当前位置: 仪器信息网 > 行业主题 > >

气密真空高温热台

仪器信息网气密真空高温热台专题为您提供2024年最新气密真空高温热台价格报价、厂家品牌的相关信息, 包括气密真空高温热台参数、型号等,不管是国产,还是进口品牌的气密真空高温热台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气密真空高温热台相关的耗材配件、试剂标物,还有气密真空高温热台相关的最新资讯、资料,以及气密真空高温热台相关的解决方案。

气密真空高温热台相关的论坛

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】求教高温热台知识

    各位大侠们好!本人由于工作方面的需要想了解一下高温热台的工作原理极其使用方法等问题,如果采购高温热台应该注意哪些技术指标,使用高温热台会对显微镜产生什么样的影响?现有高温热台厂家中,哪些比较优质?谢谢!再次表示感谢!

  • 微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    [size=14px][color=#cc0000]  摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px]  各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px]  低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px]  中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px]  等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px]  为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px]  针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px]  具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px]  丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)电源供电:DC 9~24V。[/size][size=14px]  (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px]  安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px]  在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px]  另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px]  上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px]  同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px]  [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 烧蚀防热材料高温热物理性能新型测试方法的初步研究

    烧蚀防热材料高温热物理性能新型测试方法的初步研究

    [color=#ff0000]摘要:文本针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期准确测试烧蚀防热材料的高温热物理性能,由此得到烧蚀防热材料在热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[/color][align=center][img=烧蚀防热材料导热系数测试,600,390]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011700416434_107_3384_3.png!w690x449.jpg[/img][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]烧蚀防热材料的高温热物理性能是高温下的传热管理和热化学烧蚀建模的必要参数,但因为烧蚀材料具有特殊性:它们具有相当低的热导率,加热过程中会产生气体,热性能非单调变化,甚至材料的热性能还取决于加热速率。这种特殊性造成目前的各种稳态法和瞬态法都不适合烧蚀防热材料的热物理性能测试,主要是因为在测试之前的温度稳定期间就已经发生了热化学反应。因此,烧蚀防热材料的高温热物理性能测试一直是个技术难题,需要开发一种新型测试方法,对整个使用温度范围内含有热化学反应过程的烧蚀防热材料热物理性能进行准确测量,甚至测试出不同加热速率下烧蚀防热材料的热物理性能。文本将针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期测试烧蚀防热材料的高温热物理性能,由此得到热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[size=18px][color=#ff0000]二、测试方法[/color][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此建立了如图1所示的传热学第二类正规热工工况测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面为绝热条件。[align=center][img=烧蚀防热材料导热系数测试,350,369]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702158319_7823_3384_3.png!w625x659.jpg[/img][/align][align=center]图1 恒定加热速率法测量原理[/align]在图1所示的测试模型中,假设其中的热传递为一维热流,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=烧蚀防热材料导热系数测试,500,140]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702541092_2146_3384_3.png!w690x194.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效热扩散率随平均温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到热流传感器的作用,即在线性升温过程中测量金属板前后两表面的温度,并结合金属板的已知热物理性能参数,可计算得到流经金属板的热流密度,由此间接测量得到流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效热导率随平均温度的变化曲线。根据上述测量获得热扩散率和热导率,并依据比热容、密度、热扩散率和热导率之间的关系式λ=ρ×C×α,可计算得到被测样品的质量热容随温度的变化曲线。如果采用热膨胀仪和热重分析仪精确测量被测材料在不同温度下的密度变化,通过关系式就可获得被测样品的比热容随温度变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热隔热材料热物性测试的有效性。[size=18px][color=#ff0000]三、今后的工作[/color][/size]尽管进行了详细的测试公式推导和有限元仿真计算,但对于这种新型的恒定加热速率热物性测试方法,还需进一步开展以下研究工作:(1)采用无热化学反应的高温隔热材料进行测试,以考核测试方法的重复性和进行测量不确定度评估。(2)采用无热化学反应的高温隔热材料与其他高温热物性测试方法进行对比,如稳态热流计法、热线法和闪光法等。(3)采用烧蚀防热材料进行高温测试,以考核测试方法的重复性,并结合其他热分析方法、热模拟考核试验(石英灯、氧乙炔、小发动机火焰和风洞)和建模分析,验证新型测试方法的有效性。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】高温热胁对Achnanthes sp.光合影响再探

    【原创大赛】高温热胁对Achnanthes sp.光合影响再探

    高温热胁对Achnanthes sp.光合影响再探 在11月的原创中,我已经对Achnanthes sp.的高温热胁的响应进行了初步分析,感谢各位专家对本人作品的肯定。本文为此作品的续作,仍以春秋季常见的水华种Achnanthes sp.为受试生物,深入研究高温热胁对藻类光系统影响的作用机制(之前没人说是这个影响主要是作用于哪个亚显微结构的)1.实验材料和仪器http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417720_1653274_3.jpg Achnanthes sp.(2012.5.4采自宁波某水库),这个是实验用的藻种,纯度在99%以上吧。http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417721_1653274_3.jpg PHYYTO-PAM调制叶绿素荧光仪(德国WALZ公司), 光照培养箱(宁波江南仪器厂),用于藻类的扩培和温度光照条件控制。PS:藻液培养条件20℃,2000LX光照强度,光暗比16:8。 ☆还是这台仪器,还是这个藻。培养条件也一致。这样有可比性。2.实验方法: 实验主要以有效光量子产量Fv/Fm’与最大光量子产量Fv/Fm为分析指标,具体的操作步骤我在这里就不赘述了,上一个原创中有图文介绍 废话不说,直接看实验结果吧。3.实验结果与讨论http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417723_1653274_3.jpg 如图所示,当温度高于35℃时,实际光量子产量Fv/Fm’与有效光量子产量Fv/Fm存在较大差异,测量Fv/Fm得出的T50要高于Fv/Fm’。 暗适应样品光系统II不受参与Calvin循环的酶被热破坏的影响,因此Fv/Fm反映的是光系统II的状态,而不受整个光合作用影响。测量Fv/Fm得出的T50要高于Fv/Fm’,因为热胁对光合作用的破坏首先发生在暗反应所需的酶,而开始光系统II不受影响。 Ps:T50是实际光量子产量Fv/Fm’[

  • 【求助】国内哪些单位可以做高温热分析(最好能到1600--1700°C)

    国内哪些单位可以做高温热分析([B]最好能到1600--1700°C[/B])DSC;或者DSC-TG;DTA-TG在北京咨询了很多单位都做不到那么高温度大部分单位都是用的德国耐驰Netzsch STA 449C或者409pc等 最高只做到1300°C我所了解Netzsch STA 429CD 或者Netzsch STA 409CD以及法国setaram Evolution 24等都可以满足要求。国内哪些单位有上述型号热分析仪?或者能到达1600-1700°C的其他热分析仪 [B]不限北京[/B] 国内就行希望了解的朋友告诉小弟 最好给个联系方式 谢谢了中国心补充以前清华可以做 不过清华的那台坏了 现在做不了

  • PE 680/SQ8T 气密性问题,求帮助

    实验室一台PE 680/SQ8T 的GCMS,最近由于检测灵敏度下降,所以拆卸清洗了离子源,老化了色谱柱,但是在装好抽好真空后,检查气密性时,氮气为基峰,做过以下措施:用丙酮检查,发现传输线大螺母处有漏气,拧紧,依旧氮气为基峰;更换色谱柱两端口的石墨垫,刚装上抽好真空后检查气密性是氦基峰,于是正常调谐校正后使用,开始正常,(测试期间在开灯丝时,依旧氮峰最大),在走几个程升后拧紧接口,再测试发生响应越来越低,怕是因为把石墨垫拧坏了,于是更换新的石墨垫,但是开始时是氦基峰,抽一晚上后,氮为基峰;更换大螺母处的石墨垫,更换进样口衬管O型圈,开始氦峰为基峰,之后几小时后氦下降,氮成为基峰,怀疑传输线处依旧漏气;密封传输线,单独检查质谱端的气密性,发现水峰不断降低,氮峰逐渐升高为基峰,判断质谱端正常;其余检查气路管子没有漏气,气瓶总阀显示还有5格气体。请教一下各位,对这种现象应该如何检查及判断???谢谢各位,麻烦帮忙解决一下.

  • 不同真空度下石墨硬毡热流计法高温导热系数测量

    不同真空度下石墨硬毡热流计法高温导热系数测量

    摘要:石墨硬毡具有优异的高温隔热效果和稳定性,被广泛应用于高温热处理炉、烧结炉和硅单晶炉等领域。本文主要介绍了石墨硬毡的隔热性能测试,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,然后再采用稳态热流计法在高温常压氮气环境下测试了石墨硬毡的高温导热系数,最后在氮气气氛中,同样采用稳态热流计法测试了不同温度和不同真空度下的导热系数。通过测试揭示了在氮气气氛下石墨硬毡隔热材料导热系数随温度和真空度的变化规律。采用稳态热流计法进行测试使得整个测试过程更接近于石墨毡隔热材料真实的大温差隔热工况,测试结果更具有代表性和指导意义。1. 石墨硬毡简介 石墨硬毡是在石墨软毡的基础上,使用少量连接剂制成各种任意形状后,经高温石墨化处理而形成的成形隔热材料。由于其重量轻,可独立,又可进行复杂加工,从而大大改善了原有的作业环境和可操作性。同时它还能进行各种表面处理,与软毡相比它的发尘量大大降低,而使用寿命大大延长,且具有优异的隔热效果和高温稳定性,石墨硬毡以其优异的性能,广泛应用于绝大部分高端市场,包括太阳能行业,半导体单晶硅行业,人工晶体行业,光纤行业,高端真空烧结炉、热处理炉等行业。 石墨硬毡主要性能特点: (1)石墨硬毡热处理温度高(处理温度约2250℃以上),具有低收缩率,低挥发物释放量等优点; (2)灰份低,纯度高,经纯化后的高纯硬毡灰份小于20ppm,保证了热场的纯净度; (3)低导热系数、隔热效果好、节能,产品质量的一致性好; (4)纤维基体,保证绝热性能均匀,同时温场稳定性能好。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121639_596542_3384_3.jpg 图 1-1 各种工艺形式的石墨硬毡 如图 1-1所示,石墨硬毡可以根据所需的隔热性能和使用要求,采用不同的工艺手段和表面处理方式,形成多种产品形式和任意形状设计,结合使用条件,以达到自由的隔热效果设计。2. 石墨毡高温导热系数测试国内外文献综述 石墨硬毡最主要的物理性能参数之一是导热系数,特别是高温下的导热系数。由于石墨硬毡的抗氧化能力差而只能用于真空和各种惰性气体环境下,所以对于石墨硬毡还需要了解在不同气体和不同真空度下的导热系数。 另外,石墨硬毡做为隔热材料使用,一定是石墨硬毡的一面承受高温,而另一面温度很低基本在常温附近,也就是说实际隔热工况一定是石墨硬毡厚度方向上形成一个较大温差或温度梯度,温差或温度梯度会随着隔热温度的提高而逐渐增大。 为了准确测试评价石墨硬毡的隔热性能,测试中试样的边界条件必须要与石墨硬毡实际环境条件尽可能相同,必须要保证的边界条件包括温度、温度梯度、环境气氛真空度和环境气体成分。由此可见,对于石墨硬毡这类高温易氧化的隔热材料导热系数测量,必须在真空密闭环境中进行,以便于抽真空或充不同种类的惰性保护气体,同时还需配备相应的真空度控制系统。在具体的测试过程中同时还要求,被测试样的受热面温度尽可能高,被测试样的冷却面则始终处于室温附近。 由于石墨毡类材料所具有的低密度、耐高温、易氧化的特殊性,这类材料的导热系数测试只能在高温真空环境下进行测试,对测试设备的要求非常高,相应的研究文献并不多,很少有文献对石墨毡的导热性能测试进行过详尽的报道,也很少有不同测试条件下的测试结果详尽报道,就连石墨硬毡生产厂商也没有报道出相应数据的测试方法描述。这里只简单介绍Chahine等人的工作,其它报道罗列在本文的参考文献内。 Chahine等人采用热线法对WDF级的石墨毡导热系数进行了全方位的测试研究,其中石墨毡的密度为80kg/m^3,石墨纤维直径在7.0~12.5μm范围内,平均直径为10.5±3.2μm。石墨毡导热系数的测试分别在真空和氩气条件进行,测试结果如图 2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596543_3384_3.png图 2-1 石墨毡在真空和氩气环境下的高温导热系数测试结果 为了进一步研究低密度石墨毡的传热性能,将石墨毡内的热传递分解为沿纤维的固体导热、气体导热、气体辐射和纤维之间的辐射热交换几个部分。综合考虑了石墨毡内的复合传热机理,分别对50kg/m^3和80kg/m^3两种密度的石墨毡的表观导热系数进行了计算,计算结果如图 2-2所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596544_3384_3.png图 2-2 两种不同密度石墨毡的表观热导率计算值以及不同传热机理 从计算结果可以看出,在小于500K的较低温度区间,石墨毡内的传热主要是固体和气体导热起主要作用,而在高温区间,辐射和一定程度的气体导热(基于环境气体成分)起主要作用,而且辐射传热机理对石墨毡的密度变化非常敏感,而其它传热形式则对密度变化并不灵敏。 作者在文献中所得出的结论是石墨毡高温导热系数的确定是个非常复杂的过程,需要结合理论计算和试验测试结果。当气体导热传热机理非常简洁以及气体导热系数可以很容易得到时,由于石墨毡的复杂几何结构,石墨毡的导热和辐射传热机理就被证明非常复杂并具有不确定性。大多数传热模型还是以纯经验为基础,还无法在不求助试验结果的前提下准确预测材料的传热性能。同样,所有辐射传热机理模型中的几何结构因数也都是通过试验手段获得。由此,WDF石墨毡的表观导热系数不能仅通过纯理论计算获得。 由以上研究文献可以明显的看出作者的无奈,作者在石墨毡测试过程中无法准确的模拟材料实际使用环境,特别是石墨毡实际使用中的大温差环境,采用热线法测试导热系数只能在被测试样等温条件下进行,无法测试得到实际大温差对导热、辐射和对流的影响和传热机理,只能通过建立经验模型和理论计算得到预测值。3. 瞬态平面热源法石墨硬毡常温常压导热系数测试 针对石墨硬毡材料,首先在常温常压下采用瞬态平面热源法(ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法)进行了测试。对石墨硬毡采用瞬态平面热源法进行测试,以期实现以下目的: (1)采用瞬态平面热源法测试石墨硬毡导热系数,以期后续与其它测试方法进行对比。 (2)石墨硬毡是一种典型材料,由于低密度和具有大量孔隙,这种材料的导热系数会随真空度增高而减小。通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试石墨硬毡在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。同时由此可以用来研究石墨硬毡的传热机理和各种传热形式的影响。 (3)研究环境气体成分对石墨硬毡导热系数的影响,即在真空腔内充实不同的惰性气体,测试不同气体成分中石墨硬毡导热系数随真空度的变化。 本文所描述内容仅包括常温常压下的石墨硬毡导热系数测试结果,不同真空度和不同惰性气体气氛下的石墨毡导热系数测试将在后续报道中介绍。3.1. 瞬态平面热源法被测试样 瞬态平面热源法石墨硬毡被测试样如图 3-1所示,尺寸为50mm×50mm×40mm。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596545_3384_3.jpg图 3-1 石墨硬毡瞬态平面热源法被测试样3.2. 瞬态平面热源法测试结果 用两块石墨硬毡被测试样夹持瞬态平面热源法薄膜测试探头,如图 3-2所示。http://ng1.17img

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 气体采样器如何测气密性?

    环境空气采样、固定源采废气、固定源采尘,最简单实用又符合规范的检查气密性的方法是怎样操作的?进气端直接接个真空表,抽真空,观察压降,这样是否可行,不同的标准对真空的程度和观察压降的时间和压降的多少好像都不统一,请教下实际情况是如何操作的?

  • 为什么真空环境下的温度准确测量一定要用真空型热电偶连接器(贯通器)

    为什么真空环境下的温度准确测量一定要用真空型热电偶连接器(贯通器)

    [color=#990000]摘要:针对气密容器中温度测量用的真空型连接器,本文介绍了真空型热电偶贯通器的结构,描述了选用真空型热电偶贯通器的理由,以及使用过程中的注意事项。[/color][size=18px][color=#990000]一、真空型连接器(贯通器)[/color][/size]真空型连接器是安装在气密容器(真空容器、压力容器、气体和流体容器)侧壁上的一种多芯电连接器,如图1所示,其主要功能是在保持气密性的同时在气密容器内外形成导电通道。根据导电用途,可分为各种电源、信号和热电偶用真空型连接器,本文只讨论真空型热电偶连接器。[align=center][img=真空型热电偶连接器,690,345]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552117680_9525_3384_3.png!w690x345.jpg[/img][/align][align=center][color=#990000]图1 真空型电连接器安装示意图[/color][/align][size=18px][color=#990000]二、真空型热电偶连接器[/color][/size]真空型热电偶连接器是专门用于气密容器上的一种热电偶贯通器,如图2和图3所示。贯通器壳体采用不锈钢,内部采用玻璃密封件,贯通的热电偶线为0.5mm外径的相应热电合金,其中黄线为正极,红线为负极。热电偶线按照标准热电偶型号分为K型、T型和E型等规格。连接器最大耐压为8bar,漏率小于1.33×10-8Pam3/s,绝缘为500MΩ/500VDC。[align=center][color=#990000][img=真空型热电偶连接器,690,294]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552375799_2706_3384_3.png!w690x294.jpg[/img][/color][/align][align=center][color=#990000]图2 真空型热电偶贯通器及其结构[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=真空型热电偶连接器,690,414]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552555539_4400_3384_3.jpg!w690x414.jpg[/img][/color][/align][align=center][color=#990000]图3 真空型K型热电偶连接器(贯通器)[/color][/align][size=18px][color=#990000]三、为何要用真空型热电偶贯通器[/color][/size]贯通器是用来连接真空容器内测温热电偶和容器外测量仪表的一个金属材质连接件,按照热电偶中间金属定律,如果贯通器温度不均匀(即热电偶正负极接线处的温度不同),且贯通器采用了与测温热电偶材质不同的金属材料,则会对温度测量带来较大误差。在采用热电偶测量真空容器内的温度时,由于被测温度较高且是真空环境(无对流传热),部分热量会通过热电偶线传递到安装在真空容器侧壁的热电偶贯通器上,由此引起贯通器结点处的温度不均匀。为消除这种温度不均匀带来的误差,贯通器必须使用与测温热电偶相同的热电合金材质。[align=center][color=#990000][img=真空型热电偶连接器,350,350]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141553078207_2707_3384_3.jpg!w450x450.jpg[/img][/color][/align][align=center][color=#990000]图4 热电偶连接器[/color][/align]使用真空型热电偶贯通器时,任何与贯通器直接连接的热电偶线或信号线,只能采用缠绕或压接方式,不能引入其他第三种金属线。因此,需要特别注意的是不能使用任何如图3所示的热电偶连接器,因为这种热电偶连接器的固定螺丝都不是热电合金的第三种金属。[align=center]=======================================================================[/align]

  • 热流计法测试低密度刚性隔热瓦高温有效导热系数

    热流计法测试低密度刚性隔热瓦高温有效导热系数

    摘要:为了准确测试低密度刚性隔热瓦的高温导热系数,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,同时瞬态平面热源法也采用美国NIST标准参考试样SRM 1453进行了测量准确性的考核和验证。然后采用高温热流计法导热系数测试系统对低密度刚性隔热瓦进行了试样热面温度200℃1000℃的导热系数测量,得到了一条完整的导热系数随温度变化结果曲线。 1. 低密度刚性隔热瓦试样送样单位送来的低密度刚性隔热瓦试样拆封前后图片如图1-1和图1-2所示。 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667351_3384_3.jpg图1-1 包装试样 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200232139_01_3384_3.jpg图1-2 拆封试样分别对两块试样进行编号和尺寸及密度测量。图1-3所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm^3。图1-4所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm^3。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200240265_01_3384_3.jpg图1-3 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200242200_01_3384_3.jpg图1-4 低密度刚性隔热瓦2号试样其中1号试样是经过热面1000℃高温试验后的尺寸和密度测量数据,与2号未经高温试验的密度相比,高温试验前后的密度基本未发生改变。 2. 瞬态平面热源法测试 为了验证和考核低密度刚性隔热瓦导热系数测试的准确性,首先在常温常压下采用ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法,对导热系数与低密度刚性隔热瓦相同量级的美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)进行测试,以期实现以下目的:(1)评测和验证瞬态平面热源法导热系数测试系统的测量准确性,重点验证低导热材料(导热系数0.03W/mK左右)测量的准确性,以保证低密度刚性隔热瓦常温常压下导热系数测量的准确性。(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的导热系数会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的导热系数,评估瞬态平面热源法导热系数测试系统测量极低导热系数(小于0.03W/mK)的能力。(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。 2.1. 测试美国NIST标准参考材料SRM 14532.1.1. 美国NIST标准参考材料SRM 1453将购置的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200250876_01_3384_3.jpg图2-1 NIST标准材料材料SRM 14532.1.2. 美国NIST标准参考材料SRM 1453导热系数标准数据美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)导热系数数据不仅与温度有关,而且会随材料的密度发生变化,这里仅给出导热系数与温度和密度的关系式: http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200254217_01_3384_3.png式中: ρ 表示体积密度,单位kg/m^3;Tm 表示整个体积密度和温度范围内的测试平均温度,密度范围为37~46kg/m^3 ,温度范围为281~313K 。2.1.3. 瞬态平面热源法测试SRM 1453导热系数测试试样和测试卡具整体放置在如图2-2所示的真空腔内,如图2-3所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图2-4所示试样和探测器压紧后关闭真空腔,然后进行真空度控制和导热系数测试。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200305978_01_3384_3.jpg图2-2 高真空试验腔体 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312723_01_3384_3.jpg图2-3 测试试样和测试卡具 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312844_01_3384_3.jpg图2-4 试样安装完毕后的待测状态在NIST标准参考材料SRM 1453不同真空度下导热系数测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始导热系数测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200331630_01_3384_3.png将以上测试结果绘制成横坐标为真空度、纵坐标为导热系数的对数坐标曲线,如图2-5所示。[ali

  • 【原创大赛】高温热胁对Achnanthes sp.光系统的影响

    【原创大赛】高温热胁对Achnanthes sp.光系统的影响

    高温热胁对Achnanthes sp.光系统的影响 在10月的原创中,我已经对光合活性分析仪在环境监测中的应用作了初步分析,感谢各位专家对本人作品的肯定。本文为此作品的续作,将以春秋季常见的水华种Achnanthes sp.为切入点,谈论高温对Achnanthes sp.光系统的影响,从而从科学角度阐释Achnanthes sp.水华消亡的主要环境动力学原因。 PS:在做本实验之前,本人和业内的很多前辈一样,都把Achnanthes sp.水华的消亡原因归结于该藻对高温的适应性较差。(因为这种水华一般只出现于春秋季,水温大概在15~20℃这样)事实是否真如此呢,我们还是让数据来说话吧。1.实验材料和仪器http://ng1.17img.cn/bbsfiles/images/2012/11/201211251706_407024_1653274_3.jpg Achnanthes sp.(2012.5.4采自宁波某水库),这个是实验用的藻种,纯度在99%以上吧。http://ng1.17img.cn/bbsfiles/images/2012/11/201211301553_408420_1653274_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211301554_408422_1653274_3.jpg先上2张Achnanthes sp.水华发生时的图片,水色为红褐色。浓的时候像酱油汤http://ng1.17img.cn/bbsfiles/images/2012/11/201211251707_407025_1653274_3.jpg PHYYTO-PAM调制叶绿素荧光仪(德国WALZ公司)http://ng1.17img.cn/bbsfiles/images/2012/11/201211251707_407026_1653274_3.jpg 光合活性测试截图http://ng1.17img.cn/bbsfiles/images/2012/11/201211301555_408423_1653274_3.jpg百级超净台,用于接种、扩培等实验过程的无菌操作http://ng1.17img.cn/bbsfiles/images/2012/11/201211251707_407027_1653274_3.jpg光照培养箱(宁波江南仪器厂),用于藻类的扩培和温度光照条件控制。PS:藻液培养条件20℃,2000LX光照强度,光暗比16:8。 这里说下为什么选择这个实验条件。从野外的水华发生数据看,以Achnanthes sp.为优势种的水华发生在春秋季,温度15~20℃,因为一般来说温度越高,长势越好,所以我们扩培条件选择了20℃。光照条件2000lx对于多数硅藻来说都是比较适宜的,有报道说强光对硅藻细胞有杀伤作用。至于光暗比,本来想用12:12的,奈何培养箱中还有其他实验在进行,而且通过一段时间的培养,发现16:8光暗比条件下,该硅藻也能缓慢增长。(没养过12:12的条件,不敢下定论哪个快,如果哪位有数据的麻烦分享下)2.实验方法: 实验主要以光合活性yield为分析指标,具体的操作步骤我在这里就不赘述了,上一个原创中有图文介绍 本文设计了几个小实验,对高温胁迫下Achnanthes sp.藻的光系统变化进行了初步分析,剥削了几个学生的劳力,再此对他们的劳动深表感谢。废话不说,直接看实验结果吧3.实验结果与讨论[size=

  • 批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    1. 概述 针对目前常用的高温加热炉保护气体管路使用中存在的不便性,采用改进措施和配套装置,使得惰性气体管路的使用更方便、更安全和更直观。2. 常用保护气体管路结构 高温真空炉,如石墨加热炉和钨丝加热炉等,在工作过程中都需要惰性气体保护。常需对炉体先抽真空后充惰性气体,并使真空炉内惰性气体的气压略大于大气压,在整个升降温过程中真空炉始终处在正压状态,以避免发热体和工件氧化。保护气体管路结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/04/201704021923_01_3384_3.png图 2-1 高温加热炉常用保护气体管路示意图3. 常用保护气体管路使用步骤 (1)使真空腔处于闭合状态,关闭所有阀门。 (2)开启真空泵和开关阀2,对高温加热炉真空腔开始抽真空。 (3)当真空腔内的真空度达到要求真空度时,一般为20Pa左右,先后开启气瓶减压阀和开关阀1,调节浮子流量计,用最小气体流量对真空腔进行充气,同时真空泵抽掉充气管路中的残存大气。 (4)按顺序先后关闭开关阀2和真空泵,调节浮子流量计增大充气流量,使真空腔内惰性气体较快速度接近大气压。 (5)当充气使得真空腔内气压达到放气阀出气压力时,调节浮子流量计到合适的最小流量,使充入的气体经过真空腔由放气阀排出,形成单向流动。 (6)保持浮子流量计调节位置不变,真空腔内始终处于恒定的正压环境,然后开始高温加热炉的升降温过程和其它试验操作。4. 问题提出 上述的高温真空炉保护气体管路在实际工程使用中存在以下问题: (1)充气管路中调节气体流速的浮子流量计真空密闭性很差,在负压状态下的充气过程中,大气会经浮子流量计进入到真空腔内。如果将充气管路和浮子流量计与真空腔一起抽真空,浮子流量计的泄漏会造成真空腔真空度始终无法达到高温加热炉腔体的真空度要求。 (2)当腔内气压达到设定正压,放气阀开始放气。但放气阀的放气过程并不直观,无法准确观察到放气现象。尽管有些单向放气阀带有放气哨音,但腔体始终处于正压放气状态,连续的放气哨音反而成为一种噪音。如果采用更复杂和准确的压力仪表来进行检测,会增加相应的成本。 5. 新型管路要求 所需求的加热炉保护气体管路如图 5 1所示。http://ng1.17img.cn/bbsfiles/images/2017/04/201704021924_01_3384_3.png 图 5-1 新型高温加热炉常用保护气体管路示意图 具体要求如下: (1)将浮子流量计改进为真空密封型的浮子流量计,便于将充气管路中的残存气体抽取干净,同时保证充气过程中的惰性气体纯度,避免外部空气渗入。如果不考虑气体流量的直观性调节,也可以增加两路充气管路,一路用开度较大的调节阀来进行快速充气,以满足较大真空腔体对快速充气的要求;另一路用开度较小的针阀控制充气,以满足较小体积真空腔体的充气要求,以避免腔体内部过压太快。 (2)将真空腔上两个放气阀更换为两个不同量程的单向限压阀,如6Psi和9Psi,其中6Psi限压阀保证只有真空腔内气压大于大气压6Psi时才能导通放气,9Psi限压阀保证只有真空腔内气压大于大气压9Psi时才能导通放气。这样配置两个不同量程单向限压阀的作用,一是将真空腔内的惰性气体正压严格控制在6~9Psi之间,二是当其中6Psi放气阀发生堵塞失效正压增加后,9Psi放气阀导通起到安全保护作用,控制真空腔内正压不至于过大。 (3)分别在两个不同量程的单向限压阀出气端连接上两个气泡式流量指示计,从两个限压阀流出的气体通过导管导入油内,以气泡形式指示出气体的流出和流量大小。 (4)如果高温真空炉内不要求有惰性气体正压形式,充入的惰性气体直接经过加热炉后直接以一个大气压压力直接排出炉外。这样可以不安装两个不同量程的单向限压阀,而是在相应接口处直接安装上两个气泡式流量指示计,或只安装上一个气泡式流量指示计而另一接口密封,这样排出的惰性气体可以通过气泡直接观察。在这种情况下,这种气泡式流量指示计就需要兼顾负压功能,即在抽真空状态过程中气泡式流量指示计自动密闭起到关闭阀门的作用,而在充惰性气体过程中当真空腔内气压接近一个大气压式自动打开排出气体并由气泡显示流量大小。6. 效果总结 改进后的管路可以更有效的消除充气管路内残留大气和浮子流量计大气泄漏所引起的真空腔内惰性气体不纯问题,惰性气体防护作用更有效。 通过改进后的高温加热炉保护气体管路,保护气体管路可以应用于有设定正压要求的高温加热炉系统,也可以应用于无正压要求的高温加热炉。 改进后的管路可以精确控制真空腔内惰性气体气压范围,提高真空腔内气压保护的安全性,可以直观的观察到真空腔内惰性气体的气压变化过程和速度,重要的是整体结构比较廉价。

  • 气密性测试仪有几种气密检测方法

    气密性测试仪有几种气密检测方法今天小编就和大家聊聊[url=http://www.szzw188.com][b]气密性检测仪[/b][/url] 常常用来测试产品的气密性,但我们经常用到哪些方法呢?接下来小编就会一一介绍给大家认识希望大家有所帮助。第一种、差压测试法:差压测试方法是在压力测试时,添加了差压传感器。一般差压传感器量程为2000Pa,分辨率0.05%或0.005%。充气时,测试阀组打开,差压传感器两端压力一样;稳压开始时,测试阀组关闭,差压传感器右侧压力恒定,另一侧由于连接到测试工件,产品端存在泄漏,左侧压力下降。差压传感器对比两端的压力,进而测试出微小泄露。第二种、直接压力法:直接压力法是通过调压阀直接往产品内充一定压力的的压缩气体。稳压后,压力传感器检测一段时间内压力下降或者泄漏量。第三种、质量流量法:主要用在发动机缸体变速箱壳体总成测试上,可减少温度等环境因素对产品的影响。充气时,同时往产品端和对比容腔端同时充气,稳压后停止充气。若产品端有泄漏,容腔内的气就会往产品端流动,此时可以用质量流量计测试容腔端往产品端的泄漏率。第四种、定量测试法:定量测试法是将工件放入一个密封的容腔内,容腔需要做一个和产品形状类似的仿形容腔,尽量使得被测产品和容腔内壁之间的间隙小。测试仪器的内部原理是先将充气阀打开,将固定压力的压缩空气充入一个仪器内部自带的参考容积,仪器自带的参考容积充入一定量压力的气后,充气阀关闭,测试阀组开,参考容积的压力就释放到了测试容腔内。以上小编所讲到的四种气密性检测仪的检测方法是目前最先进的测漏方法了,如老铁们有更好的气密性检测方法可以留言与小编商讨商讨。

  • 气密针进样

    实验室现在想直接气体进GCMS检测,是直接用气密针手动进样就可以了吗?还需不需要其他的设备?气密针规格怎么选择?

  • bruker高温台操作

    bruker高温台操作

    各位,有一些关于bruker D8 discover高温热台使用的问题,请教大家,有遇到此方面问题的专家还请多多指教。1)之前在commander窗口,我通过设定等速率升温,如升温至1000℃,30K/min;在升温的过程中,我可以点击测量,任意的选择测量点(如300℃、400℃)测量。 但今天使用却发现,等温度达到设定的温度点后,才能开始测量;在未达到设定温度之前,即便点击测量按钮,测量也不会进行。 不知是何原因?2)之前,我关掉热台电源(此时热台和普通的台子无区别),再测试样品时,可以测量。 可是现在,关掉热台,却无法测量。 这些问题和工程师都沟通过,但是在电话里无法说清,工程师到现场看见操作界面才能解决。因为近期实验,所以先来这里问问。谢谢

  • 不锈钢304高温热物理性能汇编

    不锈钢304高温热物理性能汇编

    [align=left][size=16px][color=#3366ff]摘要:304不锈钢应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文汇总了目前国际上304不锈钢的高温热物理性能(热导率、比热容、热扩散率、密度、总半球发射率和总法向发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,有利于提高高温设计和热仿真中参数输入的准确性。[/color][/size][/align][align=left][size=16px][color=#3366ff][/color][/size][/align][hr/][align=left][size=16px][color=#3366ff][/color][/size][/align][align=left][size=24px][color=#3366ff]1. 简介[/color][/size][/align][size=16px][color=#000000] 不锈钢[/color][color=#000000]304[/color][color=#000000]是一种通用性的不锈钢,它广泛地用于制作要求综合性能良好[/color][color=#000000]([/color][color=#000000]耐腐蚀和成型性[/color][color=#000000])[/color][color=#000000]的设备和[/color][color=#000000]部件[/color][color=#000000]。[/color][color=#000000]典型[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的材料组分如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]1-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000]。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]1-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]3[/color][color=#0033cc]04[/color][color=#0033cc]不锈钢[/color][color=#0033cc]组分[/color][/size][/align][size=16px][/size][align=center][size=16px][img=,690,92]https://ng1.17img.cn/bbsfiles/images/2021/09/202109251717569757_300_3384_3.png!w690x92.jpg[/img][/size][/align][size=16px][color=#000000] 由于[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文将汇总目前国际上[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的高温热物理性能(热导率、比热容、热扩散率、密度[/color][color=#000000]总半球发射率[/color][color=#000000]和[/color][color=#000000]法向[/color][color=#000000]半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,[/color][color=#000000]有利于[/color][color=#000000]提高高温设计和热仿真中参数输入的准确性。[/color][color=#000000] 需要说明的是,这里所汇编的[/color][color=#000000]304[/color][color=#000000]不锈钢高温热物理性能数据都是小于熔点温度以下的数据,即[/color][color=#000000]304[/color][color=#000000]不锈钢在室温[/color][color=#000000]~[/color][color=#000000]1200[/color][color=#000000]℃范围内的热物理性能数据。[/color][/size][align=left][size=24px][color=#3366ff]2. 热导率、比热容、热扩散率和密度数据[/color][/size][/align][size=16px][color=#000000] 热导率、比热容、热扩散率和密度数据来自[/color][color=#000000]英国国家物理量实验室([/color][color=#000000]N[/color][color=#000000]PL[/color][color=#000000])[/color][color=#000000]出版的图书[/color][color=#000000][1][/color][color=#000000],[/color][color=#000000]其中热导率是比热容、热扩散率和[/color][color=#000000]密度[/color][color=#000000]三个独立测试结果的乘积得到[/color][color=#000000]。[/color][color=#000000]比热容采用[/color][color=#000000]差热扫描量热仪([/color][color=#000000]D[/color][color=#000000]SC[/color][color=#000000])进行测试,热扩散率采用激光闪光法测定仪进行测试,[/color][color=#000000]密度[/color][color=#000000]采用顶杆法热膨胀仪测试[/color][color=#000000]线膨胀率后换算为体膨胀率后得到[/color][color=#000000]。[/color][color=#000000]热导率、比热容、热扩散率和密度随温度的变化规律分别如[/color][color=#000000]图[/color][color=#000000]2-[/color][color=#000000]1[/color][color=#000000]~[/color][color=#000000]图[/color][color=#000000]2-[/color][color=#000000]4[/color][color=#000000]所示。[/color][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824489537_964_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热导率与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824493209_1890_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热扩散[/color][color=#0033cc]率[/color][color=#0033cc]与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824494351_7987_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]3[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]比热容与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824495387_314_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]4[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]密度与温度的关系[/color][/size][/align][size=16px][color=#000000] 在这里需要说明的是密度随温度的变化结果,是由热膨胀系数测试获得,其中认为[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]是各项同性且温度变化过程中质量不发生变化。由此通过测试[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的线膨胀率来得到体膨张率和样品的体积变化,最终用恒定质量除以不同温度下的体积得到密度随温度的变化结果。[/color][color=#000000] 汇总热导率、比热容、热扩散率和密度数据,如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]2-[/color][color=#000000]1[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]2-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热导率、比热容、热扩散率和密度数据汇总表[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824494583_14_3384_3.png[/img][/size][/align][align=left][size=24px][color=#3366ff]3. 总法向发射率和总半球发射率数据[/color][/size][/align][size=16px][color=#000000] 发射率也是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的最重要基础物理性能数据。[/color][color=#000000] 对于[/color][color=#000000]304[/color][color=#000000]不锈钢很少有文献报道总半球向发射率数据,大多为法向光谱发射率和某一波长范围内的法向发射率,这些数据在热仿真和传热计算中并不十分好用。本文[/color][color=#000000]首先[/color][color=#000000]选择了[/color][color=#000000]英国国家物理量实验室([/color][color=#000000]N[/color][color=#000000]PL[/color][color=#000000])[/color][color=#000000]出版的图书[/color][color=#000000][1][/color][color=#000000]中报道的总法向发射率[/color][color=#000000],其三种表面状态下总半球发射率随温度变化[/color][color=#000000]数据如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000],[/color][color=#000000]测试结果如[/color][color=#000000]图[/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]3-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]作为不同温度和表面处理状态下的[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率测试数据[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824497476_3778_3384_3.png[/img][/size][/align][size=16px][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824496712_2449_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]3-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]不同热处理后[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]不同温度下的总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率[/color][/size][/align][size=16px][color=#000000] 由[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000]数据可以看出,[/color][color=#000000]304[/color][color=#000000]不锈钢的发射率整体偏小,即使在高温氧化热处理后其高温发射率也没有超过[/color][color=#000000]0[/color][color=#000000].8[/color][color=#000000]。[/color][color=#000000] 另外,本文还收录了采用瞬态量热法对抛光处理后的[/color][color=#000000]304[/color][color=#000000]不锈钢进行的总半球发射率的测试数据[/color][color=#000000][2][/color][color=#000000],并将此总半球向发射率与总法向发射率进行比较,比较数据如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]2[/color][color=#000000]所示,比较曲线如[/color][color=#000000]图[/color][color=#000000]3-[/color][color=#000000]2[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]3-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]抛光处理后的[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]总[/color][color=#0033cc]半球[/color][color=#0033cc]发射率[/color][color=#0033cc]与总法向发射率[/color][color=#0033cc]测试数据[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824497659_9816_3384_3.png[/img][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824500269_2586_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]3-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]总半球发射率与[/color][color=#0033cc]总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率[/color][color=#0033cc]比较[/color][/size][/align][size=16px][color=#000000] 从上述两种测试方法获得的结果可以看出,感应加热方式测试得到总半球发射率要总法向发射率高出[/color][color=#000000]1[/color][color=#000000]5[/color][color=#000000]%~[/color][color=#000000]20[/color][color=#000000]%[/color][color=#000000]左右,而电子枪单面加热方式得到的总半球发射率在[/color][color=#000000]5[/color][color=#000000]00[/color][color=#000000]℃后开始变大。总之,通过光谱测量方式得到的[/color][color=#000000]总法向发射率一般会比总半球发射率偏小,[/color][color=#000000]3[/color][color=#000000]04[/color][color=#000000]不锈钢在不同表面状态和更高温度下的总半球发射率还需采用专门的测试设备进行测试。[/color][/size][align=left][size=24px][color=#3366ff]4. 参考文献[/color][/size][/align][size=16px][color=#000000][1] [/color][color=#000000]Mills K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Woodhead Publishing, 2002.[/color][color=#000000][2] [/color][color=#000000]Roger C R, Yen S H, Ramanathan K G. Temperature variation of total hemispherical emissivity of stainless steel AISI 304[J]. JOSA, 1979, 69(10): 1384-1390.[/color][color=#000000][/color][color=#000000][/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=16px] [/size][align=center][size=16px][img=304不锈钢热物理性能,690,371]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250830562905_3717_3384_3.png!w690x371.jpg[/img][/size][/align]

  • 【原创】高温共聚焦显微镜!!!

    [center]高温观察用激光扫描共焦显微镜[/center] (有相关的观测图片和视频资料,如有兴趣请与我联系!sales@wuhe.com.cn)产品简介:高温观察用激光显微镜是可以对样品由常温或冷却状态(-185℃)加热到1750°C的同时进行实时观察的一个系统,是一种主要应用于材料力学研究领域的机种。光源采用安定性非常高的He-Ne激光(633nm),是一款性价比很高的产品。另外,由于扫描可达到30桢/秒的高速,因而可以对加热熔解或冷却结晶过程中的状态进行实时的观察。产品应用:Ø 通过对样品在加温过程中进行观察,可以对该材料的特性进行评价,无论是在空气中、活泼性气体中、还是在氩、氮等惰性气体环境以及真空环境下均可简单地进行观察;Ø 可在低温或高温(最低-185℃、最高1750℃或更高)及温度变化过程中,对材料进行实时观察;Ø 可进行高温状态下的拉伸疲劳、压缩、弯曲等试验(选项);Ø 可进行平面或三维的结构观察,并可以进行测定;Ø 温度变化过程可以超高速达到(数秒内达到1700℃),也可微速进行(0.1℃单位),还可高精度地稳定在某个温度。产品性能:Ø 1.5kw卤素光源红外反射激光,可形成10mmφ×10mmh圆柱形超高温加热领域;Ø 可对应惰性气体、活泼气体、大气、真空环境的气密构造椭圆球反射集光室;Ø 没有多余的加热物、构造物,由隔离的光源进行加热,形成高纯度的实验氛围;Ø 可到达10-2pa的真空,另外高纯度惰性气体精制透膜的使用,实现万全的防氧化对策;Ø 观察窗采用气体卷轴流动方式,可避免被升华物质附着,从而保持清晰的观察条件;Ø 可以超高速升/降温、0.1℃单位的微速升/降温、以及高精度的安定温度保持;Ø 加热到1600℃仅用数秒;Ø 温度控制:方式有16个类型以及手控也可;Ø 样品容器(坩埚):铝、白金、φ5、φ6.5、φ9;Ø SVF系列专用物镜:超长操作5×、10×、20×、35×的基本套件以及选配件50×(样品必须高度2mm以上)。◆国内北京首钢和上海宝钢已经购买该产品用于高温材料研究,并已有多篇论文发表于《金属学报》、《宝钢技术》等刊物上,反响强烈!◆[em44]

  • 【求助】气密针的使用

    【求助】气密针的使用

    实验室买气密针,是国产的,发过来图片,但是没说明使用方法,请各位有使用过的指点指点,这种针能保证进气体时气密不泄露吗,如何使用?先谢谢各位高手了!http://ng1.17img.cn/bbsfiles/images/2011/05/201105281553_296651_1874364_3.jpg

  • 求助--气密检漏仪

    [img]https://simg.instrument.com.cn/bbs/images/default/emyc1010.gif[/img]各位大神,求助,求助 。最近公司要买一台气密检漏仪,只告诉我一个型号/厂商:FL-800H1-12-FR17-1 测试压力0.2~2MPa/fukuda。让我参照这个型号买。请问有没有性能参数比较相近的仪器。我做个分析提交上去。

  • 碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    [color=#990000]摘要:针对碳纤维隔热保温材料这种在高温真空和惰性气体环境下的唯一一类耐高温隔热保温材料,本文介绍了碳纤维隔热保温材料高温导热系数测试中的特点,以及国内外针对碳纤维隔热保温材料导热系数测试技术的发展现状,并详细介绍了国外碳纤维保温材料导热系数测试结果,以及上海依阳公司采用稳态热流计法对国产石墨硬毡导热系数的测试结果。[/color][align=center][img=,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061729597358_7316_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]硬质碳纤维隔热材料[/color][/align][b][color=#ff0000]一、碳纤维隔热保温材料及其导热系数测试特点[/color][/b]碳纤维隔热保温材料是一种碳纤维与一定比例粘结剂成型制得的软毡材料,在软毡材料基础上通过碳化、石墨化、机加工制成硬质碳纤维隔热保温材料。评价这类材料隔热保温性能的一个重要指标为导热系数,而在导热系数测试中存在着与其他类型隔热材料不同的特点:(1)测试温度高:最高至1000~2000℃以上;(2)惰性气体环境;真空、氮气、氩气、氦气等;(3)两种温度分布形式:温度均匀和大温度梯度;(4)两类材料形式:柔性和刚性;(5)材料导电性:导电材料。[color=#ff0000][b]二、隔热材料高温导热系数国内外常用测试方法[/b][/color]对于低导热系数的隔热材料,常用的导热系数测试方法主要分为以下三类:[align=center][img=00.隔热材料导热系数常用测试方法,690,176]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061731593097_6773_3384_3.png!w690x176.jpg[/img][/align][align=center][color=#ff0000]三类导热系数常用测试方法[/color][/align]从以上列表可以看出,目前国内外可满足碳纤维隔热保温材料导热系数测试的商品化设备只有德国耐驰公司的稳态保护热板法导热仪和上海依阳实业有限公司的稳态热流计法导热仪,可实现在真空和惰性气体环境下对碳纤维隔热败落材料导热系数进行测试,而美国NASA的稳态热流计法导热仪则是非标自制的非商品数测试仪器。[b][color=#ff0000]2.1 稳态保护热板法[/color][/b]依据的标准为:ASTM C177 和 GB/T 10294,测量原理如图1所示。[align=center][img=01.单样品防护热板法示意图,516,301]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732313057_7803_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图1 单样品形式稳态保护热板法测量原理图[/color][/align]对于稳态保护热板法导热系数测试仪器,目前国内外具有在高温和真空条件下进行导热系数测试能力的设备只有德国耐驰公司生产的商品化设备和美国NIST自制的标准化测试设备,如图2和图3所示。[align=center][img=02.德国耐驰公司保护热板法分析仪,500,333]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732576517_3719_3384_3.jpg!w500x333.jpg[/img][/align][align=center][color=#ff0000]图2 德国耐驰公司的稳态保护热板法导热仪[/color][/align][align=center][img=03.美国NIST保护热板法导热仪,600,403]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733230452_8623_3384_3.jpg!w600x403.jpg[/img][/align][align=center][color=#ff0000]图3 美国NIST稳态保护热板法导热仪[/color][/align][b][color=#ff0000]2.2 稳态热流计法[/color][/b]依据的标准为:ASTM C201、GB/T 10295和YBT 4130-2005。其中YBT 4130-2005完全照搬了ASTM C201,是一种采用水量热计法进行热流密度测量,也是一种热流计法。稳态热流计法的基本原理如图4所示。[align=center][img=04.热流计法高温导热仪测量原理图,690,389]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733428187_8222_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图4 稳态热流计法测量原理图[/color][/align]对于稳态热流计法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下四家机构的设备,如图5和图6所示,但只有美国NASA和上海依阳实业有限公司具有自制的标准化测试设备,如图7和图8所示。[align=center][img=05.国产水流量平板法高温导热仪,500,365]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734048203_1810_3384_3.jpg!w500x365.jpg[/img][/align][align=center][color=#ff0000]图5 国产水量热计法高温导热仪[/color][/align][align=center][img=,608,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061753072806_6516_3384_3.jpg!w608x600.jpg[/img][/align][align=center][color=#ff0000]图6 美国Orton公司水量热计法高温导热仪[/color][/align][align=center][img=07.美国NASA稳态热流计法高温导热仪,624,473]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734509267_416_3384_3.png!w624x473.jpg[/img][/align][align=center][color=#ff0000]图7 美国NASA稳态热流计法高温导热系数测试系统[/color][/align][align=center][img=08.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735204189_1658_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图8 上海依阳实业有限公司稳态热流计法高温导热系数测试系统[/color][/align][b][color=#ff0000]2.3 瞬态热线法[/color][/b]依据的标准为:ASTM C1133 和 GB/T 5990。瞬态热线法的基本原理如图9所示。[align=center][img=09.热线法导热仪结构原理图(平行线法),475,359]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735445173_2323_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图9 瞬态热线法导热仪原理图(平行线法)[/color][/align][align=center]对于瞬态热线法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下两家公司的设备,如图10和图11所示。[/align][align=center][img=10.美国TA公司热线法高温导热仪,690,555]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736056747_5297_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图10 美国TA公司热线法高温导热仪[/color][/align][align=center][img=11.德国耐驰公司热线法高温导热仪,401,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736304489_8933_3384_3.jpg!w401x600.jpg[/img][/align][align=center][color=#ff0000]图11 德国Netzsch公司热线法高温导热仪[/color][/align][b][color=#ff0000]三、碳纤维隔热材料测试技术现状[/color][/b]从以上三类隔热材料测试方法和相关导热系数测试设备可以看出,商品化设备仅有德国耐驰的保护热板法和上海依阳的热流计法设备可以满足碳纤维隔热材料在惰性气体环境下的测试要求。国外对碳纤维隔热材料导热系数测试多为非标自制设备,文献和隔热材料厂家报道全部是热流计法和热线法设备。主要因为只有这两种方法可实现高温。除了上海依阳实业有限公司之外,还未见到国内其他机构具有碳纤维隔热材料导热系数测试设备,也未见到相应的测试结果文献报道。[b][color=#ff0000]四、碳纤维隔热保温材料导热系数的两种主要测试技术[/color][/b]从上述介绍可以看出,针对碳纤维隔热保温材料的导热系数测试,目前国内外只有稳态热流计法和瞬态热线法能实现高温条件下的测试。下面分别介绍这两种方法在导热系数具体测试中的特点。[b][color=#ff0000]4.1 稳态热流计法高温导热系数测试[/color][/b]这是一种国内外隔热材料高温导热系数测试的主流方法,除可实现高温外,主要特点是模拟实际隔热时的大温差环境,可测量复合材料构件,并可测试不同方向上的导热系数。可在真空和惰性气体控制气压环境下进行导热系数测试,美国NASA有过大量文献报道,技术非常成熟,几乎对所有航天用隔热材料都进行过测试评价。上海依阳也采用此技术,以满足国内航天高温隔热材料导热系数测试需求。国外碳纤维隔热材料生产厂家的柔性和刚性隔热毡产品资料中也能看出采用的是稳态热流计法。[b][color=#ff0000]4.2 瞬态热线法高温导热系数测试[/color][/b]在未出现稳态热流计法前,是隔热材料和碳纤维隔热材料的主流测试方法,以前多用于耐火材料导热系数测试中。热线法导热系数测试设备结构简单,较易实现高温测试。热线法导热系数测试设备特点之一是均温测试,得到的是真导热系数,而不是高温下具有大温差时辐射传热起主导作用的有效导热系数。但对于碳纤维隔热材料这种导电材料,要设法解决热线高温绝缘难题。同时整个测试过程十分漫长,需要整个样品温度恒定。[b][color=#ff0000]4.3 稳态热流计法与瞬态热线法测量结果的区别[/color][/b]稳态热流计法导热系数测试过程中,样品厚度方向上存在较大温差,在高温下会存在导热、对流和辐射传热等多种传热 形式,这时所测试得到的导热系数对应于等效导热系数。瞬态热线法导热系数测试过程中,被测样品温度均匀无温差,测试过程中只存在固体和气体导热传热形式, 这时所测试得到的导热系数对应于真导热系数。图12所示为两种不同低密度隔热材料中导热、对流和辐射传热时的相应导热系数随温度变化曲线,从曲线中可以明细看出,由于辐射传热的影响,会使得整体导热系数明细的增加。[align=center][img=,667,412]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061750302779_5461_3384_3.png!w667x412.jpg[/img][/align][align=center][color=#ff0000]图12 固体、气体和辐射传热对应的导热系数分量随温度变化曲线[/color][/align]另外,对同一样品用热流计法测试得到的等效导热系数都比瞬态法热线法测试得到的真导热系数大,如图13所示。[align=center][img=13.等效导热系数与真导热系数对比,690,392]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061737172107_4763_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#ff0000]图13 有效导热系数与真导热系数对比[/color][/align][b][color=#ff0000]五、国外碳纤维隔热材料测试典型报道[/color][color=#ff0000]5.1 美国 NASA Langley Research Center 工作[/color][/b]美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统技术指标如下:(1)被测对象:刚性和柔性片状材料;(2)样品热面温度最高:1800℉;(3)气压控制范围:0.0001 ~ 760 torr。美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统结构如图14所示。[align=center][img=,537,374]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061754362037_9065_3384_3.png!w537x374.jpg[/img][/align][align=center][color=#ff0000]图14 美国NASA和上海依阳稳态热流计法高温导热系数测试系统结构示意图[/color][/align]相关报道可参考以下文献:(1) Daryabeigi, Kamran. "Effective thermal conductivity of high temperature insulations for reusable launch vehicles." NASA/TM-1999-208972 (1999).(2) Daryabeigi, Kamran, George R. Cunnington, and Jeffrey R. Knutson. "Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation." Journal of thermophysics and heat transfer 25, no. 4 (2011): 536-546.[color=#ff0000]5.2 日本 NIPPON CARBON 公司产品性能[/color]日本 NIPPON CARBON 公司的碳纤维隔热保温材料主要有GF-F软毡系列和FGL多层复合硬毡系列,如图15和图16所示。[align=center][img=15.GF-F软毡系列,345,290]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738366157_2988_3384_3.png!w345x290.jpg[/img][/align][align=center][color=#ff0000]图15 Soft Felt GF-F Series[/color][/align][align=center][img=16.FGL多层复合硬毡系列,315,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738596568_157_3384_3.png!w315x250.jpg[/img][/align][align=center][color=#ff0000]图16 Felt Laminated FGL Series[/color][/align]对于这两类碳纤维隔热保温材料,日本 NIPPON CARBON 公司在其官网分别给出了高温导热系数测试结果,如图17和图18所示。[align=center][img=17.日本碳公司软毡导热系数测试结果,599,515]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739203059_8251_3384_3.png!w599x515.jpg[/img][/align][align=center][color=#ff0000]图17 日本碳公司软毡高温导热系数测试结果[/color][/align][align=center][img=18.日本碳公司多层硬毡导热系数测试结果,576,510]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739426081_5945_3384_3.png!w576x510.jpg[/img][/align][align=center][color=#ff0000]图18 日本碳公司多层硬毡高温导热系数测试结果[/color][/align]从上述 NIPPON CARBON 公司给出的软毡和硬毡高温导热系数测试结果可以看出,导热系数测试是在20Pa的真空环境下进行,而且声明测试的是垂直于样品表面方向,这就代表了高温导热系数测试采用的稳态热流计法,因为只有稳态热流计法才有明确的方向性。[b][color=#ff0000]5.3 日本吴羽株式会社 KRECA FR石墨硬毡产品性能[/color][/b]日本吴羽株式会社的碳纤维隔热保温材料主要有KRECA FR石墨硬毡系列,如图19所示。[align=center][img=19.日本吴羽公司石墨硬毡,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740320551_5825_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]图19 日本吴羽株式会社的KRECA FR石墨硬毡系列[/color][/align]对于KRECA FR石墨硬毡系列,日本吴羽株式会社在其中文官网上颁布的高温导热系数测试结果如图20所示。[align=center][img=20.日本吴羽公司硬毡导热系数测试结果,499,477]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740533317_6109_3384_3.png!w499x477.jpg[/img][/align][align=center][color=#ff0000]图20.日本吴羽公司硬毡高温导热系数测试结果[/color][/align]从图20中可以看出,高温导热系数测试是在1.33Pa的真空环境下进行,样品厚度为50mm。尽管日本吴羽株式会社并未标注导热系数测试方法,但从样品厚度来判断应该是稳态热流计法,因为热线法导热系数测试中样品厚度较大。[b][color=#ff0000]5.4 美国 Carbon Composites公司产品导热性能[/color][/b]美国 Carbon Composites公司在其官网上颁布了其碳纤维隔热保温材料产品的高温导热系数在氩气和真空环境下的测量结果,如图21和图22所示。[align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755145297_131_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图21 美国CCI公司碳纤维保温隔热材料产品导热性能对比-氩气气氛[/color][/align][align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755269885_9003_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图22 美国CCI公司碳纤维保温隔热材料产品导热性能对比-真空环境[/color][/align]另外,从美国CCI公司官网的产品技术指标文件中,可以看到以上导热系数测量结果都有明显的导热系数方向性标识。尽管没有明确方向性标识,但只要是方向性标识就代表了采用的稳态热流计法。[b][color=#ff0000]5.5 瞬态热线法石墨毡高温导热系数测试文献报道[/color][/b]澳大利亚Chahine等人在2005年报道了采用瞬态热线法对石墨毡高温导热系数进行了测量:Chahine, Khaled, Mark Ballico, John Reizes, and Jafar Madadnia. "Thermal Conductivity of Graphite Felt at High Temperatures." In Australasian Heat & Mass Transfer Conference. Curtin University of Technology, 2005.文中报道了采用热线法对WDF级石墨毡导热系数进行的测试,石墨毡的密度为80 kg/m^3,石墨纤维直径在7.0 ~12.5 μm 范围,平均直径为10.5 ± 3.2 μm。测试分别在真空和氩气条件下进行,测量结果如图23所示。[align=center][img=,690,445]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755436092_3412_3384_3.png!w690x445.jpg[/img][/align][align=center][color=#ff0000]图23 瞬态热线法在不同气氛环境下测量石墨毡高温导热系数结果[/color][/align][b][color=#ff0000]六、上海依阳实业有限公司所做的工作[/color][color=#ff0000]6.1 测试仪器[/color][/b]针对碳纤维隔热保温材料,上海依阳实业有限公司采用自制的商品化热流计法高温导热仪(型号TC-HFM-1000)和瞬态平面热源法导热仪(型号TC-TPS 1010)分别进行了常温和高温下的导热系数测试,在国内首次得到了碳纤维隔热保温材料在不同真空度下室温~1000℃范围内的导热系数测试结果。瞬态平面热源法导热仪(型号TC-TPS 1010)以及样品安装如图24和图25所示,热流计法高温导热仪(型号TC-HFM-1000)和样品安装如图26和图27所示。[align=center][img=24.瞬态平面热源法导热仪,600,399]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742257237_5181_3384_3.jpg!w600x399.jpg[/img][/align][align=center][color=#ff0000]图24 上海依阳公司瞬态平面热源法导热仪[/color][/align][align=center][color=#ff0000][img=25.瞬态平面热源法导热仪样品安装,690,196]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742566835_5032_3384_3.jpg!w690x196.jpg[/img][/color][/align][align=center][color=#ff0000]图25 瞬态平面热源法导热仪测试样品安装[/color][/align][align=center][img=26.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743276756_2316_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图26 上海依阳公司真空型热流计法高温导热仪[/color][/align][align=center][img=27.热流计法高温导热仪试样安装,690,425]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743534172_2846_3384_3.jpg!w690x425.jpg[/img][/align][align=center][color=#ff0000]图27 热流计法高温导热仪样品安装[/color][/align][b][color=#ff0000]6.2 真空型温热流计法高温导热仪技术指标[/color][/b](1) 被测对象:刚性和柔性片状材料;(2) 温度范围:100℃~1000℃(最高1500℃) ;(3) 气压范围:10 Pa ~ 1 atm;(4) 导热系数测试范围:5 W/mK;(5) 试样尺寸:正方形 300 × 300 mm;(6) 试样厚度范围:10 ~ 100 mm;(7) 温度测量精度:±1%;(8) 气压测量精度:±1%;(9) 导热系数测量精度:±5%。[b][color=#ff0000]6.3 碳纤维隔热保温材料样品(石墨硬毡)[/color][/b]对国内厂家提供的碳纤维隔热保温材料样品(石墨硬毡)进行导热系数测试,厂家提供了两种尺寸规格但相同材料的石墨硬毡样品分别用于瞬态平面热源法和稳态热流计法测试,材料密度为156 kg/m^3。其中一种样品规格为50mm×50mm×40mm,如图28所示;另一种样品规格为310mm×310mm×44.5mm,如图29所示。[align=center][img=28.平面热源法测试试样,690,391]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744214427_5030_3384_3.jpg!w690x391.jpg[/img][/align][align=center][color=#ff0000]图28 石墨硬毡样品 50mm×50mm×40mm[/color][/align][align=center][img=29.四川创越炭材料公司石墨硬毡大样品,690,446]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744478427_2043_3384_3.jpg!w690x446.jpg[/img][/align][align=center][color=#ff0000]图29 石墨硬毡样品 310mm×310mm×44.5mm[/color][/align][b][color=#ff0000]6.4 常温常压大气环境下瞬态平面热源法导热系数测试结果[/color][/b]采用瞬态平面热源法导热仪对石墨硬毡样品在常温常压大气环境下进行了15次的导热系数重复测量,测试结果如图30所示,导热系数测量平均值为0.112±0.002 W/mK。[align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756110777_6506_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图30 瞬态平面热源法常温常压下石墨硬毡导热系数多次测量结果[/color][/align][b][color=#ff0000]6.5 常压氮气环境下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]针对碳纤维隔热保温材料的高温导热系数测量,首先在常压惰性气体(氮气)环境下进行了不同温度点下的高温导热系数测量,不同温度下导热系数测量数值如图31所示,用横坐标为样品热面温度、纵坐标为有效导热系数的图形表示如图32所示。[align=center][img=31.热流计法高温导热系数测量数值,690,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745380347_78_3384_3.png!w690x250.jpg[/img][/align][align=center][color=#ff0000]图31 石墨硬毡样品测试参数和结果数值[/color][/align][align=center][img=32.热流计法高温导热系数测量结果曲线,690,388]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745567597_5912_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#ff0000]图32 石墨硬毡有效导热系数随样品热面温度变化测量结果和拟合曲线[/color][/align]从图31所示的测量结果可以看出,拟合曲线为一条三次多项式公式,随着热面温度的增大曲线向上弯曲,这说明随着温度的升高,辐射传热的作用变得更加明显。[b][color=#ff0000]6.6 不同氮气气压(真空度)下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]为了测量不同氮气气压(真空度)下石墨硬毡样品的高温导热系数,分别将样品热面温度控制在200、600和1000℃,如图33所示。在每个热面温度恒定控制过程中,再分别控制氮气气压(真空度)的变化,真空度设定值分别为10、100、1000、5000和10000Pa,由此测量不同温度下和不同真空度下的有效导热系数,有效导热系数测量结果数值如图34所示。[align=center][img=,690,371]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756353244_4739_3384_3.png!w690x371.jpg[/img][/align][align=center][color=#ff0000]图33 变真空测试过程中的样品热面温度变化曲线[/color][/align][align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756457394_5389_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图34 石墨硬毡在不同温度和不同真空度下的有效导热系数测量结果数值[/color][/align]将图34得到的有效导热系数测量结果数值绘制成图形,如图35所示。从图中可以看出,在每个恒定温度下,有效导热系数都会随着气压的增大而增大,并在接近常压时导热系数变化趋于稳定,这完全符合低密度隔热材料导热系数随气压增大的变化规律。[align=center][img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757054144_6566_3384_3.png!w690x383.jpg[/img][/align][align=center][color=#ff0000]图35 不同温度下石墨硬毡导热系数随真空度变化测量结果[/color][/align]通过以上采用上海依阳实业有限公司的导热系数测试设备进行的石墨硬毡高温变真空条件下的测试,首次在国内得到了石墨硬毡完整的隔热性能测试评价结果,这将有助于碳纤维隔热保温材料的研究、生产、质量控制和性能评价等方面的需要。[b][color=#ff0000]七、稳态热流计法法导热系数测试更高温度(1500℃)测试系统方案[/color][/b]上海依阳实业有限公司现有测试设备已经证明完全可以满足1000℃以下碳纤维隔热材料的导热系数测试,若需要将测试温度提升到1500℃,需要进行以下改动,但不存在技术难度。(1) 更换加热方式,将金属发热体更换为石墨或碳/碳材料发热体,采用更大功率的低压大电流直流电源;(2) 碳纤维隔热材料导热系数一般偏高,样品冷面温度控制需更换为更大制冷功率的高精度冷却循环系统。(3) 温度测量采用更高使用温度的 S 型热电偶;(4) 加厚高温热防护装置以保证最高运行温度下的安全性;(5) 真空抽取根据真空度要求配备相应的真空系统。[align=center][img=,573,573]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757151027_2570_3384_3.png!w573x573.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 【求购】高温、高真空材料力学性能试验机

    本人是国内一家研究所(成都)的工作人员,因实验室需要,要购买一台高温、高真空材料力学性能试验机。主要要求如下:温度:高于1200℃真空度:优于10-4Pa试验力:10t以下配备引伸计进行拉伸、蠕变等力学性能试验有意者请与本人联系,发相关资料至本人邮箱 snakedove@163.com,收到邮件后我会跟您联系,谢谢!

  • 国军标中对高低温温热试验箱的风速要求

    国军标GJB150A是一个包含有27个试验方法的环境试验系列标准,高低温温热试验箱应满足GJB150.3A、GJB150.4A、GJB150.9A三个标准,标准中对高低温温热试验箱的风速要求如下: 国军标GJB150.3A-2009《军用装备实验室环境试验方法第3部分:高温试验》和GJB150.4A-2009 《军用装备实验室环境试验方法第4部分:低温试验》标准中明确规定除装备的平台环境已证明使用其他速度是合理的,并要防止在试件中产生与实际不符合的热传递以外,试件附近的风速应不超过1.7m/s。 国军标GJB150.9A-2009《军用装备实验室环境试验方法第9部分:湿热试验》标准中明确规定有两点;1、试件周围空气任何部位的风速应保持在0.5~0.7m/s;2、流过湿球传感器的风速应不低于4.6m/s,且湿球纱布应在风扇吸气一侧,以避免风扇热量的影响。

  • 求购气密针!

    我现在在成都,请问在哪能买到气密针,谢谢各位!最好把图片发到我的邮箱里liujianping0622@sina.comliujianping@swust.edu.cn

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制