当前位置: 仪器信息网 > 行业主题 > >

紫外拉曼联用仪

仪器信息网紫外拉曼联用仪专题为您提供2024年最新紫外拉曼联用仪价格报价、厂家品牌的相关信息, 包括紫外拉曼联用仪参数、型号等,不管是国产,还是进口品牌的紫外拉曼联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外拉曼联用仪相关的耗材配件、试剂标物,还有紫外拉曼联用仪相关的最新资讯、资料,以及紫外拉曼联用仪相关的解决方案。

紫外拉曼联用仪相关的仪器

  • RTS-LIBS 拉曼光谱联用系统LIBS 与拉曼光谱联用技术激光诱导击穿光谱(LIBS)是一种通过脉冲激光轰击样品获得样品轰击面区域原子发射光谱的分析方法,其具有快速分析,灵敏度高,能同时检测多种元素等特点,尤其可实现微量元素的快速、无接触的原位检测。拉曼光谱技术是一种非破坏性的光谱分析技术,通过构建目标分子的指纹图库,可以实现相应物质的快速识别与定性检测。LIBS 与拉曼光谱技术相结合,可以提供互补信息,拉曼光谱提供物质分子结构信息,LIBS 技术提供微量及痕量元素的原子光谱信息。二者结合将在遥感检测、文物鉴定、爆炸物检测分析等领域具有巨大的应用潜力。典型应用系统介绍RTS-LIBS 拉曼光谱系统是北京卓立汉光仪器有限公司全新推出的 LIBS 与拉曼联用系统,采用纳秒脉冲激光器作为 LIBS 激发光源,连续激光光源作为拉曼激发光源,C-T 式长焦距光谱仪 系统配置双探测器,常规深度制冷型 CCD 作为常规拉曼光谱探测器,纳秒级门控的像增强型 CCD(ICCD)作为 LIBS 和脉冲拉曼信号探测器。 该系统具备高度集成、性能稳定、易于操作等优势,可同时原位在线获取样品的分子光谱、原子光谱信息。典型参数应用案例参考文章 :Quantitative analysis of mercury in liquid samples using laser-induced breakdown spectroscopy combined with shear thickening fluid DOI: 10.1039/d1ja00431j
    留言咨询
  • 紫外共振拉曼光谱系统--UVRaman100 新一代紫外共振拉曼光谱仪中国科学院大连化学物理研究所中国科学院李灿院士及其研究小组自行研制了我国第一台紫外共振拉曼三联光谱仪,获得中国科学院发明二等奖、国家发明二等奖。并于2008年4月8日,和北京卓立汉光仪器有限公司共同组建“现代仪器联合实验室”,强强联手,迈出了研究成果向产品转化的重要一步。紫外共振拉曼系统简述共振拉曼或紫外共振光谱系统组成主要是:1、激光器部分:紫外或可见光激光器,紫外可调谐窄线宽激光器。2、光谱仪部分:三联单色仪+高灵敏度科学级CCD。3、信号采集部分:高效率光谱采集组件。共振拉曼或紫外共振拉曼的优点是: ◆ 合适的紫外激光激发可以完全避免荧光本底的干扰。◆ 由于拉曼信号强度正比于激发激光频率的四次方,紫外激光激发拉曼信号效率更高。(同等功率266nm激光可激发出比532nm激光高16倍的拉曼信号)。◆ 共振拉曼可以提供很高的共振增强因子,(理论极限可达106倍)从而大幅度提升检测极限。◆ 可以实现选择性激发,当我们把激光器调谐到某物质激发峰上时,可以只对此特定物质实现共振增强提升几个数量级的信号强度,其他物质由于几乎没有共振增强,可以进一步提升信噪比,这一点对于催化和生物研究非常有利。◆ 由于采用的是三联单色仪滤除瑞利散射,而非陷波滤波器,设备可以测试地低到到几个波数的拉曼光谱。设备详细指标与参数1、激光器部分:◆ 325nm HeCd激光器:325nm TEM00 mode 激光功率30mW-50mW输出备选◆ 244nm倍频可调谐氩离子激光器: 244nm TEM00 mode 激光功率24mW 另有229,238,248,250,257,264nm输出谱线◆ 532nm 绿光DPSS激光器:TEM00 mode,激光功率20-100mW备选◆ 窄线宽可调谐掺钛蓝宝石激光器:可调谐范围输出平均功率单个晶体可调谐范围基频700-960nm1W100nm二倍频350-480nm90-500mW50nm三倍频233-320nm20-250mW33nm四倍频193-240nm5-100mW25nm光谱线宽0.1cm-1功率稳定度3% rms注:如须覆盖整个光谱波段需要更换晶体Tips: 共振增强并不是是在一个特定的波长上急剧开始,而是存在着一个波长范围。实际上,即使激发激光的波长处于分子电子跃迁波长之下几百个波数的时候就可以看到5到10倍的增强作用。这个“前共振”增强作用在实验上是非常有用的。我们往往可以采用相对比较便宜的激光器,比如325nm的氦铬激光器,可调谐倍频氩离子激光器虽然不是连续可调谐,也可以达到一定程度的共振增强效应。当然,为了求得最高的增强因子,我们需要一种波长连续可调谐且光谱线宽很窄的的紫外激光器,比如窄线宽可调谐掺钛蓝宝石激光器激光器。2、紫外共振拉曼光谱仪部分A.光谱仪:◆ 光谱仪焦距:500mm ;f/6.5◆ 光栅尺寸:68mm×68mm or 68mm×84mm◆ 扫描最小步长:好于0.005nm◆ 镜片反射率:紫外和可见区的镜子的反射率达到90%B.相减模式拉曼光谱采集◆ 分辨率: 4.0 cm-1 (紫外区), 3.0 cm-1 (可见区)◆ 波数范围:50-4000 cm-1 (紫外区), 25-4000 cm-1 (可见区)C.光谱探测器CCD或EMCCD光谱CCD光谱CCD光谱EMCCD像素数1024×2562048×5121600×400像素尺寸 um26×2613.5×13.516×16成像面积 mm26.6×6.727.6×6.925.6×6.4最低制冷温度 oC-100-100-100电子增益NANA1-1000应用方向:● 催化研究● 生物化学,生命科学● 材料学,高分子科学● 纳米科学● 半导体,光电材料附录:附录1.紫外拉曼与共振拉曼原理与应用简述荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300 nm-700 nm区域,或者更长波长区域。而在紫外区的某个波长以下,荧光极少出现。 因此,对于许多在可见拉曼光谱中存在强荧光干扰的物质,例如氧化物、积碳等,通过利用紫外拉曼光谱技术就可以成功的避开荧光从而得到信噪比较高的拉曼谱图。从下图磷酸铝分子筛ALPO-5 示例可以看出,紫外共振拉曼光谱技术由于能避开荧光,可以成功用于微孔和介孔分子筛材料的表征。紫外拉曼光谱技术的另一个突出特点是,拉曼信号可以通过共振拉曼信号得到增强。共振拉曼效应可以从拉曼散射截面公式得到解释:根据Kramers-Heisenberg-Dirac 散射公式: 在公式 (1)中,ωri 是初始态i到激发态r的能量差频率,ωL是入射激光频率。当激发光源频率靠近电子吸收带时,第一项分母趋近于零,因而其散射截面异常增大, 导致某些特定的拉曼散射强度增加104~106 倍。共振拉曼光谱的谱峰强度随着激发线的不同而呈现出与普通拉曼不同的变化。将紫外共振拉曼用于表征多组份体系时,可以选择性的激发某些组分相应的信息,从而使与这些组分相关的拉曼信号大大增强,得到共振拉曼光谱这种共振增强或者共振拉曼效应是非常有用的一个技术,它不仅可以极大的降低拉曼测量的探测极限,而且还可以引入到电子选择上面。这样,如果我们使用共振拉曼技术来研究样品,不仅可以看到它的结构特征,而且还可以得到它的电子结构信息。金属卟啉,类胡萝卜素以及其他一系列生物重要分子的电子能级之间跃迁能量差都处在可见光范围之内,这使得它们成了共振拉曼光谱的理想研究材料。共振选择技术还有一个非常实际的应用。那就是二分之一载色体的光谱由于这种共振作用会得到增强,而它周围的环境则不会。对于生物染色体来说这就意味着,我们使用可见光即可特定的探测到有源吸收中心,而它们周围的蛋白质阵列则不会探测产生影响(这是因为这些蛋白质需要紫外光才能使其产生共振增强作用)。共振拉曼光谱在化学上探测金属中心合成物,富勒分子,联乙醯以及其他的稀有分子上也是一种重要的技术,因为这些材料对于可见光都有着很强的吸收。其他更多的分子吸收光谱由于处于紫外,所以需要紫外激光进行共振激发,我们就称之为紫外共振拉曼(UlraViolet Resonance Raman Spectroscopy) 紫外共振拉曼光谱技术是研究催化和复杂生物系统中分子分析的一个重要工具。大多数的生物系统都吸收紫外辐射,所以它们都能提供紫外的共振拉曼增强。这样高的共振拉曼共振选择效应使得象蛋白质和DNA等重要生物目标的拉曼光谱得到极大增强,而其他物质则不会,非常便于目标确认及分析。例如,200nm的激励光能够增强氨基化合物的振动峰;而220nm的激励光则可以增强特定的芳香族残留物的振动峰。水中的拉曼散射非常弱,这个技术使得与水有关的微弱系统的拉曼分析也变成了可能。附录2:实验举例◆ 微孔-介孔材料骨架中超低含量的孤立的过渡金属离子(例如Ti-MCM-41)能够通过紫外共振拉曼光谱可靠、准确地鉴别出来。 ◆ 利用紫外拉曼避开荧光和增加灵敏度的特点,可以对分子筛合成过程中的合成前体、中间物以及分子筛晶体的演化过程进行研究。◆ 紫外拉曼光谱可以选择性地得到在紫外区具有强吸收的物质(例如TiO2和ZrO2)的表面相信息。
    留言咨询
  • 光镊拉曼光谱技术产品简介光镊拉曼光谱技术(laser tweezers Raman spectroscopy LTRS)结合光镊与显微拉曼光谱技术,可对单个微纳颗粒或单细胞进行操控与生化分析。常规显微拉曼光谱技术可以获得微米尺度分子结构信息,但是对于悬浮气/液体中微小粒子或细胞样品检测时,由于布朗运动或溶液悬浮等因素,很难对样品进行精准定位与测量。光镊技术可以稳定束缚与操纵微纳颗粒及生物分子,有效实现悬浮微颗粒的精准检测。光镊技术对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤,可穿过气/溶液表层界面检测内部颗粒物信息,同时,光镊捕获的微粒尺度为几十纳米到几十微米,是生物细胞、细胞器、生物大分子以及气溶胶等物质尺度范围。拉曼光谱亦是一种无损伤的分子光谱技术,具有谱峰信息丰富,特异性强等优势,因此,光镊拉曼适用于微纳米尺度的单分子研究领域应用。典型应用系统介绍RTS-LTRS 光镊拉曼光谱系统是北京卓立汉光仪器有限公司全新推出的光镊-拉曼联用系统,该系统结合先进的光镊微控技术与拉曼分子识别分析技术,高度集成、性能稳定、易于操作,能够实现同时控制大量(200 个)目标和高精度的微纳米级颗粒物的分析测量。仪器原理和实现方式光镊技术捕获单个颗粒的基本原理如下图所示。激光通过倒置显微镜形成汇聚光线,高度聚焦的激光会在焦点中心形成一个势能梯度中心,称之为势阱或光阱。透明的球形微粒会被光阱在三维空间中捕获,从而进行操控、排列与微小力的测量。更复杂一点的情况是光折射的梯度力与光散射力以及粒子本身的重力与浮力共同平衡,并在限制粒子的布朗运动后实现 3D 捕获操控。光镊原理:采用 100kHz AOD(声光偏转器)高速分时扫描不同位置,从而形成多个光阱;区别于传统的光镊技术,这种技术可以实现:1. 控制目标更多:可以产生 200 个以上的光阱,同时捕获 200 个以上的目标微粒;2. 控制激光强度:0~100%,可独立控制每个光阱3. 控制光阱移动:轨迹、步长、速度等4. 降低光阱的漂移:光阱间漂移仅 0.05nm/min5. 提高测力精度:更加精确定位光阱坐标6. 降低系统噪音:无机械振动,提高整体稳定性结构介绍RTS-LTRS 光镊拉曼光谱系统有两种结构(如下图所示)。结构一:在标准的 RTS2 的基础上配置具有双层无限远光路的倒置显微镜,上层光路多光阱光镊系统,下层光路为拉曼光路出入口,可内置不同波长激光器,也可外部耦合激光器,拉曼信号通过光纤或者空间光路耦合到光谱仪,光路如下:结构二:在标准的 RTS2 的基础上配置具有双层无限远光路的倒置显微镜,上层光路多光阱光镊系统,拉曼激光从显微镜的侧口进入,拉曼信号原路返回接光谱仪,可内置不同波长激光器,也可外部耦合激光器,拉曼信号通过光纤或者空间光路耦合到光谱仪,光路如下:性能优势标配 320mm 焦长影像校正高通光量光谱仪,高像素深制冷光谱 CCD 相机,可扩展 EMCCD,ICCD,InGaAs 阵列等探测器,扩展系统功能;集成化设计,无外置裸露光学元器件;可以实现不同尺寸的多目标悬浮和自由移动,从纳米尺度至百微米尺度;多目标捕获,水中 200 个以上的不同尺寸目标,空气中不同尺寸液滴阵列的捕获;可 XYZ 三维方向精确控制捕获激光和拉曼激发激光焦点之间的相对位置,测试不同位置拉曼信号;非接触、作用力均匀,不会造成对象机械损伤和污染;可对常见样品及微/纳米颗粒、不规则颗粒及气相中的液滴进行 3D 捕获;系统稳定度更高,测量结果受环境干扰更小;操控更加灵活,光阱移动精度更高;避免视场不同位置光阱刚度的差异;可以进行多目标力学测量。典型参数测试案例光镊数据多目标实时测力,力学测量的分辨率可达约 100fN,精确度约 1pN。拉曼数据拉曼-光镊联用数据测试颗粒:浓度为 0.5M 到 2M 的 NaCl 水溶液发生的气溶胶颗粒气溶胶样品捕获拉曼激光定位激发识别回音壁信号峰位峰位信息导入软件液滴半径与折射率测试结果数据 稳定的环境条件下,在 2 分钟内的连续 25 次测量中,液滴半径为 4359.73±0.55nm,分辨率优于 1nm;折射率为 1.3757±0.0002,波动约 0.015%。
    留言咨询
  • MiRass“微振”系列紫外共振拉曼光谱仪 性能特点● 紫外光激发可以避免荧光的干扰● 充分利用某些特定研究对象的紫外共振增强效应选择性激发,提升几个数量级的信号强度● 以双级联单色仪取代陷波滤光片(或边缘滤光片),激发波长可任意选择和替换,无需重新校准光路● 基于三级联光谱仪结构,仪器的低波数性能极佳,可达15cm-1 产品简介: 激光共振拉曼光谱是当激光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104-106倍,并观察到正常拉曼效应中难以出现的、其强度可与基频相比拟的振动光谱。由于有机分子的吸收峰通常出现在紫外或近紫外(蓝光)区,所以共振拉曼光谱的激发光源通常采用蓝光或紫外激光器,但需要在实际应用中考虑荧光干扰问题,通常来说,紫外区激发能够有效规避荧光干扰问题,实际应用中需要结合测试对象的吸收光谱特性来进行选择。 显微拉曼光谱技术是将传统拉曼光谱分析技术与显微分析技术结合起来的一种应用技术,但是基于传统的标准显微镜的显微拉曼谱测量系统中存在很大的局限性,比如无法灵活的选择实验所需的激光器,而采用光纤作为光收集装置时又存在耦合效率太低等问题,这些都是采用标准显微镜难以回避的问题。 MiRass“微振”系列拉曼光谱仪是一款采用了卓立汉光公司生产的三级联影像校正光谱仪和优化设计的光谱测量专用的显微镜结构的专用于紫外共振拉曼光谱测量的拉曼光谱仪,接收器为深度制冷型科学级紫外增强型背感光CCD,系统设计结合了卓立汉光公司十余年荧光光谱仪、拉曼光谱仪和光谱系统的设计经验以及普遍用户的实际需求,有效的解决了传统的局限问题,是目前市场上非常具有性价比的紫外拉曼光谱测量的解决方案,可应用于催化研究、生物、化学、生命科学、高分子材料学、纳米科学等学科领域。参数规格表主型号MiRass DUV拉曼光谱范围50-5,000 cm-1(325nm激发)15-5,000 cm-1(532nm激发)分辨率≤1cm-1(@585.25nm)激光器标配:325nm(≥30mW,TEM00),532nm(≥100mW,TEM00)选配:244nm、266nm、窄线宽可调谐激光器(UV-NIR)探测器类型深度制冷型背感光CCD探测器响应范围200-1000nm(紫外区增强)有效像元2048×512像元尺寸13.5×13.5量子效率40%@250-400nm*规格参数为典型值,依据所选激发波长的改变会有所改变,详情请洽询!不同波长测试AlPO-5分子筛的信号比对(荧光干扰)分别采用244nm、325nm、532nm激光器实测样品(AIPO-5分子筛),可清楚看到紫外拉曼光谱在规避荧光干扰信号的良好表现。低波数实测采用532nm激光器实测样品(L-Cystine),可准确测到低波数峰。应用实例:◆ 微孔-介孔材料骨架中超低含量的孤立的过渡金属离子(例如Ti-MCM-41)能够通过紫外共振拉曼光谱可靠、准确地鉴别出来。 ◆ 利用紫外拉曼避开荧光和增加灵敏度的特点,可以对分子筛合成过程中的合成前体、中间物以及分子筛晶体的演化过程进行研究。◆ 紫外拉曼光谱可以选择性地得到在紫外区具有强吸收的物质(例如TiO2和ZrO2)的表面相信息。
    留言咨询
  • 流变- 拉曼联用系统(流变仪和拉曼光谱仪相连)结合了两个强大的测量原理:它是以流变学作为机械方法和以拉曼作为分子光谱方法的完美共生。将从流变仪获得的力学行为与从拉曼光谱中得到的结构信息进行关联,对于更好地理解材料的化学功能和微观结构的关系,以及对加工和应用的影响,是非常重要的。充分发挥MCR流变仪与拉曼光谱仪的协同增效作用流变仪和拉曼光谱仪通过光纤拉曼探头连接,允许灵活放置光谱仪以节省实验室工作台上的空间( 电缆长度 4.5 m )。触发选项允许通过流变仪方便地操控拉曼光谱仪。MCR 流变仪和温度装置功能齐全,可在 -20 °C 至 +300 °C 的温度下提供全面的流变测试。拉曼光谱探头通过石英玻璃板进行测量,可最大限度地减小背景光谱干扰,从而不必再受到二氧化硅玻璃信号的影响。利用线性表和微调螺钉可以调整探头的定位。 选择您想要组合的拉曼光谱仪知名的 MCR 系列流变仪可以与安东帕Cora系列的拉曼光谱仪或许多其他品牌(如已购买的)拉曼光谱仪和拉曼光谱探头结合使用。凭借在两个领域的专业经验,我们还可以根据您的应用需求来开发、提供和支持定制解决方案。 尽享模块化和易用性优势有若干成熟可靠的光学仪器可与 MCR 流变仪结合使用,流变-拉曼组合只是其中之一。将流变仪与拉曼光谱仪组合使用或切换到其他附件只需要几分钟即可完成设置。帕尔贴和电加热温控设备也可以与其他流变-光学程序结合使用,例如 UV 固化、(荧光)显微镜、小角光散射 (SALS) 和偏振成像工具,从而节省时间和成本。MCR 流变仪系列的易用功能(例如 ToolmasterTM 和 QuickConnect)也是工具包的一部分。 了解完整的新应用范围流变-拉曼联用系统为同时测量样品的物理和化学特性(在相同样品、相同时间、相同测量条件下)提供了独特的机会。通过这种方法,可以更加深入地了解各种材料的化学功能和微观结构变化以及这些变化对加工和应用的影响。潜在应用领域包括研究结晶过程、化学反应(例如黏合剂样品的固化)、聚合物的形态、悬浮液的温度特性和稳定性、生物学样品(例如生物膜、细胞培养物)的结构参数等。
    留言咨询
  • LAMBDA 365紧凑、通用、高性能的双光束紫外/可见分光光度计LAMBDA 365提供了先进的紫外/可见分光光度计的性能,可以满足制药、分析工作者、遗传学家和制造业QA/QC分析员的需要。配备可利用的21 CFR part 11软件,LAMBDA系统可以支持从标准方法、应用到需要遵从法规的分析全面流程。该系统还提供了可变光谱带宽的能力,从0.5nm到20nm,以此来满足您的应用需求。并且LAMBDA 365能够兼容种类多样的附件,包括多联样品池转换器(水浴和半导体Peltier控温),固体样品透射和反射测试附件、远程测量的光纤探针、颜色和漫反射测试的积分球以及多种样品池支架,以此来满足不同样品的测试需求。当测试者对高稳定性和低杂散光极端追求时,LAMBDA 365的双光束技术是理想的解决方案。超大的样品仓可以轻松的容纳10多个采样附件组合。易于安装的附件减少了设置时间,并且多联池转换器能够通过仪器软件自动校正,以此来优化样品的位置,对于一些常规的应用获得较好的结果,包括工厂和制药行业QA/QC测试、环境测试、学术领域等等。
    留言咨询
  • 仪器简介:Lambda 650/850/950紫外/可见/近红外分光光度计是PERKINELMER公司在集多年先进经验制造的,代表了目前世界此类仪器高水平的双光束、双单色器系统比率式紫外/可见/近红外分光光度计。 波长范围:Lambda 650为190~900nm, Lambda 850为175~900nm,Lambda 900为175~3300nm,;整机及光学系统采用宇航技术的硬件:整个光学系统均采用涂覆SiO2的全息刻线光栅(紫外/可见刻线数为1440条/mm,近红外360条/mm);采用先进的四区分段的扇形信号收集的斩波器,确保了每次得到准确样品和参比的信号(斩波器运转期间,样品和参比的信号分别单独被各自的黑区信号所校正,波长精度高:紫外/可见区0.08nm); 采用预校准并可自动切换的碘钨灯与氕灯;在整个紫外/可见区采用高灵敏度光电倍增管;宽大的样品仓:可放入各种附件并将光路调整至佳,可选附件多(如积分球、固定/可变角的相对/绝对镜反射附件等),稳定性好、基线平直度度、杂散光低。仪器极其稳定、经久耐用。线性范围宽:8A;多种软件可选:UV Winlab操作软件包(标准配置,包括酶动力学KinLab及生化方法BioLab)、ASSP高级软件包(包括色度、滤光片、建筑玻璃、防护玻璃、数学运算及数据库等的模块功能)。主要特点:1、主机: 双光束、双单色器、比例记录并由计算机控制的紫外/可见(/近红外)分光光度计。 2、光学系统: 整个光学系统全部采用涂有SiO2保护层的反射光学元件,全息刻线光栅刻线密度高(紫外/可见为1440条/mm,近红外360条/mm);采用先进的四区分段的扇形信号收集的斩波器,确保了每次得到准确样品和参比的信号(斩波器运转期间,样品和参比的信号分别单独被各自的黑区信号所校正,波长精度高:紫外/可见区0.08nm); 先进的四区分段的扇形信号收集的斩波器:即扇形信号校正技术(CSSC) 数据采集顺序为:样品/黑区/参比/黑区 3、仪器的标准波长范围宽: Lambda 650: 190~900nm Lambda 850: 175~900nm(185nm以下需氮气吹扫) Lambda 950: 175~3300nm(185nm以下需氮气吹扫) 4、仪器的线性范围宽: 紫外/可见区:8 A (Lambda 850/950) 6 A (Lambda 650) (仪器的线性范围由仪器的杂散光大小决定,相同的杂散光决定了相同的线性范围!) 从而允许用户在所要求和需要的精度下进行低透射和反射样品的测量 5、仪器的标准配置功能强大: 通过软件控制的光束遮挡器使小样品的测试绝无问题;不用平滑原始数据即可得到好的信噪比(高性能的光电倍增管R6872型比R928型的灵敏度高4倍; 6、提供整个产品的解决方案: 可适合各种尺寸的样品──大样品采用万能光学台(GPOB)进行测量; 为用户提供技术解决方案──常规分析的能力,Q-COM(快速光学台模式变换) 的概念(迅速更换与安装各种附件:如积分球、反 射附件、万能光学台…… 万能光学台(GPOB) Q-COM概念(快速光学台模式变换) 可选的检测器可满足用户对于散射和浑浊样品测试的特殊需求──对于难测的样品可提供积分球的检测器; 为用户提供软件的解决方案:UV WinLab软件功能强大,可提供专家模式(Expert mode)运行仪器,为用户提供优的仪器参数(实验条件)还可提供特殊应用的数学运算、色度、建筑玻璃、防护玻璃、滤光片及数据库等的软件(高级光谱软件工具包ASSP); 7、可提供的附件全: 漫反射附件:60mm/150mm积分球、小样品点双锥型(漫反射)附件; 150mm积分球 直径1.5~2mm的小样品测试(如宝石) 收集球:60mm积分球,可与镜反射附件和大角度透射测量时采用; 镜反射附件:除常用的一系列固定角度与可变角绝对/相对镜反射附件外,新推出了: 通用反射和透射测量附件URA 可在8~70度的角度内,185~3200 nm计算机软件多角度反射一次设定,自动控制连续变角度“空白-样品-空白-样品”循环,可对材料进行绝对和相对镜面反射的测量。样品尺寸无限制!也可进行透射模式的测定。 URA独有的硬件与软件 定向的相对镜反射/透射附件(可在1~80度的正负角度对材料进行透射或反射模式的高精度测量,包括起偏器及两个反射标准镜); 绝对定向的VW型镜反射附件(可在8~80度的正负角度对镜材料进行透射或反射模式的高精度测量,包括激光准直及起偏器及两个反射标准镜); 双光栏附件(可校正检测器的非线性误差,从而提高仪器的线性范围及光度计精度); 起偏(振)器和消偏(振)器: 万能光学台(GPOB):首创的多功能样品台,用于大样品或成品的测试(如大的激光晶体、望远镜透镜、照相机镜头、汽车玻璃等) 光纤附件: 用于滤光片及半导体晶片的大型测量工具 蠕动泵吸液器 多池支架 线性传输和凝胶(薄膜、滤光片)扫描附件(可选配与之配套的狭缝调节附件,用于改变样品与参比光束的大小) 8、应用领域极广: 光学、涂层、色度、材料、玻璃、生物技术、药物、交通、通讯友情提示:根据型号及配置不同,仪器价格会有不同,欲了解详情请与我司联系。
    留言咨询
  • 材料在紫外辐射下的响应引起了越来越多的兴趣,这归结于很多原因。紫外固化的方法可以降低从涂层中挥发出来的挥发性有机化合物(VOC)的量,另外,有些材料会在紫外光照射下发生分解,而了解这种转变也是至关重要的。PerkinElmer是唯一一家能够提供双炉体、功率补偿型或单炉体、热流型等不同的DSC与紫外联用技术的公司。您可以选择最能买足实验室需求的仪器——研究型实验室可以选择最先进的具有等温控制技术DSC,而价格更实惠的DSC则更适合于企业质量控制实验室。双炉体联用DSC 8000和DSC 8500都是具有独特量热技术的双炉体仪器, 升降温速率可达到750℃/min,同样具有优异的等温性能。对于存在光照影响的量热研究来说,这意味着可以很好的控制光源和反应产生的热, 使样品处于真实的等温状态,有利于精确的动力学研究。 单炉体联用对于质量控制和反应监控来说,不需要非常精确的等温控制,因此价格实惠的热流型或单炉体DSC更适用于这类实验室。DSC 4000可以提供优异的结果。与DSC仪器连接的紫外附件需要双重光管或光纤光缆,可以单独调节每个光管的位置。结合可变光圈的紫外光源,可以非常灵活的调节照射在炉体、样品或传感器上的光强度, 来降低紫外光造成的干扰。下图为一种牙科修复材料在三种不同强度的紫外光下固化的实验结果,根据数据可以计算出样品的固化动力学并选择最优的固化条件。
    留言咨询
  • 拉曼电镜光谱联用技术产品简介扫描电子显微镜(SEM)是一种介于透射电子显微镜和光学显微镜之间的一种观察手段。其利用聚焦的很窄的高能电子束来扫描样品,实现对物质微观形貌表征的目的。具有景深大、分辨率高,成像直观、立体感强、放大倍数范围宽以及待测样品在三维空间内进行旋转和倾斜等特点。拉曼技术在分子级别上提供样品的化学结构、组分信息;而 SEM 可在纳米尺度上提供高空间分辨率的形貌图像;SEM 与拉曼光谱技术相结合,使用 SEM 观察样品形貌,并可获取指定样品点的拉曼光谱信息,同步获取样品材料表面形貌、分子结构与化学组分等信息。典型应用RTS- SEMR 拉曼电镜光谱系统北京卓立汉光仪器有限公司全新推出的 RTS- SEMR 拉曼电镜光谱系统集成场发射扫描电镜与拉曼光谱系统于一体,是一款真正意义上实现国产拉曼光谱与扫描电镜联用的设备。拉曼电镜通过快速、精确、高性能的拉曼分析,弥补了能谱仪、波谱仪等传统电镜附件无法实现的分子结构与成分观察。尤其是针对有机结构、碳结构、同分异构体、晶体与无机相等多领域材料的信息表征,扩展了传统扫描电子显微镜的分析应用领域,例如矿物鉴别、高分子与制药行业、锂电行业、医工交叉行业等,应用前景广阔。北京卓立汉光仪器有限公司推出的扫描电镜-拉曼光谱联用装置采用“离轴”模式设计理念。“离轴”模式扫描电镜的电子束与拉曼光谱的激光束不同轴,通过移动样品台分别进行扫描电镜-能谱分析和显微拉曼光谱分析,原位获取样品指定位置的形貌信息和化学成分信息。系统架构RTS- SEMR 拉曼电镜光谱系统,电镜拥有大视野及纳米级分辨率,是一个优秀的样品微观形貌分析平台,系统耦合拉曼共聚焦光路进入真空样品仓,实现了样品在电子束和激光束之间的快速切换,在满足样品表征观察的同时,也能够实现纳米级分辨率的化学成分和空间结构分析,充分发挥扫描电镜与拉曼两者的应用优势。拉曼集成扫描电子显微镜采用平行双束方案,搭载高精度复合位移台可实现样品在拉曼光轴和电子束光轴之间快速、精确、稳定的切换,拉曼扫描范围高达 2.5 mm。独特的系统及产品设计保证了操作性、易用性、普适性,用户可在电镜中寻找感兴趣的材料特征,得到高分辨的扫描结果后,一键切换至拉曼光路下进行该区域的快速/高精度的光谱扫描,随后得到高匹配程度的拉曼渲染联用效果。拉曼渲染结果的像素与光谱数据对应关系可通过软件程序直接提取,提供进行便捷的结果解析。拉曼光谱集成方案提供了多种配置供用户选择,例如激光波长、光谱仪焦长、光栅密度、物镜等光学核心配置,充分满足应用及市场的需求。扫描式电子显微镜系统配置多种类型探测器,可实现二次电子和背散射电子同时成像,兼容多种应用模式,可覆盖生命科学、材料科学、地质科学等多学科科研应用场景。标配五轴高精度运动平台及自主设计样品载台,可实现多个钉台同时放样或单一大尺寸样品观测。性能优势典型参数卓立汉光提供专业的免费测样服务,需求即达,欢迎洽谈!
    留言咨询
  • LAMBDA 850+延续了LAMBDA家族平台经典设计,提供更快的扫描速度、更高的分辨率和灵敏度、更好的光度计精度和稳定性,在整个光谱范围内获得优异的测试性能。为达到高程度的自动化,将一些基本的检测附件,如样品光束衰减器、起偏器和消偏器、光束遮挡器,均可在测试分析方法中直接选择,全部软件控制。完整的表征您的产品光学性能,珀金埃尔默公司给您提供全面的光学应用与测试解决方案。LAMBDA 850+配置尖端水平的R6872无格栅PMT增管检测器,是一款专为在紫外/可见波段有高精度测试要求的用户度身定制的仪器,并有特别为专用积分球用户设置的配置。在175nm ~900 nm波段内具有优异的灵敏度,波长精度可以达到0.08nm。该仪器还可以配备一系列可控而且灵活的采样附件,包括:&bull 大体积双样品舱&bull 通用反射附件&bull 插入式积分球&bull 万能光学平台典型应用领域化妆品和防晒产品产品外观与紫外线防护能力是消费者购买时重点考虑的问题。光谱测试对于了解SPF指数、确定材料的真实颜色等是非常关键的。平板显示器在多个方面的显示性能提升需求是持续存在的。颜色、亮度、视角以及能耗都是非常重要的。光谱测试对于显示器整体性能提升是必需的。油墨,染料,颜料,涂料随着数码摄影的爆炸式增长,能够反映真实色彩而且不易褪色的油墨和染料的研制是必需的。这些材料都需要准确的光谱测试。眼镜近视眼镜、太阳眼镜和隐性眼镜的透光性能是至关重要的光学参数。配置150mm积分球是针对这一分析领域的不二之选,并具备极高性价比。特殊要求的测试应用珀金埃尔默为LAMBDA系列高性能紫外/可见分光光度计专门开发了Opthalmo meter附件(图1),该附件为LAMBDA系列高性能紫外/可见分光光度计独有的Q-COM快速可拔插切换光学台模块式附件(图1),同时,附件包含了定制的符合标准规定的可装满盐溶液和接触镜片的湿式多样品架和积分球,可以自动、快速地进行大批量合规样品测试。针对样品量不大,但预算有限的用户,参照Opthalmo meter附件的设计和国标的要求,珀金埃尔默公司同时开发了在150mm积分球上加装接触镜测试套件的测试方案(图2),该方案使用垂直放置的湿式单样品池,便于样品量不大,或者有通用性测试需求的用户灵活地测试单个样品。通过配备的UV WinLab软件,可直接一步得到符合标准要求的光透过率、平均透过率以及校正后的透过率等各项参数。LAMBDA独特附件设计150mm 积分球光学聚四氟乙烯涂层,涂层在可见区的反射率优于99%,长期使用不发黄变性,光学性能稳定;内径150mm.包含光阱,可直接测量漫反射和剩余反射;150mm积分球为ASTM和国际CIE推荐色度测量时采用附件。与150mm积分球配套的聚焦附件小样品聚焦附件可以把光束聚焦到1mm左右,大大提高小样品的透过、反射和吸收的测试准确度。6? 度角镜面反射附件6度角镜面反射附件俗称“剩余反射附件”,是防反膜测试的利器。通用反射附件作为绝对反射率高灵敏度测试的一个突破,通过自动改变样品角度,我们独特的,专利设计的通用反射附件(URA)极大地改善了传统的测试方法。以前,多角度测试需要使用多个附件和很多手动调整。现在,鼠标单击即可预先设置测试角度,通用反射附件可以自动完成所有调整。此外,样品放置在水平采样板上,避免了垂直夹放可能造成的破坏。两个大体积样品舱加倍灵活,加倍简便。所有LAMBDA系列仪器都可以配置两个样品舱,而且是业内体积最大的样品舱。基础样品舱用于一系列标准反射与透射附件和偏振测试,而第二个样品舱可以配置用于各种智能采样附件或模块,包括积分球、通用反射附件或者透射光学组件。仅仅需要几秒钟的时间,LAMBDA 850+就可以从标准大体积样品舱模式切换到积分球、通用反射附件或者万能光学平台。
    留言咨询
  • 仪器简介: Lambda 950紫外/可见/近红外分光光度计是PERKINELMER公司在集多年先进经验制造的,代表了目前世界此类仪器最高水平的双光束、双单色器系统比率式紫外/可见/近红外分光光度计。 波长范围: Lambda 950为175~3300nm,;整机及光学系统采用宇航技术的硬件:整个光学系统均采用涂覆SiO2的全息刻线光栅(紫外/可见刻线数为1440条/mm,近红外360条/mm);采用最先进的四区分段的扇形信号收集的斩波器,确保了每次得到最准确样品和参比的信号(斩波器运转期间,样品和参比的信号分别单独被各自的黑区信号所校正,波长精度最高:紫外/可见区0.08nm); 采用预校准并可自动切换的碘钨灯与氕灯;在整个紫外/可见区采用高灵敏度光电倍增管;宽大的样品仓:可放入各种附件并将光路调整至最佳,可选附件最多(如积分球、固定/可变角的相对/绝对镜反射附件等),稳定性好、基线平直度度、杂散光低。仪器极其稳定、经久耐用。线性范围宽:8A;多种软件可选:UV Winlab操作软件包(标准配置,包括酶动力学KinLab及生化方法BioLab)、ASSP高级软件包(包括色度、滤光片、建筑玻璃、防护玻璃、数学运算及数据库等的模块功能)。 主要特点: 1、主机: 双光束、双单色器、比例记录并由计算机控制的紫外/可见(/近红外)分光光度计。 2、光学系统: 整个光学系统全部采用涂有SiO2保护层的反射光学元件,全息刻线光栅刻线密度最高(紫外/可见为1440条/mm,近红外360条/mm);采用最先进的四区分段的扇形信号收集的斩波器,确保了每次得到最准确样品和参比的信号(斩波器运转期间,样品和参比的信号分别单独被各自的黑区信号所校正,波长精度最高:紫外/可见区0.08nm); 最先进的四区分段的扇形信号收集的斩波器:即扇形信号校正技术(CSSC) 数据采集顺序为:样品/黑区/参比/黑区 3、仪器的标准波长范围宽: Lambda 950: 175~3300nm(185nm以下需氮气吹扫) 4、仪器的线性范围宽: 紫外/可见区:8 A (Lambda 950) (仪器的线性范围由仪器的杂散光大小决定,相同的杂散光决定了相同的线性范围!) 从而允许用户在所要求和需要的精度下进行低透射和反射样品的测量 5、仪器的标准配置功能强大: 通过软件控制的光束遮挡器使小样品的测试绝无问题; 软件控制的参比及样品光束衰减器使仪器&ldquo 几乎能测到样品的最后一个光子&rdquo (不增加费用、不占用样品仓的空间); 不用平滑原始数据即可得到最佳的信噪比(高性能的光电倍增管R6872型比R928型的灵敏度高4倍; 6、提供整个产品的解决方案: 可适合各种尺寸的样品──大样品采用万能光学台(GPOB)进行测量; 为用户提供技术解决方案──常规分析的能力,Q-COM(快速光学台模式变换) 的概念(迅速更换与安装各种附件:如积分球、反 射附件、万能光学台&hellip &hellip 万能光学台(GPOB) Q-COM概念(快速光学台模式变换) 可选的检测器可满足用户对于散射和浑浊样品测试的特殊需求──对于难测的样品可提供积分球的检测器; 为用户提供软件的解决方案:UV WinLab软件功能强大,可提供专家模式(Expert mode)运行仪器,为用户提供最优的仪器参数(实验条件)还可提供特殊应用的数学运算、色度、建筑玻璃、防护玻璃、滤光片及数据库等的软件(高级光谱软件工具包ASSP); 7、可提供的附件最全: 漫反射附件:60mm/150mm积分球、小样品点双锥型(漫反射)附件; 150mm积分球 直径1.5~2mm的小样品测试(如宝石) 收集球:60mm积分球,可与镜反射附件和大角度透射测量时采用; 镜反射附件:除常用的一系列固定角度与可变角绝对/相对镜反射附件外,独家最新推出了: 通用反射和透射测量附件URA 世界上独家可在8~70度的角度内,185~3200 nm计算机软件多角度反射一次设定,自动控制连续变角度&ldquo 空白-样品-空白-样品&rdquo 循环,可对材料进行绝对和相对镜面反射的测量。样品尺寸无限制!也可进行透射模式的测定。 URA独有的硬件与软件 定向的相对镜反射/透射附件(可在1~80度的正负角度对材料进行透射或反射模式的高精度测量,包括起偏器及两个反射标准镜); 绝对定向的VW型镜反射附件(可在8~80度的正负角度对镜材料进行透射或反射模式的高精度测量,包括激光准直及起偏器及两个反射标准镜); 双光栏附件(可校正检测器的非线性误差,从而提高仪器的线性范围及光度计精度); 起偏(振)器和消偏(振)器: 万能光学台(GPOB):首创的多功能样品台,用于大样品或成品的测试(如大的激光晶体、望远镜透镜、照相机镜头、汽车玻璃等) 光纤附件: 用于滤光片及半导体晶片的大型测量工具 蠕动泵吸液器 多池支架 线性传输和凝胶(薄膜、滤光片)扫描附件(可选配与之配套的狭缝调节附件,用于改变样品与参比光束的大小) 8、应用领域极广: 光学、涂层、色度、材料、玻璃、生物技术、药物、交通、通讯 友情提示:根据型号及配置不同,仪器价格会有不同,欲了解详情请与我司联系。
    留言咨询
  • Molecular Vista原子力微镜与可见-红外-拉曼联用系统 ——10nm以下空间分辨可见-红外-拉曼成像与光谱采集原子力显微镜(Atomic Force Microscope, AFM)经过30多年的发展后,从形貌测试及其它常规功能来看已经非常成熟。然而常规的原子力显微镜也越来越无法满足科研人员在纳米尺度下对于样品进行多性质原位测试分析的更高需求,尤其在化学、光学、电学、热学、力学等领域。在这一背景下,美国Molecular Vista应运而生,推出了全新一代原子力显微镜VistaScope!在具备所有常规原子力显微镜功能的条件下,基于专利的光诱导力显微镜(Photo-induced Force Microscope, PiFM)技术,结合波长可调的可见-红外光源,从而实现10nm以下空间分辨可见~红外成像与光谱采集,无需远场光学接收器及光谱仪。此外,VistaScope原子力显微镜还可以与各类拉曼光谱仪进行联用,组成目前市场上功能最为强大的原子力显微镜与可见-红外-拉曼联用系统,以满足科研人员在纳米尺度下的各种测试需求。VistaScope原子力显微镜具备如下功能:NanoIR 纳米红外成像与光谱光诱导力显微镜突破性的采用检测探针与样品之间的偶极交互(dipole interaction),使其不受到样品横向热膨胀对于空间分辨率带来的负面影响。因此,基于光诱导力显微镜的纳米红外能真正意义上的实现10nm以下空间分辨纳米红外成像!下图为PS-PMMA嵌段共聚物纳米红外成像与光谱案例,红色和绿色分别代表PMMA与PS的分布情况。摘自“Nanoscale chemical imaging by photoinduced force microscopy,Sci. Adv. 2016”基于光诱导力显微镜的纳米红外不仅适合有机高分子材料,也适合无机材料。下图为不同Si/Al比的ZSM-5沸石分子筛的纳米红外骨架振动峰在1100cm-1处的蓝移及劈裂情况,以及通过碳氢化合物在1480cm-1的C=C伸缩振动峰来反映ZSM-5参与甲醇制碳氢化合物(MTH)催化反应后结焦的分布情况。摘自“Nanoscale infrared imaging of zeolites using photoinduced force microscopy,作者Chem”纳米可见吸收成像与光谱NanoVis 偶极交互的检测原理使得光诱导力显微镜不仅能在中红外波段下工作,也可以很好在可见~近红外波段性下进行成像及光谱采集。下图为6-TAMRA荧光染料在不同波长下的可见吸收成像与光谱,黑色箭头所指处的染料颗粒尺寸小于10nm,达到了单分子成像的水平。摘自“Image force microscopy of molecular resonance: A microscope principle, Appl. Phys. Lett. 2010”下图为二硫化钼在不同波长下的可见吸收成像与光谱样品结果来自“Stanford University & University of British Columbia”AFM-Raman 原子力-拉曼联用系统VistaScope原子力显微镜具有正置-倒置光路一体化的设计,可以将激发光从顶部,侧面以及底部激发至样品以适应透明和不透明的样品或使激发在针尖上的光束具有合适的偏振方向从而进一步增强拉曼信号。MVI提供高速高通量的Vista-Raman光谱仪与VistaScope原子力显微镜进行联用,其也可以和其他拉曼光谱仪进行联用。下图为VistaScope联合Vista-Raman对载玻片上碳纳米管的针尖增强拉曼成像(Tip Enhanced Raman Spectroscopy,TERS)。拉曼信号的增强主要源于局域表面等离子体共振(LSPR)的电磁场增强。光诱导力显微镜可以直接表征样品表面的场强分布,通过场强表征结果可以找到高场强进行针尖增强拉曼成像。下图为在光诱导力显微镜对于镀金衬底上亮甲酚蓝(BCB)场强表征,可以看到高场强(亮)和低场强(暗)所得到拉曼光谱信号的强弱对比。s-SNOM 散射式扫描近场光学显微镜有别于传统的扫描近场光学显微镜,光诱导力显微镜采用检测探针与样品之间的偶极交互直接获得样品表面的场强分布,无需远场光学探测器。这不仅杜绝了远场信号的干扰,也无需像SNOM那样配置多个不同波段光学探测器。光诱导力显微镜的检测端可无缝适应紫外~射频,用户仅需考虑如何将激发光激发至样品。同时,MVI也提供散射式扫描近场光学显微镜(s-SNOM)功能,用于光学相位的测量,作为场强测量的补充。下图为金铝二聚体分别在480nm和633nm不同偏振方向激发后的场强分布,图a,b的实测场强与图c,d的理论模拟是否吻合,金铝二聚体间隔仅为5nm!摘自“Wavelength-dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers, Nano Lett. 2018”上面提到拉曼信号的增强主要源于局域表面等离子体共振(LSPR)的电磁场增强,下图为基于银颗粒阵列的表面增强拉曼衬底(SERS)的场强分布,图f的FWHM结果显示光诱导力显微镜实现了3.1nm的空间分辨。摘自“Fabrication and near-field visualization of a waferscale dense plasmonic nanostructured array, RSC Adv. 2018”More Intergration 与其他光学-光谱技术联用VistaScope原子力显微镜还能与其他多种光学-光谱技术联用。例如,非线性-时间分辨-泵浦-探测-超快光谱,光致发光光谱(荧光光谱与磷光光谱),单分子荧光成像,共聚焦成像等。下图为VistaScope原子力显微镜结合飞秒激光器在光诱导力显微镜模式下,以809nm为泵浦光,605nm探测光对于单个萘酞菁硅(SiNc)纳米团簇分子的时间分辨瞬态吸收成像的表征。摘自“Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy, Acc. Chem. Res. 2015”下图为VistaScope原子力显微镜-光诱导力显微镜与荧光光谱对于二硫化钼原位表征结果Multi-frequency AFM 多频原子力显微镜VistaScope原子力显微镜采用了全新的多频模式,在具备所有常规原子力显微镜功能的条件下,也将性能提升到了全新的高度。相比于常规的单频原子力显微镜,多频原子力显微镜拥有更高的空间分辨率与灵敏度。下图为VistaScope在各种AFM模式下的成像结果。
    留言咨询
  • 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会发生透射,而一小部分则按不同的角度散射开来,产生散射。除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的长度直接与试样分子振动或转动能级有关,因此可以得到有关分子振动或转动的信息。便携式拉曼联用仪集成Raman与XRF技术于一体,操作简单,具有高分析速度、制备简单/无需制样、测定时间短等特点,适用于现场快速检测!仪器打破常规,从有机和无机的两个角度、分子光谱和原子光谱两个维度对样品进行检测,Raman主要分析物质分子结构表征;XRF则是一种物质的元素种类及含量的分析技术,两种技术联用互补,可有效提高鉴定的可靠性。两种技术联用互补,为监督执法机关、检测机构和食药品相关企业提供一种新型光谱联用角度和方法。使用优势分析光谱和原子光谱集合分析仪器集成Raman和XRF技术,从有机和无机的两个角度、分子光谱和原子光谱两个维度对样品进行检测,两种技术联用互补,可有效提高鉴定的可靠性。XRF可以通过各元素的种类和含量的不同对样品进行区分,实现样品的初筛;拉曼光谱可以根据谱图中的特征峰推断样品的分子结构,并且可以根据峰位对样品进行定性。六位自动进样台仪器配备自动进样器,自动进样模式取代了传统手动模式,可一次性分析6件样品,实现无人值守分析,大大提高了现场执法检测的工作效率。内置收纳式工业级显示屏工业级彩色触摸屏,操作界面简单、直观,具有更优异的背光性能,防水性能,在强光下或者戴手套也可以操作,轻松应对各种执法现场环境。封闭式样品仓具有专业的多重防护辐射处理(样品仓辐射屏蔽措施、安全联动装置),测量时仪器全方位无任何辐射泄露。封闭式样品仓可有效避免可见光、荧光对拉曼光谱带来的背景信号影响,提高峰背比,提升分析精度。一站式分析系统食品、药品、化妆品等一站式分析,大大节约执法成本,工作人员只需要熟悉一个分析系统,即可全域管控,避免了不同生产厂商不同分析软件带来的“孤岛效应”。模块化升级可根据执法情况升级应用模式功能,如根据药品包装中的元素含量、药品分子结构等具有指纹性特征的信息来溯源药品的产线工艺、生产成分、包装生产信息。固定的样品装载结构相比于手持式的光谱仪,PeDXRAMAN固定的样品装载结构,无需手动对焦,避免了人员给测试结果带来干扰,保证了光路的稳定性和检测结果的准确性和复验性。内置5G数据云服务模块仪器配备可同步控制的执法APP,APP可对检测信息进行传输和管理,轻松实验系统数据共享互联。领导可对系统内执法情况一览无遗,快速了解检测情况。应用场景药品真伪鉴别成品汽柴油硫含量分析牙膏中的元素含量化肥成分检测易制毒化学品监管农药残留精神药品监管 化妆品监管食品添加剂医疗器械监管 保健品非法添加剂 规格参数操作系统Android激光波长785 ± 0.5nm激光功率 0-500mW,可调拉曼频移范围200 - 3000cm-1分辨率<6cm-1XRF能量分辨率145eVXRF检测范围Mg(镁)—U(铀)X射线管靶材W/Ag/Rh靶材(可选配)X射线管电压50kV/200μA上限,管压管流可自由调节触摸屏5 .7英寸尺寸200 x 200x 268mm(L×W×H)重量4.9KG通信接口4G、WIFI、USB、Bluetooth信噪比3000:1数据库最高超过2万种物质数据库电源 锂电池、可实时监控剩余容量 独立供电可支持4-6小时工作时间 符合航空危险品运输条例系统处理器基于i.mx6 Quad 四核Cortex-A9处理器专用分析级操作系统 80MHz ADC数字脉冲处理器4096 MCA通道,32G存储器操作温度-20 – 50℃工作环境湿度 0%—95%RH
    留言咨询
  • 日本JASCO 红外拉曼联用光谱仪 RFT-6000该系统是将拉曼的分光系统应用于FT/IR-6000 系列主机,通过切换器实现对红外光谱和拉曼光谱的测量。拉曼分光系统由YAG激光和拉曼聚光器构成。考虑到实际的操作性和性能,样品仓采用了纵型设计。
    留言咨询
  • 紫外共振拉曼光谱系统--UVRaman100 新一代紫外共振拉曼光谱仪中国科学院大连化学物理研究所中国科学院李灿院士及其研究小组自行研制了我国第一台紫外共振拉曼三联光谱仪,获得中国科学院发明二等奖、国家发明二等奖。并于2008年4月8日,和北京卓立汉光仪器有限公司共同组建“现代仪器联合实验室”,强强联手,迈出了研究成果向产品转化的重要一步。紫外共振拉曼系统简述共振拉曼或紫外共振光谱系统组成主要是:1、激光器部分:紫外或可见光激光器,紫外可调谐窄线宽激光器。2、光谱仪部分:三联单色仪+高灵敏度科学级CCD。3、信号采集部分:高效率光谱采集组件。共振拉曼或紫外共振拉曼的优点是: ◆ 合适的紫外激光激发可以完全避免荧光本底的干扰。◆ 由于拉曼信号强度正比于激发激光频率的四次方,紫外激光激发拉曼信号效率更高。(同等功率266nm激光可激发出比532nm激光高16倍的拉曼信号)。◆ 共振拉曼可以提供很高的共振增强因子,(理论极限可达106倍)从而大幅度提升检测极限。◆ 可以实现选择性激发,当我们把激光器调谐到某物质激发峰上时,可以只对此特定物质实现共振增强提升几个数量级的信号强度,其他物质由于几乎没有共振增强,可以进一步提升信噪比,这一点对于催化和生物研究非常有利。◆ 由于采用的是三联单色仪滤除瑞利散射,而非陷波滤波器,设备可以测试地低到到几个波数的拉曼光谱。设备详细指标与参数1、激光器部分:◆ 325nm HeCd激光器:325nm TEM00 mode 激光功率30mW-50mW输出备选◆ 244nm倍频可调谐氩离子激光器: 244nm TEM00 mode 激光功率24mW 另有229,238,248,250,257,264nm输出谱线◆ 532nm 绿光DPSS激光器:TEM00 mode,激光功率20-100mW备选◆ 窄线宽可调谐掺钛蓝宝石激光器:可调谐范围输出平均功率单个晶体可调谐范围基频700-960nm1W100nm二倍频350-480nm90-500mW50nm三倍频233-320nm20-250mW33nm四倍频193-240nm5-100mW25nm光谱线宽0.1cm-1功率稳定度3% rms注:如须覆盖整个光谱波段需要更换晶体Tips: 共振增强并不是是在一个特定的波长上急剧开始,而是存在着一个波长范围。实际上,即使激发激光的波长处于分子电子跃迁波长之下几百个波数的时候就可以看到5到10倍的增强作用。这个“前共振”增强作用在实验上是非常有用的。我们往往可以采用相对比较便宜的激光器,比如325nm的氦铬激光器,可调谐倍频氩离子激光器虽然不是连续可调谐,也可以达到一定程度的共振增强效应。当然,为了求得最高的增强因子,我们需要一种波长连续可调谐且光谱线宽很窄的的紫外激光器,比如窄线宽可调谐掺钛蓝宝石激光器激光器。2、紫外共振拉曼光谱仪部分A.光谱仪:◆ 光谱仪焦距:500mm ;f/6.5◆ 光栅尺寸:68mm×68mm or 68mm×84mm◆ 扫描最小步长:好于0.005nm◆ 镜片反射率:紫外和可见区的镜子的反射率达到90%B.相减模式拉曼光谱采集◆ 分辨率: 4.0 cm-1 (紫外区), 3.0 cm-1 (可见区)◆ 波数范围:50-4000 cm-1 (紫外区), 25-4000 cm-1 (可见区)C.光谱探测器CCD或EMCCD光谱CCD光谱CCD光谱EMCCD像素数1024×2562048×5121600×400像素尺寸 um26×2613.5×13.516×16成像面积 mm26.6×6.727.6×6.925.6×6.4最低制冷温度 oC-100-100-100电子增益NANA1-1000应用方向:● 催化研究● 生物化学,生命科学● 材料学,高分子科学● 纳米科学● 半导体,光电材料附录:附录1.紫外拉曼与共振拉曼原理与应用简述荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300 nm-700 nm区域,或者更长波长区域。而在紫外区的某个波长以下,荧光极少出现。 因此,对于许多在可见拉曼光谱中存在强荧光干扰的物质,例如氧化物、积碳等,通过利用紫外拉曼光谱技术就可以成功的避开荧光从而得到信噪比较高的拉曼谱图。从下图磷酸铝分子筛ALPO-5 示例可以看出,紫外共振拉曼光谱技术由于能避开荧光,可以成功用于微孔和介孔分子筛材料的表征。紫外拉曼光谱技术的另一个突出特点是,拉曼信号可以通过共振拉曼信号得到增强。共振拉曼效应可以从拉曼散射截面公式得到解释:根据Kramers-Heisenberg-Dirac 散射公式: 在公式 (1)中,ωri 是初始态i到激发态r的能量差频率,ωL是入射激光频率。当激发光源频率靠近电子吸收带时,第一项分母趋近于零,因而其散射截面异常增大, 导致某些特定的拉曼散射强度增加104~106 倍。共振拉曼光谱的谱峰强度随着激发线的不同而呈现出与普通拉曼不同的变化。将紫外共振拉曼用于表征多组份体系时,可以选择性的激发某些组分相应的信息,从而使与这些组分相关的拉曼信号大大增强,得到共振拉曼光谱这种共振增强或者共振拉曼效应是非常有用的一个技术,它不仅可以极大的降低拉曼测量的探测极限,而且还可以引入到电子选择上面。这样,如果我们使用共振拉曼技术来研究样品,不仅可以看到它的结构特征,而且还可以得到它的电子结构信息。金属卟啉,类胡萝卜素以及其他一系列生物重要分子的电子能级之间跃迁能量差都处在可见光范围之内,这使得它们成了共振拉曼光谱的理想研究材料。共振选择技术还有一个非常实际的应用。那就是二分之一载色体的光谱由于这种共振作用会得到增强,而它周围的环境则不会。对于生物染色体来说这就意味着,我们使用可见光即可特定的探测到有源吸收中心,而它们周围的蛋白质阵列则不会探测产生影响(这是因为这些蛋白质需要紫外光才能使其产生共振增强作用)。共振拉曼光谱在化学上探测金属中心合成物,富勒分子,联乙醯以及其他的稀有分子上也是一种重要的技术,因为这些材料对于可见光都有着很强的吸收。其他更多的分子吸收光谱由于处于紫外,所以需要紫外激光进行共振激发,我们就称之为紫外共振拉曼(UlraViolet Resonance Raman Spectroscopy) 紫外共振拉曼光谱技术是研究催化和复杂生物系统中分子分析的一个重要工具。大多数的生物系统都吸收紫外辐射,所以它们都能提供紫外的共振拉曼增强。这样高的共振拉曼共振选择效应使得象蛋白质和DNA等重要生物目标的拉曼光谱得到极大增强,而其他物质则不会,非常便于目标确认及分析。例如,200nm的激励光能够增强氨基化合物的振动峰;而220nm的激励光则可以增强特定的芳香族残留物的振动峰。水中的拉曼散射非常弱,这个技术使得与水有关的微弱系统的拉曼分析也变成了可能。附录2:实验举例◆ 微孔-介孔材料骨架中超低含量的孤立的过渡金属离子(例如Ti-MCM-41)能够通过紫外共振拉曼光谱可靠、准确地鉴别出来。 ◆ 利用紫外拉曼避开荧光和增加灵敏度的特点,可以对分子筛合成过程中的合成前体、中间物以及分子筛晶体的演化过程进行研究。◆ 紫外拉曼光谱可以选择性地得到在紫外区具有强吸收的物质(例如TiO2和ZrO2)的表面相信息。
    留言咨询
  • 光镊拉曼光谱技术产品简介光镊拉曼光谱技术(laser tweezers Raman spectroscopy LTRS)结合光镊与显微拉曼光谱技术,可对单个微纳颗粒或单细胞进行操控与生化分析。常规显微拉曼光谱技术可以获得微米尺度分子结构信息,但是对于悬浮气/液体中微小粒子或细胞样品检测时,由于布朗运动或溶液悬浮等因素,很难对样品进行精准定位与测量。光镊技术可以稳定束缚与操纵微纳颗粒及生物分子,有效实现悬浮微颗粒的精准检测。光镊技术对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤,可穿过气/溶液表层界面检测内部颗粒物信息,同时,光镊捕获的微粒尺度为几十纳米到几十微米,是生物细胞、细胞器、生物大分子以及气溶胶等物质尺度范围。拉曼光谱亦是一种无损伤的分子光谱技术,具有谱峰信息丰富,特异性强等优势,因此,光镊拉曼适用于微纳米尺度的单分子研究领域应用。典型应用系统介绍RTS-LTRS 光镊拉曼光谱系统是北京卓立汉光仪器有限公司全新推出的光镊-拉曼联用系统,该系统结合先进的光镊微控技术与拉曼分子识别分析技术,高度集成、性能稳定、易于操作,能够实现同时控制大量(200 个)目标和高精度的微纳米级颗粒物的分析测量。仪器原理和实现方式光镊技术捕获单个颗粒的基本原理如下图所示。激光通过倒置显微镜形成汇聚光线,高度聚焦的激光会在焦点中心形成一个势能梯度中心,称之为势阱或光阱。透明的球形微粒会被光阱在三维空间中捕获,从而进行操控、排列与微小力的测量。更复杂一点的情况是光折射的梯度力与光散射力以及粒子本身的重力与浮力共同平衡,并在限制粒子的布朗运动后实现 3D 捕获操控。光镊原理:采用 100kHz AOD(声光偏转器)高速分时扫描不同位置,从而形成多个光阱;区别于传统的光镊技术,这种技术可以实现:1. 控制目标更多:可以产生 200 个以上的光阱,同时捕获 200 个以上的目标微粒;2. 控制激光强度:0~100%,可独立控制每个光阱3. 控制光阱移动:轨迹、步长、速度等4. 降低光阱的漂移:光阱间漂移仅 0.05nm/min5. 提高测力精度:更加精确定位光阱坐标6. 降低系统噪音:无机械振动,提高整体稳定性结构介绍RTS-LTRS 光镊拉曼光谱系统有两种结构(如下图所示)。结构一:在标准的 RTS2 的基础上配置具有双层无限远光路的倒置显微镜,上层光路多光阱光镊系统,下层光路为拉曼光路出入口,可内置不同波长激光器,也可外部耦合激光器,拉曼信号通过光纤或者空间光路耦合到光谱仪,光路如下:结构二:在标准的 RTS2 的基础上配置具有双层无限远光路的倒置显微镜,上层光路多光阱光镊系统,拉曼激光从显微镜的侧口进入,拉曼信号原路返回接光谱仪,可内置不同波长激光器,也可外部耦合激光器,拉曼信号通过光纤或者空间光路耦合到光谱仪,光路如下:性能优势标配 320mm 焦长影像校正高通光量光谱仪,高像素深制冷光谱 CCD 相机,可扩展 EMCCD,ICCD,InGaAs 阵列等探测器,扩展系统功能;集成化设计,无外置裸露光学元器件;可以实现不同尺寸的多目标悬浮和自由移动,从纳米尺度至百微米尺度;多目标捕获,水中 200 个以上的不同尺寸目标,空气中不同尺寸液滴阵列的捕获;可 XYZ 三维方向精确控制捕获激光和拉曼激发激光焦点之间的相对位置,测试不同位置拉曼信号;非接触、作用力均匀,不会造成对象机械损伤和污染;可对常见样品及微/纳米颗粒、不规则颗粒及气相中的液滴进行 3D 捕获;系统稳定度更高,测量结果受环境干扰更小;操控更加灵活,光阱移动精度更高;避免视场不同位置光阱刚度的差异;可以进行多目标力学测量。典型参数测试案例光镊数据多目标实时测力,力学测量的分辨率可达约 100fN,精确度约 1pN。拉曼数据拉曼-光镊联用数据测试颗粒:浓度为 0.5M 到 2M 的 NaCl 水溶液发生的气溶胶颗粒气溶胶样品捕获拉曼激光定位激发识别回音壁信号峰位峰位信息导入软件液滴半径与折射率测试结果数据 稳定的环境条件下,在 2 分钟内的连续 25 次测量中,液滴半径为 4359.73±0.55nm,分辨率优于 1nm;折射率为 1.3757±0.0002,波动约 0.015%。
    留言咨询
  • 拉曼-扫描电镜联用系统使您能够在单一系统内全面地原位表征样品性能。雷尼绍结构与化学成分分析仪(SCA)接口使扫描电镜(SEM)具有了inVia的拉曼分析能力。inVia和SCA接口提供了一种SEM内的分析技术,既补充了以光学显微镜为基础的拉曼光谱,又克服了X射线能量散射谱(EDS)作为传统SEM内的分析技术的局限性。采用雷尼绍SEM-拉曼联用系统,您将受益于定位共同点的形貌、元素、化学、物理和电子分析。联用系统优势:原位测量。无需在不同仪器之间移动样品,节约时间,保证正确的分析区域。inVia和SEM可同时作为独立系统使用,而不会影响两者的任何性能。得到丰富的样品信息。使用SEM记录样品的高分辨图像,并进行元素分析。增加拉曼分析样品化学信息的能力,以识别材料和非金属化合物。还可进行光致发光(PL)和阴极射线发光(CL)光谱测试。选择最好的系统:雷尼绍SCA接口具有非常高的普适性,可以配备到您现有的SEM上,基本不需要对SEM进行改装。SCA可以安装到所有主要供应商提供的SEM上,包括:ZeissFEITESCANJEOLHitachi
    留言咨询
  • 详细信息: 将AFM的纳米量级高空间分辨率和拉曼指纹光谱技术耦合起来,实现高空间分辨率下物理特性、化学结构测试。产品特点:● AFM和拉曼同区域成像● 针尖增强拉曼(TERS)● AFM光杠杆反馈激光自动准直● 可同时提供上方、侧向耦合光路,均可使用X100高NA物镜以提高收集效率● 高频扫描头,对环境噪声不敏感AFM-拉曼耦联配置 HORIBA Scientific拉曼技术可与扫描探针显微镜(SPM)进行耦合,构建一个功能强大且灵活的AFM-拉曼平台。研究人员可根据期望的AFM-拉曼工作模式来选择合适的仪器。 所有具备激光扫描技术的配置都可以通过对扫描探针上的激光反射进行快速成像或者根据针尖增强拉曼散射信号对热点进行成像,因而该配置能够准确、可靠地将激光定位到SPM探针针尖上。 高通量的光信号收集和检测硬件保证在快速扫描的同时采集每一点的SPM信号和拉曼光谱。AFM-拉曼和针尖增强拉曼散射(TERS)将您的所有需求集成到一个强大的系统中我们所提供的完美解决方案使用直接光路耦合,对其进行优化以实现高通量。该平台可以把原子力显微镜(AFM)、近场光学技术(SNOM,NSOM)、扫描隧道显微镜(STM)和共焦光学光谱仪(拉曼和荧光成像)耦合到一台多功能的仪器中,以实现针尖增强拉曼散射(TERS)或共点测量。结合纳米成像和化学分析单层、双层和三层石墨烯的共点AFM和拉曼成像● AFM和其他SPM技术可提供分子级别分辨率下的形貌、力学、热能、电磁场和近场光学特性。● 共焦拉曼光谱和成像可提供纳米材料在亚微米空间分辨率下的详细化学信息。● 同步测量的独特平台,有助于您获得可靠且位置高度重合的图像。● 结合高性能和易用性,HORIBA将会根据您所选择的SPM制造商提供一个可靠、全功能的解决方案● 针尖增强拉曼光谱(TERS)的光学、机械和软件都是经过优化设计的,同时有HORIBA在拉曼光谱几十年的经验做技术支持,您可以自信地使用这一技术。一个工具多种可能:AFM-拉曼有助于您提高效率● 快速找到纳米对象 由于纳米材料具有特殊的化学属性,拉曼峰信号较强,因此在光学显微镜下不可见的纳米材料可以通过超快速拉曼成像进行搜索和定位。在找到样品后,我们可以对感兴趣的位置进行形貌、机械、电学和热能分析。● 交叉验证您的数据 拉曼光谱可以证实材料的某些特性,例如前面研究的石墨烯,AFM形貌的对比度较差而难以确定层厚,拉曼则可以从另外一个角度去获得相同的信息,此外拉曼还提供更多有关结构和缺陷的信息,此信息只有具备原子分辨率的AFM才能提供。● 获得感兴趣纳米结构的化学信息 在表征纳米结构时,有时仅获得物理性质是不够的。高分辨的拉曼共焦成像可提供详细的化学成分信息,这是其他SPM传感器无法实现的。● 探索TERS(针尖增强拉曼散射)领域 TERS(或纳米拉曼)可以综合两种技术之优势:可获得空间分辨率低至2nm(一般低至10nm)的化学特异性拉曼光谱成像。该技术可用于表征从纳米管到DNA等各种样品。 多种光学配置HORIBA的AFM-拉曼平台支持多种光学方案: 底部耦联:针对透明样品顶部耦联:针对共点拉曼或倾斜针尖的TERS侧向耦联:测定不透明样品的TERS的最优解决方案可提供多端口和并排配置 注:具体配置、价格请咨询当地销售工程师 注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • 详细信息: 将AFM的纳米量级高空间分辨率和拉曼指纹光谱技术耦合起来,实现高空间分辨率下物理特性、化学结构测试。产品特点:● AFM和拉曼同区域成像● 针尖增强拉曼(TERS)● AFM光杠杆反馈激光自动准直● 可同时提供上方、侧向耦合光路,均可使用X100高NA物镜以提高收集效率● 高频扫描头,对环境噪声不敏感AFM-拉曼耦联配置 HORIBA Scientific拉曼技术可与扫描探针显微镜(SPM)进行耦合,构建一个功能强大且灵活的AFM-拉曼平台。研究人员可根据期望的AFM-拉曼工作模式来选择合适的仪器。 所有具备激光扫描技术的配置都可以通过对扫描探针上的激光反射进行快速成像或者根据针尖增强拉曼散射信号对热点进行成像,因而该配置能够准确、可靠地将激光定位到SPM探针针尖上。 高通量的光信号收集和检测硬件保证在快速扫描的同时采集每一点的SPM信号和拉曼光谱。AFM-拉曼和针尖增强拉曼散射(TERS)将您的所有需求集成到一个强大的系统中 我们所提供的完美解决方案使用直接光路耦合,对其进行优化以实现高通量。该平台可以把原子力显微镜(AFM)、近场光学技术(SNOM,NSOM)、扫描隧道显微镜(STM)和共焦光学光谱仪(拉曼和荧光成像)耦合到一台多功能的仪器中,以实现针尖增强拉曼散射(TERS)或共点测量。结合纳米成像和化学分析单层、双层和三层石墨烯的共点AFM和拉曼成像● AFM和其他SPM技术可提供分子级别分辨率下的形貌、力学、热能、电磁场和近场光学特性。● 共焦拉曼光谱和成像可提供纳米材料在亚微米空间分辨率下的详细化学信息。● 同步测量的独特平台,有助于您获得可靠且位置高度重合的图像。● 结合高性能和易用性,HORIBA将会根据您所选择的SPM制造商提供一个可靠、全功能的解决方案● 针尖增强拉曼光谱(TERS)的光学、机械和软件都是经过优化设计的,同时有HORIBA在拉曼光谱几十年的经验做技术支持,您可以自信地使用这一技术。一个工具多种可能:AFM-拉曼有助于您提高效率● 快速找到纳米对象 由于纳米材料具有特殊的化学属性,拉曼峰信号较强,因此在光学显微镜下不可见的纳米材料可以通过超快速拉曼成像进行搜索和定位。在找到样品后,我们可以对感兴趣的位置进行形貌、机械、电学和热能分析。● 交叉验证您的数据 拉曼光谱可以证实材料的某些特性,例如前面研究的石墨烯,AFM形貌的对比度较差而难以确定层厚,拉曼则可以从另外一个角度去获得相同的信息,此外拉曼还提供更多有关结构和缺陷的信息,此信息只有具备原子分辨率的AFM才能提供。● 获得感兴趣纳米结构的化学信息 在表征纳米结构时,有时仅获得物理性质是不够的。高分辨的拉曼共焦成像可提供详细的化学成分信息,这是其他SPM传感器无法实现的。● 探索TERS(针尖增强拉曼散射)领域 TERS(或纳米拉曼)可以综合两种技术之优势:可获得空间分辨率低至2nm(一般低至10nm)的化学特异性拉曼光谱成像。该技术可用于表征从纳米管到DNA等各种样品。 多种光学配置HORIBA的AFM-拉曼平台支持多种光学方案:底部耦联:针对透明样品顶部耦联:针对共点拉曼或倾斜针尖的TERS侧向耦联:测定不透明样品的TERS的优解决方案可提供多端口和并排配置注:具体配置、价格请咨询当地销售工程师
    留言咨询
  • 流变- 拉曼联用系统(流变仪和拉曼光谱仪相连)结合了两个强大的测量原理:它是以流变学作为机械方法和以拉曼作为分子光谱方法的完美共生。将从流变仪获得的力学行为与从拉曼光谱中得到的结构信息进行关联,对于更好地理解材料的化学功能和微观结构的关系,以及对加工和应用的影响,是非常重要的。充分发挥MCR流变仪与拉曼光谱仪的协同增效作用流变仪和拉曼光谱仪通过光纤拉曼探头连接,允许灵活放置光谱仪以节省实验室工作台上的空间( 电缆长度 4.5 m )。触发选项允许通过流变仪方便地操控拉曼光谱仪。MCR 流变仪和温度装置功能齐全,可在 -20 °C 至 +300 °C 的温度下提供全面的流变测试。拉曼光谱探头通过石英玻璃板进行测量,可最大限度地减小背景光谱干扰,从而不必再受到二氧化硅玻璃信号的影响。利用线性表和微调螺钉可以调整探头的定位。 选择您想要组合的拉曼光谱仪知名的 MCR 系列流变仪可以与安东帕Cora系列的拉曼光谱仪或许多其他品牌(如已购买的)拉曼光谱仪和拉曼光谱探头结合使用。凭借在两个领域的专业经验,我们还可以根据您的应用需求来开发、提供和支持定制解决方案。 尽享模块化和易用性优势有若干成熟可靠的光学仪器可与 MCR 流变仪结合使用,流变-拉曼组合只是其中之一。将流变仪与拉曼光谱仪组合使用或切换到其他附件只需要几分钟即可完成设置。帕尔贴和电加热温控设备也可以与其他流变-光学程序结合使用,例如 UV 固化、(荧光)显微镜、小角光散射 (SALS) 和偏振成像工具,从而节省时间和成本。MCR 流变仪系列的易用功能(例如 ToolmasterTM 和 QuickConnect)也是工具包的一部分。 了解完整的新应用范围流变-拉曼联用系统为同时测量样品的物理和化学特性(在相同样品、相同时间、相同测量条件下)提供了独特的机会。通过这种方法,可以更加深入地了解各种材料的化学功能和微观结构变化以及这些变化对加工和应用的影响。潜在应用领域包括研究结晶过程、化学反应(例如黏合剂样品的固化)、聚合物的形态、悬浮液的温度特性和稳定性、生物学样品(例如生物膜、细胞培养物)的结构参数等。
    留言咨询
  • Combiscope XploRA 是一款高度集成原子力拉曼系统。它可使用高达1.4 数值孔径的100 倍物镜,非常适合透明样品的测试。此外,它也为其它探测方法提供了开放空间。产品特点全自动操作,数分钟内即可开始测试适合拉曼红光或近红外激发(AFM 反馈激光为1300nm)与倒置显微镜底部耦联可使用高达1.4NA 值的100 倍物镜全自动系统TERS 快速成像同一软件操作
    留言咨询
  • 自动对焦、自动扫描科研级显微深紫外拉曼光谱成像仪ATR8800UV综合概述ATR8800UV系列深紫外显微拉曼光谱仪,集成了最 多达4个激光器,并结合了显微镜及拉曼光谱仪两者的优点,显微拉曼检测平台使得“所见即所测”成为可能,可视化的精 确定位拉曼检测平台,使得观测者可以检测样品上不同表面状态的拉曼信号,并可在计算机上同步显示所检测位置的微区形态,极大便利了拉曼微区检测。ATR8800UV全系列可以进行全自动对焦、全自动扫描,一键操作,可以进行批量实验、均匀性扫描等,无需等待,且可以获得高可靠性的扫描成像拉曼数据;ATR8800UV可以选配不同焦距的光谱仪,以达到不同分辨率的要求,ATR8800UV还配备专门为拉曼系统设计的高透过率紫外物镜,使得激光光斑接近衍射极限,再通过500万相机将焦点信息准确直观的显示在电脑上。克服了普通的拉曼系统中收集拉曼信号的焦面稍高于或稍低于实际最 佳焦面的问题,从而提高拉曼光谱质量。ATR8800UV完美地解决了相机成像时光路的损失,实现了相机成像与拉曼信号收集的分离,从而得到最 佳的信号强度。同时,ATR8800UV使用专门为显微拉曼系统优化的高性能拉曼,无论是灵敏度,信噪比,稳定性等,都是行业领 先水平,为拉曼研究提供了强有力的保障。 产品特点l 深紫外拉曼光谱成像;l 全自动拉曼成像实验,自动对焦自动扫描;l 共聚焦光路设计;l 最 多支持4种激发波长拉曼;l 超长焦距高分辨率设计;l 转动光栅设计,集大范围与高分辨率于一身;l 密封舱门设计,实验不受环境光影响;l 超高灵敏度,信噪比6000:1l 超大范围成像(50X50mm),自动图像拼接;l 独有的软件控制切换光路l 快速定位,迅速找到焦点位置l 高质量物镜,光斑微米级l 500万相机,图像清晰精 准l USB2.0接口直连电脑典型应用l 纳米粒子与新材料l 科研院所研究l 生物科学l 法医学鉴定l 材料科学l 医学免疫分析l 农业及食品鉴定l 宝石及无机矿物鉴定l 环境科学表1 ATR8800UV产品选型表型号光谱仪焦长激发波长/nm最 大激光功率/mW最 大波数范围最小分辨率/cm-1ATR8800UV-FL350光谱仪焦长为350mm2665050~ 100004.53253050~ 100003.253210050~ 100001.46388050~ 100001.578535050~ 100001.8106450050~ 100005.2ATR8800UV-FL510光谱仪焦长为510mm2665050~ 100002.93253050~ 100001.953210050~ 100000.96388050~ 100000.978535050~ 100001.4106450050~ 100003.6ATR8800UV-FL810光谱仪焦长为810mm2665050~ 100002.23253050~ 100001.253210050~ 100000.456388050~ 100000.4578535050~ 100000.9106450050~ 100002.3注:以上激发波长,可以从列表中任选最 多4个激发波长,进行搭配。其他波长可定制。订购指南:命名举例:l ATR8800UV-LT-FL350-532+638:自动对焦、长积分时间、焦长为350mm,激发波长为双波长:分别为532nm和633nmATR8800UV-SCM-FL810-532+638+1064:扫描成像、sCMOS探测器、焦长为810mm,激发波长为三波长:分别为532nm、633nm和1064nm
    留言咨询
  • RamSPEC-VUV是第一个上用的真空紫外频段的拉曼光谱仪,可用于真空紫外频段177-190nm的光谱测量出散射的信号。 系统在设计上允许光栅的更换以达到安排最佳配置,可选光栅为600g/mm、1200 g/mm、2400g/mm、3600g/mm、4200g/mm等。 如有需要,请随时与我司联系,谢谢。
    留言咨询
  • 原位环境湿度池 400-860-5168转2560
    通过蒸汽发生器,在GenRH-M 原位环境湿度池在样品池内产生相对湿度氛围,可与光学显微镜、显微拉曼光谱仪、红外、紫外-可见、原子力显微镜以及其他显微分析技术和光谱联用,甚至能与X射线粉末衍射联用。.在化学过程、产品研究和工业中,相对湿度是非常关键的参数,特别在药物研发、食品、生命科学、材料学、建筑材料、农药以及稳定性/加速测试中扮演了非常重要的角色。.? 与光学显微镜联用就,可以研究:湿度诱导的相变弛豫、肿胀、颗粒稳定性,颗粒和纤维 食物食品变质微生物生长、毛细管冷凝与桥联、固体溶解、潮解、颗粒稳定型? GenRH红外和拉曼联用,可以研究水合物形成晶型转换、共聚晶体形成和无定形蛋白质稳定性和结构变化水诱导的物质化学结构变化关键参数和特点0-95% 相对湿度.数字湿度探针精密提供RH控制和温度测量最小工作距离5mm反射与透射照明研究可与GenRH-A 与GenRH-T湿度发生器联用提供最高80摄氏度的水浴加热和冷却GenRH代表了SMS公司20多年的在DVS 和 SEA领域所涉及的蒸汽技术,是VGI仪器的基石
    留言咨询
  • GenRH-Mcell原位湿度氛围池 通过蒸汽发生器,在GenRH-M 原位环境湿度池在样品池内产生相对湿度氛围,可与光学显微镜、显微拉曼光谱仪、红外、紫外-可见、原子力显微镜以及其他显微分析技术和光谱联用,甚至能与X射线粉末衍射联用。.在化学过程、产品研究和工业中,相对湿度是非常关键的参数,特别在药物研发、食品、生命科学、材料学、建筑材料、农药以及稳定性/加速测试中扮演了非常重要的角色。 与光学显微镜联用就,可以研究 湿度诱导的相变弛豫、肿胀、颗粒稳定性,颗粒和纤维食物食品变质微生物生长、毛细管冷凝与桥联、固体溶解、潮解、颗粒稳定型 GenRH红外和拉曼联用,可以研究水合物形成晶型转换、共聚晶体形成和无定形蛋白质稳定性和结构变化水诱导的物质化学结构变化 关键参数和特点0-95% 相对湿度.数字湿度探针精密提供RH控制和温度测量最小工作距离5mm反射与透射照明研究可与GenRH-A 与GenRH-T湿度发生器联用提供最高80摄氏度的水浴加热和冷却
    留言咨询
  • 紫外可见光纤光谱仪 400-860-5168转2831
    紫外可见光纤 光谱仪 紫外可见光纤光谱仪产品简介 B&W Tek提供了多款光纤光谱仪供客户选择,QuestTM X是典型的高性价比光谱仪,具备温度补偿功能,Glacier&trade X是高性能的TE致冷线阵ccd 光谱仪,Exemplar Plus是一款高性价比的背照式光纤光谱仪。采用非交叉式CT结构光 路,具备低的杂散光水平。客户可以根据应用场景选择更适合的光谱仪。紫外可见光纤光谱仪产品特点&bull 配置灵活,优异的性价比&bull SonyILX511B探测器&bull 温度补偿,温度稳定性优异&bull TE制冷SonyILX511B探测器&bull 优异的温度稳定性和温漂&bull 长期稳定性优异&bull 长积分时间噪声优异&bull USB3.0高速传输接口,可达140 谱/秒(传输和采集,6.3ms积分时间)&bull 背照式制冷CCD探测器&bull 低触发延时(95ns)和抖动(Gate Jitter)(±20ns)&bull 板载平均和平滑计算分辨率选型紫外可见光纤光谱仪产品应用&bull LED分拣&bull 紫外分光,吸光度应用&bull 拉曼 、荧光测量&bull 在线光谱分析&bull 生物医疗设备&bull 气体和水质分析关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学 、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 在追求高效、精准与便携性的检测技术浪潮中,奥谱天成凭借其超过20年的深厚底蕴与不断创新的精神,隆重推出了ATRX3000——一款集便携式拉曼光谱与X射线荧光光谱分析(XRF)于一体的&革& 命&性联用仪器。这款产品的诞生,标志着检测技术在分子与原子层面实现了前所未有的融合与突破。【技术融合,双剑合璧】ATRX3000创新性地内置了拉曼光谱分析仪与XRF分析仪两大核心模块,两者相辅相成,共同构建了一个全面而强大的检测体系。拉曼光谱以其独特的分子振动信息解析能力,成为半定量分析的利器,擅长于揭示物质的分子结构特征;而XRF则以其对元素成分的精准定量分析能力著称,能够直接测定样品中的元素种类及含量。这种分子与原子光谱测量方法的完美结合,不仅拓宽了检测范围,更提升了检测结果的准确性和可靠性。【快速无损,安全高效】作为一款专为现场作业设计的便携式设备,ATRX3000展现了其独特的优势:快速、无损、安全。它能够在极短的时间内完成样品的检测分析,大大缩短了检测周期;同时,非接触式的检测方式确保了样品在检测过程中不受任何损害,保持其原始状态;此外,仪器采用的安全设计标准,确保了操作人员及环境的安全无忧。【性能卓越,应用广泛】ATRX3000凭借其出色的性能,在多个领域展现出了广泛的应用潜力。无论是食品安全中的非法添加剂、农兽药残留检测,还是公共安全中的有害物质筛查,亦或是药品安全、塑料成分分析等,ATRX3000都能提供准确可靠的检测结果。其高重现性、简单的样品前处理流程以及紧凑便携的设计,使得现场检测变得轻松便捷,极大地提升了工作效率和检测质量。【结语】奥谱天成ATRX3000便携式拉曼光谱+X射线荧光光谱联用仪,是科技与创新的结晶,是检测领域的一次重大飞跃。它不仅满足了现代检测对速度、精度和便携性的高要求,更为食品安全、公共安全、药品安全等关键领域提供了强有力的技术支撑。未来,奥谱天成将继续秉承“创新、卓越、服务”的理念,致力于推动检测技术的不断进步与发展,为人类的健康与安全保驾护航。
    留言咨询
  • LAMBDA 365紧凑、通用、高性能的双光束紫外/可见分光光度计LAMBDA 365提供了先进的紫外/可见分光光度计的性能,可以满足制药、分析工作者、遗传学家和制造业QA/QC分析员的需要。配备可利用的21 CFR part 11软件,LAMBDA系统可以支持从标准方法、应用到需要遵从法规的分析全面流程。该系统还提供了可变光谱带宽的能力,从0.5nm到20nm,以此来满足您的应用需求。并且LAMBDA 365能够兼容种类多样的附件,包括多联样品池转换器(水浴和半导体Peltier控温),固体样品透射和反射测试附件、远程测量的光纤探针、颜色和漫反射测试的积分球以及多种样品池支架,以此来满足不同样品的测试需求。当测试者对高稳定性和低杂散光极端追求时,LAMBDA 365的双光束技术是理想的解决方案。超大的样品仓可以轻松的容纳10多个采样附件组合。易于安装的附件减少了设置时间,并且多联池转换器能够通过仪器软件自动校正,以此来优化样品的位置,对于一些常规的应用获得较好的结果,包括工厂和制药行业QA/QC测试、环境测试、学术领域等等。
    留言咨询
  • 第一、仪器名称及型号:RISE型共聚焦拉曼显微镜与SEM联用系统第二、品牌:德国WITEC公司第三、产品简介:RISE是世界首款完全集成的共聚焦拉曼成像系统与扫描电子显微镜的综合测试系统,它将SEM和共聚焦拉曼成像结合在一起。通过RISE显微镜,可以将超微结构表面特性与分子化合物信息关联起来。RISE显微镜将SEM和alpha300共聚焦拉曼成像显微镜的所有功能都融于一台仪器中:? 在拉曼和 SEM 测量之间快速、简便切换? 自动将样品从一个测量位置移动另一个位置? 集成化软件界面,方便用户进行测量控制? 测量结果关联与图像叠加? 独立的SEM 和拉曼成像性能产品主要特性:拉曼性能请参考Alpha300R型共聚焦拉曼显微镜的介绍,SEM部分,我司合作伙伴是Zeiss 电镜与Tescan电镜两个厂家。第四、联用技术简介:利用 RISE 显微镜,先测量SEM的测量时只需将样品在 SEM 真空室内从一个测量位置自动转移到另一个位置,从而简化了工作流程,大大提高了仪器的易用性。第五、产品特色? 在拉曼光谱和扫描电镜之间快速方便的转换? 拉曼光谱成像:每个样品点都能获取完整的拉曼光谱? 2D和3D成像模式:平面(x-y方向)和深度扫描(z方向)? 极好的衍射极限横向分辨率:200-300nm? SEM 和拉曼成像互不影响共聚焦拉曼成像? 更高的共焦拉曼成像速度、灵敏度和分辨率? 优异的深度分辨率适合三维图像生成和深度分析? 最高灵敏度和最佳分辨率的光谱系统? 超快拉曼成像选项,每张光谱0.76毫秒的采集时间? 非破坏性成像技术,无需对样品进行染色 第六、应用实例 仓鼠脑组织切片的拉曼-SEM叠加图像。彩色编码的拉曼图像:绿色:脑白质;红色:脑灰质;扫描范围:100 x 100 μm,300 x 300 像素 = 90,000光谱,每光谱测量时间50 ms。 砷化镓 (GaAs) 样品的拉曼-SEM叠加图像。彩色编码的拉曼图像:黄色:金基底;红色:GaAs;蓝色:生产残留物;扫描范围:50 x 50μm,300 x 300像素= 90,000光谱,每光谱测量时间34ms。 PMMA-PS 共混聚合物的拉曼-SEM叠加图像。 彩色编码的拉曼图像:绿色:聚苯乙烯;红色:聚甲基丙烯酸甲酯。RISE 显微镜与地质样品的 EDX 同区域对应分析。左:叠加的 SEM-EDX 图像:可以区分三种不同元素组(橙色:Si、O;紫色:Si、Al、Fe、Ca;绿色:Na)。中间:同一样品区的拉曼-SEM叠加图像,呈现分子化合物的空间分布。右:相应的拉曼光谱。红色:绿帘石;绿色:石英;棕色:斜长石(钠长石);额外其他分子化合物。第六、应用领域该仪器广泛用于材料科学、 薄膜与聚合物研究、生命科学、半导体研究、 晶体研究、制药科学,化学,地质学,物理学。
    留言咨询
  • 以色列ofil Scalar室内型紫外成像仪Scalar以色列ofil Scalar是一款价格实惠的紧凑型手持式紫外光-可见光双通道成像仪,主要用于检测室内电晕。电力行业采用Scalar检测高中压电气设备的工作状态,及时发现局部放电导致的设备缺陷。保证设备的安全运行。DayCorScalar能够对电晕、电弧火花以及放电部位进行实时成像。由于Scalar配备强大的内置LED闪光灯和背光按键,所以其在黑暗环境下也能正常使用.公共维护团队采用Scalar检测暗柜和暗室设备的运行状态。制造业和车间采用Scalar进行工厂验收测试和质量测试,矿井用其探测设备的放电和火花从而保证工作人员的安全 ①视频&图片 MPEG4视频剪辑和BMP静态图片,存储于可移动闪存卡②播放 在成像仪LCD或微型USB驱动的外接显示器上播放存储媒体③大视角 5°x11°大视角,适合室内近距离宽范围检测环境④LCD 4.3寸高级透射式LCD,800x480像素,输出影响清晰可靠⑤LED闪光灯 集成式LED闪光灯,两级亮度提高存储媒体质量,背光按键方便灰暗条件下的操作⑥聚焦&变焦 半自动和手动聚焦,聚焦范围:0.5m~无穷大,紫外数码变焦三步即可实现⑦紧凑型&小重量外形圆滑,手持型,0.95KG丨2.09LB,28X12X9CM丨11X4.7X3.5(长X宽X高) ⑧操作直观 幕菜单、快捷按钮、直接操作、预设存储 ⑨长效的电池运行时间电源:可充电锂离子电池(运行3小时以上)或者9V直流,内充式 ⑩紫外检测灵敏度高 紫外检测波长范围:310-320NM,最小紫外放电检测灵敏度,15PC,1M距离(近距离检测) 型号Scalar 检测波段 310-320nm,室内使用 探测器 无衰减,非全日盲镜头 最小紫外光灵敏度 3x10-12 W/cm2 最小放电灵敏度 15pC@1m 最小无线电电压探测灵敏度 43.9dB μV@1MHz 视角 15°x11° 最小可见光感光灵敏度 0.1Lux 聚焦最小距离 0.5m 屏幕尺寸 4.3英寸 分辨率 800*480 聚焦方式 半自动、手动 显示模式 紫外,可见光,组合 紫外显示颜色 5种 紫外光子计数 有 拍照/摄像 拍照和摄像 语音注释 有 电池 3h LED灯 内置2级 GPS定位接口 无 温湿度传感器接口 有 增益 100 变焦 10倍光学*12倍数字 尺寸 280*120*90 重量 0.95kg 可选配件 电池;温湿度传感器;软件进口紫外成像仪,以色列紫外成像仪,埃尔弗ofil紫外成像仪UVOLLE ,进口紫外成像仪品牌
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制