当前位置: 仪器信息网 > 行业主题 > >

在线浓度检测系统

仪器信息网在线浓度检测系统专题为您提供2024年最新在线浓度检测系统价格报价、厂家品牌的相关信息, 包括在线浓度检测系统参数、型号等,不管是国产,还是进口品牌的在线浓度检测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线浓度检测系统相关的耗材配件、试剂标物,还有在线浓度检测系统相关的最新资讯、资料,以及在线浓度检测系统相关的解决方案。

在线浓度检测系统相关的论坛

  • VOCs在线检测系统的基本原理

    [b][color=#333333]VOCs在线检测系统[/color][/b][color=#333333]的基本原理是,当可挥发性有机物的电离电位(IP)小于紫外灯能量的化合物气体或蒸汽通过离子化腔时,PID的紫外光源(UV)就会将该化合物击碎成可被检测到的正负离子(该过程即离子化),检测器测量离子化后的气体电荷并将其转化为电流信号,然后电流被放大并转化为浓度值。在被检测后,离子重新复合成原来的气体或蒸汽,是一种先进的无损检测VOCs方法。[/color][color=#333333][/color][color=#333333]  [/color][b][color=#333333]VOCs在线检测系统[/color][/b][color=#333333]主要由气样采集输送系统、VOCs在线分析仪、通讯子系统、防护子系统等组成。系统搭载有自动零点校正、感应素子寿命自我诊断、数据内存、VOCs浓度信号输出、VOC浓度警报、感应异常警报等功能,可高效稳定地对监测对象进行24小时连续在线监测,适用于固定污染源VOCs浓度在线连续监测。[/color][color=#333333][/color][color=#333333]  [/color][b][color=#333333]VOCs在线检测系统[/color][/b][color=#333333]可对固定点源、厂界、园区的挥发性有机化合物进行实时的在线监测,统一收集、整理、保存和分析在线监测数据,实时反映污染源排污情况以及污染处理设施运行情况。[/color][color=#333333][/color][color=#333333]  [/color][b][color=#333333]VOCs在线检测系统的优势:[/color][/b][color=#333333][/color][color=#333333]  系统除满足环境安全监控要求外,还具备预警预报功能,形成完整的监测、监控、预警、预报体系,以信息化推动环保业务管理的现代化,全面提升环境安全监测能力以及对突发事故的应急处理能力。工业废气无(有)组织排放监测预警系统利用先进的工业传感器网络技术、自动控制、无线通讯、地理信息系统( GIS)、数据库及网络工程、计算机应用等技术,对化工园区危废气体情况进行实时监控。实现环境安全监测信息从采集、传输、分析、处理,到输出、共享等全过程的数字化管理。[/color][color=#333333][/color][color=#333333]  [/color][b][color=#333333]VOCs在线检测系统的应用领域:[/color][/b][color=#333333][/color][color=#333333]  适用于环保安全、石油化工、钢铁冶炼等行业和部门,可在化工园区、大型场馆、港口、仓库等各种复杂环境下进行实时在线监测。[/color][color=#333333][/color]

  • 在线监测系统比对

    想请教一下关于在线监测系统比对的问题,参考了HJ355-2019相关内容,做了氨氮和COD在线设备比对,采用浓度约为现场工作量程上限值0.5倍的有证标准样品,试验指标限值正负10%!这个比对需要在线分析仪检测数据,1、我们自己实验室还需要出数据吗?2、标准中计算公式是在线分析仪测量值-标准样品标准值/标准样品标准值=相对误差!这个相对误差就是试验指标限值吗?(之前没做过关于这方面的工作,哪位老师了解给说一下吧)

  • 在线检测较高浓度气体甲醛

    我们课题组要做空气中甲醛的催化降解课题,检测浓度范围在0-200ppm,先前买了英国PPM的在线检测,号称能测0-80ppm,用标气验证超过20ppm,准确性很差;国内的泵吸式实时检测仪也买过一台,稳定性和准确性根本不符合要求;用GC-FID也不行,离子化效率太低,没信号;咨询供应商用转化炉转化甲醛到甲烷,目前效率和稳定性都没保障。求各位推荐性价比较高的在线检测产品,温度从室温-150度,浓度范围如上,可以连接到实验室小型催化降解炉后面实时甲醛检测仪或者。急用,拜谢!!!!

  • 染浴中染料液浓度的在线实时监测

    对染浴上染过程中染料浓度进行在线(实时)监测, 可以了解染料的配伍性、匀染剂的作用效果、pH 值和温度的影响以及皂洗效果等。对这些基础数据的积累和分析, 可使染色工艺从经验控制转向工艺参数精细化和数字化控制, 使染色实时可控和染色结果精准。近年来, 我国一些生产印染控制设备的企业, 如常州宏大科技集团等开发了印染生产中pH 值和织物含湿率等在线测试系统, 但染料浓度在线监测设备仍为空白。现有的在线自控染色设备主要针对轧染中轧液率的实时监测与控制, 还不能监测染液中染料浓度的变化, 这也是多年来纺织品精准染色难有突破的主要原因之一。只有掌握染料浓度在染色时的实时变化, 才能制定更合理的工作流程和配方。目前国际上染液浓度在线监测技术也处于起步阶段, 在生产中的应用基本空白, 还有很多技术问题需要解决, 这将是染整工程研究的一个重要方向。浸入式光纤光谱探测器近年来, 由于光纤技术和光电检测技术的发展, 出现了以光纤探头和CCD 阵列检测器结构的光纤光谱仪。这种新型的分光光度计将采样探头直接插入染浴中, 光从探头前侧的镜面反射到CCD 阵列检测器, 从而实时监测染浴中吸光度的变化情况, 这给在线监测技术的应用带来了强有力的手段。图4是光纤光谱仪检测装置示意。 http://www.gzbiaoqi.com/UploadFiles/5589201116403_1.gif光纤光谱仪能够实时测定染浴中染料浓度, 而且能够耐受高温高压染色条件和酸碱介质, 因而是在线监测技术的重要发展方向之一。

  • 酒精浓度在线检测

    酒精浓度在线检测一般都采用哪些仪器?是检测体积含量还是质量百分比含量?

  • 【资料】不同通信平台在污染源在线监测系统中的应用

    [size=4]环境监测在人类防治环境污染, 解决现存的或潜在的环境问题, 改善生活环境和生态环境, 协调人类和环境的关系, 最终实现人类的可持续发展的活动中起着举足轻重的作用。 由于人力和物力的限制, 某些时候难以保证所测数据的准确性和实时性, 而且污染源和污染程度经常受气象、风向以及其他季节性变化的影响, 是随时变化的, 传统的人工监测方法已不再实用, 甚至某些时候是无能为力。为了精确地、全面地掌握污染现状, 尽早发现环境的异常变化, 迅速作出污染预报,及时追踪污染源等, 建立污染源在线监测系统是相当必要的。而在线监测系统通信平台的选择是必须考虑的一大问题。1 污染源在线监测系统数据通信的特点 污染源在线监测系统获得的数据是监测系统的核心, 准确、快速地获取数据是污染源在线监测系统的基础, 这就要求污染源在线监测系统数据通信应具有实时性和准确性的特点。数据通信平台所传输的数据, 必须具有自动保存和备份功能, 获得的数据可以以图标、表格及图形等丰富多样的形式实时展现各排污口仪器运行状况、 污染物的浓度、 流量以及设备的发展趋势与动态。 通过获得的监测数据, 可以从多种角度和层面来统计分析排污状况。 同时, 通过数据传输获取的数据续有安全性高的特点, 确保数据真实性和机密性, 可防止人为篡改。2 通信平台的种类 目前, 在线污染源自动监测系统中所采用的通信平台, 大概主要有有线公众电话网、 无线移动通信网、 有线专用网、 无线专用网、 有线电视网、 国际互联网以及卫星和微波中继站等。[/size]

  • 发酵过程中细胞浓度在线检测系统-在线活细胞浓度分析仪

    发酵过程中,细胞浓度是一个非常重要的生理参数,不但可以计算比生长速率,底物消耗速率、生物量产率和维持系数等参数,还可以及时判断是否有染菌等异常情况发生。目前测量细胞浓度的方法主要有化学法(DNA/RNA分析)和物理法(干重、光密度、呼吸商等)两大类。一般来说,与物理法相比,化学法能较准确的测量有代谢活性的生物量,缺点是花费时间长,而利用物理法测量,无法区分区分处于悬浮状态的颗粒和微生物,也无法分别活死细胞。 实现在线活细胞浓度一直是发酵领域的热门话题,仅些年来出现了不少的测量方法,依据的工作原理也是五花八门,其中最具代表性的有声学,激光散色、荧光、核磁、量热或电容。 其中法国fogale公司的测量仪器,以电容法为工作原理,直接将传感器安装与发酵罐上,可承受121℃高温灭菌,理论技术也比较成熟,是目前最为理想的适合工业级别的在线活细胞传感器。工作原理:电容传感器采用活细胞的介电特性,实时连续测量活细胞的生物体积,可应用于实验室桌面型的反应器或者是工业规模的大型反应器两对对电极位于传感器的顶部,一对用于在培养基中产生交变的电场,在电场范围内,带有完整细胞膜的细胞会在培养基中发生极化现象,发生极化的细胞可以认为是极小的电容,死细胞或者其他粒子没有完整的细胞膜,所以不能形成电容型号。另一对电极用于检测培养基中的介电信号,培养基中的介电信号和细胞的浓度是精确关联的。细胞的极化率和电场的频率纯在函数关系,当频率增加时,培养基中细胞的介电常数由低频峰(最大极化)降低到高频峰(最小极化)。这种随频率增加极化率降低的现象称为β-散射。传感器采用双频测量模式:培养基的基线在10MHz左右得到,细胞的信号在临界频率区域获得,在曲线的拐点,(动物细胞和细菌在1MHz,酵母在2MHz)我们获得了最佳的信号线性。应用:这项技术可广泛应用于各种细胞培养,生物发酵过程。已被文献证实可应用的细胞如下:动物细胞:CHO, BHK, MDCK, PERC6, NSO, HEK, Hela,Hybridoma, Vero细 菌:E.Coli, Bacillus Thuringensis, Salmonella,Streptomyces, Lactic Bacteria酵 母:Pichia Pastoris, Saccharomyces Cervisiae, PolymorphaHasenula昆虫细胞:sf9, Hi-5真 菌:Absidia

  • 在线监测系统运营解决方案

    [size=18px][color=#000000][font='宋体']污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求[/font][font='宋体']。[/font][font='宋体']1. [/font][font='宋体']污染源在线监测系统[/font][font='宋体']的构成[/font][font='宋体']一套完整的[/font][font='宋体']污染源在线[/font][font='宋体']监测系统能连续、及时、准确地监测[/font][font='宋体']排污口各监测参数[/font][font='宋体']及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理[/font][/color][/size][align=left][font='宋体'][size=18px][color=#000000][size=12pt]污染源在线监测系统特点[/size][/font][/size][/color][font='宋体'][/font][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']整合污染源在线监测系统与视频监测系统,在全面监测企业污染物排放状况的同时,还可以将企业现场的实时画面传送到环保局,实现污染源可视化管理。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']采用GPRS无线数据传输方式,彻底摆脱“有线”的束缚,适用范围广,运行成本低。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']利用GPRS无线网络实时在线的特点,建立污染源在线监测系统(环境监理信息系统)的无线网络,及时准确地掌握各个企业污染物排放口的实际运行情况和污染物排放的发展趋势与动态。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']人性化的报警和预警功能,可以提醒管理人员及时地关注和处理可能发生或已经发生的事件。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']监测仪表的类型不受限制,只要在系统中进行相应的设置即可对任意仪表类型自动进行识别,从而扩大了系统的监测种类和应用范围。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']涵盖在线监测的多种应用,包括水质在线监测、烟尘在线监测。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']围绕污染源在线监测的核心,拓展了在环境监理方面的功能,使得本系统同时也是一套环境监理信息系统。[/font][/color][/size][/align][align=left][font='宋体'][size=18px][color=#000000][size=12pt]污染源在线监测系统功能[/size][/font][/size][/color][font='宋体'][/font][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']污染源规范化管理:[/font][/color][/size][font='宋体'][/font][font='宋体'][size=18px][color=#000000][size=12pt]依据总局和市局有关排污申报、环境统计等报表的要求,全面反映企业的各种基本信息和资料。 [/size][/font][/size][/color][font='宋体'][/font][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']污染源在线监测:[/font][/color][/size][font='宋体'][/font][size=18px][color=#000000][font='宋体']以图标、表格、图形等丰富多样的形式实时展现各排污口设备的运行状况、污染物排放浓度、流量、排放量等信息,以及污染物排放的发展趋势与动态。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']报警与预警:[/font][/color][/size][font='宋体'][/font][font='宋体'][size=18px][color=#000000][size=12pt]以声音、图标颜色变化、表格中数值的颜色、手机短信(向预先设定的手机上发送相应的报警信息)等形式提供多样化的报警功能。精确地描述超标数值,超标时间,超标排放量、超标排放介质量,为强化环境监理工作提供了详实可靠的依据。 [/size][/font][/size][/color][font='宋体'][/font][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']趋势预警:系统自动分析评估监测数据,实时汇总各种污染物的排放总量,及时、准确地掌握排污口的动态,对污染物排放量发展趋势过快的情况提前预警。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']超标报警:当监测数据超出了系统设定的范围时,通过声光报警、短信报警等多种方式将超标排放的详实数据通知相关的管理(执法)人员。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']故障报警:当在线监测仪表发生故障时,系统自动发出故障报警信号。[/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Symbol'] [/font][font='宋体']统计与分析:[/font][/color][/size][font='宋体'][/font][font='宋体'][size=18px][color=#000000][size=12pt]将污染源在线监测数据和报警信息进行全方位多角度的分类汇总与统计分析,充分满足各种统计要求。 [/size][/font][/size][/color][font='宋体'][/font][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']强化企业排放口的管理,以多种方式对污染物排放量、超标排放量、超标排放介质量、监控设备停运时间等重要指标进行统计,满足管理工作的需求。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']实现对受控企业污染物排放总量的管理,及时掌握企业污染物排放总量的发展趋势,为总量管理、总量控制提供基础依据。 [/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Wingdings']§ [/font][font='宋体']汇总统计区域内所有污染物的排放总量,动态掌握和量化污染物的排放趋势,为区域内污染物排放总量的削减提供技术支持。[/font][/color][/size][/align][align=left][size=18px][color=#000000][font='Wingdings']l [/font][font='宋体']污染源监控中心的组成[/font][/color][/size][/align][align=left][size=18px][color=#000000][font='宋体']管理监控中心[/font][font='宋体']:用于对环境污染源数据进行统计、分析、管理的计算机平台,通过它对现场采集的数据进行、处理。在监控中心应能对排污状况进行公示。能做到对排污单位进行数据查询,远程监控管理,自动输出各种数据信息报表,实现数据集中管理、信息资源共享,并为建立市级、省级、国家级环境监察信息网提供基础源数据、通讯手段和管理平台。[/font][/color][/size][/align][align=left][size=18px][color=#000000][font='宋体']数据采集中心[/font][font='宋体']:与各种现场仪器装置连接,对各种现场采集的数据与信息进行整合,完成数据与信息输出前的加工、处理,同时接收和执行管理监控中心所发出的各种指令。数据采集中心采用全数字化的双向通讯传输,必须做到现场数据信息定时报,异常情况及时报,外来查询随时报。数据与信息的传输必须全程保真、可靠无误。[/font][/color][/size][/align][align=left][size=18px][color=#000000][/color][/size][size=18px][color=#000000][font='宋体']排污现场监控[/font][font='宋体']:能准确可靠地对流量、浓度进行计量、记录。配备设备运行监控装置对各种在线监测仪的工作状态进行监控。并具有自动执行装置,为污染物总量控制提供科学的管理手段[/font][/color][/size][/align]

  • LBTFZ建筑工程扬尘、噪声在线监测系统

    LBTFZ建筑工程扬尘、噪声在线监测系统

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701061444_01_3167027_3.jpgLBTFZ建筑工程扬尘、噪声在线监测系统是由中工天地科技(北京)有限公司自主研发,主要应用于城市区建筑施工工地、工程隧道、沙石开采、堆煤储煤场地等无组织烟尘污染源排放及居民区、商业区、道路交通、施工区域等的环境空气质量的在线实时的自动监控,可实现大范围甚至是全国范围内环境扬尘、噪声及其他参数的在线自动监测并能通过摄像头抓拍取证,所得数据均能通过有线或无线网络及时传递到数据平台,环境的状态利用传感技术、通讯技术和计算机及其网络技术有机结合而构成新型环境监测系统。 该系统由监测子站与数据平台构成。监测子站集成了大气颗粒物浓度监测、噪声监测(选配)、气象五参数、七参数(可选配)视频监控及污染物超标视频抓拍(选配)、有毒有害气体监测(选配)等多种功能;数据平台是一个互联网架构的网络化平台,具有对各子站的监控功能以及对数据的报警处理、记录、实时查询、趋势图显示、统计、报表输出等多种功能,并能及时、准确地通过网络传给各个管理部门,简单易用(可根据客户具体情况进行功能增减等灵活配置)。 该系统还可与各种污染治理装置联动,以达到自动控制的目的。(可根据客户具体情况进行灵活配置) 该系统因独特的专利设计,能在恶劣的环境中做到防尘、防水、防风、防静电等、且可常年在室外或野外连续工作。http://zglbt.com/upload/201512/1449202509881600.png LBTFZ建筑工程扬尘、噪声在线监测系统主要技术指标/Main Specifications 1.粉尘在线传感器:监测范围:0-10000μg/m3 (可定制0-100000μg/m3及大量程0-1000mg/m3)误差±10%;分辨率0.1-0.001mg/m3 2.噪声:监测范围30-130dB;A计权(根据需求可定制) 3.气象五、或七参数:检测范围:常规配置温湿度、风速、风向、压力(根据需求定制) 4.视频监控:(选配) 5.LED输出及显示:可室外、室内显示并控制(根据需求定制) 6.信号输出:RS485,4-20MA,GPRS,3G/4G,光纤 7.工作电压:AC220V 50HZ 2A 8.工作温度:-25-45℃LBT-FZ建筑工程扬尘、噪音监测系统功能特点: 1、可无人值守,长时间野外工作; 2、测量数据实时显示、实时报警、实时查询; 3、测量数据实时回传,并保存至服务器数据库; 4、测量精度高,相对位移精度优于0.05mm; 5、软件功能丰富,可调看数据绘制图谱; 6、可根据客户需要设定报警参数,实时报警,提供短信、声光电等多方式; 7、支持手机短信的参数调整和设置; 8、完整的操作日志,对所有仪器操作均有详细记录; 9、同时具备多种传感器接口,适应多样化测量需要。 注:可根据客户的需求进行切合配置。现场案例http://www.zglbt.com/upload/201608/1470123155145931.jpg

  • SF6微水在线监测系统

    SF6微水在线监测系统DR2000 SF6气体在线及泄漏智能监控报警系统是针对SF6开关安全运行开发而成的DR2000 SF6气体监测系统使用范围: 本系统可广泛应用于电力系统、工厂企业10KV、35KV、110KV、220KV、500KV各种电压等级的SF6开关室、组合电气气室(GIS室)、SF6主变室等。DR2000 SF6气体监测系统技术参数: SF6浓度超限报警点:1000PPM,精度1000ppm时,自动启动风机每次启动时间 15min或自定义,可手动控制或强制启动风机。通 讯:RS485接口,可通过GPRS/GSM、TCP/IP、Modem上传到服务海量报警信息存储设计。 主机外形尺寸(mm):L380*W90*H300。 探测单元外形尺寸(mm):L130*W54*H160。 风机控制器外形尺寸(mm):L140*W70*H180。DR2000 SF6气体监测系统组成:主机、数据处理服务器、多功能气体传感器、总线通讯电缆。主机构成:控制屏;高2000;宽800;深600(mm)(可定制)工控机、显示器均为19寸与控制屏配套;通讯单元(含光纤数据转换模块、报警器、系统电源)19寸与控制屏配套;操作系统windows2000server、数据库SQL、组态软件VIEW-4.01、网络模块nt2000;安装位置:控制室,电源为AC220V。 数据处理服务器XSJ-2000电气设备在线监测系统一套(GIS 在线监测屏)综合数据装置的作用是把各监测点上监测传感器传回的数据进行分析处理,实时监测 GIS 高压开关各个 SF6 气室的 SF6 气体温度、密度和微水含量指标,能根据用户的需求提供长达 5 年的数据记录,并能绘制出气体指标的变化趋势图,让用户能预测气体状态的变化,还有重要一点是综合数据监测装置能提供气体指标的报警指示。数据处理服务器XSJ-2000安装在 GIS 高压开关现场控制室,根据实际情况确定安装的具体位置,安装原则是要有地沟连接,方便走线。系统监控分析软件安装在数据处理服务器XSJ-2000上,能实现以下功能:1. 系统软件能以直观的趋势图方式显示设备温度、压力、湿度等的变化趋势,也可以选择数据表格方式显示,所有数据均可长期储存和打印输出,具备历史数据查询、报警数据查询、数据备份等功能;2. 根据用户需要可随时绘制各监测点的时间变化趋势图,使用户能随时了解气体的微水含量和密度变化趋势,在监测指标超标报警前预先采取有效防范措施,使设备运行更安全。3. 用户可根据时间段和系统设定的设备编号来查询设备的历史数据或报警数据;系统软件具有读取每个传感器单元中的温度、压力、湿度等功能。[font=Times

  • 煤质在线实时检测分析与监控系统简介

    “煤质在线实时检测分析与监控系统”(以下简称为煤质在线检测系统)是我们在国际上率先开发的,用于电厂入炉煤炉前煤质在线实时检测分析、入厂煤全程实时监测的绿色环保、低能高效、无辐射的高科技产品。该系统应用高精的红外检测分析技术,在国际上率先真正实现了原煤的热值及灰份、挥发份等工业分析值的在线实时检测与分析,其检测分析方法于一九九九年通过全国鉴定,结论为国际领先水平,在没有应用推广及经济效益的情况下,获辽宁省科技进步三等奖。煤质在线检测系统采用全封闭恒温保护设计,于二零零三年六月十二日在阜新发电厂通过在线实时检测分析现场验收。为我国乃至世界的原煤检测分析技术尤其是热值的直接检测,开辟了一种快速、简便、高效、实时、全程监控的新方法。一、 主要技术路线及技术关键煤质在线检测系统采用傅立叶变换红外光谱分析技术,红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。二、达到的指标 此前,由于没有有效的在线实时检测手段,火力发电厂入炉原煤检测只是每天在炉前进行抽样,经混样、缩分、制样,化验分析等步骤,要二十四小时后才能出具一份工业分析值报表,供生产调度参考。这种方式,使得燃煤在已经燃烧后很长时间才得到其工业分析值,不能起到指导生产、节约成本的目的,使燃煤成本的结算始终处于负平衡态,因此,无法实现发电厂竟实时竟价上网的目标。 煤质在线检测系统完全改变了原始的离线检测方法与手段,实现了在线、实时、连续检测分析与监控:1. 检测与分析时间:全程连续跟踪检测一组数据(包括低位热值、弹筒热值、空干基灰份、干燥基灰份、收到基灰份、干燥无灰基挥发份、空干基挥发份等),需时间约为60s;2. 检测指标为:(1) 热值(低位、弹筒):±1000J/g;(2) 灰份(空干基、干燥基、收到基):±2%;(3) 挥发份(空干基、干燥无灰基):±1%。 由于上述指标的实现,可使燃煤结算达到分时及炉前预知燃煤成本的正平衡态,从真正意义上实现了指导生产,从而为实现竟价上网提供了重要的手段。三、 傅立叶变换红外光谱仪的原理傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。 四、 傅立叶变换红外光谱仪的特点 付立叶变换红外光谱仪共具备六个特点,既高光通量的特点,采用光能量损失很小的反射镜,以使入射光全部通过光孔,使光通量很大;高信噪比的特点,将入射光按不同的频率被干涉仪调制成不同的声频信息值,使所用检测器既获得强度的信息,又获得频率的信息,使各种频率光同时落在检测器上,无须分辨测量既测完全部光谱;高测量精度的特点,使动镜在无摩擦的空气轴承上移动,通过激光干涉图零点取样,用计算机自动完成数据输出及绘图,无人为因素干扰;高分辨率的特点,采用多路通过的方法,使分辨率随采样数据增加而加多;测量速度快的特点,采用多次扫描类加法消除光谱噪声,改善信噪比,提高灵敏度;测量波段宽、全波段分辨率一致的特点,用干涉法采集数据,以数字形式存储运算,使采集范围广且达到全波段分辨率一致。五、现场应用情况“阜新发电厂煤质在线实时检测”科研课题测试工作于二零零三年四月十二日在二十万机组五段输煤栈道进行。装置开机时间九点零六分,结束时间十三点五十八分;现场在线实时采集原煤样品六十四个,实际得到四十九组化验室化验数据,在线实时采集光谱十六组。对比数据见下表:测试指标化验室化验 平均值装置检测 平均值绝对 误差低位热值(g/J)19984.319924.3-60弹筒热值(g/J)22607.323106.8499.5空干基灰份(%)25.8827.791.91干燥基灰份(%)26.5027.951.45收到基灰份(%)23.5423.690.15空干基挥发份(%)29.8830.350.47干燥无灰基挥发份(%)41.6941.38-0.31 阜新发电厂参加建模原煤样品离线化验按照化验室的工作要求进行,建模用原煤样品光谱采取周累计采集方法进行;建模时温度控制在24~26℃,其中低位热值分布范围为10508J/g至29588J/g;弹筒热值分布范围为12392 J/g至29388 J/g;干燥基灰份分布范围为8.49%至55.33%;空干基灰份分布范围为8.1%至53.16%;收到基灰份分布范围为7.27%至50.86%;空干基挥发份分布范围为19.21%至35.55%;干燥无灰基挥发份分布范围为28.26%至52.8%,在建模的过程中,严格按照设备的使用要求进行测试,既设备预热时间大约为40分钟。目前阜新发电厂已正常使用煤质在线检测系统。 综上,煤质在线检测系统以高精的技术、稳定的模型、实时的测量、全程的监控等技术,完全实现了原煤的在线实时检测,它不仅可用于发电厂发电燃煤成本的实时结算,还可用于入厂煤的实时检测监控,一定会为我国的燃煤企业及电力系统的节能带来无穷的经济效益和广泛的社会效益。

  • 在线多参数水质检测系统的设计

    【题名】:秦平 在线多参数水质检测系统的设计[D] 【期刊】:西安电子科技大学 2017年【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10701-1017297195.htm

  • 【原创大赛】在线监测系统在我国不同领域的发展和以及vocs在线监测系统的前景

    [align=center]在线监测系统在我国不同领域的发展和以及vocs在线监测系统的前景[/align]在线监测系统在国外于1960年开始进入快速发展阶段,而在1981年到现在,我国的在线监测技术也得到了迅速发展,相继研制了不同类型的监测装置,并运用到不同的领域之中。国内在线监测系统运用的领域较早的是电力系统,[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E8%94%A1%E5%85%89%E6%98%BE]蔡光显[/url]等人在1995年《电网技术》 中介绍了研制的电力系统过电压在线监测装置,通过智能化捕捉产生的随机过电压信号,为高压电网的绝缘事故的分析、处理和预防提供重要参考。高洪涛在1998年对工业汽轮机热力性能在线监测与故障诊断的研究,围绕工业汽轮机热力参数在线监测及故障诊断方面有关内容进行了较为详细的讨论,针对抚顺乙烯汽轮机组开发了热力状态在线性能监测及评估系统。[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%BC%A0%E6%97%AD%E6%A2%85]张旭梅[/url]等人在2001年对油气田钻井参数监测系统存在的问题,提出了一种新的大钩负荷、大钩高度等钻井参数的监测方法 ,研制了一套基于现场总线和客户 /服务器模式、可进行异地监视的新型实时多参数钻井监测系统。刘永前在2007年对大型桥梁结构健康监测中的关键技术进行了系统的研究,提出了监测系统的设计方法、监测内容的确定、传感器布设与优化、监测数据采集与处理以及桥梁结构健康评估等一系列工程技术方法,为大型桥梁结构健康监测系统的研究开发奠定了技术基础。杜克明在2007年对提出了一种无线远程监控系统设计方案,通过基于Web远程访问和无线移动通信技术(GPRS为例)的集成,研究开发出了一种农业环境无线远程监控系统,集环境因子测试技术、现代传感技术、无线通信技术、计算机网络技术于一体的多功能监控系统,可满足多种情况下农业环境远程监控的需要。我国在线监测系统在环境上的运用也有很多,比如1998年徐彭浩等人在《中国环境监测》  突发性环境污染事故应急系统及其响应程序,建就立应急组织、应急程序、技术储备等方面进行了探讨,为各地建立突发性环境污染事故应急系统及其响应程序提供参考;比如田劲松 环境在线监测信息系统的研究与开发——以广州市污染源在线监测系统方案设计为例中总结和借鉴国内外环境监测信息化的先进经验和发展趋势基础上,通过对广州市污染源在线监测系统开发方案的设计与研究,探讨在环境监测中结合信息技术特别是自动控制技术、数据库技术、GIS技术、网络通信技术,设计了一套技术先进又切实可行的环境在线监测信息系统的方案;比如 2013年[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E6%9D%A8%E5%A8%81]杨威[/url]在烟气在线监测系统(CEMS)在环境管理中的应用研究中利用参比方法和CEMS的在线监测数据进行比对,通过比对监测结果具体分析和找出CEMS比对不合格的原因,通过对CEMS的整改,使得CEMS可以正确监测到这些主要工业污染源中的污染物的排放浓度和排放总量。近年来,有关于vocs的监测越来越受到国家重视,2010年被列入重点防治的大气污染物之一, 12年”十二五规划”指出石化行业要进行推进vocs排放和在线监测系统的建设。最近几年对挥发性有机物的治理和排放都做了详细的规定,有政策,就有保障,目前,国内有关于vocs在线监测系统的研究进入了飞速发展阶段,传感器、预处理系统、采样泵和无线传输模块的研制都取得了很大的进步,各种vocs在线监测系统的性能也有了很大的提高。我国已建立大气光化学监测网,通过大气颗粒物组分监测网和光化学监测网结合,实现对vocs的监控。另外我国的vocs在线监测系统虽然已经有了很大的提高,但是有两个地方仍需完善,第一,监测设备的水平仍然良莠不齐,在接下来的时间,我国需要完善vocs的在线监测系统整体的技术指标,提高性能,第二,地方政策不一,很多地方没有对vocs的治理和监控产生重视,既没有合理的估算,也没有进行很好的监控。参考文献:1、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E8%94%A1%E5%85%89%E6%98%BE]蔡光显[/url], [url=http://yuanjian.cnki.com.cn/Search/Result?author=%E7%8E%8B%E5%BB%BA%E5%85%B4]王建兴[/url], [url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%90%B4%E4%B8%96%E6%9E%97]吴世林[/url] ,[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E9%A9%AC%E5%A2%9E%E7%A6%84]马增禄[/url];电力系统过电压在线监测装置;[url=http://www.cnki.com.cn/Journal/C-C4-DWJS-1995-01.htm]《电网技术》  1995年01期[/url]2、高洪涛 工业汽轮机热力性能在线监测与故障诊断的研究 大连理工大学 1998年3、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%BC%A0%E6%97%AD%E6%A2%85]张旭梅[/url],[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%88%98%E9%A3%9E]刘飞[/url],[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E9%83%AD%E9%9D%99]郭静[/url],[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E6%9B%BE%E5%BA%86%E9%BE%99]曾庆龙[/url]; 一种新的油气田钻井参数监测方法和系统;[url=http://www.cnki.com.cn/Journal/B-B4-SYXB-2001-06.htm]《石油学报》;2001年06期[/url]4、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%88%98%E6%B0%B8%E5%89%8D]刘永前[/url] ,大型桥梁结构健康监测技术研究与应用;[url=http://cdmd.cnki.com.cn/Area/CDMDUnitArticle-10004-2007-1.htm]《北京交通大学》;2007年[/url]5、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E6%9D%9C%E5%85%8B%E6%98%8E]杜克明[/url] ;农业环境无线远程监控系统的研究与实现;[url=http://cdmd.cnki.com.cn/Area/CDMDUnitArticle-82101-2007-1.htm]《中国农业科学院》;2007年[/url]6、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%BE%90%E5%BD%AD%E6%B5%A9]徐彭浩[/url],[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%90%B4%E6%95%8F%E5%8D%8E]吴敏华[/url],[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%BE%90%E5%BB%BA%E5%AE%8F]徐建宏[/url];突发性环境污染事故应急系统及其响应程序;《中国环境监测》;1998年05期7、田劲松;环境在线监测信息系统的研究与开发——以广州市污染源在线监测系统方案设计为例;《武汉理工大学》;2004年8、[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E6%9D%A8%E5%A8%81]杨威[/url];烟气在线监测系统(CEMS)在环境管理中的应用研究;《[url=http://cdmd.cnki.com.cn/Area/CDMDUnitArticle-10141-2013-1.htm]大连理工大学》;2013年[/url][align=center] [/align][align=center] [/align][b][b][color=#0000a0] [/color][/b][/b]

  • 【原创】在线监测浆液粘度和浓度传感装置

    在纺织业有句世界名言讲的好:“好的浆纱是织造成功的一半”. 浆纱是心脏,浆液是血液,如是浆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量差了,浆纱质量可能难以保证.而浆液的粘度是浆沙工艺需要控制的重要参数. 在线检测浆液的粘度和浓度,就可以精确的测定上浆率,减少经纱断头以提高织机效率目前国外进口的浆纱机的浆液浓度在线监测均采用的是光学折射仪,由于温度变化和浆料沉积棱镜上对折射率影响比较大.所以存在结构复杂,成本较高,对生产环境要求苛刻, 使用过程烦琐复杂等问题.我国还没有开发出在线浆液黏度和浓度监测装置.目前的浆液的粘度是由工人定时(半小时)用漏斗测量浆液流完所需时间,以时间表征浆液粘度。时间用秒表测定,以肉眼观察浆液的出流和结束时间。这种方法中,肉眼观察精度不高,人对测量结果的影响较大。不能有效的保证浆沙的质量且生产效率低下.浆液粘度在线检测装置是受上海东华大学委托采用先波科技公司的专利技术而研制的.采用一种基于压电敏感器件的在线监测浆液浓度和粘度传感器。本公司制造的传感器不仅能够同时测量浆液的浓度和粘度变化,尤其是对微粘的液体具有较高的灵敏度。而且可以根据实际工况,单独作为测量浆液浓度或粘度的传感器使用,体积小,价格低,分辨率高,使用方便,并根据实际应用环境进行温度补偿和设置预警信号,主要应用在高水基流体介质的测量中,[~75274~]

  • 【分享】水质在线自动监测系统

    水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 一套完整的水质自动监测系统能连续、及时、准确地监测目标水域的水质及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1 水质自动监测技术 1.1 水质自动监测系统的构成 在水质自动监测系统网络中,中心站通过卫星和电话拨号两种通讯方式实现对各子站的实时监视、远程控制及数据传输功能,托管站也可以通过电话拨号方式实现对所托管子站的实时监视、远程控制及数据传输功能,其他经授权的相关部门可通过电话拨号方式实现对相关子站的实时监视和数据传输功能。 每个子站是一个独立完整的水质自动监测系统,一般由6个子系统构成,包括:采样系统、预处理系统、监测仪器系统、PLC控制系统、数据采集、处理与传输子系统及远程数据管理中心、监测站房或监测小屋。目前,水质自动监测系统中的子站的构成方式大致有三种: (1)由一台或多台小型的多参数水质自动分析仪(如:YSI公司和HYDROLAB公司的常规五参数分析仪)组成的子站(多台组合可用于测量不同水深的水质)。其特点是仪器可直接放于水中测量,系统构成灵活方便。 (2)固定式子站:为较传统的系统组成方式。其特点是监测项目的选择范围宽。 (3)流动式子站:一种为固定式子站仪器设备全部装于一辆拖车(监测小屋)上,可根据需要迁移场所,也可认为是半固定式子站。其特点是组成成本较高。 各单元通过水样输送管路系统、信号传输系统、压缩空气输送管路系统、纯水输送管路系统实现相互联系。 一个可靠性很高的水质自动监测系统,必须同时具备4个要素,即:(1)高质量的系统设备;(2)完备的系统设计;(3)严格的施工管理;(4)负责的运行管理。 1.2 水质自动监测的技术关键 (1)采水单元:包括水泵、管路、供电及安装结构部分。在设计上必须对各种气候、地形、水位变化及水中泥沙等提出相应解决措施,能够自动连续地与整个系统同步工作,向系统提供可靠、有效水样。 (2)配水单元:包括水样预处理装置、自动清洗装置及辅助部分。配水单元直接向自动监测仪器供水,具有在线除泥沙和在线过滤,手动和自动管道反冲洗和除藻装置;其水质、水压和水量应满足自动监测仪器的需要。 (3)分析单元:由一系列水质自动分析和测量仪器组成,包括:水温、pH、溶解氧(DO)、电导率、浊度、氨氮、化学需氧量、高锰酸盐指数、总有机碳(TOC)、总氮、总磷、硝酸盐、磷酸盐、氰化物、氟化物、氯化物、酚类、油类、金属离子、水位计、流量/流速/流向计及自动采样器等组成。 (4)控制单元:包括系统控制柜和系统控制软件;数据采集、处理与存储及其应用软件;有线通讯和卫星通讯设备。 (5)子站站房及配套设施:包括站房主体和配套设施。

  • VOCs在线监测系统介绍

    VOCs在线监测系统介绍

    [b]兰贝斯环保科技有限公司[/b][url=http://www.lanbaseep.com/][color=#3366FF](http://www.lanbaseep.com/)[/color][/url][b][/b]是由[b]天伦控股和兰贝斯科技[/b]共同投资,是以[b]台湾工研院[/b]为技术支持,合作成立的专业环保科技创的新型企业,致力于大气污染行业,[b]核心业务为挥发性有机物的监测及治理产品的技术服务、销售及运维等[/b]。 [b] 兰贝斯LBSEP系列VOCs在线监测系统[/b]为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-氢离子火焰检测器(GC-FID),是一种多组分混合物的分离、分析工具,它主要利用物质的物理性质对混合物进行分离,测定混合物的各个组分,并对混合物中的各个组分进行定性、定量分析,仪器中使用的高灵敏度的氢离子火焰检测器(FID),将被分离的各成分的浓度变化转化成电讯号,由分析系统专用软件将各个成分的检测结果以图形方式记录下来,根据图谱中各色谱峰的面积,计算出各VOCs成分的含量。GC-FID具有分离效能高、分析速度快、样品用量少等特点。LBSEP系列VOCs在线监测系统包含温度、压力、流速、THC、CH4、NMHC(=THC-CH4)及个别 VOCs的在线连续监测项目,可监测的因子有苯、甲苯、二甲苯、二甲基甲酰胺、烷类、烯类、环状芳香族类等挥发性有机物[b](每台设备的监测因子和配置根据每个项目实际需要灵活调整)[/b]。[img=,690,596]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131357_02_3125993_3.png[/img][img=,680,558]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131400_01_3125993_3.png[/img] 目前该设备已广泛地应用于石油化工、半导体/电子、汽车烤漆、装饰涂料、印刷等行业的VOCs排放的在线监测。 [b] 兰贝斯VOCs在线监测设备[/b]具备独有的采样盘设计,其上整合了烟气预处理装置,搭配采样头上的精密金属过滤器,拦截烟气中的细颗粒物及水分,保障分析的准确性;同时集成远端查核、近端查核、反吹等功能,使得维护操作高效便利;如遇烟气突发高温、高浓度情况,此装置可发挥缓冲作用,保护主机设备,大大延长设备寿命。[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131401_01_3125993_3.jpg[/img][b]设备认证:[img=,565,800]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131411_01_3125993_3.jpg[/img]设备参数:[img=,652,729]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131413_01_3125993_3.png[/img]系统示意:[img=,690,423]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_01_3125993_3.png[/img][img=,685,466]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_02_3125993_3.png[/img][img=,690,351]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_03_3125993_3.png[/img][img=,690,661]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_06_3125993_3.png[/img][img=,690,439]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_04_3125993_3.png[/img]案例照片:[img=,690,185]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131422_05_3125993_3.png[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131430_01_3125993_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131430_02_3125993_3.jpg[/img][/b]

  • 水质在线监测系统参数汇总

    水质在线监测系统参数汇总:目前水质在线监测参数主要有30项,分别为温度、PH、溶解氧、电导率、浊度、叶绿素、蓝藻、高锰酸盐指数、化学需氧量、生物需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、总磷、磷酸盐、总氮、总有机碳、水中油、余氯、氯离子、总氯、氟化物、氰化物、总酚、硅酸盐、硫酸盐、硫化物、臭氧、重金属(铜离子、铝离子、六价铬、铁离子、总铁、锰离子、镍离子、锌离子、钠离子、镉离子)。这些参数监测原理主要基于电极法和分光光度法。

  • 水污染源在线监测系统验收技术规范的一些疑问

    生态环境部最近新发布了关于水污染源在线监测系统从安装到验收等相关标准因为我就职于第三方检测公司(比对业务较多),咱们就说说与本职工作最相关的标准HJ 354-2019和HJ 355-2019HJ 354-2019涉及在线监测系统验收,多了总氮就不说了,以前验收总氮都是用我省地标DB13/T 1642.2-2012(这个标准我就不吐槽了)一、80%量程24h漂移(离线模式)新增加的二、准确度依然是两种不同浓度质控样品(离线模式)区别:1、新标中高浓度要求的浓度给了范围(接近相应排放标准浓度2~3倍[font=宋体][size=13.9333px]的样品[/size][/font])2、新标中测定次数增加到每种浓度测定3次,间隔时间延长至1h3、新标中结果判定是取3次结果的算数平均值作为数值进行计算(有可能3次都超但是平均值算下来就合格了,只保证了准确度,稳定性不考虑了?)4、新标中pH质控样变为一种,测定6次取均值判定结果三、实际水样(在线模式)1、时间延长至1h2、水样由6个减少到3个,不过每个水样平行测定2次(pH6次),均值作为结果判定3、水样浓度小于特定值时用质控样品替代实际水样进行试验1)氨氮水样浓度由1mg/L改为2mg/L质控样由0.5mg/L改为1.5mg/L误差相应增加至±0.3mg/L2)总磷质控样浓度由0.2mg/L改为0.3mg/L相应增加至±0.06mg/L3)总氮为增加项目水样浓度2mg/L用1.5mg/L质控样替代四、报告格式模板1、封皮增加验收单位、运行单位2、报告模板未见量程漂移结果3、增加了监测仪器测量过程参数设置核查表(这些参数应该都是由运行单位填写吧)4、监测仪器测量过程参数设置核查表中“监测方法及测量过程参数核查结论”不知如何填写5、监测仪器测量过程参数设置核查表中“月报”如何提供数据6、监测仪器测量过程参数设置核查表中“核查签字人”该如何表示,电子字还是手签?HJ 356-2019季度比对是不是用这个?(如果不对,下面几条可忽略)1、质控样由2种减少至1种(浓度约为现场工作量程上限值 0.5 倍的标准样品)2、pH无质控样考核,且实际水样只做1次3、个人认为应该先进行质控样考核,再进行实际水样比对。5.1实际水样,5.2中提到了对仪器进行校准,是否影响实际水样的准确度未知。注:文中如无项目,均适用于COD、NH3-N、TP、TN不足之处欢迎指出。

  • 水质在线监测系统的研究

    【序号】:【作者】:邵建波 【题名】:水质在线监测系统的研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-11914-1012255688.htm

  • 【资料】环境在线监测系统介绍

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=118721]环境在线监测系统介绍[/url]本投影主要介绍了水质在线监测仪器的原理、结构。由于投影太大了,所以压缩称PDF文件上传了。我初步判断有原创的成分,加精不算过分了,从头到尾我看了下,不错的东西!

  • 有谁对悬浮粒子在线监测系统比较了解的?

    貌似中国2010版GMP出台后,有企业就推出了悬浮粒子在线监测系统,仔细看了下法规,好象只是提到要对生产环境中的悬浮粒子进行监测,并没有明确规定在线监测。在线监测的好处是,当监测环境中的悬浮粒子状态超过警戒限值或纠偏限值时,该系统能自动激发声光报警,通知相关人员进行处理,从而有助于确保所监测的环境中颗粒状况处于正常状态,以保证生产的顺利进行。各种广告,各种推销都只提到这些好处,不足之处有哪些呢?希望有用过的朋友谈一下经验

  • 如何在线监测苯胺?为山西环境监测系统支招!(山西苯胺泄露)

    [size=18px]  在上一篇帖子中【从监测技术角度为山西8.5亿在线实时监控系统平反!】[/size][url=http://bbs.instrument.com.cn/shtml/20130108/4500278/][size=18px]http://bbs.instrument.com.cn/shtml/20130108/4500278/[/size][/url][size=18px] ),我们为山西8.5亿在线实时监控系统平反正名,这篇帖子,我们将讨论下如何在线监测苯胺![/size][size=18px]  我们已经知道,目前市场上并没有专门监测水中苯胺的在线监测仪器,要研发生产出来可能并不太难,但需要时间。而且废水中的毒物可能成千上万中,不太可能为每一种毒物都研制一种在线监测仪器,这个太不现实了。[/size][color=#ff0000][size=18px]  那么,就以现在市场上已经有的环境在线监测仪器来说,到底能不能在线监测苯胺?[/size][/color][size=18px]  答案是肯定的![/size][color=#ff0000][size=18px]  能在线监测苯胺的仪器就是——水质生物毒性在线监测系统!!!![/size][/color][size=18px]  中国科学院生态环境研究中心王子健研究员在2011年接受仪器信息网编辑采访的时候曾说过:[/size][size=18px]  “我们日常生活中接触到的化学品多达4-8万种,它们都有可能出现在水体中,从理论上说要保证水体安全,至少要检测几千种污染物,所以说目前的109种检测指标是远远不够。然而,几千种污染物我们是无法逐一进行鉴定的。并且这些化学品并不是单独存在的,进入环境中可能经历降解、结合、转化等一系列化学反应过程,产生一大批新的化合物和协同效应,因此单纯用化学监测技术手段进行水质检测并不能保证安全。换句话说,即使达到国家标准的水,也不能保证其绝对无毒。生物毒性监测技术给水质安全上‘保险’。”[/size][size=18px] 详细请参见:【生物毒性监测技术给水质安全上“保险”】,[url]http://www.instrument.com.cn/news/20110329/058848.shtml[/url] [/size][size=18px]  所谓生物监测,通俗来讲其实就是利用生物活体来代替人类试毒,这样来判断一种物质是否有毒。而水质生物毒性在线监测预警系统,其实就是一个生物试毒系统。如果山西环境监测系统在此次事故发生地点较近地方或者相关饮用水取水点附近的水质自动监测站中安装了这类仪器,那么这个系统就可以即时报警,告诉监测人员这水有问题,不能作为饮用水水源。这相比于取样回实验室检测可以节省大量时间。[/size][size=18px]  [color=#ff0000]目前市面上的水质生物毒性在线监测预警系统使用的监测生物有鱼类、蚤类、发光细菌等[/color]。(这里有一些市面上的仪器:[/size][url=http://www.instrument.com.cn/zc/duxing.asp][size=18px]http://www.instrument.com.cn/zc/duxing.asp[/size][/url][size=18px])[/size][size=18px]  首先说说蚤类。这类生物反应最为灵敏,对各类毒物均有灵敏反应,但其缺点是须定期更换蚤类,而且这个更换周期较短,在欧洲通常为一周,对操作人员的技术水平要求高。基于蚤类的生物毒性在线监测仪器普遍应用于欧洲各大水质监测站中,但在国内还没有应用。[/size][size=18px]  再说说发光菌的。这类在国内应用已经有不少的案例了,其优点是前人对其已进行了很多研究,缺点是发光菌是简单的生物体,例如它没有神经系统,对有机磷农药不敏感,但因为个体小,对水中重金属的反应是很灵敏的。[/size][size=18px] 最后是鱼类。鱼的神经系统非常发达,有着与人类类似的呼吸系统、消化系统,且与人类的基因相似度很高。基于鱼类的水质生物毒性在线监测系统对有机磷农药反应明显,但对重金属反应速度慢。这类仪器在山东、天津、北京、苏州等地均有应用。[/size]

  • 【我们不一YOUNG】+水质在线监测系统的未来发展

    [align=left][font=宋体][color=black][back=white]1.智能化水平不断提升[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]随着物联网、大数据、人工智能等技术的不断发展,水质在线监测系统的智能化水平将不断提升。未来的水质在线监测系统将更加智能化、自动化和无人化,能够实现对水质的实时监测、预测和预警。这种智能化的监测方式将大大提高水质管理的效率和准确性,为水资源的合理利用和环境保护提供更加精准化的管理和控制手段。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]2.多源数据融合分析[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]未来的水质在线监测系统将更加注重多源数据的融合分析。通过将不同来源、不同类型的数据进行融合分析,可以更加全面地了解水质状况,发现潜在的环境污染问题。这种多源数据的融合分析将为环境保护提供更加科学、全面的决策支持。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]3.跨界融合与应用[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]未来的水质在线监测系统将与更多领域进行跨界融合与应用。例如,在智慧城市建设中,水质在线监测系统可以与交通、气象等其他领域的监测系统进行融合,实现城市环境的全面监测和管理。在农业领域,水质在线监测系统可以与农田灌溉、水产养殖等应用相结合,为农业生产提供更加科学、高效的水资源管理手段。[/back][/color][/font][/align]

  • 系统气相与双通道电催化与热催化在线检测系统

    系统气相与双通道电催化与热催化在线检测系统

    新型肺炎期间,琢磨出双通道电催化与热催化在线检测系统,实验室以前都是一个反应器对应一台GC,现在省纪委二个反应器可以直接在一台GC上获得测试结果,还能够全自动化检测。。。如开发的双通道电化学CO2还原测试系统,如图1所示,可以在14min内获取2组样品的测试结果[img=,492,590]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082158397466_1536_4231648_3.jpg!w492x590.jpg[/img]同时,也开发了全自动控制检测系统,如下图所示,需要合作的请联系。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082202289915_5731_4231648_3.png!w690x387.jpg[/img]

  • 管道粉尘在线检测仪

    LBT-50管道粉尘在线检测仪是一款实时在线监测粉尘浓度的仪器,可用于监测除尘器的布袋是否破损泄露及各箱体含尘量检测仪器,也可用于监测除尘管道、煤气管道、烟囱烟道等烟尘粉尘浓度含量;能够准确地监测有害粉尘的排放或减少有用粉体的流失,达到保护主设备的正常运行或减少产品经济损失的目的、并可有效掌握各布袋除尘箱体运行状况、烟道管道粉尘排放情况。LBT-50管道粉尘在线检测仪主要技术参数1、测量范围: 粉尘浓度:0-50/100/200/1000mg/m3 测量管径:0.1~4m 粉尘粒径:0.1uM~200 uM2、工作条件: 工作温度:-10℃~260℃(最高 450℃) 管道压力:-0.1Mpa~2 Mpa 环境温度:-40℃~65℃(电子部件) 相对湿度:0-80%3、传感器配置: 插入深度:0.1 米~4 米(特殊需要可根据用户管径选配) 测点数量:1-N 点(根据用户需要配置) 输出方式:二线制 4 ~20mA 隔离输出 供电电源:15V~32V 显示方式:接入 PLC 系统显示或者现场显示2屏蔽电缆:2×0.75mm 屏蔽电缆

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制