当前位置: 仪器信息网 > 行业主题 > >

紫外二极管分析

仪器信息网紫外二极管分析专题为您提供2024年最新紫外二极管分析价格报价、厂家品牌的相关信息, 包括紫外二极管分析参数、型号等,不管是国产,还是进口品牌的紫外二极管分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外二极管分析相关的耗材配件、试剂标物,还有紫外二极管分析相关的最新资讯、资料,以及紫外二极管分析相关的解决方案。

紫外二极管分析相关的论坛

  • 紫外检测器可代替二极管阵列吗

    想问问各位大神 在做酸性橙Ⅱ号时国标中要求的是 用二极管阵列做 但我们这里只有紫外检测器 可以代替吗 如果可以代替的话 相关参数应该怎么修改 酸性橙用的国标是:SN/T 3536-2013。还有水果罐头中合成着色剂的测定也是用二极管阵列 也可以用紫外检测器代替吗

  • 【求助】二极管阵列(PDA)紫外/可见分光光度仪

    本人计划购买二极管阵列(PDA)紫外/可见分光光度仪,正在调研中。了解了2-3个公司的产品,新科(S-4100)、耶拿(S-600)和安捷伦(8354)的,不知这些公司的产品各有什么优点(优势),其它还有哪些厂家生产。我希望能配上光纤检测器的那种,能直接浸入溶液测试的。望使用过的大侠不吝赐教。

  • 【原创大赛】二极管阵列检测器与峰纯度分析

    【原创大赛】二极管阵列检测器与峰纯度分析

    二极管阵列检测器与峰纯度分析1引言 在药物色谱分析方法开发过程初步完成后,需要对分析方法进行验证,验证的内容包括定量限,精密度和专属性等内容…一些人认为分析方法的专属性是首选必须明确的验证项目,如果分析方法专属性不够,最终会影响准确度等验证内容,得出错误的结论。除了传统的验证专属性的方法外,峰纯度(Peak Purity)检查越来越多的用于评价方法的专属性,可以提供峰纯度的检测器有多通道紫外可见光检测器,二极管阵列检测器(DAD)和质谱(MS)。目前一般药物实验室都配备有二级管阵列检测器,在多种资料和国内药物分析培训中,建议在使用二极管阵列检测器做峰纯度分析时候,主峰的纯度因子应大于980。实际上,该建议的纯度因子及其相关参数表述是安捷伦(Agilent)色谱工作站光谱部分采用的峰纯度检查表现形式,别的色谱工作站会采取不同的表现形式,如waters的化学工作站采取计算峰纯度角与阈值角来比较峰纯度的。下面我们以安捷伦的chemsation中光谱选项涉及到的相关参数和处理过程为例讨论二极管阵列检测器与峰纯度分析过程。2评估峰纯度的原理 不同的化合物具有不同的形状的光谱(这里讨论的是紫外-可见光光谱图),在光谱上不同波长比值是一定的,如果色谱峰是均匀的同一种物质,那么在色谱峰流出的各个时间点,不同波长的比值是一定的。图1显示的是同时检测两个波长(信号A和信号B)的色谱图,下图显示的是两个波长(A/B)的比值图。纯的色谱图比值是恒定的,显示为一条直线,不纯的比值图是有波动的。http://ng1.17img.cn/bbsfiles/images/2012/10/201210150742_396570_2265735_3.jpg图1 如果用双波长检测器,同时检测两个波长并绘制比值图就可以评价峰纯度了,问题是选择那两个波长呢?如果选择的其中一个波长几乎没有吸收呢?只选择两个波长比值来评价整个峰纯度足够吗?有没有更加优化的办法呢?二极管阵列检测器可以解决上述问题。二极管阵列检测器可以实时提取色谱流出物的光谱,并采用合适的算法比较色谱峰每个时间点的光谱图,这远比比较光谱图上两个波长点更加准确和可行。下面我们讨论二极管阵列检测器考察峰纯度的过称(以Agilent为例)。3二极管阵列检测器和分析峰纯度的方法 二极管阵列检测器与普通的紫外-可见光检测器的最大构造不同是不对穿过检测池的进行分光。二极管阵列检测器在检测池的后方分光,全波段的光到达二极管阵列并产生信号。二极管阵列检测器可以实时获得检测池物质的紫外-可见光吸收光谱图,这是普通紫外-可见光检测器无法完成的。基于二极管阵列检测器以上特性,安捷伦的chemstation 采用两种方式显示峰纯度:(1)光谱归一化法;(2)光谱相似曲线。 光谱归一化法比较简单,选取色谱图上的3-5个点(这些点一般是峰开始,峰上升,峰顶点,峰下降,峰结束等色谱峰对称的几个点,因为二极管阵列是实时获取光谱图,当然你可以在色谱上选择更多的点),提取这些点的光谱图,把这些点的光谱图叠放,吸收值归一化,看这些光谱图是否重合,从重合的程度来判断峰的纯度。图2显示的是光谱归一化法评价色谱峰纯度,保留时间7.8min的色谱峰光谱图不能完全重合,显然该色谱峰是不纯的。http://ng1.17img.cn/bbsfiles/images/2012/10/201210150748_396571_2265735_3.jpg图2 光谱归一化法直观,与其相比光谱相似曲线从计算相似因子入手,绘制相似曲线,评价峰纯度过程更加精细化,相似因

  • 紫外光电二极管SG01D-5LENS在紫外光固化方面的应用

    紫外光电二极管SG01D-5LENS在紫外光固化方面的应用

    紫外线传感器又称UV传感器, UV固化机是能够发出可利用的强紫外线的一种机械设备。它已被广泛应用于印刷、电子、建材、机械等行业。UV固化机的种类和样式因其所光固的产品不同而有所不同,但其最终的目的是一致的,就是用来固化UV油漆或UV油墨等。UV固化装置由光源系统、通风系统、控制系统、传送系统和箱体等五个部分组成。[img=,613,306]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220925431398_768_3332482_3.jpg!w613x306.jpg[/img]UV固化在英文中称UVCuring 或 UV Coating,UV固化是光化学反应,即液态的UV照射可固化材料经印刷或涂布到承印物或工件表面,经UV光线照射实现硬化的过程,UV固化与传统的干燥过程相似,但原理不同,传统的干燥一般借助于涂敷材料中溶剂的挥发而形成硬化,而UV固化交联则无溶剂挥发。UV光源系统的不同,也决定了监测其光源强度的紫外线传感器使用具有一定的差异,目前市面上常见的UV固化机中大部分使用的是UV汞灯,在喷涂行业,印刷行业,鞋业方面,木业方面,PCB、LCD行业(金属卤素灯管)工艺品上光等领域都有UV固化的身影。使用此类光源时,会产生大量的热量。会导致灯管附近的温度偏高,温度一般可达到100℃左右,目前紫外线传感器的基材大致分为GaN,SiC和GaP。GaN基材的传感器耐温不能超过85℃,GaP基材的耐温范围大约在125℃以内。SiC材质的传感器耐温值可以达到170℃。高功率发光二极管没有红外线发出。被照射的产品表面温升5°C以下,而传统汞灯方式的紫外线固化机一般都会使被照射的产品表面升高60-90°C,使产品的定位发生位移,造成产品不良。UV-LED固化方式最适宜塑料基材、透镜粘接及电子产品、光纤光缆等热敏感、高精度的粘接工艺要求。采用大功率LED芯片和特殊的光学设计,是紫外光达到高精度、高强度照射;紫外光输出达到8600mW/m2的照射强度。采用最新的光学技术和制造工艺,实现了比传统汞灯照射方式更加优化的高强度输出与均匀性,几乎是传统汞灯方式照射光度的2倍,使UV粘合剂更快固化,缩短了生产时间,大幅度提高了生产效率。针对一般的温度(80℃以下),只要是对应波段的传感器均能满足大部分的需求,一般传感器或者内置放大的电流的传感器能承受的温度范围均在85℃内。在温度范围内工作,传感器主要需要考虑的因素就是传感器能承受的最大辐射强度。一般来说GaN系列材质的传感器能够承受的最大辐射强度大约为100mw/cm2,建议传感器在没有安装衰减器时,紫外线的辐射强度不要超过50mw/cm2,高强度的辐射强度会大大降低紫外线的寿命,但是SiC材质的传感器能很好的承受高强度辐射。检测范围为190-570nm(445nm峰值响应)的GaP材质的紫外线传感器的检测范围可以从420uw/cm2到4.3W/cm2,由于内部集成有放大电路,故使用温度范围是-25~85℃。[img=,394,291]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220925560512_2079_3332482_3.jpg!w394x291.jpg[/img]针对365nm,385nm,405nm等波段的紫外线传感器,目前市面上质量比较好的主要有工采网从国外进口的紫外光电二极管 - SG01D-5LENS,SiC具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这些特性使SiC成为可见盲区半导体紫外探测器的上佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。紫外光电二极管 SG01D-5LENS 参数:[img=,690,365]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220926064442_3394_3332482_3.jpg!w690x365.jpg[/img]

  • 紫外光电二极管SG01D-5LENS在紫外光固化方面的应用

    紫外光电二极管SG01D-5LENS在紫外光固化方面的应用

    紫外线传感器又称UV传感器, UV固化机是能够发出可利用的强紫外线的一种机械设备。它已被广泛应用于印刷、电子、建材、机械等行业。UV固化机的种类和样式因其所光固的产品不同而有所不同,但其最终的目的是一致的,就是用来固化UV油漆或UV油墨等。UV固化装置由光源系统、通风系统、控制系统、传送系统和箱体等五个部分组成。[img=,613,306]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220923425977_2623_3332482_3.jpg!w613x306.jpg[/img]UV固化在英文中称UVCuring 或 UV Coating,UV固化是光化学反应,即液态的UV照射可固化材料经印刷或涂布到承印物或工件表面,经UV光线照射实现硬化的过程,UV固化与传统的干燥过程相似,但原理不同,传统的干燥一般借助于涂敷材料中溶剂的挥发而形成硬化,而UV固化交联则无溶剂挥发。UV光源系统的不同,也决定了监测其光源强度的紫外线传感器使用具有一定的差异,目前市面上常见的UV固化机中大部分使用的是UV汞灯,在喷涂行业,印刷行业,鞋业方面,木业方面,PCB、LCD行业(金属卤素灯管)工艺品上光等领域都有UV固化的身影。使用此类光源时,会产生大量的热量。会导致灯管附近的温度偏高,温度一般可达到100℃左右,目前紫外线传感器的基材大致分为GaN,SiC和GaP。GaN基材的传感器耐温不能超过85℃,GaP基材的耐温范围大约在125℃以内。SiC材质的传感器耐温值可以达到170℃。高功率发光二极管没有红外线发出。被照射的产品表面温升5°C以下,而传统汞灯方式的紫外线固化机一般都会使被照射的产品表面升高60-90°C,使产品的定位发生位移,造成产品不良。UV-LED固化方式最适宜塑料基材、透镜粘接及电子产品、光纤光缆等热敏感、高精度的粘接工艺要求。采用大功率LED芯片和特殊的光学设计,是紫外光达到高精度、高强度照射;紫外光输出达到8600mW/m2的照射强度。采用最新的光学技术和制造工艺,实现了比传统汞灯照射方式更加优化的高强度输出与均匀性,几乎是传统汞灯方式照射光度的2倍,使UV粘合剂更快固化,缩短了生产时间,大幅度提高了生产效率。针对一般的温度(80℃以下),只要是对应波段的传感器均能满足大部分的需求,一般传感器或者内置放大的电流的传感器能承受的温度范围均在85℃内。在温度范围内工作,传感器主要需要考虑的因素就是传感器能承受的最大辐射强度。一般来说GaN系列材质的传感器能够承受的最大辐射强度大约为100mw/cm2,建议传感器在没有安装衰减器时,紫外线的辐射强度不要超过50mw/cm2,高强度的辐射强度会大大降低紫外线的寿命,但是SiC材质的传感器能很好的承受高强度辐射。检测范围为190-570nm(445nm峰值响应)的GaP材质的紫外线传感器的检测范围可以从420uw/cm2到4.3W/cm2,由于内部集成有放大电路,故使用温度范围是-25~85℃。[img=,394,291]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220923569282_8779_3332482_3.jpg!w394x291.jpg[/img]针对365nm,385nm,405nm等波段的紫外线传感器,目前市面上质量比较好的主要有工采网从国外进口的紫外光电二极管 - SG01D-5LENS,SiC具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这些特性使SiC成为可见盲区半导体紫外探测器的上佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。紫外光电二极管 SG01D-5LENS 参数:[img=,690,365]https://ng1.17img.cn/bbsfiles/images/2019/06/201906220924091402_1665_3332482_3.jpg!w690x365.jpg[/img]

  • 【分享】光电二极管和硅光二极管的应用

    各位大虾: 我看见有些紫外可见分光光度计用的检测器是光电二极管或硅光二极管,它们之间各自的特点是什么,各有什么优点?谁更好一些?现在用得比较多的是哪一个检测器? 谢谢您的回答.请参照:http://www.instrument.com.cn/bbs/shtml/20071107/1050063/

  • 【原创大赛】二极管检测器有优势

    【原创大赛】二极管检测器有优势

    二极管检测器有优势 光电二极管阵列检测器(以下简称二极管检测器)也是紫外检测器的一种,一般也能实现紫外-可见光的检测功能。现在市场上主要还是以紫外检测器为主,二极管检测器还处于青年期,它的应用还不够多。 二极管检测器的一些特点铸就它势必会有很大的发展空间,在分析应用中会占有一席天地。 下面就介绍下二极管检测器相比紫外检测器的一些主要特点和发展前途。 二极管检测器是由一系列光电二极管以不同的组合排列而成,一般有256个的,512个的,1024个的,现在市场上最多的也是1024个的。它采用的是单波长、多波长和全波长检测,功能很多,大家经常采用的是全波长检测。它可实现三维色谱图,实现多波长检测和多通道检测。对于单个物质具有多个可实现的检测波长和某些同分异构体类或检测波长非常接近的物质时,选择最佳的检测波长和实现分离度不好也能非常准确的检测出来就显得非常的有优势。更有优势的是它可在一张色谱图上通过选择不同的波长实现不同的检测结果。比如下面这个样品,实现混合物完全分离非常难,基本分离也是比较难的,如果采用二极管检测器检测,那就容易的多了。http://ng1.17img.cn/bbsfiles/images/2014/10/201410181833_518953_2498430_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410181837_518957_2498430_3.png 二极管检测器发展到现在发展的还不是很成熟,和紫外检测器相比还有一些劣势,比如造价较高,结构较复杂,灵敏度不够高等。 二极管检测器的这些劣势可能是它结构较复杂,造价较高而没被各大厂家重视而没发展起来。随着基础工业、高新工业的发展,我想这些问题会越来越不是问题,最近几年这种检测器的市场占有率就明显多了起来。 希望国内外的各大厂家都能重视二极管检测器的发展,把它的造价减下去,灵敏度搞上来,把它的优势发展的淋漓尽致。另外这种检测器到1024个二极管时,二极管数量越多,性能越强大。那么我们是不是能把二极管的数量再往上增加些呢,比如2048个、4096个等等。 期望二极管检测器能快速发展,能被市场广泛认可。

  • 想买一液相色谱,配二极管阵列检测器,还需要配紫外检测器吗?

    请教大家:1、想买一液相色谱,配二极管阵列检测器,还需要配紫外检测器吗?2、原有一台安捷伦1100带紫外检测器,想再增加一个蒸发光检测器,请大家推荐哪家大好,同时又能兼容(主要使两个检测器要能简便的互换使用,不要拆卸太麻烦)。3、蒸发光检测器需要用到气源,需要单独的实验室吗?需要气体间吗?谢谢大家。

  • 【原创】关于二极管阵列检测器波长问题

    我知道:紫外-可见光(UV-VIS)检测器 原理: 基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  二极管阵列检测器(diode-array detector, DAD): 以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器.它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检测。二极管阵列检测器可以获得全波长的样品信息,而且可以根据吸收光谱辅助定性。但相对来说,专门的紫外检测器灵敏度能高一些。二极管阵列检测器是检测的全波长,但是我做的产品需要打印特定波长下的谱图。现在我只会一个一个在离线下改波长。但我听说lc solution是可以在一开始做样前改方法的,不知道怎么弄,希望前辈能指点!谢谢!

  • 硅光二极管是硅光电池吗?

    看到网上及论坛内不少说这两种是一样的,也有说是不一样的http://bbs.instrument.com.cn/shtml/20071107/1050063/硅光电池(硅光二极管)是一个大面积的光电二极管,它被设计用于把射到它表面的光转化为电能,因此,可用在光电探测器和光通信等领域。特点:当它照射光时会流过大致与光量成正比的光电流. 用途:1.作传感器用时,可广泛用于光量测定和视觉信息,位置信息的测定等. 2.作通信用时,广泛用于红外线遥控之类的光空间通信,光纤通信等. 3.紫蓝硅光电池是用于各种光学仪器,如分光光度计、比色度计、白度计、亮度计、色度计、光功率计、火焰检测器、色彩放大机等的半导体光接收器;紫蓝硅光电池具有光电倍增管,光电管无法比拟的宽光谱响应,它特别适用于工作在300nm-1000nm光谱范围的各种光学仪器对紫蓝光有较高的灵敏度、器件体积小、性能稳定可靠,电路设计简单灵活,是光电管的更新换代产品。目前也有可以使用到190-1100nm的产品,但紫外能量弱一些,光谱带宽不能太小,已经有很多厂家在紫外可见分光光度计上用了。 网上硅光电池是发电的硅光电二极管只要是用光来控制电流 本身几乎不发电另外光电二管管与硅光电二极管有什么区别?

  • 【科技前线】激光二极管制造难题破解,能产生从近紫外到近红外更广泛波长

    [B][center]英破解塑料激光二极管制造难题新材料在提高导电性能的同时不影响发光性能[/center][/B]  英国帝国理工学院科学家在近期《自然• 材料》杂志上发表文章称,他们通过对一种被称为PFO的塑料材质的分子结构进行改进,最终解决了塑料激光二极管的制造难题。这意味着以塑料半导体作为材质的激光二极管有望很快应用于CD播放器等电子产品中。  目前在各类电子产品中被广泛应用的激光二极管都是由无机半导体材料制成的,如砷化镓、氮化镓及其相关合金等。电流的正负电荷在激光二极管的材料内部相结合产生出激光发生需要的初始光,之后,初始光被驱动多次来回穿梭于半导体材料,并且每穿过一次光强都会增加,那么一段时间以后,一束发散性小、强度高、定向性好的激光束就产生了。  在过去的20年里,尽管在有机分子半导体领域里也取得了很多的成就,例如一系列特别塑料的产生以及很多基于该类塑料的重要设备都得到了成功的应用,其中包括发光二极管、场效应晶体管以及光敏二极管等。然而,塑料激光二极管却在近十几年里没有取得任何的突破。直到现在,人们仍然普遍认为塑料半导体激光二极管几乎不可能生产出来,主要因为这一领域有一个重大阻碍:一种既可以维持足够大电流又可以提供有效初始光的塑料材质至今没有被发现或发明。  现在,帝国理工学院的科学家们找到了符合要求的材料。他们对日本住友化学公司合成的、与蓝光塑料PFO密切关联的塑料进行了研究,通过轻微改变该塑料的化学结构生产出一种新型材料,可以比原材料多传递200倍的电荷却不会损耗它的发光效能,同时也提高了激光的产生能力。  该研究小组带头人,帝国理工学院物理系多纳尔• 布拉德利教授说:“这是一次真正的突破。此前的研究大多是为电子设备和光电子设备设计聚合物,只涉及到加强材料的一种特质。然而,结果并不理想,因为当人们尝试去提高塑料半导体的发光性能时,导电性能会受到损害,而提高导电性能就会影响其发光性能。”  研究小组成员保罗• 斯塔夫里诺补充说,对PFO结构的修改则使研究人员成功地协调了这两个先前水火不容的特性,这意味着塑料发光二极管将成为现实。  塑料激光二极管的优势并不仅仅在于它的生产成本低廉以及其易整合的特性,它将比目前的激光二极管拥有更多优点。目前可用的激光二极管不能涵盖所有的可见光谱,这限制了显示器和分光镜的应用,而应用于波导和光学纤维的标准塑料则可以覆盖全部波长。这种新型塑料激光二极管也能够产生从近紫外到近红外的更广泛的波长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制