细胞是如何组织自身的转运系统的。  汤森路透公司此前曾预测有三项研究,即细胞死亡方式自噬、脱氧核糖核酸甲基化和HER-2/neu原癌基因方面的研究的若干科学家可能获得今年贝尔生理学或医学奖。但是,此次一项都没有预测成功。但汤森路透却成功预测对了今年的物理奖,弗朗索瓦&bull 恩格勒和彼得&bull 希格斯因预测希格斯玻色子存在而获2013年诺贝尔物理学奖。即便是今年的诺贝尔生理学或医学奖得主,汤森路透也在2009年就预测罗斯曼和谢克曼将会获奖,只是漏下了苏德霍夫。如此看来,没有人能否认汤森路透预测的某种准确性,而且在2002年-2012年该公司预测的183名可能获奖的候选人中,一语中的人共有27,算得上是神算。  与此同时,也有中国的预测。9月29日,南京工业大学校长、中科院院士黄维在迎接该校6900名本科新生的开学典礼上做了一个长远的惊人预测:&ldquo 十年之后的中国,像诺贝尔奖这样的国际性重要指标,在中国大地出现应该将会成为常态,而不是个案。在文学奖之后,自然科学和生命科学方面的奖项将陆续被中国人斩获,没有任何悬念&hellip &hellip &rdquo   黄维的这番表述如果不是志壮山河,也应当是气冲云霄。但是,这样的预测能否成为现实或至少有一部分成为现实,是判断科学预测或未来学与说大话或乌鸦嘴之间一个明确的界线。尽管证明诺贝尔奖可以在未来10年成为中国常态的证据与汤森路透的预测根据有相似点,即根据发表论文后的引用数来预测,但是,汤森路透更重要的依据是,确认哪些研究是重要的基础研究和发现,然后再确定该研究和发现的最重要贡献者。  然而,黄维的根据并非如此。黄维把诺贝尔奖当作未来中国的家常便饭的证据有两个。一是中国科技人员的论文发表量和引用数,二是中国的科研水平和研发投入达到世界一流。  黄维称,中国科技人员发表国际论文总量居世界第二位,被引用次数排世界第六位,引用次数高的国际论文数量排世界第五位。不过,事实是,中国科学技术信息研究所发布的2013年度中国科技论文统计结果表明,2012年中国作者为第一作者的论文共16.47万篇,其中被引用次数高于世界均值的&ldquo 表现不俗&rdquo 论文只占了近三成。而且,在平均数上面,中国每篇国际科技论文平均被引用6.92次,低于世界平均10.69的数字。  至于中国的科研水平,当然有接近甚至超过国际水平的研究,但是,这些研究是什么,数量有多少,并不能获得确认。而且,即便是中国的一些研究处于对国际高水平的跟踪到并行发展水平,也未必能获得诺贝尔奖的青睐,因为诺贝尔奖选择的是第一,或者是奠基性的研究。  当然,中国的研发投入之大也是不容否认。2012年中国科技经费投入统计表明,全社会研究与试验发展(R&D)经费投入首次突破万亿元人民币大关,R&D经费投入总量位居世界第三。然而,科研成果的确是没有钱是不行的,但并非是有钱就行。因为,钱在科研中不是第一位的,而是从属的。  科研的第一位是创新、实干和苦干,以及需要时间和经验的积累。更令人遗憾的是,中国目前投入的科研经费大部分并未用在刀刃上。中国科协一项调查显示,中国的科研资金用于项目本身仅占40%左右,60%都用于开会、出差等。大部分科研经费都不用在正经的科研上,能指望科研出现什么突破性和开创性的成果?  尽管有人批评诺贝尔奖有倾向性,或者事实上诺贝尔奖也表现出了某种并不公正的现象,但从诺贝尔奖的统计学分析来看,诺贝尔奖无论对于哪个国家都是大餐,而非家常便饭,就连获得诺贝尔奖最多的美国也不可能把诺贝尔奖当作家常便饭,而只是当作通过艰辛劳作,绞尽脑汁的创造后可以烹调和享用的大餐。  从1901年到2012年的112年间,美国获得诺贝尔奖有298人,堪称世界之冠。排名在2-4名的分别是,英国,获奖总人为84 德国,获奖总人为66 法国,总获奖人数为33。即便以获得奖数最多的美国而言,在112年间,也不过每年有不到3人获奖,对于他们,也只能算是大餐,而非家常便饭。没有充分的准备和有份量的成果,不仅无法吃到诺贝尔奖这份大餐,更不可能把该奖当作家常便饭来享用。  再从获奖的时间来看,一项重要的科研成果要获得诺贝尔奖一般需要三四十年的时间,甚至更长,原因是,科研成果需要重复检验。例如,高锟从1966年提出光纤通信理论到2009年获奖,至少经历了40年时间。但是,也有获奖较快的,如日本的山中伸弥在2006年证实了诱导多能干细胞,在2012年就获得诺贝尔生理学或医学奖。但是,山中伸弥只是获奖者之一,而且诺贝尔奖评委会认为,山中伸弥不过是重新验证并深化了同为获奖者的英国人戈登在1962的发现,即已经定性定型的细胞是可以逆转的。  所以,即便10年后中国人的科研成果如雨后春笋般地出现,也需要时间来验证,到底是真还是假,是重大还是一般。要在那时就能把获得诺贝尔奖当做常态,实在有些勉为其难。  也许,黄维先生的预测要高于汤森路透,所以我们不妨期待和见证,中国人是否在10年之后拿诺贝尔奖如家常便饭。
  • 量子点的春天!2023年诺贝尔化学奖详细解读!
    2023 年 10 月 4 日北京时间 17 时 45 分许,美籍法国-突尼斯裔化学家芒吉G. 巴文迪(Moungi G. Bawendi),美国化学家路易斯E. 布鲁斯(Louis E. Brus)和俄罗斯物理学家阿列克谢I. 叶基莫夫(Alexei I. Ekimov)因“发现和合成量子点”获得 2023 年诺贝尔化学奖。芒吉G. 巴文迪(Moungi G. Bawendi),1961年出生于法国巴黎。1988年毕业于美国伊利诺伊州芝加哥大学,获博士学位。美国马萨诸塞州剑桥市麻省理工学院(MIT)教授。 路易斯E. 布鲁斯(Louis E. Brus),1943 年出生于美国俄亥俄州克利夫兰。1969 年获美国纽约哥伦比亚大学(Columbia University)博士学位。美国纽约哥伦比亚大学教授。 阿列克谢I. 叶基莫夫(Alexei I. Ekimov),1945 年出生于苏联。1974 年毕业于俄罗斯圣彼得堡约菲物理技术研究所,获博士学位。1999年起移居美国,就职于私人商业公司,曾任美国纽约纳米晶体技术公司(Nanocrystals Technology Inc)首席科学家。他们令纳米技术拥有了颜色芒吉G. 巴文迪(Moungi G. Bawendi)、路易斯E. 布鲁斯(Louis E. Brus)和阿列克谢I. 叶基莫夫(Alexei I. Ekimov)因发现和开发量子点,共同荣获2023年诺贝尔化学奖。量子点是一类微小颗粒,具有独特的特性,已经应用在多个方面。例如,电视屏幕和LED灯的光线传导都与此相关,它们可以催化化学反应,它们清晰的光线也能为外科医生照亮肿瘤组织。“托托,我有一种感觉,我们已经不在堪萨斯了。”这是电影《绿野仙踪》中的一句经典台词。当一场强大的龙卷风吹走了主人公多萝西的房子时,十二岁的她晕倒在了床上。当房子再次着陆,多萝西抱着她的狗——托托走出门外时,一切都改变了。突然间,她进入了一个神奇的彩色世界。如果一场魔法龙卷风席卷我们的生活,将一切都缩小到纳米尺度,我们几乎肯定会像奥兹国的多萝西一样感到惊讶。我们的周围将会变得五光十色,一切都会改变。我们的金耳环会突然发出蓝色的光芒,而手指上的金戒指会发出红宝石般的光芒。如果我们尝试在燃气灶上煎东西,煎锅可能会融化。我们的白色墙壁因油漆中含有二氧化钛,还会开始产生大量的活性氧。图 1. 量子点为我们创造彩色光提供了新的机会。纳米尺度在纳米世界中,事物的行为会有所不同。一旦物质的大小开始以百万分之一毫米为单位,奇怪的现象——量子效应——就会出现,这会颠覆我们的直觉。2023年诺贝尔化学奖得主都是探索纳米世界的先驱。20 世纪 80 年代初,路易斯布鲁斯和阿列克谢叶基莫夫各自独立地成功合成了量子点,这种纳米粒子非常微小,量子效应决定了它们的特性。1993 年,芒吉巴文迪彻底改变了制造量子点的方法,使其质量极高——这是它们应用于当今纳米技术的重要先决条件。多亏了这三位获奖者的工作,现在人类能够利用纳米世界的一些奇特特性了。量子点现已出现在商业产品中,并应用于从物理、化学到医学的许多学科。但在展开描述这些内容之前,让我们先来揭开2023年诺贝尔化学奖的背景。图 2. 量子点是一种通常仅由几千个原子组成的晶体。一个量子点相对于足球的大小,就像是足球相对整个地球的大小。几十年来,纳米世界中的量子现象只是一种预测当阿列克谢叶基莫夫和路易斯布鲁斯合成出第一个量子点时,科学家已经知道,它们理论上可能拥有不寻常的特性。1937 年,物理学家赫伯特弗勒利希(Herbert Fröhlich)就已经预测纳米粒子的行为不会像其他粒子一样。他探索了著名的薛定谔方程的理论结果,该方程表明,当粒子变得极小时,材料中电子分布的空间就会减少。因此,电子(既是波又是粒子)会被挤压在一起。弗勒利希意识到这将使材料的特性发生巨大变化。这种可能性吸引了许多研究者,他们利用数学工具成功地预测了许多量子尺寸效应。他们还努力尝试在现实中呈现它们。但这说起来容易做起来难——科学家需要雕刻一个只有针头一百万分之一大小的结构。利用量子效应尽管如此,在 20 世纪 70 年代,研究人员还是成功制出了这种纳米结构。他们利用一种分子束,在块状材料上制造出了一层纳米级厚度的涂层。组装完成后,他们发现该涂层的光学特性可以随其厚度的变化而变化,这一观察结果与量子力学的预测相吻合。这是一项重大的突破,但需要非常先进的技术。研究人员需要超高真空和接近绝对零度的温度,因此很少有人想到量子力学现象能够得到实际应用。然而,科学时不时会带来意想不到的结果,这一次,转折点就出现在对一项古老发明的研究上:彩色玻璃。单一物质可以赋予玻璃不同的颜色对彩色玻璃最古老的考古发现距今已有数千年历史。玻璃制造商已经测试了各种方法,以了解如何制造颜色各样的的玻璃。为此,他们添加了银、金和镉等物质,然后在不同的温度下生产出了色泽美丽的玻璃。在19世纪和20世纪,当物理学家开始研究光的光学特性时,玻璃制造商对光的了解就派上用场了。物理学家可以使用彩色玻璃来滤掉特定波长的光。为了优化实验,他们开始自己生产玻璃,并由此获得了重要的发现。他们了解到的一件事是,一种物质就可以产生具有多种不同颜色的玻璃。例如,硒化镉和硫化镉的混合物可以使玻璃变成黄色或红色——会产生哪一种颜色取决于熔融玻璃的加热程度和冷却方式。最后,他们还证明颜色的形成来源于玻璃内部形成的颗粒,并且可形成的颜色取决于颗粒的大小。这大概是 20 世纪 70 年代末学界所了解的知识。今年的诺贝尔化学奖得主之一、彼时刚刚博士毕业阿列克谢I.叶基莫夫 (Alexei Ekimov) 开始在苏联的圣彼得堡Vavilov国家光学研究所(Vavilov State Optical Institute)工作。阿列克谢叶基莫夫揭示了彩色玻璃的奥秘同一种物质可以制造不同颜色的玻璃,这件事引起了叶基莫夫的兴趣,因为这实际上是不合逻辑的。如果你用镉红画一幅画,它永远都会是镉红色,除非你混合其他颜料。那么同一种物质为何能赋予玻璃不同颜色呢?在攻读博士学位期间,叶基莫夫研究的是半导体,这是微电子学的重要组成部分。在该领域,光学方法被用作评估半导体材料质量的诊断工具。研究人员用光照射材料并测量吸光度,这能表征材料是由什么物质制成的,以及晶体结构的有序程度。叶基莫夫熟悉这些方法,因此他开始用它们来检查彩色玻璃。经过一些初步实验后,他决定系统地生产用氯化铜着色的玻璃。他将熔融玻璃加热到500°C到700°C,加热时间从1小时到96小时不等。玻璃冷却并硬化后,他进行了X射线检查。散射光线显示,玻璃内部形成了微小的氯化铜晶体,而制造的过程会影响这些颗粒的大小。在一些玻璃样品中,它们只有约2纳米大,而在其他玻璃样品中,它们的尺度达到了30纳米。有趣的是,玻璃的光吸收会受到这些颗粒尺寸的影响。最大的颗粒吸收光的方式与氯化铜通常的吸收方式相同,但颗粒越小,它们吸收的光越蓝。作为一名物理学家,叶基莫夫非常熟悉量子力学定律,他很快意识到,他观察到了与尺寸相关的量子效应。这是科学家首次成功地刻意制造了量子点——一种引起尺寸依赖性量子效应的纳米颗粒。1981年,叶基莫夫在苏联科学期刊上发表了他的发现,但这对于铁幕另一边的研究人员来说很难获得。因此,1983年,当同样是今年诺贝尔化学奖的获得者——路易斯布鲁斯首次在溶液中发现了自由漂浮的粒子具备尺寸依赖性的量子效应时,他并不知道叶基莫夫的发现。图 3. 当粒子收缩时会产生量子效应。当粒子直径仅为几纳米时,电子可用的空间就会缩小。这会影响粒子的光学特性。布鲁斯证明粒子的奇怪特性是量子效应路易斯布鲁斯(Louis Brus)当时在美国贝尔实验室工作,他长期的研究目标是利用太阳能实现化学反应。为了实现这一目标,他使用了硫化镉颗粒。这种颗粒可以捕获光,并利用其中的能量来驱动反应。布鲁斯将溶液中的这些颗粒做得非常小,因为这样就有更大的区域可以发生化学反应;材料切得越碎越多,暴露在周围环境中的表面积就越大。在研究这些微小粒子的过程中,布鲁斯注意到一些奇怪的事情——当他将它们放在实验台上一段时间后,它们的光学特性发生了变化。他猜测这可能是因为颗粒变大了。为了证实他的怀疑,他生产了直径约为 4.5 纳米的硫化镉颗粒。随后,布鲁斯比较了这些新制造的颗粒的光学特性和直径约为 12.5 纳米的较大颗粒的光学特性。较大的颗粒和硫化镉吸收相同波长的光,但较小颗粒的吸光度偏向蓝色(图 3)。和叶基莫夫一样,布鲁斯明白他观察到了与尺寸有关的量子效应。他于 1983 年发表了自己的发现,并开始研究一系列其他物质制成的颗粒。这些物质出现的模式是相同的——颗粒越小,它们吸收的光越蓝。元素周期表获得了第三个维度这里,您可能会想问“为什么如果物质的吸光度稍微偏向蓝色会很重要?这真的很神奇吗?”是的,光学性质的变化表明这种物质的特性完全改变了。一种物质的光学特性是由其电子控制的。同样这些电子还会控制物质的其他特性,例如催化化学反应或导电的能力。因此,当研究人员检测到物质的吸收度变化时,他们明白自己实际上正在研究一种全新的材料。如果你想了解这一发现的重要性,你可以想象元素周期表突然有了第三个维度。元素的性质不仅受到电子层的数量和外层电子数的影响,而且在纳米水平上,尺寸也很重要。一位想要开发新材料的化学家因此有了另一个因素需要考虑——当然,这也激发了研究人员的想象力!只有一个问题。布鲁斯用来制造非粒子的方法通常会导致质量不可预测。量子点是微小的晶体(图 2),当时生产出的量子点通常存在缺陷。它们的大小也各不相同。不过可以通过控制晶体的形成方式,使颗粒具有一个相对固定的平均尺寸,但如果研究人员希望溶液中所有颗粒的尺寸大致相同,就必须在制成后对它们进行分类。这是一个艰难的过程,会阻碍研究的发展。芒吉巴文迪彻底改变了量子点的生产这是今年第三位诺贝尔化学奖获得者决定要解决的问题。芒吉巴文迪(Moungi Bawendi)于 1988 年在路易斯布鲁斯(Louis E. Brus)实验室开始了博士后工作,这所实验室中正在进行大量尝试,以改进用于生产量子点的方法。研究者使用一系列溶剂、温度和技术,对多种物质进行实验,尝试形成组织良好的纳米晶体。他们得到的晶体的确在变得更好,但仍然不够好。然而,巴文迪并没有放弃。他随后开始在美国麻省理工学院 (MIT) 担任研究负责人,并继续努力生产更高质量的纳米粒子。重大突破出现在 1993 年,当时研究小组将形成纳米晶体的物质注入经过加热且精心选择的溶剂中。他们注入了恰好形成饱和溶液所需的物质量,从而导致微小的晶体胚胎开始同时形成(图 4)。然后,通过动态改变溶液的温度,巴文迪和研究团队成功使特定尺寸的纳米晶体生长了出来,在这个过程中,溶剂可以令晶体的表面变得光滑且均匀。巴文迪生产的纳米晶体几乎是完美的,并产生了独特的量子效应。同样,由于生产方法很简单,因此这带来了革命性的突破——越来越多的化学家开始研究纳米技术,并开始研究量子点的独特性质。图 4.1.巴文迪将能形成硒化镉的物质注入加热的溶剂中,加入的量足以使针周围的溶剂饱和。2.硒化镉的小晶体立即形成,但由于注射冷却了溶剂,晶体会停止形成。3.当巴文迪提高溶剂温度时,晶体再次开始生长。这种情况持续的时间越长,晶体就会变得越大。量子点的发光特性有了商业用途三十年后的现在,量子点已成为纳米技术的重要工具,并出现在商业化的产品中。研究人员主要利用量子点来产生彩色光。如果用蓝光照射量子点,它们会吸收光并发出一种不同的颜色。通过改变粒子的大小,我们可以精准确定它们的发光颜色(图 3)。量子点的发光特性被用于基于QLED技术的计算机和电视屏幕,其中Q代表量子点。在这些屏幕中,蓝光是使用获得 2014 年诺贝尔物理学奖的节能二极管产生的。量子点被用来改变部分蓝光的颜色,将其转换为红色或绿色。这让电视屏幕获得了显示图像所需的三基色光。一些LED灯也使用了量子点来调节二极管的冷光。这让光线既能像日光一样充满活力,又能使其像暗淡灯泡发出的暖光一样平静。量子点发出的光也可用于生物化学和医学。生物化学家将用量子点与生化分子相连接,以便绘制细胞和器官图谱。医生已经开始研究用量子点追踪体内肿瘤组织的潜在效用。化学家利用量子点的催化特性来驱动化学反应。量子点正在将其对人类的利益最大化,而我们才刚刚开始探索它的潜力。研究人员相信,未来量子点可以为柔性电子产品、微型传感器、更纤薄的太阳能电池以及加密量子通信做出贡献。有一点是肯定的——关于令人惊奇的量子现象,还有很多未知须要探索。因此,如果 12 岁的多萝西正在寻找冒险,纳米世界可以提供很多东西。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制