当前位置: 仪器信息网 > 行业主题 > >

液相色谱室定测

仪器信息网液相色谱室定测专题为您提供2024年最新液相色谱室定测价格报价、厂家品牌的相关信息, 包括液相色谱室定测参数、型号等,不管是国产,还是进口品牌的液相色谱室定测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相色谱室定测相关的耗材配件、试剂标物,还有液相色谱室定测相关的最新资讯、资料,以及液相色谱室定测相关的解决方案。

液相色谱室定测相关的论坛

  • 液相色谱平顶的原因?

    液相色谱(安捷伦1260)做一个物质,在800的峰高的时候峰就平顶了,峰宽和峰形也不算太差,这是什么原因呢?想请教大家,液相色谱从检测器的角度上来讲,为什么会平顶?

  • 液相色谱保留时间不稳定

    液相色谱保留时间不稳定

    实验室最近新购了一台安捷伦的液相色谱,走标准样品数针压力线很一致,保留时间却完全不一样,后面进的样保留时间都会靠前一些,大家帮忙解释一下这个现象会事什么原因导致的呀?我们使用的流动相是乙腈和纯水,仪器和溶剂都是新购的。听说液相色谱在流动相的维护方面尤其要注意,稍不注意就可以导致仪器工作不正常,各位有丰富经验的大侠请多多指点,本人液相色谱的经验很少,各位请不吝赐教~环境温度26度,柱温30度,流动相在线混合的。很纠结,今天上午又做了实验,保留时间又变成往后移了。在开始实验之前我们已经对每一个通路排气泡了,然后用乙腈清洗系统近一个小时,再调用检测方法平衡了1个小时,结果保留时间还是波动~谱图附后http://ng1.17img.cn/bbsfiles/images/2011/12/201112011648_334635_1608710_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112011649_334636_1608710_3.jpg

  • 液相色谱测沙星类

    液相色谱检测沙星类提取液为乙腈:50%Hcl(2500:20)流动相为四丁基溴化胺 ph=3检测时由于标准品和样品的pH不同,样品酸性强 导致回收出峰时间和标准相差比较大。大家有木有遇到这样的问题,有啥办法啊?

  • 液相色谱柱安装与使用

    液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。 一、液相色谱柱的安装: 1、液相色谱柱的结构: a、空柱由柱接头、柱管及滤片组装而成。 柱接头采用低死体积结构,柱接头是两端螺纹组件,一端是为7/16英寸外螺纹,另一端是3/16英寸的内螺纹(国内外已规范化)。7/16英寸外螺纹与1/4英寸柱管(Φ6.35mm)连接,中间放置压坏用于密封。3/16英寸的内螺纹与1/16英寸(Φ1.57mm)的连接管连接,中间也放置压环用于柱接头的密封。为了尽量减少柱外死体积,在安装色谱柱时,用Φ1.57mm连接管通过空心螺钉压环后要尽量插到底,然后再拧紧空心螺钉。压环被空心螺钉挤压变形后紧箍在连接管上(连接管通过压环后露出的管长度应严格控制在2.5mm长或其他固定尺寸)。 在两端柱接头内,柱管两端各放置一片不锈钢滤片(或滤网),用于封堵柱填料不被流动相冲出柱外而流失。空柱各组件均为316#不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。 b、柱填料: 液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。 正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3—10 µm的范围内。另一类正相填料是硅胶表面键合—CN,-NH2等官能团即所谓的键合相硅胶。 反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。 常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3—10 µm之间。 2[/font

  • 【转帖】第十课 液相色谱仪-检测系统

    第十课 液相色谱仪-检测系统 检测系统高效液相色谱的检测器很多,最常用的有紫外检测器、示 差折光检测器和荧光检测器等。 (1)紫外检测器紫外检测器是液相色谱中应用最广泛的检测器,适用有紫 外吸收物质的检测。在进 行高效液相色谱分析的样品中, 约有80%的样品可以使用这种检测器。紫外检测器的工作 原理如下:由光源产生波长连续可调的紫外光或可见光, 经过透镜和遮光板变成两束平行光,无样品通过时,参比 池和样品池通过的光强度相等,光电管输出相同,无信号 产生;有样品通过时,由于样品对光的吸收,参比池和样 品池通过的光强度不相等,有信号产生。根据朗伯—比尔 定律,样品浓度越大,产生的信号越大, 这种检测器灵敏 度高,检测下限约为 10(-10) g/ml,而且线性范围广, 对温度和流速不敏感,适于进行梯度洗脱。 (2)示差折光检测器示差折光检测器是根据不同物质具有不同折射率来进行组 分检测的。凡是具有与流动 相折射率不同的组分,均可 以使用这种 检测器。如果流动相选择适当,可以检测所 有的样品组分。示差折光检测器分为反射式和沂射式两种。 反射式示差折光检测器是根据下述原理制成的:光在两种 不同物质界面的反射百分率与入射角和两种物质的折射率 成正比。如果入射角固定,光线反射百分率仅与这两种物 质的沂射率成正比。光通过仅有流动相的参比池时,由于 流动相组成不变,故其折射率是固定的;光通过工作池时 ,由于存在待测组分而使折射串改变,从而引起光强度的 变化,测量光强度的变化,即可测出该组分浓度的变化。 偏转式示差折光检测器是根据下述原理:当一束光透过折 射率不同的两种物质时,此光束会发生一定程度的偏转, 其偏转程度正比于两物质折射率之差。 示差折光检测器 的优点是通用性强,操作简便;缺点是灵敏度低,最小检 出限约为 10(-7)g/ml ,不能做痕量分析。此外,由于 洗脱液组成的变化会使折射率变化很大,因此,这种检测 器也不适用于梯度洗脱。 (3)荧光检测器物质的分子或原子经光照射后,有些电子被激发至较高的能 级,这些电子从高能级 跃至低能级时,物质会发出比入射光 波长较 长的光,这种光称为荧光。在其他条件一定的情况 下,荧光强度与物质的浓度成正比。许多有机化合物具有天 然荧光活性,另外,有些化合物可以利用柱后反应法或柱前 反应法加入荧光化试剂,使其转化为具有荧光活性的衍生物 。在紫外光激发下,荧光活性物质产生荧光,由光电倍增管 转变为电信号。 荧光检测器是一种选择性检测器,它适合于 稠环芳烃、氨基酸、胺类、维生素、蛋 白质等荧光物质的测 定。这种检测器灵敏度非常高,其检出限可达10(-12)_10 (-13)g/ml,比紫外检测器高2—3个数量级,适合于痕量分析 。而且可以用于梯度洗脱。其缺点是适用范围有一定的局限性。

  • 岛津液相色谱检测样品问题

    岛津液相色谱仪做分析时总有一堆时间固定,堆在一起,杂乱不堪,量很大的峰。并且已知不是溶剂峰。而且不管测什么样品,这堆峰都存在。请问是怎么回事呢?

  • 影响液相色谱基线不稳定因素

    [align=center][size=21px]影响[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]基线不稳定因素[/size][/align][size=16px] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]关于基线的指标有基线噪声和基线漂移,这两个指标是[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的重要指标。基线噪声会影响检出限指标,噪声越大,仪器检出限也会越大,指标就会低(方法检出限一般按噪声三倍计算),仪器性能就会越差。基线噪声影响低浓度样品检测的准确性和重复性,[/size][size=16px]噪声越大,仪器[/size][size=16px]检测[/size][size=16px]准确性和重复性[/size][size=16px]指标就[/size][size=16px]会越[/size][size=16px]差[/size][size=16px],仪器性能就会越差。[/size][size=16px]基线漂移会影响检测分离度、准确性等指标,漂移越厉害检测分离度、准确度指标可能就会越差,如果[/size][size=16px]向同一个方向,比如一直向上漂移或向下漂移,[/size][size=16px]漂移程度不同[/size][size=16px]或是一会向上一会向下还会影响到重复性指标。总之,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]基线不稳定,对检测结果影响还是挺大的。下面我们就来说[/size][size=16px]说[/size][size=16px]影响[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]基线不稳定[/size][size=16px]的几个因数。[/size][size=16px] 第一,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵流速不稳定会引起色谱基线不稳定,一般对基线噪声影响会更大一些。[/size][size=16px] 第二,流动相中气泡较多[/size][size=16px]会引起色谱基线不稳定,一般对基线噪声影响会更大一些。[/size][size=16px] 第三,温度尤其是检测器温度[/size][size=16px]会引起色谱基线不稳定,一般[/size][size=16px]只[/size][size=16px]对基线[/size][size=16px]漂移有[/size][size=16px]影响。[/size][size=16px] 第四,流动相有污染,比如配流动相的水、甲醇、乙腈或其它试剂不够纯净,配置流动相时配置容器或配置环境等因数带来的污染,[/size][size=16px]会引起色谱基线不稳定,[/size][size=16px]这种情况[/size][size=16px]一般对基[/size][size=16px]噪声和[/size][size=16px]线漂移[/size][size=16px]都会[/size][size=16px]有影响。[/size][size=16px] 第五,色谱柱性能下降或故障[/size][size=16px]会引起色谱基线不稳定[/size][size=16px]。[/size][size=16px] 第六,[/size][size=16px]氘灯能量[/size][size=16px]低[/size][size=16px]会引起色谱基线不稳定,[/size][size=16px]一般对[/size][size=16px]基噪声和线漂移都会有影响。[/size][size=16px] 第七,系统污染,尤其是检测器污染[/size][size=16px]会引起色谱基线不稳定,一般对基噪声和线漂移都会有影响。[/size][size=16px] 第八,检测池安装时光路不正[/size][size=16px]会引起色谱基线不稳定,一般[/size][size=16px]只[/size][size=16px]对[/size][size=16px]基[/size][size=16px]线漂移有影响。[/size][size=16px] 想起来的就这八种情况,以后再有想起来的在补充,也欢迎[/size][size=16px]广大[/size][size=16px]色谱高手前来补充。[/size]

  • 如何选择液相色谱仪?教你四招搞定

    [b][i]一台品质优良的液相色谱系统应从以下四个方面,本文详细为大家介绍如何选择液相色谱仪。[/i][/b][color=#0070c0]一、主要技术指标优异[/color]如何选择液相色谱仪?首先是如何看指标。液相色谱仪的指标很多,有泵的、检测器的、色谱柱等等。我们认为要看主要技术指标,根据国家标准,仪器的主要指标有噪音,漂移,最小检测浓度,定性定量重复性等。这些指标都要放在系统,回路里去看,去比较。就是需要把各单元装置都要联接好,如接好色谱柱,进样阀,并且要通上流动相。因为您在分析中也都是联接好以后才可以进行分析的,而不是单单用个检测器或是泵的。然后在这个基础上,我们再去比较这些主要指标。【噪音】是指由仪器的电器元件、温度波动、电压的线性脉冲以及其他非溶质作用产生的高频噪声和基线的无规则波动。噪音的大小直接关系到仪器的检测灵敏度,噪音越大,检测的灵敏度就越低。对于检测低含量的样品就要求仪器的噪音越小越好,否则噪音过大将会导致基线不稳,甚至影响分析结果。【最小检测浓度(最小检测限)】是反映仪器灵敏度的重要参数。CL=2×Nd×C/H(CL:最小检测浓度 Nd:噪音 C:样品浓度最小检测浓度 H:样品峰高)由上式可见,最小检测浓度是和噪音成正比的,噪音越大,最小检测浓度就越大,灵敏度就越低。某些厂家回避了这个指标,说明他们不愿在最小检测浓度的基础上去比较噪音。【漂移】是指仪器稳定后一段时间内基线漂离原点的距离,通常用来衡量仪器稳定快慢。高品质的仪器能在较短的时间内达到稳定,从而在一定程度上提高了分析效率。[b]【定性定量重复性】[/b]主要是考核仪器稳定性的指标,这对于分析样品来说是非常重要的。好的仪器其稳定性应该是十分优秀的,这就要求多次进样保留时间及含量的一致性,这样做出来的结果才能使人信服。有的朋友会认为这些指标好像都是检测器的。对的,但是就前面所说条件是要放在整个回路和系统里去看去比较。例如:泵的脉动会直接影响噪音指标,泵的流量准确度、精确度指标,以及密封性不好也会影响相关指标。所以要系统地看指标。例如:某些公司在公布的指标中,噪音和漂移指标写的条件是空池或有的干脆不写。这个指标只考核了UV检测器光学和电气的特性,与实际情况相差甚远,并没有考验泵的压力脉动,液流回路的阻尼和UV检测器流通池的性能。所以我们认为从以上的主要指标中可以反应出仪器的一些真实水平。[b][/b][color=#0070c0][b]二、操作方便[/b][/color]操作方便性无论是对新手还是成熟的用户都是很重要的。操作越简单,有利于提高分析效率,也为以后分析方法的拓展提供有力的帮助。[b][/b][color=#0070c0][b]三、系统的,整体开发[/b][/color]这里指的是仪器的整体开发,是一个完整的系统。目前市场上有这个现象,说我的泵是进口的,或者是检测器怎么好,用了什么很多的进口件组装等等。其实这是个误区。液相色谱是个复杂的系统,不是整体开发的,各项指标之间、软件和硬件、硬件和硬件等都不匹配,整体水平不会高到哪里去,而且在售后服务方面对用户也是不负责任的。整体开发的主要优点有:各项技术指标统一、仪器各单元的通信协调、能够建立一个整体的数字化评价系统、体现了企业的科技及开发实力。国外知名的仪器生产厂家的产品也是整体开发的,所以能够保证仪器的整体水平。(文章来源:中国分析仪器网)

  • 【讨论】液相色谱的检定方法是否应该在极端的条件下?

    不管是原子吸收,紫外分光或液相色谱仪,其检定条件都是选择仪器最稳定,最有利的条件,如原子吸收,就用铜,波长也高,它为什么不用锌或其它低波长的物质来检测,液相用萘,254nm,这样的条件是不是对生产商有利,它为什么不用离子对色谱,低波长来做检定条件?

  • 液相色谱柱年鉴(2013)

    液相色谱柱年鉴(2013)目录tables of contents第1章 中国品牌液相色谱柱 31.1. Dikma(迪马.中国) 31.1.1. 介绍 31.1.2. 迪马液相色谱柱 31.2. Anpel(安谱.中国) 31.2.1. 介绍 41.2.2. CNW液相色谱柱 41.3. Welch(月旭.中国) 41.3.1. 介绍 41.3.2. 月旭液相色谱柱 41.4. Bonna-Agela(博纳-艾杰尔.中国) 51.4.1. 介绍 51.4.2. 博艾液相色谱柱 5第2章 美国品牌液相色谱柱 72.1. Agilent(安捷伦.美国) 72.1.1. 安捷伦ZORBAX液相色谱柱 7(1). 硅胶类别 72.1.2. 安捷伦Poroshell液相色谱柱 82.2. Waters(沃特世.美国) 82.2.1. 沃特世液相色谱柱 8(1). 颗粒类型 82.2.2. ACQUITY UPLC Columns 92.2.3. HPLC分析和制备柱 9(1). Xbridge 9(2). Xselect 9(3). Atlantis 10(4). Sunfire 102.2.4. SFC(超临界流体色谱)柱 112.3. Phenomenex(菲罗门.美国) 112.3.1. Phenomenex HPLC/UHPLC色谱柱 112.4. Thermo-Fisher(赛默飞.美国) 112.4.1. 主要色谱柱产品 122.4.2. 生物分子色谱柱 122.4.3. 极性和可选择性色谱柱 132.4.4. 扩展pH型色谱柱 132.4.5. 经典型色谱柱 132.4.6. LC/MS色谱柱和工具包 132.4.7. 保护柱 132.4.8. 离子交换型色谱柱 142.4.9. 体积排阻色谱柱 142.5. Dionex(戴安.美国Thermo旗下) 142.5.1. 介绍 142.5.2. 戴安公司液相柱 15(1). DIONEX Acclaim Surfactant色谱柱 15(2). DIONEX Acclaim OA色谱柱 15(3). DIONEX Acclaim PA2色谱柱 15(4). DIONEX Acclaim PA色谱柱 15(5). DIONEX Acclaim 120 C18分析柱 15(6). DIONEX Acclaim 120 C8分析柱 16(7). DIONEX Acclaim 300色谱柱 16(8). DIONEX Acclaim explosives色谱柱 162.6. Sigma-Aldrich(西格玛-奥德里奇.美国) 162.6.1. Supelco(色谱科.美国) 162.6.2. 美国Sigma-Aldrich公司(美国西格玛奥德里奇公司) 172.7. GRACE-Alltech(格雷斯-奥泰.美国) 172.8. Restek(瑞斯泰克.美国) 172.9. Kromat.KB(科瑞迈.美国) 182.10. Sepax(赛分.美国) 18第3章 欧洲品牌液相色谱柱 193.1. Machery Nagel.Nucleodur(闪电.德国) 193.2. Merck(默克.德国) 193.3. Hamilton(哈美顿.瑞士) 203.3.1. Hamilton液相色谱柱 213.4. Kromasil.Eka(克罗马斯,作者暂定.瑞典) 22第4章 日本品牌液相色谱柱 234.1. CAPCELL PAK(资生堂.日本) 234.2. Shimadzu(岛津.日本) 244.3. Showa Denko.Shodex(昭和.日本) 254.4. TSKgel(东曹.日本) 254.5. YMC(山村化学.日本) 264.6. Nacalai Tesque.Cosmosil(纳采,作者暂定.日本) 274.7. Daicel(大赛璐.日本) 274.8. DAICEL历史介绍 284.9. DAICEL大赛璐(中国) 304.9.1. 大赛璐手性柱 31

  • 【有奖调查】农残检测使用液相色谱品牌调查!

    http://ng1.17img.cn/bbsfiles/images/2011/01/201101241614_275696_1759541_3.gif 液相色谱是农残检测任务中最常用的分析仪器,目前多数实验室都是使用的进口色谱仪器,但是渐渐的也有很多的国产液相色谱仪走进实验室,以低廉的价格取得了一定的市场。请大家讨论、交流一下您所在实验室使用的是什么品牌的液相色谱仪进行农药残留分析的?一般都分析哪些农药?有效回帖5分奖励,上图再加五分哦!参考格式:品牌:台数:检测哪些样品:一般分析哪些农药:

  • 液相色谱保留时间不稳定

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]保留时间不稳定的一般解决步骤是:1、先观察保留时间是否有规律变化,同时看压力是否稳定。若压力稳定而保留时间有规律变化,多数是色谱柱未平衡好;2、如果压力稳定而保留时间无规律变化,应检查溶剂过滤头及真空腔是否有堵塞,在平衡色谱柱,若效果仍不佳,可尝试更换一色谱柱。3、若压力不稳定,就检查造成压力不稳定的因素,如漏液等。

  • 液相色谱常用的几种检测器

    液相色谱常用的几种检测器 液相色谱法在检测中现在是如火如荼,用量之大,涉及的行业之多,影响力之广等都是非常惹人关注的。液相色谱的配置都是大同小可的,主要是在检测器上有些区别。 一般来说,液相色谱检测的样品种类很多,能涉及到成千上万的有机物。检测的样品不一样,所选的检测器可能就不一样,这是由不同检测器的特点决定的。 液相色谱常用的检测器主要有紫外-可见光检测器,一般人都叫紫外检测器;光电二极管阵列检测器,一般被叫做二极管检测器,或DAD检测器或PAD、PDAD检测器等;荧光检测器;示差折光检测器,一般被称作示差检测器;蒸发光散射检测器,常被叫做蒸发光检测器;电喷雾检测器。 紫外检测器在液相色谱中的应用超过了80%,用量很大,这是和紫外检测器的优良特性分不开的。紫外检测器对温度、流速、风度、湿度、振动等的变化相对不敏感;灵敏度高,一般能达到10-9g/ml(萘甲醇溶液);能采用洗脱方式检测;重复性好,一般都能可知道1%以内。 DAD检测器实际也是紫外检测器的一种,现在用量不大是因为它的关键技术还没被广泛掌握,制造成本较高,检出限偏低于紫外检测器;它优点是可以全波长检测,可以实现三维谱图分析。 荧光检测器是除紫外检测器外用的最多的检测器,尤其是在农药残留、兽药残留、毒素、氨基酸等。它的优点是检出限极地,最低可以达到10-12g/ml;可以采用梯度洗脱方式检测;重复性也很好;抗温度、流速等因素变化的影响相对不明显。 示差折光检测器是一种通用型检测器,检测糖类效果很好,是糖类检测的首选检测器。它的优点是检测重复性很好;缺点是灵敏度不够高一般只有10-6g/ml,对温度变化极敏感,对流速变化也比较敏感,不能采用梯度洗脱方式检测,检测池耐压低等。 蒸发光散射检测器也是一种通用型检测器。它的优点是灵敏度较高,可采用梯度洗脱方式检测;缺点是重复性不好,一般5%左右,需要有一个清洁、稳定的气源,雾化室易污染,需要有排废气的装置。 电喷雾检测器现在还不太成熟,在这就先不做介绍了。 另外还有想激光检测器、电化学检测器、电导检测器、等其它分析仪器的检测器也陆陆续续的应用到了液相色谱仪上,但就从现在来说这些技术一是还不够成熟,二是用量也还不大。 现在国产液相的检测器主要紫外检测器,其它的检测器技术掌握的还很少,哪些检测器的工作基本都还没做,还有待尽快掌握和提高。

  • BCEIA2015——液相色谱大盘点

    BCEIA2015——液相色谱大盘点

    高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。 高效液相色谱方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。现在几乎每个医药、食品、化工等企业都会配备一到几台高效液相色谱,高效液相色谱法也已经成为了分析测试领域的标配了。 BCEIA2015已经过去一周,但是期间精彩纷呈的报告和各厂商展出令人眼花缭乱的仪器去还是让人久久回味。尤其是液相色谱,液相色谱厂商特点是国内与国外百花齐放,国外的厂商是几家知名的大厂商,安捷伦、赛默飞、岛津,国内也有好几家液相色谱的厂商参与此次BCEIA,像大连依利特、上海伍丰等,下面就让我们来回味一下,BCEIA期间都有哪些精彩的液相色谱。赛默飞: 赛默飞展出的是UHPLC系列,Ultimate3000和Vanquish Flex。这两款超高效液相都是赛默飞最新的超高效液相系统。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210110018_01_1947624_3.jpgUltimate3000 DGLC双三元液相系统 双三元液相色谱是赛默飞世尔科技的独特技术,从纳升液相、常规液相、超快速液相到生物液相均可提供双三元梯度分离技术。主要特点:1、能够进行在线固相萃取;2、可进行二维或多维色谱系统;3、在线柱后衍生和反梯度补偿满足特殊应用需求;4、并联、串联方式可实现超高的样品通量;5、流动相在线除盐,可谓质谱前端的不二选择。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210114647_01_1947624_3.jpgVanquish Flex UHPLC Thermo Scientific Vanquish Flex UHPLC系统是Vanquish色谱系列产品的新成员,仪器拥有1,000bar的泵耐压,可以加载进样器,整体进样量可达到8,832个样品,同时仪器可高精度地控制进样量。在检测器方面,Vanquish Flex UHPLC有着自己独特的LightPipe技术以及电雾式检测器,可以检测对紫外没有吸收的样品。Vanquish Flex 还是生物兼容液相色谱系统。安捷伦:http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210124597_01_1947624_3.jpgAgilent 1290 Infinity II 液相色谱系统 Agilent 1290 Infinity II 液相色谱系统于2014年10月上市,与安捷伦过往的优秀产品一样,具有极高的稳定性和耐用性,辅以突破性的技术。主要特点:1、采用双针进样,进样周期更短(小于5s),从而实现更高的样品通量;2、使用新型Agilent 1290 Infinity II液相色谱系统HDR-DAD或Agilent 1290 Infinity II液相色谱系统ELSD,可实现极低的检测限和超宽的动态范围;3、智能系统模拟技术(ISET)实现了液相色谱系统间方法的无缝转移,不论什么品牌,均可获得不变的保留时间和峰分离度;4、可与色谱数据系统无缝集成—得益于安捷伦仪器控制框架(ICF),在第三方色谱数据系统(例如,Waters Empower或Dionex Chromeleon)控制安捷伦液相色谱系统仪器时,其运行状况比之前更为流畅。5、提升单个实验台空间的样品容量—最多可容纳6144份样品,不会增加标准安捷伦仪器的占用面积。岛津:http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210133725_01_1947624_3.jpgNexera-e全二维液相色谱系统 Nexera-e通过对第一洗脱液进行精细馏分捕集可以达到最大可能的峰容量,并且凭借其双样品环交替切换设计,连续地将所有馏分在线注入第二维系统。Nexera-e结合日本岛津公司的二维液相色谱阵容,使得主要推向制药和临床市场的Co-Sense系列(可用于生物样本分析(BA)或用于杂质分析)颇具特色。由于能对复杂基质的样品进行全面的分析,Nexera-e非常适用于各种研究领域和应用领域,包括蛋白水解、食品和天然提取物。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210144048_01_1947624_3.jpgNexera-i LC-2040高效液相色谱仪 Nexera-iLC-2040是一体化高效液相色谱系统,耐压 66 MPa / 9,500psi,Nexera-i还可以被广泛用作LCMS前端。Nexera-iLC-2040是以UHPLC规格设计的超高效液相色谱,66MPa的系统压力支持使用2.5um或更小粒径填料的色谱柱,以及使用“核壳式”填料色谱柱,这进一步扩大了所适用的分析方法范围。双重温度控制功能控制光学系统和流通池温度,保证了基线的稳定,使用流动相即使在易受室温波动的短波长区域测量,也可以获得高度精确的数据。这使得基线漂移水平是Alliance系统的1/20。即使在小于1L的微体积进样中,i-Series系列也可以获取高度精确的数据。这意味着高浓度样品无需任何稀释就可以直接进样,节省了时间并免除了制备样品的麻烦。低至0.0025%的交叉污染,满足从高极性到低极性物质的大范围样品的分析。 具有远程监控功能可以通过智能终端远程监控分析状态并且实时监控色谱图。http://ng1.17img.cn/bbsfiles/images/2017/10/2015111210152422_01_1947624_3.jpg岛津Essentia LC-16主要特点:LC-16 送液单元LC-16通过改良公认的高精度结构,提高送液准确度和精确度,是能够长期、放心分析的新时代送液泵。SPD-16 紫外可见双波长检测器SPD-16延续广受好评的Prominence SPD-20A的设计,是高灵敏度的紫外可见双波长检测器。在此基础上进一步追求低噪音,实现超越等级的高灵敏度。使用选配件流动相循环阀,能够节约流动相,不仅降低分析成本,更有利于环保。SIL-16 自动进样器SIL-16是耐久性、可靠性和高性能并存的高性价比自动进样器。通过已有成熟使用经验的全量进样方式实现出色的定量重现性,同时也将交叉污染的影响降至最低。最短进样速度10秒以下的超高速进样动作使分析效率得到飞跃提高。还带有稀释、添加等前处理程序,广泛对应各种用途。日立:http://ng1.17img.cn/bbsfiles/images/2017/10/201511

  • 关于液相色谱计量检定的问题,特别是波长示值误差和线性范围

    关于液相色谱计量检定的问题,特别是波长示值误差和线性范围

    本人现在在做液相色谱的计量检定相关实验,按照国标,已经完成一部分了,可是现在碰到一些问题,希望做过这方面的有经验的人士给予提点和帮助,先谢谢各位了!首先是关于波长示值误差,岛津的仪器怎么分别测每个波长下色谱图的峰高啊,就算从每个不同的通道里看到色谱图,也不知道怎么求示值误差啊?然后就是线性范围这块,不知道怎么做,如果按照国标那么做,根本就做不出来啊················差点忘了说,我所检定的液相是岛津LC20的。。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_632235_2271280_3.jpg

  • 高效液相色谱在橡胶检测中的应用

    [align=center][b]高效液相色谱在橡胶检测中的应用[/b][/align]高效液相色谱是一种高效能的分离手段,在橡胶原材料检测以及硫化橡胶中配合剂检测等方面应用广泛.高效液相色谱是一种常温分离分析方法,对于高温条件下易发生反应的硫化促进剂,防焦剂等的分析具有其独特的优势。一、 橡胶原材料的检测高效液相色谱可以对橡胶防老剂,促进剂进行定性定量的检测。现行的相关标准和方法中涉及诸多高效液相色谱定量检测方法,如防老剂RD有效含量的测定 (包含二聚体、三聚体以及四聚体的相对含量),防老剂4020纯度的测定,防老剂4010NA纯度的测定,促进剂NS纯度的测定,促进剂CZ纯度的测定等。其中促进剂在高温条件下极易发生分解,因此对其进行检测一般采用可进行常温分析的高效液相色谱法。二、 硫化橡胶中配合剂的检测高效液相色谱法可以通过对硫化橡胶抽提液的分析,定性检测其中的配合剂。本实验室建立了多种相关的检测方法,如防老剂的定性检测,促进剂CZ和促进剂NS的定性检测,防焦剂的定性检测等。现行的橡胶防老剂、促进剂的定量检测方法,一般是采用面积归一的数据处理方法。这种方法在分析时具有明显的局限性,本实验室曾采用外标法处理实验数据,方法的精密度好,准确度高。

  • 液相色谱基线不稳定

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]基线不稳定的可能原因:1、基线漂移:色谱柱没平衡好,柱温不稳定,流动相变化等。2、基线噪音变大可能原因包括:(1)流通池有气泡,流通池被污染,(2)色谱柱和或系统受污染。(3)灯能量不足。(4)外界因素影响,如电源,温度和湿度等。

  • 液相色谱检定中,萘甲醇溶液最小检测浓度

    液相色谱检定中,注入低浓度萘甲醇溶液后,会出现一个和萘相当高度的鬼峰,和一个负峰转正峰的峰,最后是萘的峰,这个鬼峰和负峰是怎么来的呢?此外在计算最小检测浓度的公式里,用的噪声是从采集开始到结束时间段里的噪声呢还是需要选取一段比较平缓的基线噪声呢?

  • 【原创大赛】液相色谱之核心液相色谱柱检测

    【原创大赛】液相色谱之核心液相色谱柱检测

    Pgrandsil-STC-C18色谱柱检测报告说明:由于业务需要,根据某色谱柱厂商要求,对其提供的色谱柱进行某些性能及技术指标的测试,并详细记录了实验现象及数据,通过计算总结给出检测报告。实验报告部分1.目的1. 测试和评价某厂商提供的色谱柱是否合格2.原理和依据1. JJG705-2002液相色谱仪2. GB/T26792-2011 GB/T22388-20083. 厂家色谱柱评价方法4. 个人经验判断3.测试内容由于仅测试被测试色谱柱性能指标,因此仅关注如下指标序号测试科目要求检验目的1保留时间3-10min检测保留性2定性重复性1500检测柱性能5拖尾因子0.8-1.2检测填料和键合是否流失6柱压400-1500psi检查有无堵塞或坍塌7不同条件测试趋势与理论相符检查保留能力测试时将依据但不限于以上内容。主要评价指标和计算方法如下:http://ng1.17img.cn/bbsfiles/images/2013/08/201308171252_458254_2369266_3.jpg1) 峰高(Height):峰顶点至基线的距离;2) [fon

  • 搞定液相色谱最常见的故障:“堵”和“漏”!

    液相色谱仪是属于易学难用的仪器,特别讲究“正确使用”和经验。液相工作者接触最多的是流动相,也就是流动相,是造成液相色谱各种问题的最主要源头。液相色谱仪最常见的故障一是堵,二是漏。 下面就这两点分别展开讨论。(注:流动相以甲醇为例,色谱柱以C18为例)。“堵”的表现现象就是柱压异常升高,直接原因就是流路不畅。堵塞的主要位置就是在色谱柱的前端,最主要原因就是流动相里有杂质,杂质的主要来源就是细菌。 “堵”的原因之一:配制流动相时细菌污染。 首先我们要认识到,一般的国产甲醇其实不需要额外过滤处理,直接使用没有问题。即使是有些固态微粒杂质,也能在液相流路系统最前端的过滤头上排除,真正容易引起问题的,是水中的细菌。新制备的纯水在室内放置几天就会长菌,而这些细菌虽然肉眼不可见,却足以堵塞柱填料颗粒的空隙,造成柱子很快报废。这就是在配制流动相时造成的细菌污染的原因,解决它的方法很简单,就是确保水的可靠性。这里有两种方式推荐:(1)最理想的方式当然是购买实验室专用纯水机,既方便又可靠,质量也放心。唯一的缺点就是价格不菲。(2) 成箱购买市售品牌纯净水,如500ml 一支的怡宝或娃哈哈,这些水的质量足以应付液相色谱的要求。先随机抽取一支做一下细菌平板实验,待菌落数合格方可使用。这样每次只要单独开一支即可,也很方便。每次成本2 元左右。流动相的过滤其实也没那么必要?这里特别指出一个细节:在绝大多数书本上,凡谈到配制流动相都会谈到最后有一个过滤的步骤。但是从我们长期使用的实际效果来说,只要能保证水的质量,这一步完全可以也应当去除。原因有以下三点:(1)流动相过滤在理论上有好处,但是实际操作时由于不可能做到专瓶专用,反而容易造成的交叉污染,对于配比复杂的流动相影响更大。(2)流动相过滤在经济成本上不划算。买一套过滤装置要6000多元,且过滤器公认是比较容易损坏的设备。最主要是过滤片的成本太高,一片就要几十元。按一般液相柱的正常使用寿命计算,过滤片的成本会远远高于色谱柱的成本。(3)流动相过滤对于工作效率成本不划算。使用溶剂过滤器有一个预清洗、装备、使用、用后清洗,晾干的过程,至少也有一个小时的时间。这个成本也不能忽视。(4)在实际工作未发现流动相不过滤会对柱寿命有任何影响。我们起码有6 年时间没有做过流动相过滤的工作,但是和国内同行相比较,在同等使用强度下我们的柱寿命是比较长的。“堵”的原因之二:使用流动相时的细菌污染。指的是:流动相刚开始没有长菌,在使用时却产生了细菌污染。这主要是在使用多元液相色谱仪时的一种不良使用习惯造成的。举最简单的例子:50%的甲醇水流动相,有两种使用方式。一种方式是在上机前就配好混合在一起,另一种方式是在流路A放纯甲醇,流路B放纯水。从单纯实验效果来说,后一种有明显的优点:首先是简单,不需要实验者另个计算配比混合,其次就是比例准确,能得到保留时间重复性极好的实验效果。但是,它有一个致命的缺陷,就是纯水在流动相瓶中几天时间就会长细菌(很多情况下不仅仅用纯水作流动相,而是用缓冲盐溶液,本身就是优质肥料,细菌长得更迅速),一旦有细菌柱子就坏得很快。所以这种方式要求操作人员每次实验都要用新制备的纯水,更要求在每次实验后把水相换掉,换成甲醇冲洗干净,这一点在实际工作中很多人意识不强,就是意识到了但多次使用中总有一两次会遗漏,但是往往这一两次就足以产生致命的影响。因为液相色谱柱的堵塞是不可逆的。所以,宁可牺牲小小的保留时间的重复性,也不要用纯水溶液作为流动相的一组。从实际实验效果来说,我建议用10%的甲醇水代替纯水溶液(以前我做过不同比例甲醇水的细菌总数实验,在5%就基本可以抑菌,在10%及以上就可以完全杀菌了),这样可以有效排除长细菌的隐患,既可作流动相,也可冲柱。就算是在配制流动相时会计算得麻烦一些,但是一次麻烦,终身受益。 "堵”的原因之三:不适当操作常见问题的有以下几种:(1)在更换零件时选择的型号有误,接口不是很匹配,在拧紧的时候产生变形而使得管路堵塞。(2)样品处理液净化得不干净,长期会在六通阀和柱之间形成阻塞不畅。(3)在使用手动六通阀时,有些人可能由于手劲小的原因,转动的不到位,于是造成流路形成了死堵,压力快速升高超过警戒值。(4)在使用金属管路作出废液管时,应当注意最好废液瓶中先放一些水,并把废液管的出口端放在液面下。如果位于在液相上且实验使用较高浓度的缓冲盐溶液,在停机时可能在出口端结晶成块并造成堵塞。这种情况不常见,但却的确发生过。“堵”的原因讲了不少,现介绍查堵的方法在发生“堵”的现象后,就需要找出原因,主要是什么位置发生了“堵”。注意,绝大多数情况下,整个系统只会有一个地方发生堵塞。查堵的方法是从尾向前逆向分段拆开,仔细观察压力数值,如果某一个部件(柱子除外)装上和拆下时的压力差别很大,可发展变化判断。至于柱的堵塞,可以通过换同样规格的柱的压力是否一致来判断。下面再谈一下“漏”的问题。“漏”则分两种:漏液和漏气。一. 漏液液相色谱仪从流动相瓶到废液瓶之间的流路是一个全封闭体系,内部压力很高,但外部却能保证一滴不漏。如果某个部件发生了漏液,那就是故障所在。漏液的原因分两种:(1) 接触硬件不当。在更换零件如流路管或换柱时,换的接头接口不匹配,造成漏液。要注意不同公司的柱子接头很多是不同的,甚至同一家公司在不同时期生产的液相柱接头也有很大区别。当然选用PEEK接头是一个较好的解决方法,不仅通用性好,而且靠手拧就能保证不漏液。即使是接口本身是匹配的,但是如果操作不当也会漏液,一种不当就是力度把握不好,拧得太紧或太松;另一种不当就是致命的错误:滑丝,这是往往是动手能力不太强,螺丝钉很少拧的工作者犯的错误,滑丝的后果不仅是漏液那么简单,常造成重要部件的报废。解决这个问题只能靠恶补基本功来实验,那就是拧螺丝。(2) 使用仪器不当如果是输送泵漏液,最常见的原因就是在活塞位置缓冲盐析出造成。析出的原因有两个,一是使用缓冲盐溶液时突然加入了纯甲醇而析出,这种错误很容易避免,这是尽量不要用纯的甲醇和纯水。只要互相有10%的比例就不会出现这个问题。另一原因是在用缓冲盐溶液(不论甲醇含量有多少)作流动相时,实验结束后没有换甲醇水冲洗,使得微渗的流动相干燥形成晶体造成。不过,输送泵漏液并不是非得马上修不可,冲洗干净并在以后的使用中多加小心一般都可以正常使用。检测器漏液是个很麻烦的事,一般都是吸收池的问题,更换的费用相当高。但是并不是说一定要马上更换,还可以从实际实验效果看能否凑合使用。二. 漏气漏液是从内部向外漏,而漏气则是外部的气体进入液相色谱仪的流路内部形成了气泡。下面按流路的方向逐个部件分析产生气泡的原因和相应解决方法。(1) 过滤头抽液时,在流路管中有不规则但持续的小气泡产生,这时考虑的是流动相有没有脱气(需要特别提醒即使是有了真空脱气机也是要先超声脱气的,起码可以减少脱气机的工作压力并提高工作效率),如果已经脱了气,则要注意过滤头的污染也会造成这种现象。处理方法比较简单,拧下过滤头在稀硝酸中浸泡,超声半小时,洗净后装回去即可。(2) 透明流路管指的是在过滤头和输送泵之间的那一段管路。这一个部分往往不是有点气泡,而经常是整个管中全是空气而操作人员却浑然不知,以致输送泵工作了半天才发现流动相瓶里的液体一点也没少。这也是我们常说的液相色谱仪至少一周要开机一次的原因(我们做液相一定要有“微渗”的概念)。如果长时间不用,这一段管路的液体会彻底干掉,而充满空气的管路和充满液体的管路不仔细看是分辨不出的。这种情况对于输送泵很危险,因为泵从设计来说是输送液体而不是气体,内部的液体对于活塞来说起到了机油的作用,如果活塞杆上还残存了一些缓冲盐,则极易拉伤,造成不可逆

  • 【求助】液相色谱检测,出峰保留时间在多少比较合适

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测,标准物质成分出峰时间与未知成分出峰时间一般在±0.05分钟内就看做同一种成分的出峰。液相色谱出峰时间偏离比较大,即便是同一种成分,在不同浓度下的出峰时间都会有0.1分钟以上的偏离,甚至更大。[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]检测绝大多数用毛细柱检测,分离度较高,载气为氮气居多,柱条件较稳定。液相检测峰宽较大,导致对检出成分用保留时间确认比较难判定,尤其是痕量分析时尤其如此。不知道各位老师对液相检测未知成分的判定,保留时间偏差的缩小有什么经验,请不吝赐教。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制