当前位置: 仪器信息网 > 行业主题 > >

研究正立式显微镜

仪器信息网研究正立式显微镜专题为您提供2024年最新研究正立式显微镜价格报价、厂家品牌的相关信息, 包括研究正立式显微镜参数、型号等,不管是国产,还是进口品牌的研究正立式显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合研究正立式显微镜相关的耗材配件、试剂标物,还有研究正立式显微镜相关的最新资讯、资料,以及研究正立式显微镜相关的解决方案。

研究正立式显微镜相关的资讯

  • 见证历史!我国首台商业场发射透射电子显微镜在广州全球首发!
    仪器信息网讯 2024年1月20日上午,正值寓意“寒去春来”的大寒节气, 由生物岛实验室科研团队领衔研制,拥有自主知识产权的国产首台商业场发射透射电子显微镜太行 TH-F120在广州面向全球用户发布!发布会现场发布会邀请中国科学院饶子和院士、中国科学院隋森芳院士、中国科学院徐涛院士,广东省科学技术厅、广州市市场监督管理局、黄浦区科技局、黄浦区市场监管局、中国科学院生物物理研究所、中国科学院广州生物医药与健康研究院、生物岛实验室等相关领导,以及国内知名电镜专家等五十余位代表出席。仪器信息网作为受邀行业媒体,共同见证这一历史时刻。太行 TH F120历经三年研制成功, 由生物岛实验室与国仪量子共同成立的慧炬科技承接转化,目前已具备量产条件。TH F120的问世将打破国内透射电镜100%依赖进口的局面, 是中国电子显微技术的重大突破。作为极难攻克的“卡脖子”高端科学仪器代表,TH F120是生物岛实验室与国仪量子强强联合的成果,也呈现了尖端仪器技术从科学端研制、成果转化,到商业端产业化的典范。而本次发布会 “研发成果汇报”、“新品发布会”两个环节的设置,相得益彰,是相互尊重,更是传承。环节一: 生物岛实验室研发成果汇报生物岛实验室科研与成果转化部部长李中华主持会议中国科学院院士、广州实验室常务副主任、生物岛实验室主任徐涛开场致辞徐涛院士首先代表生物岛实验室向莅临本次活动的各位领导和专家们表示热烈欢迎,向一直关心支持生物岛实验室发展的各界朋友表示衷心感谢。他讲到,1933年,世界上第一台透射电镜诞生,如今,电镜已成为现代科学研究不可或缺的研究工具,在半导体、材料科学、生命科学等战略性领域的科研活动中起到至关重要的作用,被誉为高端科学仪器“皇冠上的明珠”。透射电镜技术跨越多个学科,工程技术复杂,攻关难度大,被列为我国受限制的35项关键技术之一。为解决卡脖子问题,在生物物理所的大力支持下,孙飞研究员带领团队早在2016年就启动了预研工作。之后在生物岛实验室组建了完整的研发团队体系,在国家自然科学基金委、广东省科技厅的大力支持下,经过三年多的不懈努力,先后成功研制120kV场发射电子枪、120kV低纹波高压电源、400万像素和1600万像素CMOS电子探测相机,以及100万杂合像素直接电子探测相机等透射电镜核心关键部件。在此基础上,才有了今天发布的国内首台100%自主知识产权的120kV场发射透射电镜,实现0.2纳米分辨率的成像能力,达到产品化水平。这对于我国摆脱进口依赖,实现高水平科技自立自强具有重大意义。作为团队的一员,徐涛院士见证了整个项目艰难的研发过程,借此发布会的机会,对实验室电镜研发团队不惧困难挑战、勇于投身科研实践的责任担当表达了崇高的敬意。最后,徐涛院士表示,科学仪器研制是一场马拉松,虽然目前取得了一些成绩,但仍然存在许多受制于人的短板弱项。未来,生物岛实验室将继续坚持四个面向,在省市科技部门的指导下,坚定不移的在科技创新的道路上大步迈进,为广东省大湾区的生物医药产业高质量发展、加快构建先进生产力贡献力量。实现科技自立自强,道阻且长,然行则将至;行而不叕,则未来可期!中国科学院院士、清华大学教授饶子和致辞饶子和院士表示,正如徐涛院士所言,透射电镜为推动科学技术进步做出了重要贡献,但核心技术一直被国外垄断,面临卡脖子风险,如今能与大家一同见证国内首台自主知识产权的场发射透射电镜成果发布会,可谓振奋人心。饶子和院士的研究方向长期聚焦在生物领域。推动生物领域向前发展,一个很关键的方面,便是新技术、新方法、新仪器、新手段的不断革新。生物结构学的发展随着蛋白晶体学技术、同步辐射技术、核磁共振技术、冷冻电镜技术、人工智能技术的突破而不断升华,仪器设备技术的发展对推动生命科学的发展至关重要。上世纪五六十年代以来,生物物理所一直是我国在生物电镜方面的研究基地之一,饶子和院士在担任所长期间也十分重视电镜中心的建设。饶子和院士回顾了孙飞研究员加盟生物物理所的往事,以及孙飞研究员在科研工作中展现出的优越的数理基础和对方法技术出众的敏感优势。最后,饶子和院士对在徐涛院士领导下,孙飞研究员带领团队能够取得这样的突破性成果表示祝贺,并对参与TH F120研制的科学家和工程师队伍给予最热烈的掌声,期待生物岛实验室的透射电镜能取得更加辉煌的成就,也期待在不久的将来,科学家能够用上我们自己研究的100kV、200kV、300kV冷冻电镜,促进我国生命科学和生物医学不断发展。生物岛实验室研发成果汇报:120kV场发射透射电子显微镜研制汇报人:广州生物岛实验室 /中国科学院生物物理研究所研究员孙飞冷冻电镜技术为生物分子结构研究带来革命性进展,主流厂商为赛默飞和日本电子,垄断全球市场。作为另一种专业化电镜,体电子显微镜技术是解析细胞谱系的重要工具。而透射电镜是冷冻电镜和体电子显微镜技术的基础,其由电子的发射、加速、成像和探测等基本单元系统构成,对应主要核心部件包括电子枪、电子探测相机等。同时,100kV场发射冷冻透射电镜是透射电镜发展的新方向,并将成为主流,用于大多数生物大分子结构解析。孙飞研究员分享了生物岛实验室基于以上背景开展的系列研究成果。其一,是120kV场发射冷冻透射电镜核心部件的研制。依托广东省重点领域研发计划项目,先后完成120kV场发射电子枪研制、120kV低纹波高压电源研制、电子探测相机研制,完成所有项目验收考核指标,并利用研制的核心部件完成对商业电镜Talos L 120C的关键部件替换,达到预期效果。其二,是100kV高通量高分辨率场发射冷冻透射电镜的研制。依托广东省重点领域研发计划项目,针对我国生命医学领域研究对冷冻电镜高度依赖进口的现状,突破100kV场发射电子枪、超高稳定高压发生器、平行光照明、恒定功率物镜、低加速电压下高性能高灵敏度探测相机等关键技术,研制场发射冷冻电子透射显微镜智能控制系统和高通量自动化数据收集软件,开展基于自主研发技术的工程化和产业化。电镜主机硬件搭建完成,已经能够进行成像,自研和国产部件比例高于90%。其三,是细胞图谱超微结构高通量分析系统研制,研发针对细胞谱系研究需求的高通量、超分辨、双模态 (光学+电镜) 显微成像系统,实现在1个月左右对1mm3尺度的生物组织样品的细胞超微结构图谱高通量分析的能力。研发成果转化便是本次发布的120kV场发射透射电镜。未来,团队将进一步开展100kV高通量高分辨率场发射冷冻电镜以及120kV高通量场发射体透射电镜的研制工作。突破“卡脖子”技术,国产首台场发射透射电镜发布仪式合影环节二:慧炬科技120kV场发射透射电镜产品发布会慧炬科技总经理曹峰致辞曹峰介绍道,慧炬科技成立于2022年11月,是由生物岛实验室和国仪量子共同出资成立,专注于透射电镜以及相关关键技术的研发与制造。融合了生物岛实验室透射电镜技术和国仪量子在科学仪器产业化方面的强大能力,慧炬科技有信心成为透射电镜研发领域的领导企业,让中国科学家用上国产的、世界领先的透射电镜。关于“慧炬”的释义,曹峰讲到,这源于透射电镜中电子束的“汇聚”,取其音义,“慧炬”又蕴含了“智慧聚集”、期待成为透射电镜领域的“火炬手”、带领电镜技术继续向前的寓意。曹峰表示,本次发布的透射电镜新品,凝聚了慧炬科技团队几年来的心血与汗水,承载着慧炬科技的梦想和理想,也寄托了慧炬科技“承鸿鹄之志,造大国电镜”的决心,相信在团队的努力下,在生物岛实验室以及广东省科技厅等各级政府的支持下,慧炬科技一定能够将透射电镜进行产业化,为我国科学和产业界的高质量发展提供强大助力。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞杨寿桃主任表示,生物岛实验室与国仪量子合作共同成立慧炬科技,实现了场发射透射电镜科研成果的转化,推出商业化产品。TH F120完成了从科学研究到技术开发,再到市场推广的三级跳,为我国高端科学仪器市场注入新活力,是实验室发展历史上一个重要里程碑。生物岛实验室2021年完成了创建国家实验室的战略目标任务后,迅速响应政府号召,转型为专注成果转化和产业孵化,截至目前,已经孵化了12家创新型企业,其中4家企业估值过亿元。未来,生物岛实验室将继续紧盯成果转化与产业孵化,围绕产业链布局创新链,以满足重大产业化需求为己任,充分发挥国家战略科技力量的引领作用,协同推出更多原创性的科技成果,打通从科技强到产业强,再到经济强、国家强的通道,为广东省在生物医药领域提升科技自立自强能力贡献力量。国仪量子董事长贺羽致辞贺羽讲到,慧炬科技今天的发布成果源于徐涛院士、孙飞研究员等科学家不懈的努力和探索,在此谨代表国仪量子对徐涛院士团队致以崇高的敬意,对慧炬科技团队取得的成果表示热烈祝贺。本次慧炬科技发布国产首台量产场发射透射电镜,对中国电子显微事业与高端科学仪器国产化的发展而言都具有重要意义,相信慧炬科技一定能在透射电镜领域取得更加辉煌的成就,和国仪量子一起彻底打破高端电镜卡脖子的局面,为国家科技自立自强作出更大贡献。成立7年来,国仪量子陆续研制并发布了多款人无我有,人有我优的高端科学仪器,已经交付至全球数千家客户,并且在德国、美国、新加坡等发达国家完成了海外交付。截至目前,实现了量子精密测量仪器全球市占率领先,顺磁共振谱仪国内市占率第一,电子显微镜年成交量近200台等突出成绩。国仪量子很荣幸能够与生物岛实验室合作成立慧炬科技,共同研制填补国内空白的透射电镜。未来国仪量子将继续发挥自身在工程化、市场开拓等方面的优势,全力支持慧炬科技的产品研发和产业化,共同为客户提供更高品质的产品和服务。中国科学院院士、清华大学/南方科技大学教授隋森芳致辞隋森芳院士表示,很荣幸与大家一起见证我国首台场发射透射电子显微镜研制成功。当前,我国冷冻电镜技术应用研究在国际上已经具有领先地位,孙飞研究员这种新技术新方法研究在国际上也可圈可点。然而,由于冷冻电镜硬件装备不能自主研制,我国在冷冻电镜技术方法领域的创新受到了很大限制。很高兴看到生物岛实验室联合生物物理研究所在冷冻电镜研制方面的持续发力,多年成绩显著,抓住冷冻电镜技术领域国际前沿,率先选择100kV场发射冷冻电镜这一新赛道发力。首先成功研制了120kV场发射透射电镜,成像分辨率可以达到两个埃,并通过慧炬科技完成了工程化和产品化。这一重要时刻,是令我国冷冻电镜领域乃至整个电镜领域相关科技工作者兴奋的时刻,可以预见,该电镜设备成功投入市场将极大地推动我国冷冻电镜应用研究进步。相信在不久的将来,生物岛实验室和慧炬科技能够进一步完成专业化的100kV高通量场发射冷冻电镜,为我国高端科学仪器的自主研制事业作出重要贡献。此外,隋森芳院士强调,希望慧炬科技能够坚持下去,不断优化仪器的性能和稳定性,不断面向用户,提升仪器的易用性,虚心接受用户的反馈,不断实现仪器的迭代,最终在市场上赢得广大用户的认可和尊重。最后,隋森芳院士祝愿科研人员再接再厉,取得更大的成绩,祝愿我国高端电子显微镜自主研发事业蓬勃发展。中国科学院物理研究所/松山湖材料实验室研究员、中国电子显微镜学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞马秀良研究员代表粤港澳大湾区显微科学技术联盟向由徐涛院士、孙飞研究员领衔的国产首台场发射透射电镜成功研发表示热烈祝贺。国际上透射电镜的研制始于上世纪30年代初的德国。上世纪50年代到70年代,我国科学家、工程技术人员也曾为研发透射电镜付出了不懈的努力,并在当时的条件下取得一定进展,只是由于复杂历史原因没有得到传承和延续。到改革开放初期,我国高考恢复以及国际上材料科学的广泛兴起,激发了国内青年学子对掌握知识的广泛渴望,对探索未知的热情空前高涨。时至今日,历经几代人,这种高涨的热情还在持续。以1980年成立的中国电子显微学会为例,每年一届的全国电子显微学学术年会,参会规模从当时的几十人,到现在已经达到3000多人。电镜已经成为科学家探索微观世界的重要手段,是材料科学、生命科学、半导体等领域不可或缺的高端科学仪器。从数量讲,我国已经成为透射电镜的最大市场,但过去四十多年里,我们对透射电镜几乎完全依赖进口,所以本次透射电镜成功研制的重大意义不言而喻。马秀良研究员表示,相信在120kV场发射透射电镜成功研制的基础上,在材料科学领域常用的200kV、300kV场发射透射电镜的成功研制也指日可待,这也势必会带动我国高端制造业的发展。学术报告:生物医学电镜自主研制之路报告人:中国科学院生物物理研究所/广州生物岛实验室研究员、广州慧炬科技首席科学家孙飞研究员孙飞研究员为大家分享了120kV透射电镜成功研制背后的心路历程。2016年8月,以生物物理研究所为主办单位,召集了国内各方有志于国产电镜装备研制事业的专家学者、企业家、政府领导,在西安交通大学召开了针对我国开展电镜装备研制必要性和可行性的研讨会议。至此,新时代下,我国电镜自主研制再出发。先后完成电镜相关研发项目和成果,包括光电融合超分辨生物显微成像系统、生物大分子跨尺度结构研究前沿技术、生物超快冷冻电子显微镜、冷冻电镜样品制备技术、冷冻聚焦离子束减薄技术、冷冻电镜图像处理技术等。在这些研发项目历程中也逐渐组建起以孙飞、曹峰、季刚、金亮、卢志钢、姚一帆等为代表的体系化工程技术队伍。随后电镜关键技术从装备研发的30kV开始,成功研制了针对病理组织切片样品的高通量扫描透射电子显微镜SmartView。接着再到120kV透射电镜关键部件的突破,最终实现向整机研制的进发。最后结合数年转化历程,针对我国高端科学仪器自主研制的战略出路分享了自己的几点看法。整机揭幕:饶子和院士、 隋森芳院士揭幕,专家代表共同见证广州慧炬科技产品发布讲解讲解人:广州慧炬科技有限公司总经理曹峰【命名】:作为慧炬科技首款透射电镜产品,同时也是我国国首台正式发布的商业场发射透射电镜,TH-F120取名源自中华名山“太行”(TH) ,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。产品参数如下:【设计理念】:越级体验(将场发射电子枪、高自动化模组等越级配置集成至120kV平台,入门即高配);高效操作(所有控制高度集成至PC端,全中文软件交互界面一目了然,提升操作效率);模块设计(每一个模块自成一体,可以独立升级或替换,为用户打造与众不同的科研利器提供便利);拓展丰富(预设充足的附件加装接口以及整机升级空间,满足用户使用新需求,有效应对多样的应用场)。现场展示产品:120kV场发射电子枪(左),120kV低纹波高压电源(右)【产品特点】:肖特基场发射电子枪;高像素CMOS相机;平行束/会聚束自适应切换照明系统;四轴高精度样品台;对称式极靴、恒功率物镜 (高衬度/高分辨模式可选);全中文软件交互界面。高稳定低纹波高压电源(HJ-HT120,新品):加速电压输出-10kV~-120kV;高压电源加速电压稳定性冷冻透射电镜系列: “珠穆朗玛”ZMLM-F300C“唐古拉”TGL-F200C,"玉龙”YL-F100C;热发射透射电镜系列: “秦岭”QL-T120,“丹霞”DX-LaB120。【慧炬科技透射电镜产品路线四年计划】:2024年(120kV 透射电镜、100kV 冷冻电镜);2025年(200kV 透射电镜、200kV 冷冻电镜);2026年(200kV 球差电镜、300kV 透射电镜);2027年(300kV 球差、新型透射电镜)。实验室参观、TH F120真机演示合影留念
  • 《中国光学显微镜市场研究报告(2021版)》正式发布
    光学显微镜,早期也叫复合式显微镜,利用目镜和物镜两组透镜系统来放大成像,由机械装置和光学系统两大部分组成,机械装置包括镜座、支架、载物台、调焦螺旋等部件,是显微镜的基本组成单位,主要是保证光学系统的准确配制和灵活调控,而光学系统由物镜、目镜、聚光器等组成,是显微镜的核心,直接影响显微镜的性能。历经三百多年发展,光学显微镜在光源、分辨率、成像倍数和成像软件等许方面取得了长足进步,并衍生出众多种类显微镜来满足不同观察需求,在科研、医疗、工业和教育等领域有着广泛而重要的应用。长期以来,我国光学显微镜生产制造主要集中中低端市场,而高端显微镜则被蔡司、徕卡、奥林巴斯和尼康等传统光学企业所垄断。近年来,我国在高端光学显微镜领域也取得了许多令人瞩目的成绩。为了系统地了解我国光学显微镜市场情况,仪器信息网特进行2021年光学显微镜市场调研,并形成《中国光学显微镜市场研究报告(2021版)》。本次研究主要通过光学显微镜中标信息整理、与主流厂商、主要科研单位人员交流、文献调研等方式获取数据及信息。本报告主要内容包括光学显微镜概述、光学显微镜市场分析(中国市场规模、主流品牌、竞争格局)、高中低端显微镜市场分布、近一年中标数据分析、相关政策、趋势及展望等。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=244如对本报告感兴趣,可通过以下邮箱survey@instrument.com.cn联系我司相关人员,咨询报告相关细节。目录:第一章 概 述1.1 光学显微镜概述1.2 光学显微镜历史1.3 光学显微镜分类第二章 光学显微镜市场分析2.1 概述2.2 主流光学显微镜品牌分析2.2.1 进口主流品牌2.2.2 国产主流品牌2.3 高端光学显微镜市场2.3.1 进口高端光学显微镜2.3.2 国产高端光学显微镜第三章 光学显微镜近一年中标数据分析3.1中标显微镜品牌3.2 中标显微镜价格区间3.3 招标采购单位性质3.4 采购单位地域第四章 总结和展望
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 她用一台显微镜破解性别之谜 却因性别被历史遗忘
    p   20世纪初,生物学家 Nettie Stevens 解决一个困扰了人类千年的问题,这个问题说起来十分简单,但又万分难解:为什么有男女之分?她在布林茅尔学院 (Bryn Mawr)进行了开拓性的研究,终于发现了决定差异的原因——性染色体。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/f8cef0e1-db98-4914-bed7-18232fa05323.jpg" title=" 201707201842403036_副本.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312,SimKai " Nettie Stevens /span /p p    strong 蒙昧年代 /strong /p p   多亏了 Stevens 的工作,以及在其基础上的后续研究,我们现在知道了性别是遗传所得,父亲的精子决定了后代的性别。但在人类之前漫长的历史中,这一问题显得十分神秘,并且催生出很多有意思的理论。 /p p   亚里士多德相信孩子的性别是由性行为时父亲的体温决定的。教科书《发育生物学》(Developmental Biology)中写道:“他劝年长的男性,如果想要生儿子,就在夏天准备这事。” /p p   在19世纪的欧洲,人们广泛相信营养决定性别,营养差的父母生男孩,营养好的生女孩。几个世纪中,很多别的奇怪的理论也层出不穷。 /p p   十八世纪的法国解剖学家 Michel Procope-Couteau【《生男孩的艺术》(The Art of Having Boys)一书的作者】相信两个睾丸/卵巢分别对应两种性别。他“建议控制后代性别的最佳方法就是移除属于另一种性别的一个睾丸或者卵巢 虽然还有一种不那么激烈的方法—女性侧躺(让正确性别的那侧在下),然后靠重力达到目的。”这段话出自生物学家 Leo W. Beukeboom 和 Nicolas Perrin 所著《性别决定的演化》(The Evolution of Sex Determination)一书。 /p p   现在我们知道,以上理论都是无稽之谈。这都要感谢 Stevens 的研究。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/eb461909-f3ef-4846-bd93-b0d43c1cd4b0.jpg" title=" 201707201844068419_副本.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312,SimKai " Nettie Steven 用的显微镜。图片来源:Wikimedia Commons /span /p p    strong 大器晚成 /strong /p p   Stevens 于1861年生于美国佛蒙特州,她在35岁“高龄”才攒到了足够的资金之后,进入加州的一所初创不久的大学——斯坦福大学,在这里她开始学习科学并不断成长,于1990年拿到了本科和硕士学位。从斯坦福毕业后,Stevens 申请攻读宾州布林茅尔学院的博士学位——这一教育水平对于当时女性来说是非常罕见的。 /p p   20世纪初时,染色体携带遗传信息仍是一个新理论。孟德尔工作的内容在1900年才刚刚被人们“重新发现”(他活着的时候没人听他的理论),科学界当时也在试图解答包括性别在内的各种性状如何在世代间传递。 /p p   Stevens 想要弄清楚性别到底如何(或者说是否)通过基因遗传。她在用一台显微镜观察黄粉虫(Tenebrio molitor)的染色体时,发现了几千年来逃过人们视线的秘密。 /p p   她发现雌性黄粉虫的细胞有20个大型染色体,而雄性虽然也有20个,但却有一个明显比另外19个小很多。Stevens 在总结报告中写道:“这看起来确实是染色体决定性别的现象。” /p p   她推断,这样的差异能够追溯到黄粉虫的精子。的确,她发现黄粉虫精子的染色体有两种版本:有一条染色体或大或小。“含有一条小型染色体的精子(产生的后代)是雄性,”她写道,“而那些10条染色体大小相似的精子产生的后代是雌性。” /p p   “这是人类两千多年来对于动物植物和人类性别形成的思索和实验积累的成果”,历史学家 Stephen Brush 在他的《科学学会历史》(The History of Science Society)中解释道,“同时它为最近重新发现的孟德尔基因理论提供了一个重要的验证,后者已成为现代生物学的中心理论。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/8a4551ce-7bd5-4a43-b40d-855b55da2a65.jpg" title=" 201707201844428705.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312,SimKai " Steven 笔下的细胞分裂。 来源:Studies in Spermatogenesis /span /p p    strong 无缘荣耀 /strong /p p   Stevens 的同事及前导师——E.B. Wilson,本身是一个传奇的生物学家,他常常被认作性染色体的发现者。 /p p   而导致这一情况的原因很简单:性别歧视。 /p p   Wilson 当时和 Stevens 一样,也在研究这个问题,并且在同一时期发表了相似的成果。然而他研究的物种中,雄性比雌性缺失一条染色体,这种情况在自然界中不那么常见。而 Steven 的 XY 染色体模型才是人类性别决定理论的基础。另外,Steven 的模型更好地支持了孟德尔的基因理论——一部分基因起主导作用,而与它们相对应的等位基因的作用会被遮蔽。 /p p   “大家总是说 E. B. Wilson 和 Stevens 在同时观察到了同样的结果,”Brush 在书中这样写道,但“很可能 Wilson 直到看到 Stevens 的结果,才得出性别决定的结论......因为本来 Wilson 在其他领域已经有了很多成就,所以他总是被给予最多的荣誉。“ /p p   Wilson 文章比 Stevens 发得早,而且学术声望也更高,所以他一直被认为是发现性别决定的人。然而虽然这两篇文章相似,Stevens 的结论明显更加正确,且证据更充足有力。Wilson 仍然相信环境因素会对性别决定产生影响,而 Stevens 认为这完全取决于染色体。这两种观点中在当时都无法完全验证,但时间证明 Stevens 是正确的(译注:至少对于人类等哺乳动物性别由染色体决定,但确实有部分物种性别由环境决定),他们应该被认作共同发现者。尽管如此,只有 Wilson 一人获得了承认和荣誉。 /p p   这是一个“玛蒂尔达现象”的典型案例,这个名词来源于废奴主义者 Matilda Gage,指女性所取得的成就往往被归功于她们的男性同事——他们成为共同作者、被夸大功劳、甚至完全掩盖她们所做的贡献。Stevens 绝不只是唯一一个有如此遭遇的女科学家:比如20世纪的 Rosalind Franklin,她的工作对于 DNA 的发现起到了决定性的作用,却被同样遗忘。 /p p   Stevens 在1912年死于乳腺癌。纽约时报为此发表了一篇讣告,这样总结她的成就:“她是极少数杰出女性科学家之一,也是当代生物学领域中的佼佼者。” /p p   这真的是一个保守的评价。 /p
  • EVIDENT首批国产研究级显微镜正式出货
    50年前,奥林巴斯科学事业部随同奥林巴斯集团进入中国,并与之一同深耕中国市场至今。32年前,以映像事业起步,奥林巴斯集团在中国广州建立起了中国的首家工厂。今年四月,Evident成立,奥林巴斯科学事业部以新的名字扬帆启航独立运营。八月,奥林巴斯集团广州工厂更名为Evident广州,在番禺新址启动生产,主要从事显微镜及组件的制造、物镜制造及光谱仪维修等业务,以匠人之心为中国客户提供研发制造及定制化服务,通过内在驱动产业链布局发展,进一步赋能中国本土市场。通过运用日本的精益生产(TPS)方式及制造革新活动,Evident广州工厂力争成为具有世界先进制造水平的模范工厂。Evident广州工厂新址中国制造,走向全球中国是Evident实现成长的关键市场,也是Evident以新身份启程,寻求加速创新的重要支柱。而在进入中国市场50周年之际,暨2022年10月,Evident广州工厂在取得NMPA认证后,第一批国产研究级显微镜也顺利出货。研究级显微镜BX3系列出货仪式伴随第一批国产研究级显微镜一同走向市场的,还有Evident对于中国制造的信心,以及将中国制造的高质量产品送往全世界的美好愿景。团结高效,追求速度与效率的企业文化Evident广州工厂有着32年的历史,通过不断地转型革新,最终淬炼出了恪尽职守、精益求精的制造人才队伍,以及团结高效的企业文化精神。发展至今,Evident广州工厂以显微镜为核心业务立足,主要涵盖了17种显微镜本体制造(年出货量达7万台)、45种显微镜组件制造(年出货量达6万件)、58种物镜制造(年出货量达9.5万件)、并涵盖了1300种的零部件销售、5种光谱仪的维修(年维修能力400台以上)等业务。可持续发展,赋能中国本土作为曾经的奥林巴斯科学事业部,Evident视可持续发展为己任,通过构建低碳生产、节能回收等举措,以身作则,引导员工主动参与环保公益事业 ,积极践行可持续理念。同时,Evident将继续践行对中国市场的长期承诺,为中国市场提供更多前沿的生命科学及工业领域的光学产品与服务,为中国人民安心、健康的美好生活做出贡献。Evident中国区CEO出射邦弘Evident中国区CEO出射邦弘先生表示,“Evident会继续在探索与创新的道路上前行,通过持续不懈地转型革新,为中国市场和客户带来前沿的产品技术与高质量的服务支持。Evident的业务模式正从以销售产品为中心转变为专注于解决客户问题和挑战,从产品制造商升级为优化业务流程效率的合作伙伴,向客户提供高质量的产品及服务。同时,Evident也将扩展包括云技术在内的数字技术解决方案,改善研究和检测领域的整体工作流程,增强客户体验,满足客户更新迭代的需求。未来,Evident也将秉持一贯的研发创新精神,利用Evident广州工厂这一制造平台与中国的合作伙伴一起为中国市场提供更多满足中国客户需求的本地化定制化的前沿产品与服务,满足多领域更新迭代的需求。”附注:仪景通光学科技(广州)有限公司是Evident位于广州市番禺区的显微镜制造工厂,属于广州市重点外资企业,已获得ISO9001、ISO13485医疗质量管理体系、ISO14001环境管理体系、 “番禺区A级医疗器械生产企业”、“海关AEO高级认证企业”、“广州市劳动关系和谐企业AA级”、“广东省纳税信用A级企业”等认证。Evident致力于建立以制造为轴心的模范企业,利用精锐的人才队伍,建立能够举全员之力的敏捷组织,锐意创新、快速高效地应对客户需求。
  • Echo Revolve显微镜助力香棒虫草的生药学与数字化表征研究
    前言香棒虫草主产于山西省,主要分布在山西南部中条山一带,民间常用它代替冬虫夏草作为滋补品使用。除了山西,香棒虫草在我国甘肃、云南、青海、广东、海南及国外斯里兰卡和欧洲也有分布。虽山西民间将香棒虫草作为冬虫夏草的替代品,但其未收载进药材标准,且药用历史较短。《中国真菌志》虽明确了其真菌的来源,但对其宿主来源和形态均未有详细的描述。鉴于此,本研究应用性状及显微鉴定法,对香棒虫草的虫体形态、头部特征、子座长出方式、环纹及分节、复毛区刚毛等特征进行详细研究和科学描述,同时与冬虫夏草进行比较,有助于香棒虫草资源的开发及其质量标准的制定,同时可以为冬虫夏草的市场监管和监督检验提供参考依据。本研究应用数码相机、体式显微镜与其数码成像系统对香棒虫草子座和虫体的外观性状特征进行观察和表征;通过冷冻切片和荧光染色,体式荧光显微镜与其数码成像系统、荧光显微镜工作站,对香棒虫草子座和虫体部位的横切面显微特征进行观察和表征;应用扫描电镜对表面及剖面的特征进行探究,并与冬虫夏草进行了生药学鉴别特征比较。作者采用calcofluor white stain试液染色后,在Echo Revolve荧光显微镜 DAPI、FITC和RFP 3个通道下分别观察继发性荧光及自发性荧光,将3个通道的图像叠加,可见虫体内部菌丝层与表皮分别呈紫红及黄色,动物组织与菌丝组织荧光差异明显,见图1。▲ 图1 香棒虫草虫体的横切面(标尺为该图片比例)A-calcofluor white stain染色,3通道叠加(A1-dapi通道;A2-fitc通道;A3-rfp通道);B-直接制片,白光下观察;C-乳酸酚棉蓝染色,白光下观察;D-calcofluor white stain染色,荧光下观察本研究系统阐明了香棒虫草头部上颚、胸足、腹节环节、尾部刚毛及体壁针状毛等性状特征,子座部位不同菌丝层荧光显微特征及虫体部位中虫体组织和菌丝组织荧光显微特征差异。香棒虫草与冬虫夏草相比,在虫体形态、腹足有无、气孔形态、子座长出部位等性状特征,以及体壁被毛、刚毛、毛片等显微特征中存在明显差异。通过对香棒虫草进行生药学研究,可为香棒虫草资源的开发与利用提供参考;通过与冬虫夏草的对比研究,可以避免混淆用药,为市场监管提供科学依据,也为虫草类药用品种数字化表征规范的建立奠定基础。 研究亮点: ▶ 首次采用calcoflouor white stain乳液进行荧光染色,子座与虫体及其不同组织间区别明显,证明该方法可对虫草类药材不同组织结构进行区分和表征。▶ 阐明了香棒虫草与冬虫夏草的区别性特征,可以通过性状和显微特征来区分冬虫夏草与香棒虫草,以防混用及掺伪的情况,也可为粉末和制剂的检验提供参考,同时也为其他混淆品的鉴别研究提供依据。文献原文:doi:10.11669/cpj.2022.06.006Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。Revolution则是Revolve的升级版,在保留了所有功能的同时,实现了多通道荧光的全切片扫描,20倍镜下3通道荧光,仅需45秒即可扫描完成,系统简洁,APP式样软件操作,任何一位从未接触过该系统的用户,均可快速学会操作,拍出高质量的图像!▶ 高速多通道全切片扫描▶ Apple App触屏操控,界面简洁,极易掌握▶ Apple Store 安装和更新▶ 移动端数据分享更加便捷高效▶ Retina视网膜屏幕高清显示
  • 华中师范大学158.38万元采购高压灭菌器,生物显微镜,数码显微镜,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师 027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器,生物显微镜,数码显微镜,荧光显微镜 开标时间:null 预算金额:158.38万元 采购单位:华中师范大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中经国际招标集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1 化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx
  • 超分辨显微镜研究获进展
    p style=" text-align: justify text-indent: 2em " 中国科学院上海高等研究院宏观量子中心研究员王中阳课题组和中国科学院上海光学精密机械研究所量子光学实验室研究员韩申生课题组合作,首次提出利用鬼成像方法加快超分辨率荧光光学显微镜的成像速度。新方法有望捕获细胞内以亚毫秒速度发生的生物过程。相关研究成果以Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints& nbsp 为题发表在美国光学学会刊物OPTICA上(DOI:& nbsp 10.1364 / OPTICA.6.001515),并被美国光学学会(The Optical Society, OSA)作为高影响研究工作在发表的同时同步向媒体进行宣传推广。 /p p style=" text-align: justify text-indent: 2em " 超分辨光学显微技术通过克服光的衍射极限来实现纳米级的分辨率。尽管传统超分辨显微镜可以定位细胞内单个分子,并构建超分辨图像,但在活细胞中却很难使用,因为重建图像需要成百上千帧——这个过程太慢,无法捕捉快速变化的动力学过程。为了解决这个问题,该研究团队将随机相位调制器加入到荧光显微镜中实现荧光信号的编码,并结合鬼成像技术与随机测量压缩感知方法,大幅度提高图像信息获取效率,数量级地减少重构超分辨图像所需的采样帧数。研究结果表明,在高标记密度下只需要通过单帧荧光图像的采样就可实现80nm分辨率的超分辨光学成像。 /p p style=" text-align: justify text-indent: 2em " 此外,研究的新方法还与2014年诺贝尔奖三大超分辨率技术之一的随机光学重建显微镜(STORM)相结合,将STORM的采样帧数减少了一个数量级以上。研究结果显示成像一个60nm的环,该方法只用10帧图像就可以重构图像,而传统的STORM方法需要多达4000帧图像才能达到同样的效果。该方法还实现用100帧图像分辨40nm标尺。并且研究的超分辨成像显微镜不需要高的照明强度,这有助于减少光漂白和光毒性,有利于长时间的动态生物过程和活细胞成像研究。因此这项创新技术有望在生物、医学等超分辨显微成像研究领域得到广泛的应用。 /p p style=" text-align: justify text-indent: 2em " 文章的第一作者是上海高研院博士研究生李文文。该工作受到国家重点研发计划(“数字诊疗装备研发”专项)的资助。& nbsp /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 516px " src=" https://img1.17img.cn/17img/images/201912/uepic/bdc8a826-986f-499a-b428-d54bb5a2570c.jpg" title=" 显微镜装置示意图与重构结果.jpg" alt=" 显微镜装置示意图与重构结果.jpg" width=" 600" height=" 516" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图:显微镜装置示意图与重构结果 /p
  • 研究机构称:2018全球显微镜设备市场达62亿美元
    据Transparency Market Research调查显示:显微镜设备(包括光学、电子和扫描探针显微镜。应用市场包括半导体、生命科学、纳米技术、材料科学)2011全球市场价值在30亿美元,并预期在2018年达到62亿美元,2012至2018年的复合年均增长率为11.0%。   显微镜设备市场的增长主要来自于全球纳米技术研究的增加。随着纳米技术在材料科学、半导体和生命科学等领域的广泛应用,它促使政府及在全球范围内的企业,通过公共财政来支持其研究和发展。纳米技术同其他精密制造行业,如半导体和医疗设备制造业,促进了先进显微镜的使用,这也驱动了显微镜设备市场的发展。此外,由当地或外国公司在中国、印度等国家成立越来越多的半导体生产企业,也促进了显微镜设备市场的增长。   在显微镜设备的各种应用领域中,半导体行业显微镜设备市场2011年所占的份额最大,并预计在未来几年依然维持其最大的份额,由于微电子产业半导体芯片小型化的不断发展,将成为显微镜设备市场增长的重要动力。   2011年,北美拥有的显微镜设备市场份额超过35%。由于专注于纳米技术和生命科学等行业的研究,加上这一地区大的联邦和企业充足的资金供应,使之成为显微镜设备的重要市场。然而,亚洲的显微镜设备市场复合年增长率最快,预计有望在2018年成为全球最大的显微镜设备市场。半导体产业的迅速增长,越来越多的半导体生产企业的成立将成为这一地区显微镜设备市场增长的重要驱动力。   扫描探针显微镜预计在2012-2018年内呈现最高的复合年增长率,主要由于其适用于导体或绝缘体样品,并且由于其高分辨率,扫描探针显微镜拥有更好的表面成像功能。   2011年,奥林巴斯占据了光学显微镜最大的市场份额,而日立高新技术公司荣登电子显微镜市场首位。其他重要的显微镜设备制造企业包括:FEI、尼康、JEOL、徕卡、卡尔蔡司等。   报告所涉及的显微设备产品包括:光学显微镜(倒置显微镜、体视显微镜、相衬显微镜、荧光显微镜、共焦扫描显微镜、扫描近场光学显微镜) 电子显微镜(扫描电镜、透射电镜) 扫描探针显微镜(扫描隧道显微镜、原子力显微镜)。   显微设备应用市场包括:半导体、生命科学、材料科学、纳米技术,其他。   显微设备市场区域包括北美、欧洲、亚洲,世界其他地区。 编译:秦丽娟
  • 冷冻显微镜:制药研究中最酷的技术
    在过去的二十年中,冷冻显微镜方法已经成为生命科学家、制药研究人员等广泛使用的有效工具,用于检查接近其原生状态的生物结构1。冷冻显微镜能够可视化蛋白质和蛋白质复合物等物质的生物分子结构,是对现有的方法如x射线晶体学和核磁共振(NMR)等的有价值的补充。确定蛋白质和蛋白质复合物的结构是药物发现的一个重要部分,这对研究药物靶点非常有意义,也是深入了解疾病机制的重要课题。在这篇文章中,我们将阐述冷冻显微镜技术的使用,包括冷冻光学电子显微镜(cryo-CLEM),冷冻干燥显微镜(FDM),药物研究中的低温保存,以及温度控制显微镜如何使研究人员能够在低温下推进药物发现和开发研究。冷冻光学电子显微镜(Cryo-CLEM)电子显微镜(EM)使用微量材料,具备接近原子的分辨率,可以研究不同功能状态下的分子。冷冻电镜(Cryo-EM)使用极低温度,克服了真空条件下使用电子束测量高含水量生物标本的难题。在20世纪80年代冷冻电镜商业化之前,生物标本是通过化学固定或染色等方法制备的,但这些方法存在保存伪影,会影响图像分辨率。快速冷冻通常用于将样品保持在与自然生理环境相似的冷冻状态,在临床前阶段取得的结果必须在临床研究中可复制,这在药物研究中尤其重要。Cryo-CLEM结合低温荧光技术和冷冻电镜技术,提高了活检细胞内生物、化学和遗传过程的灵敏度。Cryo-CLEM能够对冷冻固定样品中的分子或分子组件(如细胞内膜、DNA或细胞结构元件)进行直接荧光标记和靶向,精确定位区域,以便后续使用EM进行高分辨率成像。为了使生物样品与EM中发现的真空条件兼容并保存结构细节,样品被嵌入玻璃状的冰中,需要保持在-140°C以下。必须避免与空气中水分接触,因为一旦接触会形成冰晶并污染样品。在低温条件下,荧光信号的结构细节被保留,光漂白显著减少。冷冻光学电子显微镜技术的进步体现在它包含了创新的冷冻荧光级,如Linkam CMS196,它能够自动获取整个电镜网格的高分辨率荧光图。这也用于样品导航,并将cryo-CLEM的案例情况与EM或与x射线显微镜等其他技术相关联。西班牙巴塞罗那的一组研究人员和临床医生使用荧光显微镜、透射电子显微镜(TEM)和低温软x射线断层扫描(cryo-SXT),可以观察到抗癌药物顺铂在极低浓度下的有效性,确定产生效果所需的最低剂量,以最大限度地降低毒性2。该小组在荧光显微镜上对低温冷冻的细胞样本进行成像,使用CMS196冷冻荧光台在液氮温度下将它们玻璃化,然后使用cryo-SXT对样本进行分析,这使得在纳米尺度上进行3D研究成为可能。得益于现有的低温成像技术,研究结果表明,三甲碱(研究的两种佐剂之一)促进了顺铂在较低剂量下的有效治疗,这可能为化疗治疗的发展铺平了道路,减少了对患者的副作用。冻干显微镜许多药物生产为冻干或冻干配方,以增加稳定性和延长保质期。药物开发人员必须为新的药物化合物创建一个优化的冷冻干燥过程,这可能是一项复杂而昂贵的工作。为了简化流程和开发更高效的冷冻干燥循环,了解三个主要冷冻干燥步骤的温度和压力要求是很重要的。使用冷冻干燥显微镜(FDM),研究人员可以直接可视化每个步骤,并确定药物产品在不同热条件下的行为。FDM包括一个专用的光学显微镜和一个专用的热工作台,它可以准确地控制样品的温度和压力,并允许实时进行热测量。冷冻干燥的一个关键参数是塌陷温度(Tc),即产品失去结构完整性并导致加工缺陷的温度。FDM使药物开发人员能够密切监测样品并快速有效地调整冷冻干燥方案。英国国家生物标准与控制研究所(NIBSC)的一个研究小组正在利用先进的FDM技术研究冷冻干燥药物的复杂性。该小组由Paul Matejtschuk博士领导,正专注于研究优化冻干脂质体药物的配方。由于冻干脂质体药物物理和化学性质不稳定,这对开发提出了挑战。Matejtschuk博士和他的团队使用安装在光学显微镜上的专用冷冻台(FDCS196, Linkam科学仪器)(图1),通过估计冻结、塌陷和融化温度,预测脂质体-冷冻保护剂混合物的理想的冷冻干燥条件3。图1:NIBSC实验室的仪器配置。Linkam FDCS196冷冻干燥冷冻台,T94控制器和液氮泵,真空泵,奥林巴斯BX51光学显微镜。图像显示FDM系统的旧版本图2: Linkam FDCS196冻干显微镜系统的最新版本这样的实验对于继续努力开发快速、可转移和可扩展的冷冻干燥方法来稳定脂质体等药物化合物至关重要。低温贮藏储存用于研究的生物标本有赖于有效的保存技术,以保持细胞的物理和生物完整性。冷冻或冷冻样品可能会导致冰晶的积聚,导致终端细胞损伤。冷冻保护剂是在冷冻过程中通过降低水的熔点来防止细胞损伤的重要物质。许多生物,如极地昆虫、鱼类和两栖动物,会产生自己的冷冻保护剂或防冻化合物。科学家们正在研究这些化合物,以开发新的冷冻保护剂来保存研究用的细胞。例如,由Matthew Gibson博士领导的英国华威大学的研究人员,正在研究防冻剂(糖)蛋白(AFP),目的是开发新的合成AFP模拟化合物。该实验室使用低温生物学工作台(BCS196,Linkam Scientific Instruments)来测量细胞中的冰晶生长,依靠该仪器的温度控制能力来观察AFP。Gibson博士研究了使用金纳米颗粒作为探针来测量冰再结晶抑制活性现象,使用低温生物学工作台来改变温度,并开发出一种高通量方法来筛选类似AFP具有结构特征的材料。4诸如此类的发现为开发新型冷冻保护剂提供了潜力,这种保护剂可以防止冷冻保存细胞中冰的生长,从而保持细胞的完整性,因此在生物医学和药学研究中具有潜在用途。未来药物研究本文中描述的技术强调了目前已有的各种冷冻显微镜方法的选择,这些方法有助于推进药物研究。Cryo-CLEM结合了cryo-EM和低温荧光的力量,作为一种相对较新的技术,它的成功依赖于专用冷冻工作台的发展,从而促进了Cryo-CLEM工作流程。这种工作台能够在液氮温度下保持玻璃化样品,使它们在从荧光显微镜移动到冷冻电镜成像时保持无污染。其他专用的冷冻台可与广泛的显微镜技术兼容,如FDM,可在成像过程中精确控制样品的温度,低至-196°C。这些创新为制药研究人员新疗法和生产工艺评估,以及生物样本保存以供未来研究等大量应用提供了工具。 作者:Linkam Scientific Instruments销售及市场部经理Clara Ko参考文献:1. Booy, F. and Orlova, E.V. Cryomicroscopy, in: Chemical Biology: Applications and Techniques (eds Larijani, B., Rosser, C.A., and Woscholski, R.) 2007.2. Gil, S., Solano, E., Martinez-Trucharte, F., et al. Multiparametric analysis of the3. effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS ONE. 2020 15(3): e0230022.4. Hussain M.T., Forbes N., Perrie Y., Malik K.P., Duru C. and Matejtschuk P. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. International Journal of Pharmaceutics 573, 2020 118722.5. Mitchell, D. E., Congdon, T., Rodger, A., and Gibson, M. I. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Scientific Reports, 2015 5: 15716.
  • 近场声学显微镜成熟商品的“中国创造”——访中科院上海硅酸盐研究所殷庆瑞研究员
    2011年3月7-14日,中科院上海硅酸盐研究所研制的纳米热学-声学显微镜成像系统亮相国家“十一五”重大科技成就展,并引起了业内人士、专业媒体多方面关注。据了解,该项目负责人殷庆瑞研究员以自行研制的材料和器件为核心技术,已成功研发出多台具有自主知识产权的大型科学仪器设备,如扫描电声显微镜(SEAM)、扫描探针声学显微镜(SPAM)、扫描热学显微镜(SThM)、激光-光声测量仪、超声雾化器等。   其中,扫描电声显微镜创新性地将电子显微术(SEM)与声学显微术(SAM)“合二为一”,被称为该领域全球唯一成熟的商品化扫描电声显微镜,现已荣获国家技术发明二等奖、国际工业博览会银奖以及中科院自然科学一等奖等殊荣。目前,该款仪器已成功更新至第IV代,分辨率达到200nm,在国内相关的企事业单位得到了实际应用,并出口到美国、德国、日本、台湾、新加坡等地,成为“我国大型科学仪器出口到发达国家和地区的一个成功范例”。   近日,仪器信息网就声学显微镜成像技术与仪器的研制、应用、产业化等问题,专门采访了中科院上海硅酸研究所殷庆瑞研究员。 中科院上海硅酸盐研究所殷庆瑞研究员 潜心数载攻难关 成功研发世界先进水平扫描电声显微镜   扫描电声显微镜是一种多功能、高分辨率的显微成像仪器,兼具电子显微术高分辨率和声学显微术非破坏性内部成像的特点,拥有广阔的市场应用前景。殷庆瑞研究员瞄准市场需求,创造性地把电子光学技术、弱信号检测技术、图像处理技术及计算机技术有机融为一体、先后研制出具有自主知识产权的四代扫描电声显微镜,并获得国内外多项大奖。   对于扫描电声显微镜的研发初衷,殷庆瑞研究员回忆到:“1979-1981年,我被派往英国牛津大学的Clarendon实验室和材料系做访问学者。在那里,我发现同行们都是自行研制仪器做科研,发现的物质结构或实验结果也颇具创新性。相比之下,国内大多是购买现成仪器搞科研,实验结果自然也雷同,很难有创新的成果。因此我决定回国后要结合具体的科研工作,按照自己的新思路,研发新仪器、建立新方法。   “回国后,我最开始研制成功的是激光-光声测量仪,为定量表征薄膜压电性能、功能陶瓷弱相变行为和自发极化剖面分布提供了新技术,解决了当时薄膜材料性能表征的关键技术难题,获得了中科院自然科学奖二等奖。之后,我又研发出了超声雾化器,在日化工业、陶瓷制备方面得到了成功应用。” 扫描电声显微成像系统   在提到扫描电声显微镜的研发历程时,殷庆瑞研究员则说到:“在国家‘863’计划的支持下,我们课题组1988年在国内率先开展了扫描电声显微镜及其相关器件、材料、成像理论和应用研究,这几乎与国际同步。随后几年,整个研发团队潜心研究,攻克各类技术难关,终于研制出了扫描电声显微镜。截至目前,我们已先后完成了SEAM-I型、II型、III型、IV型四代电声成像系统的研制,分辨率已达到200nm,总体技术指标和功能均处于世界先进水平。”   同时,殷庆瑞研究员补充到:“扫描电声显微镜可以用‘二合一’来形容,既能利用电子束探测物质的表面信息,又可以借用声波记录下物质的内部模样,兼具电子显微术高分辨率和声学显微术非破坏性内部成像的本领,可原位同时观察基于不同成像机理的二次电子像和电声像,实现‘二合一’!”   这项成果成功将电子显微术、声学显微术、数字信号处理和高灵敏度传感技术相结合,现拥有4项国家发明专利和一项国外发明专利, 更是荣获了2005年度国家技术发明二等奖、2006年度国际工业博览会银奖以及2010年度中科院自然科学一等奖。 积极推进商品化 成为我国大型仪器出口成功范例   近年来我国科技经费投入持续增长,每年取得的科技成果有3万多项,但多数成果却陷入了“成果-证书-鸡肋”的尴尬状况。虽然目前科学成果商品化面临诸多问题,但也有不少成功范例,殷庆瑞研究员扫描电声显微镜的成功商品化便是其中之一。据悉,目前该项成果已被推广到国内外数十家单位,被誉为“全球唯一成熟的商品化扫描电声显微镜”。   科研成果要实现商品化,自然离不开应用开发。据殷庆瑞研究员介绍,扫描电声显微镜的横向分辨率、纵向分辨率、探测器灵敏度以及图像质量均处于国际领先水平,在评价电子陶瓷、金属、半导体、无机材料、复合材料以及功能器件时能够获得常规手段难以得到的信息,彰显了扫描电声显微成像技术在信息产生、检测和显示等方面的独特优势,当年前来访问的德国乌帕塔大学电子光学系主任巴克先生与新加坡国立大学电子光学专家彭教授也被这一独特优势深深折服。   殷庆瑞研究员介绍:“目前,国内外科学家正是通过使用我们的扫描电声显微镜在各自研究领域内已获得了许多重大的新发现。例如,德国科学家Kohler博士首次在马氏材料上发现了铁磁畴结构及其相应的机理解释;日本筑波大学Kojima教授则首次获得了蝶形BaTiO3晶体电畴结构电声像;美国宾州大学Hang He博士和Ruyan Guo教授在不同材料上获得了铁弹畴、180°反平行周期结构畴的复合畴形态的电声像,并认为电声成像技术是研究功能材料机电耦合效应的一种独特方法;清华大学彭海东博士则观察到了金属-陶瓷复合涂层表面和亚表面显微结构的电声像。正是利用扫描电声显微镜独特的成像机理获得诸如此类的应用成果不胜枚举,而这么多的成功应用又极大地推动了扫描电镜的商品化进程。”   对于扫描电声显微镜的产业之路,殷庆瑞研究员谈到:“最初在仪器研发成功后,我们只是停留在一种‘自给自足’状态,并没有真正地实现规模化生产,也没有主动去开拓市场。后来通过国内外的学术交流,我们收到了第一张订单,而对方竟来自电子显微镜的诞生地和主要产地——德国,这极大地鼓励了我们要把样机商品化的信心,尤其在近几年,中科院一直强调科研创新以及‘产学研用’合作。因此,我们积极与上海市高新技术成果转化服务中心联系,并与国内几家仪器公司建立了合作关系,共同推进扫描电声显微镜的商品化。而在厂商接手过程中,我们也并没有撒手不管,听之任之,而是从实验数据、应用开发再到技术培训、售后维修,我们都全程参与。双方互相信任,通力协作,推动了科研成果向产业化发展。”   我国大型科学仪器历来依靠进口,而随着扫描电声显微镜的技术升级与商品化成熟,“中国创造”的扫描电声显微镜在中国大陆、台湾、美国、德国、日本、荷兰、新加坡等发达国家和地区的实验室里都能够找到,被誉为“我国大型科学仪器出口到发达国家和地区的成功范例”。 超越“二合一” 实现电-声-热显微镜一体化   当今材料科学朝着纳米及精细复合方向发展,功能器件则越来越小型化、集成化,这就对材料及功能器件的评价表征方法提出了日益严峻的考验;为应对这一挑战,殷庆瑞研究员课题组“二合一”的科研工作还在一直持续着,已成功研制出扫描探针声学显微镜与扫描热学显微镜,现正在研发电-声-热显微镜“三合一”技术。   近年来,在扫描电声显微镜的基础上,殷庆瑞研究员又带领课题组突破传统声学成像技术的概念,成功研发了低频(300Hz-3KHz)、高分辨率(10nm)扫描探针声学显微成像(SPAM),使低频声学成像技术拓展到了纳米级分辨率水平。   对此,殷庆瑞研究员表示:“原子力显微镜(SPM)只能用于检测材料表面,而声学显微镜却可以用于材料的缺陷分析、电子结构、微区弹性等性能测试方面。随着纳米技术深入发展,我和我的团队想到了将声学技术与原子力显微镜结合,研发出了扫描探针声学显微镜。这项成果可以克服现有SPM只能获得材料表面结构和性质的不足,实现了材料表面及亚表面结构和物性的原位实时检测,在微、纳米材料和器件无损分析方面的应用前景十分广阔。目前,该仪器已被日本国家材料研究所、德国应用科学技术大学、北大、清华、南大等知名院校纷纷选择使用。”   而扫描热学显微镜(SThM)则是殷庆瑞研究员继SPAM之后对扫描探针显微术的又一项重大突破。该仪器主要利用材料的温度、热导率等变化进行成像,从而获得样品表面热分布和相关热物理性质的一种微纳米尺度的测试技术,适用于材料微区的热学性能表征。   殷庆瑞说到:“目前,国外科学家已分别研制出原子力显微镜与电、光、磁3种技术分别结合的显微成像仪器。而我们之前已研发出了扫描探针声学显微镜,因此把目光投向了扫描热学显微镜。在国家‘973’计划的支持下,我们在2010年成功研制出了扫描热学显微镜,目前在微电子器件、材料等领域已得到了日益广泛的应用。” 扫描探针近场压电-声学-热学显微成像系统   最后,在谈到课题组下一步的研发计划时,殷庆瑞研究员提出:“我们打算研发电、声、热一体化的扫描电镜,更加集成化、综合化、实用化,而这也是当今科学仪器发展的一个大方向。我相信,这款仪器将更加适用于物质介观和微观层次上的特性表征,对相关材料、器件与显微成像技术领域的发展,也将是一个极大地推动作用。”   后记:   美国NASA高级材料物理专家John博士曾这样评价,中科院上海硅酸盐所这个团队在电声成像的研究和应用方面已经成为世界的领导者。他们把电声成像扩展至实用阶段,而这项工作对该领域的影响是深远的。   的确如此,殷庆瑞研究员课题组将理论研究、材料制备器件设计、仪器研制与实际应用相结合,开发出独具特色的“二合一”新仪器,并积极推进相关科研成果的商业化,取得了一定的经济效益和良好的社会效益。因此我们有理由相信,殷庆瑞研究员和他的团队下一个“电-声-热显微镜一体机”必将在日益发展的纳米科学时代能够“大放异彩”!   采访编辑:刘玉兰   殷庆瑞研究员个人简介:   殷庆瑞研究员,1965年毕业于东南大学(南京工学院)无线电工程系。同年9月分配至中国科学院硅酸盐研究所工作至今。期间,1979-1981年在英国牛津大学Clarendon物理实验室访问学者,1989年在日本东京大学应用化学系客座研究员,2003年在德国乌帕塔大学电子工程系访问教授。   他主要从事电子陶瓷材料物理性能、器件设计以及光声学、电声成像和扫描探针声学显微术方面的研究。他在国内外重要刊物上已发表论文300余篇,专著两本(80余万字),英文版专著一本(Spring ),译著两本。获得国家技术发明二等奖、三等奖各一项,国际工业博览会银奖一项,中国科学院自然科学一等奖、二等奖各一项,中国科学院科技进步一等奖一项、省部级三等奖两项,国内外专利十余项。   他曾兼任同济大学教授、香港理工大学智能材料中心国际顾问委员会委员、国家基金委员会重大项目首席科学家、国家“863”计划新材料领域专家委员会委员、美国IEEE高级研究员、亚洲铁电学联合会理事、亚洲电子陶瓷联合会理事和国际铁电学杂志编委等学术职务,并当选美国纽约科学院院士和国际陶瓷科学院院士。   他曾先后获得上海市劳动模范、全国“五一”劳动奖章、国家“863”计划十五周年先进个人、中国科学院研究生院杰出贡献教师等荣誉称号。   他曾担任过中国科学院硅酸盐所科技处处长、所长助理和副所长,以及中国科学院无机功能材料开放实验室以及国家重点实验室学术委员会副主任等职务。
  • 《中国电子显微镜市场研究报告(2021版)》发布
    电子显微学是近代物理学、生命科学、材料科学,尤其是纳米科学研究的重要手段,诸多重要材料、纳米材料、生命科学的科技突破,都离不开电子显微学的贡献。在各领域前沿科技的发展、生产企业对产品质量要求的提高等多方终端市场需求不断增长背景下,电子显微镜市场竞争日趋激烈。在欧美高端科学仪器市场逐渐放缓背景下,中国已经成为最大的单一市场。2018年,仪器信息网(instrument.com.cn)曾发布《中国电子显微镜市场研究报告(2018版)》,三年来,全球电子显微镜进口市场经历了近六年的首次下滑,加之新冠疫情影响,全球电子显微镜市场风云变幻;另一方面,中国市场电镜及周边国产技术逐渐涌现,不断有国产品牌加入中国电子显微镜产业赛道。此背景下,仪器信息网进一步整理发布《中国电子显微镜市场研究报告(2021版)》,以期对中国电子显微镜市场最新动向全面梳理,对当下中国电子显微镜市场现状、用户需求、电镜企业竞争格局等进行调研分析,为电镜企业在中国市场的战略决策及资本市场投融资提供参考。《中国电子显微镜市场研究报告( 2021版)》内容包含了电子显微镜技术发展概述,近20年全球电子显微镜及相关附件/零部件进出口贸易数据分析、2020-2021年中标分析、中国电镜用户调研分析、中国电镜配置分析、主流电镜企业分析等。《中国电子显微镜市场研究报告(2021版)》详细统计分析了近20年全球130余国家电镜相关贸易数据、中国近5年电镜相关贸易数据, 3000余电镜用户调研信息,近一年1000余项电镜招中标信息、4000余国内配置电镜信息等。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=253欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部报告目录1 研究报告概述 1.1 电子显微镜概述 1.2 电子显微镜技术发展简史 1.3 报告分析数据说明 2 全球与中国电子显微镜市场规模分析 2.1全球电子显微镜市场规模分析 2.2近20年全球贸易数据看全球电子显微镜市场格局2.3近5年中国海关数据看中国电子显微镜市场格局 3 2021年中国电子显微镜保有市场及用户分析 3.1 2021年中国科研领域电子显微镜配置现状分析 3.2 2021年中国电子显微镜用户分析 4 2020-2021年中国电子显微镜采购分析 4.1 2020-2021年中国电子显微镜采购用户端分析 4.2 2020-2021年中国电子显微镜采购中标品牌分析 5 中国市场主流电子显微镜企业分析 5.1 主流进口品牌分析5.2 国产企业分析6 总结 6.1 关于全球电镜市场格局 6.2 关于中国市场6.3 关于国产品牌
  • 中国科学院昆明动物研究所359.00万元采购荧光显微镜,立体显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目公开招标公告 云南省-昆明市-盘龙区 状态:公告 更新时间: 2022-11-09 招标文件: 附件1 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目公开招标公告 2022年11月09日 15:59 公告信息: 采购项目名称 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 品目 货物/通用设备/仪器仪表/试验仪器及装置/其他试验仪器及装置 采购单位中国科学院昆明动物研究所 行政区域 云南省 公告时间 2022年11月09日 15:59 获取招标文件时间 2022年11月09日至2022年11月16日每日上午:9:00 至 11:00 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室 开标时间 2022年11月30日 09:30 开标地点 北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 预算金额 ¥359.000000万元(人民币) 联系人及联系方式: 项目联系人 吴旭 李媛 冯宇图 xwu@osic.com.cn 项目联系电话 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 采购单位 中国科学院昆明动物研究所 采购单位地址 云南省昆明市盘龙区茨坝街道龙欣路17号 采购单位联系方式 禹老师 0871-65191369 代理机构名称 东方国际招标有限责任公司 代理机构地址 北京市海淀区西三环北路甲2号院科技园6号楼13层01室 代理机构联系方式 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 附件: 附件1 1843技术部分.docx 项目概况 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 招标项目的潜在投标人应在www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室获取招标文件,并于2022年11月30日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G220221843 项目名称:中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 预算金额:359.0000000 万元(人民币) 最高限价(如有):351.0000000 万元(人民币) 采购需求: 1、采购项目的名称、数量: 序号 是否接受进口产品投标 是否为核心设备 产品(项目)名称 数量 单位 总价最高限价(万元) 1 是 否 解剖镜 4 台 8 2 是 否 体视显微镜 5 台 45 3 否 否 动物手术显微镜 5 套 60 4 是 是 倒置荧光显微镜(电动) 2 套 116 5 是 否 倒置荧光显微镜(不电动) 1 套 20 6 是 是 正置荧光显微镜(电动) 1 套 31 7 是 否 正置荧光显微镜(不电动) 1 套 11 8 是 是 荧光体视镜 2 台 60 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。 2、是否允许采购进口产品: 部分是 3、技术要求详见公告附件。 合同履行期限:详见公告附件 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目。 3.本项目的特定资格要求:1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体;2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;4)按本投标邀请的规定获取招标文件;5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。 三、获取招标文件 时间:2022年11月09日 至 2022年11月16日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室 方式:登陆“东方招标”平台www.oitccas.com注册并购买。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年11月30日 09点30分(北京时间) 开标时间:2022年11月30日 09点30分(北京时间) 地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 2、招标文件采用网上电子发售购买方式: (1)登陆 东方招标 平台(http://www.oitccas.com/),点击 获取采购文件 链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 (2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 (3)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、投标文件的递交: (1)本项目采用不见面开标模式,原则上投标文件须密封后采用邮寄方式递交。投标文件必须在递交投标截止时间前送达,寄出后及时与我司联系,以确保于投标截止时间前送达投标文件递交地点,逾期送达或不符合规定的投标文件恕不接受。 (2)投标文件邮寄地址:北京市海淀区西三环北路甲2号院北京理工大学西门国防科技园6号楼13层1301室; 收件人:冯宇图; 联系方式:010-68917571;13301371526 5、本项目通过网络平台的云会议室同步直播本次开标过程,各投标人代表在线观看开标仪式。 6、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院昆明动物研究所 地址:云南省昆明市盘龙区茨坝街道龙欣路17号 联系方式:禹老师 0871-65191369 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室 联系方式:吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 3.项目联系方式 项目联系人:吴旭 李媛 冯宇图 xwu@osic.com.cn 电 话: 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:荧光显微镜,立体显微镜 开标时间:2022-11-30 09:30预算金额:359.00万元 采购单位:中国科学院昆明动物研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:东方国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目公开招标公告 云南省-昆明市-盘龙区 状态:公告 更新时间: 2022-11-09 招标文件: 附件1 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目公开招标公告 2022年11月09日 15:59 公告信息: 采购项目名称 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 品目 货物/通用设备/仪器仪表/试验仪器及装置/其他试验仪器及装置 采购单位 中国科学院昆明动物研究所 行政区域 云南省 公告时间 2022年11月09日 15:59 获取招标文件时间 2022年11月09日至2022年11月16日每日上午:9:00 至 11:00 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室开标时间 2022年11月30日 09:30 开标地点 北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 预算金额 ¥359.000000万元(人民币) 联系人及联系方式: 项目联系人 吴旭 李媛 冯宇图 xwu@osic.com.cn 项目联系电话 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 采购单位 中国科学院昆明动物研究所 采购单位地址 云南省昆明市盘龙区茨坝街道龙欣路17号 采购单位联系方式 禹老师 0871-65191369 代理机构名称 东方国际招标有限责任公司 代理机构地址 北京市海淀区西三环北路甲2号院科技园6号楼13层01室 代理机构联系方式 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 附件: 附件1 1843技术部分.docx 项目概况 中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 招标项目的潜在投标人应在www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室获取招标文件,并于2022年11月30日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G220221843 项目名称:中国科学院昆明动物研究所模式动物表型与遗传研究国家重大科技基础设施(灵长类设施)项目第五十二批设备采购项目 预算金额:359.0000000 万元(人民币) 最高限价(如有):351.0000000 万元(人民币) 采购需求: 1、采购项目的名称、数量: 序号 是否接受进口产品投标 是否为核心设备 产品(项目)名称 数量 单位 总价最高限价(万元) 1 是 否 解剖镜 4 台 8 2 是 否 体视显微镜 5 台 45 3 否 否 动物手术显微镜 5 套 60 4 是 是 倒置荧光显微镜(电动) 2 套 116 5 是 否 倒置荧光显微镜(不电动) 1 套 20 6 是 是 正置荧光显微镜(电动) 1套 31 7 是 否 正置荧光显微镜(不电动) 1 套 11 8 是 是 荧光体视镜 2 台 60 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。 2、是否允许采购进口产品: 部分是 3、技术要求详见公告附件。 合同履行期限:详见公告附件 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目。 3.本项目的特定资格要求:1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体;2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;4)按本投标邀请的规定获取招标文件;5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。 三、获取招标文件 时间:2022年11月09日 至 2022年11月16日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:www.oitccas.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室 方式:登陆“东方招标”平台www.oitccas.com注册并购买。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年11月30日 09点30分(北京时间) 开标时间:2022年11月30日 09点30分(北京时间) 地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第二会议室 2、招标文件采用网上电子发售购买方式: (1)登陆 东方招标 平台(http://www.oitccas.com/),点击 获取采购文件 链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 (2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 (3)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、投标文件的递交: (1)本项目采用不见面开标模式,原则上投标文件须密封后采用邮寄方式递交。投标文件必须在递交投标截止时间前送达,寄出后及时与我司联系,以确保于投标截止时间前送达投标文件递交地点,逾期送达或不符合规定的投标文件恕不接受。 (2)投标文件邮寄地址:北京市海淀区西三环北路甲2号院北京理工大学西门国防科技园6号楼13层1301室; 收件人:冯宇图; 联系方式:010-68917571;13301371526 5、本项目通过网络平台的云会议室同步直播本次开标过程,各投标人代表在线观看开标仪式。 6、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院昆明动物研究所 地址:云南省昆明市盘龙区茨坝街道龙欣路17号 联系方式:禹老师 0871-65191369 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室 联系方式:吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571 3.项目联系方式 项目联系人:吴旭 李媛 冯宇图 xwu@osic.com.cn 电 话: 吴旭 李媛 冯宇图 010-68290510、010-68290524、010-68917571
  • 低温强磁场磁力显微镜与共聚焦显微镜在微结构缺陷研究中的科研成果
    凝聚态物理研究中常会遇到微结构与纳米尺寸的结构。为了研究缺陷与控制缺陷,不仅需要精密测量仪器,同时要求大量精力的投入。德国attocube公司为前沿的研究提供了可行性良好的技术,公司产品既包含成套的测量系统也有精密的组件。下面,您可以发现三个令人兴奋的应用案例,案例展示了结合精密仪器与辛勤奋斗带来的高质量的研究成果。 磁场驱动的磁畴结构变化研究 近,挪威科技大学Erik Folven的课题组使用了德国attocube公司的attoAFM I低温强磁场原子力磁力显微镜研究了闭环低温恒温器attoDRY1000内的拓扑缺陷,该拓扑缺陷研究有助于材料的磁畴状态变化的进一步理解。通过具有原子尺寸与磁化的原子力显微镜探针在薄膜表面的扫描可以测量垂直平面的来源于样品本身的杂散磁场,该技术具有灵敏度高的特点。因此,磁畴壁与磁场缺陷等自旋结构的物理性质都可以被深入研究。在5K低温下测试的MFM(磁力显微镜)图像数据(图1)加深了对于微米尺寸磁畴状态转变的理解,同时测试后的样品依然具有高度稳定性。该成果可能为控制与转变微米甚至纳米磁体打开了一个新的方向。 图1:MFM测试磁畴结构随磁场变化的结果(图片来源:Appl. Phys. Lett. 112, 042401 (2018)) 耦合单个缺陷与纳米线 基于attoDRY1000低温恒温器与attoCFM I(低温强磁场共聚焦显微镜),马里兰大学的EdoWaks成功耦合了单层二硒化钨(WSe2)中的量子发射器与银纳米线的表面等离激元。结果显示量子发射器与银纳米线等离激元的平均耦合效率是26% ± 11%。该展示的实验技术(图2)可以组建结合不同种类等离激元结构与基于各种二维半导体材料中单分子缺陷发射器的耦合系统。 此测量系统可用于超快单光子源等应用方向,为超紧凑等离激元电路的研究铺平了道路。 图2:耦合WSe2中量子发射器与银纳米线中等离激元(图片来源:Nano Lett., 2017, 17 (11), pp 6564–6568) ANPz30位移台在强磁场扫描探针显微镜中的实践来自于荷兰拉德堡德大学强磁场实验室的Benjamin Bryant 与Lisa Rossi与同校的扫描探针显微镜课题组的Alex Khajetoorians合作,成功地创新设计了一套用于液氦温度与超强磁场(38T)的扫描探针显微镜。超强磁场使用了水冷降温的比特磁体:水冷降温会引入使扫描探针显微镜难操作的振动噪音。图3:ANPz30位移台,强磁场兼容原子力显微镜(图片来源: Review of Scientific Instruments 89, 113706 (2018))ANPz30纳米位移台被用于控制原子力显微镜的悬臂初步逼近样品表面。模块化设计的Attocube公司的位移台不仅易于更换,也具有兼容不同悬臂或者样品托的灵活性。由于位移台紧凑与坚固的设计,振动噪音被大大的降低。噪音是比特磁体端环境中扫描探针显微镜起到关键性影响因素。
  • 电子显微学畅谈:中国电镜学会第十一届常务理事会系列专家采访之韩立研究员
    中国电子显微镜学会、仪器信息网联合报道 2022年3月5-7日,“中国电子显微镜学会第十一届常务理事会第一次会议”在海南陵水成功举办,为进一步增进交流,会议也同期举办了“常务理事会与仪器公司新仪器、新技术交流会”、“球差校正透射电子显微镜新技术及应用研讨会”等活动。畅谈当下,展望未来——会议间隙,中国电子显微镜学会联合仪器信息网现场随机采访了13位电子显微学专家、厂商代表,请其围绕各自领域电子显微学发展进展、未来发展展望、中国电镜产业化发展等话题分别进行了畅谈。以下是对中国科学院电工研究所韩立研究员(电镜学会常务理事)的现场采访视频,以飨读者:
  • 高端显微镜的国产路
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/ac8312f3-7576-4030-9e53-535bb0a1b2a7.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 科研人员正利用双光子-STED显微镜观察样品 /span br/ /p p   “现在做生物的,都盯着《科学》《自然》,仪器只要求用最好的,眼里没有国产进口之分 做医生的,更是绝对不希望因为仪器而延误病人的诊治。可大家传统观念里都觉得,国产仪器不好用。国产要真正替代进口,面临着很大压力,这怎么破?” /p p   浙江大学教授王平抛出的这个问题,中国科学院苏州生物医学工程技术研究所(以下简称苏州医工所)想要给出答案。12月26日,苏州医工所承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收, strong 标志着我国具备了高端超分辨光学显微镜的研制能力。 /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 白天不懂夜的黑 /span /strong /p p   在当今生物学和基础医学研究中,高/超分辨光学显微镜的作用是至关重要的,尤其是10~100纳米尺度的超分辨显微光学成像,更是取得原创性研究成果的重要手段。 /p p   例如,在微生物学研究中,科学家通过对微生物活体动态进行超微观测,能够揭示许多重要的生命现象 在神经生物学领域,科学家需要动态观察神经突触的形成和变化,以揭示高级神经活动及神经病变的亚细胞结构功能 而在医学领域,更需要依赖超分辨光学显微镜去观察病毒入侵细胞的机制等。 /p p   然而,光学专家和生物学家之间,却似乎一直有一条看不见的鸿沟。 /p p   这种割裂,苏州医工所所长唐玉国有着切身体会。在来苏州之前,他在中科院长春光学精密机械与物理研究所工作多年。他坦言,“ strong 以前我们做光学的就是埋头做自己的,并不懂生物学家对高端显微镜有多么渴求 /strong 。” /p p   苏州医工所是中科院唯一一家以生物医学仪器、试剂和生物材料为主要研发方向的研究所,在与大量生物领域专家接触后,唐玉国意识到,我国对光学显微镜特别是高端光学显微镜的需求极其旺盛。 /p p   但现状是, strong 我国虽然是显微镜消费大国,但自己只能生产中低端产品,高端仪器基本依赖于进口,这已经严重制约了我国生物学和基础医学等相关前沿领域的创新研究 /strong 。 /p p    strong span style=" color: rgb(0, 112, 192) " 鱼与熊掌如何兼得? /span /strong /p p   历时5年攻关,苏州医工所科研人员全面突破大数值孔径物镜、特种光源、新型纳米荧光增强试剂、系统集成与检测等关键技术,已经申请90余项国家发明专利,其中获得授权30余项,并 strong 研制出了激光扫描共聚焦显微镜、双光子显微镜、受激发射损耗(STED)超分辨显微镜、双光子-STED显微镜等高端光学显微镜整机 /strong 。 /p p   以双光子-STED显微镜为例,它将双光子显微技术和STED显微技术有机融合在一起,不仅能对较厚的样品进行深层成像,还能对感兴趣的区域进行超高分辨成像。 /p p   “双光子和STED两种显微镜市场上都已经有仪器销售了,但它们都有着自己的优缺点,双光子显微镜能看到样本中深层结构,但看不了尺度100纳米以内的细节结构 而STED显微镜成像分辨率能达到50纳米,但成像深度很浅。”苏州医工所研究员张运海说。 /p p   张运海告诉《中国科学报》,在一些脑科学研究中,经常需要看一些比较厚的脑切片结构,如果用两台显微镜分别观察深层结构和100纳米以内的细节结构,需把样品从一台显微镜挪动到另一台显微镜,就找不到原来观察的位置了。“通过这台双光子-STED显微镜,科学家就可以方便地观察深层结构和表层感兴趣区域的精细结构。” /p p   此外,研究所还通过该项目,建成了高端显微光学加工、装调、检测以及显微镜整机技术集成工程化平台,有望为用户提供定制化的显微镜设备,为我国高端光学显微镜的发展提供了系统解决方案。 /p p    strong span style=" color: rgb(0, 112, 192) " 从进口到出口 /span /strong /p p   中科院院士柴之芳对这几台高端显微镜的诞生感到很欣慰,他希望这些仪器能够尽快实现产业化,不仅助力科学研究,最终还能在临床上得到应用,在一定程度上替代国外的产品。 /p p   实际上,项目所研制的超分辨显微镜或核心部件已在国内外多家研究机构使用,并已取得了部分成果。 /p p   比如,中科院动物研究所利用高端光学显微镜观察发育生物学中的基本现象,研究潜在调控机制。中科院上海药物研究所应用高端光学显微镜观察药物胞内靶向定位和输送,加速创新性新药研发。美国斯坦福大学、日本东京大学、我国陆军军医大学等专业实验室利用双光子显微成像技术进行了信息识别、行为控制等脑科学核心问题的研究以及动物在体成像实验,获得了高分辨实时神经元活动成像数据。 /p p   此外,显微镜和关键部件已有部分成果实现了出口销售。如双光子显微镜已销往德国、以色列、美国等多家国外研究机构。 /p p   验收专家组认为,项目组完成的四类高端光学显微镜,以及大数值孔径显微物镜、特种光源等核心部件,所有技术指标均达到实施方案规定的考核指标要求,四类超分辨显微成像系统均已达到实用化水平、完成了总体目标,同意通过验收。 /p p   但唐玉国直言, strong 高端显微镜的国产化道路并不是一蹴而就的 /strong 。他透露, strong 研究所下一步还将结合工程化及成果转化创新模式,实现科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接 /strong ,通过系列化、组合化的产品布局,实现显微镜系统和核心部件的工程化、产业化。“接下来我们要把显微镜的性能再提高几个百分点,一点点地把失去的阵地拿回来。” /p
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • 电子显微学畅谈:中国电镜学会第十一届常务理事会系列专家采访之苏东研究员
    中国电子显微镜学会、仪器信息网联合报道 2022年3月5-7日,“中国电子显微镜学会第十一届常务理事会第一次会议”在海南陵水成功举办。为进一步增进交流,会议也同期举办了“常务理事会与仪器公司新仪器、新技术交流会”、“球差校正透射电子显微镜新技术及应用研讨会”等。畅谈当下,展望未来——会议期间,中国电子显微镜学会联合仪器信息网现场随机采访了13位电子显微学专家、厂商代表,请其围绕对各自领域电子显微学的发展进程、未来的展望、中国电镜产业化发展等话题分别进行了畅谈。下面是对中国科学院物理研究所苏东研究员的现场采访视频,以飨读者:
  • 用超低价显微镜拯救无数生命
    乔尼· 布莱切/文   显微镜是科研领域最典型的象征之一,提起它,很多人的脑海里都会浮现出身穿白大褂在实验室里寻求重大突破的科研人员。你或许还记得童年时期第一次透过显微镜观察池水中的草履虫,或洋葱上的细胞结构时的场景。数十年来,在显微镜的帮助下,我们诊断了无数的致命疾病,拯救了无数人的 生命 。然而,在世界的很多地方,这种设备却依然非常短缺。   但这种情形即将改变。科技正在发挥它应有的作用,它正在将智能手机、iPad甚至纸片变成耐用而便携的显微镜,而花费却只有区区几美元。   美国能源部太平洋西北国家实验室的科学家开发了一种小型设备,可以直接固定在智能手机或平板电脑上,将这些设备的摄像头变身为显微镜。他们使用3D打印机制作了这种配件,用它来固定价格低廉的玻璃珠,以此实现放大效果。      一旦安装了这种配件,你就可以使用它观察标准载玻片上的样本,效果可以直接显示在屏幕上。目前有100倍、350倍和1000倍3种规格:100倍可以观察盐晶或叶片结构,350倍可以观察血液中的寄生虫(疟疾)或饮用水中的原生动物(隐孢子虫),1000倍可以观察炭疽孢子。这种配件的设计图可以直接在网上查看,所以如果你也有3D打印机,大约只需使用1美元的打印材料即可自己制作一个这样的显微镜。   澳大利亚国立大学的史蒂夫· 李(Steve Lee)博士已经找到了一种方法,可以直接在烤炉上烘烤显微镜镜头,并将其固定在智能手机上。方法与Shrinky Dink很相似,只不过使用的是与隐形眼镜相同的材料。为了制作这样的镜头,史蒂夫· 李将一滴胶状的聚二甲硅氧烷滴在载玻片上,并在158华氏度(70摄氏度)的温度下烘烤至变硬为止。史蒂夫· 李把另外一滴聚二甲硅氧烷滴在底座上,将载玻片翻转后再次烘烤,利用重力作用来形成水滴的形状。还可以多加几滴来制作最佳的镜头形状。   制作完成后,便可将镜头直接嵌入3D打印机打印的框架内,从而制作智能手机镜头。尽管放大倍数不算高,大约只有160倍,但仍然可以用于诊断黑色素瘤等疾病。这种小镜头的成本大约只有几美元。      如果手头没有3D打印机和智能手机,还可以使用一些技术含量更低的方法:使用一张纸来制作,成本甚至不足1美元。斯坦福大学Prakash实验室的研究团队开发的Foldscope从折纸中获得了灵感,但却可以提供超过2000倍的放大效果。它看起来只是一张纸,把各个部位拆下来后便可以开始折叠了。研究人员并没有提供书面说明,但设计方案却很直观。一旦组装完成,便可使用这种显微镜观察常见的细菌和寄生虫。要制作Foldscope,只需要一张专门设计的聚丙烯纸、一个140倍的低倍数镜头或2180倍的高倍数镜头、一个3伏纽扣电池、一个白色LED灯泡、一个电滑块和一条铜带。   Foldscope的设计者表示,他们希望达成两大使命:通过&ldquo 让全世界的每个孩子都有一台显微镜&rdquo 来影响科学教育,通过开发坚固、易用的诊断设备来影响人们的健康。   这款产品已经提供给1万名用户进行测试,想要阅读测试者的故事,可以查看他们的官方博客Microcosmos。
  • 显微镜|Echo Revolve显微镜在血脑屏障功能研究中的应用
    血脑屏障 (BBB) 是哺乳动物的一种特殊结构,通过调节血液和血液之间离子、氧气和营养物质的流入和流出,将大脑与血液分开,并维持中枢神经系统 (CNS) 的稳态。该屏障主要由脑微血管内皮细胞 (BMEC)、星形胶质细胞和周细胞组成。转化生长因子β1 (TGFβ1) 是转化生长因子β (TGFβ) 家族成员之一,是一种多效性细胞因子,在多种病理和生理过程中发挥重要作用。Hedgehog信号通路是重要的信号传导通路,在多个物种中是保守的,并且在生理和病理过程的许多方面发挥着重要作用。典型Hedgehog信号由三种分泌配体Shh、Ihh和Dhh激活,细胞间信号由转录因子Gli1、Gli2和Gli3转导。在中枢神经系统中,Hedgehog信号通路决定了神经管的形成和发育。目前,已有研究表明Hedgehog信号与TGFβ1级联反应在癌症发展和转移中的相互作用。那么Hedgehog信号和TGFβ1级联反应之间的串扰是否会影响血脑屏障的功能呢,目前还尚不清晰。华中农业大学兽医学院农业微生物学国家重点实验室和湖北省预防兽医学重点实验室联合在Brain Sciences杂志上发表了一篇名为《Astrocyte-Derived TGFβ1 Facilitates Blood–Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells》,该文阐明了TGFβ1 介导的星形胶质细胞和大脑内皮细胞之间的细胞间交流,这一发现将拓宽关于血脑屏障内稳态的现有知识,也可能有助于进一步改善血脑屏障功能障碍的治疗策略。作者通过构建人脑微血管内皮细胞 (hBMECs) 与U251的单培养和共培养模型,证实了星形胶质细胞衍生的TGFβ1增强了BMECs的屏障功能。实时荧光定量PCR、免疫印迹和酶联免疫吸附试验等多种实验表明TGFβ1在BMECs中触发Smad2/3的激活增加了Gli2的表达,Gli2是Hedgehog信号转导的关键转录因子。Gli2与ZO-1启动子结合,增强ZO-1的表达,从而维持血脑屏障。星形胶质细胞来源的TGFβ1触发BMECs中的TGFβ1-TGFBRII-Smad2/3-Gli1/2-ZO-1轴并维持正常的BBB功能。文中作者通过免疫荧光技术,利用Echo Revolve正倒置一体显微镜进行免疫荧光观察。使用50ng/mL的重组TGFβ1 (rTGFβ1) 来刺激单层hBMECs,BMECs用绿色CD31标记,结果表明与对照组相比,ZO-1表达显著增加。用4mg/kg的TGFβ/Smads信号抑制剂SD208处理小鼠,图中虚线环表示BMECs中的Gli1或Gli2的表达量,结果表明与对照组相比,ZO-1、 Gli1和Gli2表达量均减少。内皮屏障功能方面发挥重要作用,提高了对血脑屏障功能的研究。这一发现也可能表明未来有可能使用TGFβ1和Hedgehog信号级联来辅助治疗血脑屏障功能障碍。参考文献:Fu J, Li L, Huo D, et al. Astrocyte-Derived TGFβ1 Facilitates Blood-Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells. Brain Sci. 2021 11(1):77. Published 2021 Jan 8. doi:10.3390/brainsci11010077
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 大规模设备更新 | 光学显微镜专场直播
    大会介绍 近期,国务院常务会议审议通过《推动大规模设备更新和消费品以旧换新行动方案》。根据仪器信息网报告,重大科研设施与仪器国家网络管理平台所收录的重大仪器设备(价值100万以上),40%以上设备平均服役年份为10.1年。从使用10年以上的仪器设备数量来看,高校院所领域数量最多,高达31593台。 为帮助用户更快,更有针对性地筛选出各个品类中的新仪器、新设备,并放心选购,仪器信息网特推出系列直播活动。本期聚焦光学显微镜,携手徕卡显微系统,2024年5月13日13:30邀请行业资深专家共同探讨仪器技术新进展、行业应用趋势,为用户了解最新技术和选型采购带来实用经验。 亮点前瞻 圆桌论坛探讨显微成像前沿技术,现场互动,思想碰撞! 显微成像领域权威齐聚,行业大咖现场分享经验,探索未来发展新趋势! 徕卡显微镜产品家族:深度解读多通道成像、智能平台、宽场光学与工业新应用 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 250万!湛江湾实验室细胞生物学共享平台正置荧光显微镜、体视荧光显微镜等设备采购项目
    项目编号:CLZ0122ZJ01ZC40项目名称:湛江湾实验室细胞生物学共享平台(一期)正置荧光显微镜、体视荧光显微镜等设备采购项目采购方式:公开招标预算金额:2,500,000.00元采购需求:合同包1(湛江湾实验室细胞生物学共享平台(一期)正置荧光显微镜、体视荧光显微镜等设备采购项目):合同包预算金额:2,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1显微镜正置荧光显微镜1(台)详见采购文件600,000.00-1-2显微镜体视荧光显微镜1(台)详见采购文件450,000.00-1-3显微镜全自动三维立体显微系统1(套)详见采购文件500,000.00-1-4显微镜倒置荧光显微镜1(台)详见采购文件350,000.00-1-5显微镜显微操作系统1(套)详见采购文件600,000.00-本合同包不接受联合体投标合同履行期限:进口设备自合同签订之日起180天内(国产设备自合同签订之日起60天内)完成设备的交货、安装、调试、试运行以及验收合格,交付并投入正常使用。
  • 显微课堂 | 徕卡晶圆检测显微镜 令人信服的技术细节
    晶圆或 LCD 和 TFT 的检验、过程控制和缺陷分析必须快速、精确并符合人体工学。LeicaDM8000M和 DM12000M晶圆检测显微镜提供了一个创新而高性价的系统解决方案,帮助客户充满信心地应对现在和未来的检验挑战。除了大视野和高分辨率光学部件,系统还采用了高度人性化的设计和全内置的 LED 照明,可以从不同角度照亮样品。DM8000 M / DM12000 M 是一个模块化大型平台检测显微镜平台,可用于 8"/200 mm 和 12"/300 mm 样品检测。 手动检测版本 电动版本DM8000 M/DM12000 M01进入检测领域的第一步查看样品表面的更多信息,在更短的研究时间内改进产品质量决策。 宏观物镜(Plan APO 0.7x)4倍与常规扫描物镜的视野,用于快速浏览样品紫外照明可获得更高分辨率,可与斜照明技术相结合,从任意角度以高分辨率查看样品,获得更多样品表面信息,且检验结果精确符合人体工程学的设计和自动化功能可实现快速、低疲劳操作,避免在重复性样品检测过程中注意力不集中通过手动、编码和电动功能支持智能工作流程,加快样品检测速度02快速样品详览从用于快速浏览样本的微距物镜(Plan APO 0.7x)到用于观察最精细细节的微距物镜。 使用 25 mm (FOV) 目镜,可看到 35.7 毫米的样品表面一目了然地看到在高倍放大镜下 "看不见 "的宏观缺陷,如材料样品中的曝光缺失区域、鲨鱼齿结构或流动结构需要检测宏观结构时,无需对样品进行耗时的扫描只需切换到更高倍率(Obj. HC PL APO 150x/0.90 IVIS BD)即可看到最细微的细节03在更短时间内获得更多样品表面信息紫外照明可获得更高分辨率,可与斜照明技术相结合,获得更多样品表面信息。 以高倍率(150 倍)的彩色模式,通过明场、暗场或DIC模式检查样品,以发现样品缺陷通过激活紫外线照明来提高光学分辨率,以观察最精细的结构以高分辨率将对比度较低的表面转化为清晰的结构拓扑图,快速发现缺陷04通过智能功能支持工作流程通过手动、编码和电动功能支持智能工作流程,加快样品检测速度。 只需点击一下按钮,即可根据所选方法自动调整照明和对比度设置,从而节省时间并避免出错集成的 LED 可见光和紫外照明可在几秒钟内切换不同的照明技术,保证污染不会进入无尘间保持,确保洁净室的清洁内置聚焦探测器,用于检测高反射表面,可快速、轻松地找到正确的聚焦位置相关产品 DM8000 M DM12000M 徕卡显微咨询电话:400-877-0075 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 复旦大学研究团队自主研发国产高端多光子显微镜!
    进入21世纪,脑科学领域受到越来越多的关注。脑科学研究的不断发展,让人类得以探索脑的基本工作原理,发现脑疾病的治疗新策略,为人类认知、学习、记忆、情感、行为等方面的理解提供基础支持。对脑科学家而言,观测神经元结构与功能是脑研究最重要的步骤之一。其中,多光子显微成像技术是进行活体深层成像的主要工具。7月底举办的中国神经科学学会第十六届全国学术会议上,复旦大学脑科学转化研究院的李博团队与工程与应用技术研究院(以下简称“工研院”)的董必勤团队,同蔡司联合推出一款中国自主创新研发的产品——DeepVision多光子成像与全息光刺激系统,致力于为活体深层组织成像提供多样化的解决方案。该系统采用多光子荧光激发技术,能够实现对深层组织的高分辨率成像,并配合全息光刺激技术,实现了对神经元的精确控制和调控,是神经科学、肿瘤免疫和药物代谢等研究领域的理想显微成像平台,将为脑科学研究和生命科学研究提供更精准和全面的观察方法。DeepVision多光子成像与全息光刺激系统(图片来源于复旦大学公众号)据董必勤介绍,市场上现有的高端科研显微镜基本由海外公司垄断,国内多光子成像市场空白,需长期引入海外公司的设备。这些设备大多是整机设计,各个部件无法定制细节。大脑是不透明的,目前的光学成像技术局限于观测最表面的皮层结构,光在组织中会产生强烈的散射,因此光学成像很难深入表皮直达内部,而多光子显微镜能够弥补光的这一短板。现有的多光子显微镜视野小、样品空间有限以及对新技术的兼容性低,已经很难满足生物医学前沿研究的需求。基于此,李博和董必勤团队决心研发一套全新设计的多光子显微镜。这款由模块化设计搭建起来的多光子显微镜,将各种各样具体的前沿技术做成一个个模块,在后期根据需求把这些模块拼装在一起组成整机,可以避免受制于光学系统复杂的整体性。李博介绍,大部分实验室需要双光子机型对脑部做浅层扫描,但也有相当一部分需要三光子机型的深层成像。多光子显微镜的模块化设计灵活,兼顾了实验室科研和市场需求。团队分别在双光子和三光子两个机型基础之上,在全息光刺激、载物台空间、多脑区成像等模块进行技术升级,并最终组建符合客户订单需求的成品。应用方面,除可用于脑部研究,该仪器在生命科学和医疗卫生领域的一些研究中也高度适用,例如观察肿瘤、胚胎或皮肤深层细胞以及扫描植物样品。此外还可广泛应用于材料、化学、物理等多个领域,帮助人们深入材料表层,观察内部结构细节。据了解,研究团队与蔡司合作,蔡司负责DeepVision多光子成像与全息光刺激系统的销售和售后工作,同时也会在产品搭建过程中根据客户需求提出建议,而核心研发工作由复旦大学科研团队主导。目前团队在攻克核心部件的生产技术,董必勤还在积极寻找多光子显微镜的关键零部件国产可替代品。写在最后:看到这个产品的推出,笔者脑中跳出一句话:国产高端光学显微镜的队伍又壮大了。曾有技术工作者告诉笔者,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作;北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。如今DeepVision多光子成像与全息光刺激系统的推出,对于脑科学和神经科学研究工作无疑又是一则好消息。
  • 国产光学显微镜龙头企业入局电镜赛道:台式电镜产品正推向市场
    2月8日,有投资者在互动平台向麦克奥迪(SZ300341)提问:“你好,请问贵公司有生产电子显微镜产品吗?”麦克奥迪表示,公司目前有台式电镜产品正逐步推向市场。据麦克奥迪MOTIC全系列显微镜的河南省总代理消息显示,“麦克奥迪(Motic)发布了最新研发的台式扫描电镜(Scanning Electron Microscope,简称SEM),这一突破性的技术为科研工作者和工业界带来了更高效、更精准的微观观测解决方案。这款新型台式扫描电镜采用了先进的电子光学技术和图像处理算法,实现了高分辨率和高灵敏度的观测。相较于传统的扫描电镜,新款台式扫描电镜具有更高的稳定性和耐用性,能够满足长时间连续观测的需求。麦克奥迪的台式扫描电镜在设计上充分考虑了用户体验,其简洁直观的操作界面和智能化的功能设置使得用户能够快速上手。此外,该电镜还支持多种样品台,适用于各种不同类型的样品观测。该产品的推出对于科研和工业领域具有重要意义。在生命科学领域,研究人员可以利用台式扫描电镜观察细胞和组织的细微结构,深入了解生命过程的奥秘。在医学领域,医生可以利用该设备进行病理诊断和药物研发,提高疾病诊断的准确性和治疗的有效性。在材料科学和工程领域,研究人员可以利用台式扫描电镜观察材料的微观结构和性能,为新材料的研发和应用提供有力支持。麦克奥迪的台式扫描电镜以其卓越的性能和广泛的应用前景,将为科研和工业界带来更多的创新和突破。我们期待这款产品能够在未来的科学研究、工业生产和科技进步中发挥更大的作用。”记者从麦克奥迪官网(MOTIC)获悉,麦克奥迪实业集团有限公司始创于1983年,目前系北京亦庄投资控股有限公司混改所有制企业、深证交易所创业板上市公司麦克奥迪(厦门)电气股份有限公司100%全资控股的企业集团。主要从事光学显微镜的研发、生产和销售,主要产品以数码显微镜、显微图像集成系统和自动显微镜为代表。三大类型产品包含近百个型号,主要包括MOTIC、SWIFT、NATIONAL、CLASSICA等品牌。
  • 261万!重庆新国大研究院原子力显微镜采购
    项目编号:TC219D1T7项目名称:重庆新国大研究院原子力显微镜采购预算金额:261.0000000 万元(人民币)最高限价(如有):261.0000000 万元(人民币)采购需求:采购内容数量最高限价(万元)投标保证金(万元)中标人数量采购标的对应的中小企业划分标准所属行业原子力显微镜1套261.0051名工业备注:本次采购可以采购进口产品,进口产品价格为最终交货价。 合同履行期限:合同签订之日起6个月内交货并完成安装调试,如超过交货及安装调试时间,由中标人承担一切责任,并向采购人赔偿所造成的损失。本项目( 不接受 )联合体投标。
  • 永新光学:捐赠12台套实验室研究级显微镜助力湖北省疫情防控
    p style=" margin-bottom: 0px background: white text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 2月5日晚,永新光学发布公告,捐赠12台套实验室研究级显微镜 助力湖北省疫情防控。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 453px " src=" https://img1.17img.cn/17img/images/202002/uepic/df7158af-21ee-4960-816c-621396fa1287.jpg" title=" 永新.png" alt=" 永新.png" width=" 500" height=" 453" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " & nbsp 公告称,近日,全国多个地区爆发新型冠状病毒感染的肺炎疫情,疫情防控形势严峻,为切实履行社会责任,公司向湖北省部分医疗机构定点捐赠一批医疗物资。2020年2月5日,公司向湖北省武汉协和医院、同济医院、人民医院、肺科医院、中南医院、汉阳医院、黄冈市中心医院、黄冈市英山县妇幼保健院等9家三甲和高等级医院的血液科、病理科、检验科等科室无偿捐赠由公司自行生产的12台套实验室研究级显微镜,价值共计83万元,相关设备已经发出,助力湖北省疫情 防控工作。公司将密切关注疫情发展后续情况,持续为抗击疫情贡献力量。 /p p style=" text-indent: 2em " strong & nbsp 关于永新光学 /strong /p p style=" text-align: left text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 200px height: 63px " src=" https://img1.17img.cn/17img/images/202002/uepic/2ecdf779-fea4-402a-a329-40f9a3033ba3.jpg" title=" logo永新.jpg" alt=" logo永新.jpg" width=" 200" height=" 63" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 宁波永新光学股份有限公司(永新光学)是中国光学精密仪器及核心光学部件供应商、国家级高新技术企业、中国仪器仪表行业协会副理事长单位、光学仪器分会理事长单位和光学显微镜国家标准制订单位,主导ISO9345显微镜国际标准制订,拥有“NOVEL”、“NEXCOPE”和 “江南”等自主品牌。2016年承接国家重大科学仪器设备开发项目“高分辨荧光显微成像仪研究及产业化”,2017年荣膺工信部制造业单项冠军培育企业。2018年上交所A股主板上市(股票代码:603297)。 /p p style=" text-indent: 2em " 公司具有数十年光学仪器产品设计和专业生产历史,并与浙江大学、复旦大学等高校建立了稳定的产学研合作关系。公司建有国家级博士后科研工作站和省级显微科学仪器研究院,多项科技成果获省、市科学技术奖。目前公司在宁波、南京两地拥有三个制造基地,占地10万平方米,正在建设5万平方米的宁波国家高新区新厂区。员工约1300名,年产显微镜10余万台、光学元件组件数千万件。公司产品销往美日德俄等一百多个国家和地区,与多家全球知名企业建立了长期稳定的战略合作关系。 /p p br/ /p
  • 北京脑科学与类脑研究中心184.80万元采购共聚焦显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 共聚焦显微镜 开标时间: null 采购金额: 184.80万元 采购单位: 北京脑科学与类脑研究中心 采购联系人: 邢永涛 采购联系方式: 立即查看 招标代理机构: 华诚博远工程咨询有限公司 代理联系人: 于曼 代理联系方式: 立即查看 详细信息 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间:2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673 × 扫码打开掌上仪信通App查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:共聚焦显微镜 开标时间:null 预算金额:184.80万元 采购单位:北京脑科学与类脑研究中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:华诚博远工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 北京市-昌平区 状态:公告 更新时间: 2022-03-11 招标文件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 北京脑科学与类脑研究中心 行政区域 昌平区 公告时间 2022年03月11日 16:02 获取采购文件时间 2022年03月11日至2022年03月18日每日上午:9:30 至 11:30 下午:14:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 响应文件开启时间 2022年03月24日 09:30 响应文件开启地点 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 预算金额 ¥184.800000万元(人民币) 联系人及联系方式: 项目联系人 于曼 项目联系电话 15811596673 采购单位 北京脑科学与类脑研究中心 采购单位地址 北京市昌平区中关村生命科学园科学园路26号院 采购单位联系方式 邢永涛,010-81912615 代理机构名称 华诚博远工程咨询有限公司 代理机构地址 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 代理机构联系方式 于曼,15811596673 附件: 附件1 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目竞争性磋商公告.pdf 项目概况 北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购项目的潜在供应商应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取采购文件,并于2022年03月24日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HCZB2022-058 项目名称:北京脑科学与类脑研究中心高分辨快速双扫描共聚焦显微镜采购项目 采购方式:竞争性磋商 预算金额:184.8000000 万元(人民币) 采购需求: 名称、数量、简要技术需求如下: 序号 货物名称 数量 简要技术需求 1 ▲高分辨快速双扫描共聚焦显微镜 1套 …… 4.1 同一软件控制显微镜、激光器、扫描器,所有硬件均由软件控制。 …… (详见竞争性磋商文件第五章) 注: 1.标注 ▲ 的,允许提供进口产品;未标注允许采购进口产品的,如供应商所响应货物为进口产品,其响应文件按无效响应处理。 2.本项目共1个包,供应商只可投完整包,不允许将一包中的内容拆开进行响应。 合同履行期限:合同签订后,乙方应在3个月内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)供应商不为 信用中国 网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(以评审现场查询为准);(2)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动; 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年03月11日 至 2022年03月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 方式:现场领购。获取竞争性磋商文件需携带以下资料:1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖供应商公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买竞争性磋商文件等手续,加盖供应商公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖供应商公章)。2.如自然人参加磋商的,上述资料仅需签字或盖章即可。3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、进行体温检测及人员信息登记等事宜,自觉做好个人防护。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 五、开启 时间:2022年03月24日 09点30分(北京时间) 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.竞争性磋商文件编号:HCZB2022-0582.评审标准和方法:采用综合评分法;满分为 100分:经济部分30分,商务部分36分,技术部分34分。3. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。4.本公告在中国政府采购网发布。5.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京脑科学与类脑研究中心 地址:北京市昌平区中关村生命科学园科学园路26号院 联系方式:邢永涛,010-81912615 2.采购代理机构信息 名 称:华诚博远工程咨询有限公司 地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A 联系方式:于曼,15811596673 3.项目联系方式 项目联系人:于曼 电 话: 15811596673
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制