当前位置: 仪器信息网 > 行业主题 > >

液相离子色谱法

仪器信息网液相离子色谱法专题为您提供2024年最新液相离子色谱法价格报价、厂家品牌的相关信息, 包括液相离子色谱法参数、型号等,不管是国产,还是进口品牌的液相离子色谱法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相离子色谱法相关的耗材配件、试剂标物,还有液相离子色谱法相关的最新资讯、资料,以及液相离子色谱法相关的解决方案。

液相离子色谱法相关的论坛

  • 【第三届原创参赛】流动相离子色谱分析法同时测定矮壮素和缩节胺

    摘 要 采用离子对试剂作流动相,离子对抑制电导检测法同时测定矮壮素和缩节胺。简单处理后的样品经过Dionex NG1保护柱和NS1分离柱,在流速为1.00 mL/min,淋洗液为1.00 mmol/L九氟戊酸(作为离子对试剂)和7 % (体积分数,下同)乙腈的混合液时等度洗脱分离,能够快速稳定出峰,且与其他干扰离子充分分离。矮壮素和缩节胺的检出限分别为0.1546 mg/L和0.1714 mg/L,具有良好的线性关系和重现性。对实际样品进行测定,矮壮素和缩节胺的回收率范围分别为96.06 % ~ 104.6 %和98.53 % ~ 103.7 %,相对标准偏差小于3 %。本方法分析结果令人满意,可以满足矮壮素和缩节胺常规的定性、定量分析需求。矮壮素(Chlormequat chloride)和缩节胺(Mepiquat chloride)均是广谱、高效、低毒的植物生长调节剂,在蔬菜幼苗期和开始徒长时喷施,当浓度、喷施次数适宜时,可增强秧苗的抗寒、抗旱、抗病能力,培育矮健壮苗。这两种植物生长调节剂虽然低毒,但过量使用会给人体和鱼类带来一定的毒性,曾有报道口服矮壮素死亡的案例。矮壮素和缩节胺均为季铵盐类化合物,极性和水溶性强,在土壤中具有强吸附性,容易污染地下水,会给环境造成一定的污染。矮壮素和缩节胺早期的分析方法包括薄层色谱法、比色分析法、和气相色谱法等。气相色谱法的测定需要对样品进行衍生,衍生化过程会造成回收率低、干扰物质增加、检测结果易产生假阳性等问题。矮壮素和缩节胺的弱挥发性和强极性决定了其适合采用液相色谱法进行检测,但因其分子结构简单,不含有发色基团,也需要衍生化后才能进行紫外检测。采用质谱检测则可以解决这一问题,所以目前大都采用液相色谱-质谱联用技术,但质谱的成本高昂,提高了矮壮素和缩节胺常规检测的成本。傅里叶变换拉曼光谱的方法虽然相对地降低了检测成本,但由于仪器不够普及,所以不适合常规检测。用离子色谱的方法测定矮壮素和缩节胺,虽然灵敏度没有气质或液质高,但该方法具有操作简单、快速、实用等特点,能满足矮壮素和缩节胺的常规检测,且离子色谱仪器及其操作的成本较质谱低,实际推广性更强。流动相离子色谱(MPIC)用疏水性树脂为固定相,用含有离子对试剂的亲水性为流动相。这种方式具有反相离子对色谱的高分离效率和选择性。一般而言,流动相离子色谱(MPIC)是离子对色谱与抑制电导检测结合的技术。MPIC适合于带有电荷的大分子,矮壮素和缩节胺是季铵盐类化合物,在离子交换树脂上保留较强,在色谱分离过程中,会导致保留时间过长、峰形变差等问题,用MPIC的分离检测方式从理论上可以很好地解决这一问题,因为离子对的动态特征,往往加入有机溶剂于流动相,使被测离子不粘附于MPIC的中性树脂上。 目前,用流动相离子色谱同时测定矮壮素和缩节胺的方法未见报道。笔者用离子对试剂九氟戊酸作为流动相,离子对抑制电导检测法对矮壮素和缩节胺同时进行检测。

  • 【分享】高效液相色谱法词汇

    高效液相色谱法词汇高效液相色谱法:high performance liquid chromatography,HPLC高速液相色谱法:high speed LC,HSLC高压液相色谱法:high pressure LC,HPLC高分辨液相色谱法:high resolution LC,HRLC液固吸附色谱法(液固色谱法):liquid-solid adsorption chromatography,LSC液液色谱法:liquid-liquid chromatography,LLC正相:normal phase,NP反相:reversed phase,RP化学键合相色谱法:bonded phase chromatography,BPC十八烷基:octadecylselyl,ODS离子对色谱法:paired ion chromatography,PIC反相离子对色谱法:RPIC离子抑制色谱法:ion suppression chromatography,ISC[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法:ion chromatography,IC手性色谱法:chiral chromatography,CC环糊精色谱法:cyclodextrin chromatography,CDC胶束色谱法:micellar chromatography,MC亲和色谱法:affinity chromatography,AC固定相:stationary phase化学键合相:chemically bonde phase封尾、封顶、遮盖:end capping手性固定相:chiral stationary phase,CSP恒组成溶剂洗脱:isocraic elution梯度洗脱:gradient elution紫外检测器:ultraviolet detector,UVD荧光检测器:fluorophotomeric detector,FD电化学检测器:ECD示差折光检测器:RID光电二极管检测器:photodiode array detector ,DAD三维光谱-波谱图:3D-spectrochromatogram蒸发光散射检测器:evaporative light scattering detector,ELSD安培检测器:ampere detector,AD高效毛细管电泳法:high performance capillary electrophoresis,HPCE淌度:mobility电泳:electrophoresis电渗:electroosmosis动力进样:hydrodynamic injection电动进样:electrokinetic injection毛细管区带电泳法:capillary zone electrophoresis,CZE胶束电动毛细管色谱:micellar electrokinetic capillary chromatography,MECC毛细管凝胶电泳:capillary gel electrophoresis,CGE筛分:sieving

  • 高效液相色谱法词汇

    高效液相色谱法:high performance liquid chromatography,HPLC 高速液相色谱法:high speed LC,HSLC 高压液相色谱法:high pressure LC,HPLC 高分辨液相色谱法:high resolution LC,HRLC 液固吸附色谱法(液固色谱法):liquid-solid adsorption chromatography,LSC 液液色谱法:liquid-liquid chromatography,LLC 正相:normal phase,NP 反相:reversed phase,RP 化学键合相色谱法:bonded phase chromatography,BPC 十八烷基:octadecylselyl,ODS 离子对色谱法:paired ion chromatography,PIC 反相离子对色谱法:RPIC 离子抑制色谱法:ion suppression chromatography,ISC 离子色谱法:ion chromatography,IC 手性色谱法:chiral chromatography,CC 环糊精色谱法:cyclodextrin chromatography,CDC 胶束色谱法:micellar chromatography,MC 亲和色谱法:affinity chromatography,AC 固定相:stationary phase 化学键合相:chemically bonde phase 封尾、封顶、遮盖:end capping 手性固定相:chiral stationary phase,CSP 恒组成溶剂洗脱:isocraic elution 梯度洗脱:gradient elution 紫外检测器:ultraviolet detector,UVD 荧光检测器:fluorophotomeric detector,FD 电化学检测器:ECD 示差折光检测器:RID 光电二极管检测器:photodiode array detector ,DAD 三维光谱-波谱图:3D-spectrochromatogram 蒸发光散射检测器:evaporative light scattering detector,ELSD 安培检测器:ampere detector,AD 高效毛细管电泳法:high performance capillary electrophoresis,HPCE 淌度:mobility 电泳:electrophoresis 电渗:electroosmosis 动力进样:hydrodynamic injection 电动进样:[font=Times New Roman

  • 【原创大赛】离子色谱法检测垃圾渗沥液

    【原创大赛】离子色谱法检测垃圾渗沥液

    离子色谱法检测垃圾渗沥液 现在人们的生活水平提高了,垃圾却堆积如山了。这些东西漫天飞舞,异味飘扬(臭名远扬),严重的污染了我们赖以生存的空气、水质、土壤等。 垃圾中的成分复杂,有些甚至还不稳定,这就为垃圾的检测、治理、危害的预防加大了难度。 垃圾检测的过程非常复杂和繁琐,涉及的仪器有紫外分光光度计、原子吸收仪、原子荧光仪、气相色谱仪、液相色谱仪、离子色谱仪、气质联用仪、液质联用仪、酶标仪、PH仪、ICP、衍射仪等等。检测的项目也是非常多,有原子的,有分子的,有离子的;有有机的,有无机的;有金属的,有非金属的;有细菌、真菌、病菌的等等。这些东西很多是有毒有害的,是需要控制含量的。下面我们就介绍下离子色谱法检测垃圾渗沥液中的F-、Cl-、NO2、Br-、NO3-、H2PO4-、SO42-等七种阴离子。实验部分仪器离子色谱仪,配电导检测器,膜结构自再生电化学抑制器,在线脱气机,柱温箱超声波振动仪溶剂过滤器离心机氮吹仪固相萃取装置,配C18固相萃取柱超纯水器电导率仪试剂碳酸钠溶液碳酸氢钠溶液超纯水F-、Cl-、NO2、Br-、NO3-、H2PO4-、SO42七种阴离子单标准品溶液F-、Cl-、NO2、Br-、NO3-、H2PO4-、SO42七种阴离子混合标准品溶液样品制备 取某垃圾处理中心(该中心既有工业垃圾又有生活垃圾)垃圾渗沥液50ml,放置24小时或将样品用离心机[

  • 离子色谱法(ion chromatography, IC )

    狭义地讲,是基于离子性化合物与固定相表面离子性功能基团之间的电荷相互作用实现离子性物质分离和分析的色谱方法;广义地讲,是基于被测物的可离解性(离子性)进行分离的液相色谱方法。1975年Small发明的离子色谱是以低交换容量离子交换剂作固定相、用含有合适淋洗离子的电解质溶液作流动相使无机离子得以分离,并成功地用电导检测器连续测定流出物的电导变化。但随着色谱固定相和检测技术的发展,非离子交换剂固定相和非电导检测器也广泛用于离子性物质的分离分析。根据分离机理,离子色谱可分为离子交换色谱、离子排斥色谱、离子对色谱、离子抑制色谱和金属离子配合物色谱等几种分离模式(方式)。其中离子交换色谱是应用最广泛的离子色谱方法,是离子色谱日常分析工作的主体,通常要采用专门的离子色谱仪进行分析。离子色谱法已经广泛地用于环境、食品、材料、工业、生物和医药等许多领域。

  • 【资料】液相色谱法

    液相色谱法   [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。液相色谱法就是用液体作为流动相的色谱法。1903 年俄国化学家M.C.茨维特首先将液相色谱法用于分离叶绿素。 原理和分类 液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 品质软件试用下载:[URL=http://www.gztaiyou.com/jian/download.asp?instrument=315]http://www.gztaiyou.com/jian/download.asp?instrument=315[/URL]  ①液固吸附色谱。高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有吸附活性的物质如硅胶、氧化铝、分子筛、聚酰胺等。   ②液液分配色谱法。基于被测物质在固定相和流动相之间的相对溶解度的差异,通过溶质在两相之间进行分配以实现分离。根据固定相与流动相的极性不同,分为正相色谱和反相色谱。前者是用硅胶或极性键合相为固定相,非极性溶剂为流动相;后者是硅胶为基质的烷基键合相为固定相,极性溶剂为流动相,适用于非极性化合物的分离。   ③离子交换色谱法。基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子对离子交换基具有不同的亲和力而实现分离。薄壳型离子交换树脂柱效高,主要用来分离简单的混合物;多孔性树脂进样容量大,主要用来分离复杂混合物。   ④凝胶渗透色谱法[1] 。又称为尺寸排阻色谱法 。1959年首先用于生物化学领域。以溶剂为流动相,多孔填料(如多孔硅胶、多孔玻璃)或多孔交联高分子凝胶为分离介质的液相色谱法。当混合物溶液入凝胶色谱柱后,流经多孔凝胶时,体积比多孔凝胶孔隙大的分子不能渗透到凝胶孔隙里去而从凝胶颗粒间隙中流过,较早地被冲洗出柱外,而小分子可渗透到凝胶孔隙里面去,较晚地被冲洗出来,混合物经过凝胶色谱柱后就按其分子大小顺序先后由柱中流出达到分离的目的。用凝胶渗透色谱的优点是:分离不需要梯度冲洗装置 ;同样大小的柱能接受比通常液相色谱大得多的试样量;试样在柱中稀释少,因而容易检测;组分的保留时间可提供分子尺寸信息;色谱柱寿命长。它的缺点是:不能分离分子尺寸相同的混合物,色谱柱的分离度低;峰容量小;可能有其他保留机理起作用时引起干扰。凝胶渗透色谱法为测定高聚物分子量和分子量分布提供了一个有效的方法,此外还可用来分离齐聚物、单体和聚合物添加剂等。   ⑤[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法。采用柱色谱技术的一种高效液相色谱法,样品展开方式采用洗脱法。根据不同的分离方式,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]可以分为高效[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url] 、离子排斥色谱和流动相[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]3类。高效[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法使用低容量的离子交换树脂,分离机理主要是离子交换。离子排斥色谱法用高容量的树脂,分离机理主要是利用离子排斥原理。流动相[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]用不含离子交换基团的多孔树脂,分离机理主要是基于吸附和离子对的形成。   [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]由淋洗液贮存器 、泵 、进样阀 、分离柱 、抑制柱、电导检导器和数据处理单元等组成。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]最重要的部件是分离柱,装有离子交换树脂。抑制柱是抑制型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]的关键部件,其作用是将淋洗液转变成低电导部分,以降低来自淋洗液的背景电导,同时将样品离子转变成其相应的酸或碱,以增加其电导。分离阴离子,抑制柱填充强酸性阳离子交换树脂;分离阳离子,抑制柱填充强碱性阴离子交换树脂。检测器分通用型检测器与专用型检测器。前者如电导检测器,对检测池中所有离子都有响应;后者如紫外-可见分光光度计,对离子具有选择性响应。   [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法具有快速、灵敏、选择性好和同时测定多组分的优点。尤其对于阴离子的测定,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的出现是分析化学中的一项突破性的新进展。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法主要用于测定各种离子含量,广泛应用于水、纸浆和漂白液、食品分析、生物体液、钢铁和环境分析等各个领域。   设备 高效液相色谱仪由输出泵、进样装置、色谱柱 、梯度冲洗装置、检测器及数据处理和微机控制单元组成。输出泵的功能是将冲洗剂在高压下连续不断地送入柱系统,使混合物试样在色谱中完成分离过程 。常用的进样方式有3种:注射器隔膜进样、阀进样和自动进样器进样。色谱柱的功能是将混合物中各组分分离。梯度冲洗又称溶剂程序,通过连续改变冲洗剂的组成,改善复杂样品的分离度,缩短分析周期和改善峰形,其功能类似于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的程序升温。检测器的功能是将从色谱柱中流出的已经分离的组分显示出来或转换为相应的电信号,主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。现代化的仪器都配有计算机,以实现自动处理数据、绘图和打印分析报告。

  • 离子交换色谱法

    离子交换色谱法中,适用于WAX(弱阴离子交换柱)检测的物质?蛋白质,多肽,核酸,氨基酸 为什么?

  • 介绍“离子交换色谱法”

    以离子交换剂(如聚苯乙烯基质离子交换树脂)作固定相,基于流动相中溶质(样品)离子和固定相表面离子交换基团之间的离子交换作用而达到溶质保留和分离的离子色谱法。分离机理除电场相互作用(离子交换)外,还常常包括非离子性吸附等次要保留作用。其固定相主要是聚苯乙烯和多孔硅胶作基质的离子交换剂。离子交换色谱法最适合无机离子的分离,是无机阴离子的最理想的分析方法。

  • 环保部新发布6项新检测标准,3项为离子色谱法

    关于发布《固定污染源废气 氯化氢的测定 硝酸银容量法》等六项国家环境保护标准的公告  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,现批准《固定污染源废气 氯化氢的测定 硝酸银容量法》等六项标准为国家环境保护标准,并予发布。  标准名称、编号如下:  一、《固定污染源废气 氯化氢的测定 硝酸银容量法》(HJ 548-2016);  二、《环境空气和废气 氯化氢的测定 离子色谱法》(HJ 549-2016);  三、《水质 二氧化氯和亚氯酸盐的测定 连续滴定碘量法》(HJ 551-2016);  四、《环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO2-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法》(HJ 799-2016);  五、《环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法》(HJ 800-2016);  六、《环境空气和废气 酰胺类化合物的测定 液相色谱法》(HJ 801-2016)。  以上标准自2016年8月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。  自以上标准实施之日起,下列国家环境保护标准废止,标准名称、编号如下:  一、《固定污染源废气 氯化氢的测定 硝酸银容量法(暂行)》(HJ 548-2009);  二、《环境空气和废气 氯化氢的测定 离子色谱法(暂行)》(HJ 549-2009);  三、《水质 二氧化氯的测定 碘量法(暂行)》(HJ 551-2009)。  特此公告。  环境保护部  2016年5月13日  抄送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,辽河凌河保护区管理局,环境保护部环境标准研究所,各标准主编单位。  环境保护部办公厅2016年5月16日印发

  • 【转帖】高效液相色谱法的定义、类型流程图

    在所有色谱技术中,液相色谱法(liquid chromatography,LC)是最早(1903年)发明的,但其初期发展比较慢,在液相色谱普及之前,纸色谱法、气相色谱法和薄层色谱法是色谱分析法的主流。到了20世纪60年代后期,将已经发展得比较成熟的气相色谱的理论与技术应用到液相色谱上来,使液相色谱得到了迅速的发展。特别是填料制备技术、检测技术和高压输液泵性能的不断改进,使液相色谱分析实现了高效化和高速化。具有这些优良性能的液相色谱仪于1969年商品化。从此,这种分离效率高、分析速度快的液相色谱就被称为高效液相色谱法(high performance liquid chromatography,HPLC),也称高压液相色谱法或高速液相色谱法。  气相色谱只适合分析较易挥发、且化学性质稳定的有机化合物,而HPLC则适合于分析那些用气相色谱难以分析的物质,如挥发性差、极性强、具有生物活性、热稳定性差的物质。现在,HPLC的应用范围已经远远超过气相色谱,位居色谱法之首。 高效液相色谱的类型  广义地讲,固定相为平面状的纸色谱法和薄层色谱法也是以液体为流动相,也应归于液相色谱法。不过通常所说的液相色谱法仅指所用固定相为柱型的柱液相色谱法。  通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色谱法和凝胶色谱法四大类。其实,有些液相色谱方法并不能简单地归于这四类。表8-1列举了一些液相色谱方法。按分离机理,有的相同或部分重叠。但这些方法或是在应用对象上有独特之处,或是在分离过程上有所不同,通常被赋予了比较固定的名称。表8-1HPLC按分离机理的分类类 型主要分离机理主要分析对象或应用领域吸附色谱吸附能,氢键异构体分离、族分离,制备分配色谱疏水分配作用各种有机化合物的分离、分析与制备凝胶色谱溶质分子大小高分子分离,分子量及其分布的测定离子交换色谱库仑力无机离子、有机离子分析离子排斥色谱Donnan膜平衡有机酸、氨基酸、醇、醛分析离子对色谱疏水分配作用离子性物质分析疏水作用色谱疏水分配作用蛋白质分离与纯化手性色谱立体效应手性异构体分离,药物纯化亲和色谱生化特异亲和力蛋白、酶、抗体分离,生物和医药分析液相色谱仪流程图  现在的液相色谱仪一般都做成一个个单元组件,然后根据分析要求将各所需单元组件组合起来。最基本的组件是高压输液泵、进样器、色谱柱、检测器和数据系统(记录仪、积分仪或色谱工作站)。此外,还可根据需要配置流动相在线脱气装置、梯度洗脱装置、自动进样系统、柱后反应系统和全自动控制系统等。  液相色谱仪的工作过程:输液泵将流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导入,流动相将样品带入色谱柱,在色谱柱中各组分因在固定相中的分配系数或吸附力大小的不同而被分离,并依次随流动相流至检测器,检测到的信号送至数据系统记录、处理或保存。

  • 水质溴化物离子色谱法

    请问哪位老师做水中溴化物离子色谱法的检测?你们的方法依据是什么?国标号是什么?以前是GB/T8538-1995但是废止了被2008代替。但是2008里面没有溴化物你们怎么办的呢?

  • 【实战宝典】RPIP反相离子对色谱与强阴离子交换有什么异同点?

    【实战宝典】RPIP反相离子对色谱与强阴离子交换有什么异同点?

    [b][font='Times New Roman'][font=宋体]解答:[/font][/font][/b][font=宋体][font=宋体]([/font]1[font=宋体])两者的[/font][/font][font='Times New Roman'][font=宋体]共同点[/font][/font][font=宋体]在于[/font][font='Times New Roman'][font=宋体]都是可以用来分析溶于流动相的可解离的目标化合物。[/font][/font][font=宋体][font=宋体]([/font]2[font=宋体])两者的[/font][/font][font='Times New Roman'][font=宋体]区别主要有以下几点:[/font][/font][font=宋体]a.[/font][font='Times New Roman'][font=宋体]原理不同:反相离子对色谱是反相分配色谱,遵循的是分配色谱分离规律;而阴离子交换色谱是离子交换色谱,遵循的是离子交换色谱分离规律。[/font][/font][font=宋体]b.[/font][font='Times New Roman'][font=宋体]过程不同:反相离子对色谱需要加入合适的离子对试剂,在流动相中或是固定相上,离子对试剂与解离后的目标化合物形成疏水型离子对化合物,然后以疏水性化合物的特性在反相色谱柱上保留,并实现分离;阴离子交换色谱是解离后的目标化合物离子与树脂进行离子交换,来实现分离。[/font][/font][font=宋体]c.[/font][font='Times New Roman'][font=宋体]材料不同:反相离子对色谱采用的是反相色谱柱;离子交换色谱使用的则是离子交换树脂。[/font][/font][font='Times New Roman'][font=宋体]除此之外,两者使用的仪器设备结构、流动相等方面也存在差异。[/font][/font][font='Times New Roman'][font=宋体][img=,256,256]https://ng1.17img.cn/bbsfiles/images/2021/03/202103172148403503_7820_3389662_3.jpg!w256x256.jpg[/img][/font][/font]

  • 【分享】高效液相色谱法

    第一节 概 述 高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术。 高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率 和实现了自动化 操作。经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达4.9107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 二、液相色谱分离原理及分类 和气相色谱一样,液相色谱分离系统也由两相——固定相和流动相组成。液相色谱的固定相可以是吸附剂、化学键合固定相(或在惰性载体表面涂上一层液膜)、离子交换树脂或多孔性凝胶;流动相是各种溶剂。被分离混合物由流动相液体推动进入色谱柱。根据各组分在固定相及流动相中的吸附能力、分配系数、离子交换作用或分子尺寸大小的差异进行分离。色谱分离的实质是样品分子(以下称溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。 根据分离机制不同,液相色谱可分为:液固吸附色谱、液液分配色谱、化合键合色谱、离子交换色谱以及分子排阻色谱等类型。三、液相色谱与气相色谱的比较 液相色谱所用基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。液相色谱所用基本理论:塔板理论与速率方程也与气相色谱基本一致。但由于在液相色谱中以液体代替气相色谱中的气体作为流动相,而液体和气体的性质不相同;此外,液相色谱所用的仪器设备和操作条件也与气相色谱不同,所以,液相色谱与气相色谱有一定差别,主要有以下几方面:(1)应用范围不同 气相色谱仅能分析在操作温度下能气化而不分解的物质。对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难。致使其应用受到一定程度的限制,据统计只有大约20%的有机物能用气相色谱分析;而液相色谱则不受样品挥发度和热稳定性的限制,它非常适合分子量较大、难气化、不易挥发或对热敏感的物质、离子型化合物及高聚物的分离分析,大约占有机物的70 ~ 80%。 (2)液相色谱能完成难度较高的分离工作 因为: ①气相色谱的流动相载气是色谱惰性的,不参与分配平衡过程,与样品分子无亲和作用,样品分子只与固定相相互作用。而在液相色谱中流动相液体也与固定相争夺样品分子,为提高选择性增加了一个因素。也可选用不同比例的两种或两种以上的液体作流动相,增大分离的选择性。 ②液相色谱固定相类型多,如离子交换色谱和排阻色谱等,作为分析时选择余地大;而气相色谱并不可能的。 ③ 液相色谱通常在室温下操作,较低的温度,一般有利于色谱分离条件的选择。(3)由于液体的扩散性比气体的小105倍,因此,溶质在液相中的传质速率慢,柱外效应就显得特别重要;而在气相色谱中,柱外区域扩张可以忽略不计。(4)液相色谱中制备样品简单,回收样品也比较容易,而且回收是定量的,适合于大量制备。但液相色谱尚缺乏通用的检测器,仪器比较复杂,价格昂贵。在实际应用中,这两种色谱技术是互相补充的。综上所述,高效液相色谱法具有高柱效、高选择性、分析速度快、灵敏度高、重复性好、应用范围广等优点。该法已成为现代分析技术的重要手段之一,目前在化学、化工、医药、生化、环保、农业等科学领域获得广泛的应用。

  • 【转帖】两性离子流动相离子色谱法测定硼酸根

    [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]已经在环境分析、质量检验、产品测定等多个领域得到了广泛的应用。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]采用的抑制电导检测法测定强酸离子,会有很好的检测信号以及线性,但是对于硼酸根等弱酸离子,由于其电离常数小且电离受淋洗液pH值的影响较大,弱酸离子经过抑制器后检测信号很低。为了能够方便的检测硼酸根,利用混合两性离子淋洗系统.该系统混合不同pI值的两性离子(pI值大于7的,称为碱性两性离子Zb;pI值小于7的,称之为酸性两性离子Za),混合后淋洗液的pH值介于pIb和pIa之间,形成了Zb-和ZHa+,具有一定的淋洗强度,同时可方便的应用于离子交换色谱,进行非抑制电导检测。  硼酸根的摩尔电导很小,但是硼酸B(OH)-4,可以和多醇类物质如甘露醇(mannitol)形成一价络合物,[boratemannitol]-,性质类似于一价阴离子,可以用于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的电导检测,有较强的检测信号和很好的系统稳定性。  2 实验部分  2.1 仪器和试剂 采用美国DIONEX100-T[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],AG14阴离子保护柱,AS14阴离子分离柱,L精氨酸(LArginine)上海康捷生物科技发展有限公司,(N环己烷基)乙磺酸(CHES,Sigma 公司),甘露醇(mannitol,上海康捷生物科技发展有限公司),硼酸固体(杭州萧山化学试剂厂);硼酸根标样利用分析纯硼酸固体样品配制成1000 mg/L,实验时再稀释为所需浓度。实验用水为18.3 MΩcm的二次去离子水。  2.2 色谱条件 淋洗液均采用当天新鲜配制的L精氨酸(LArg)和CHES两性离子混合的400 mL溶液;流速:1 mL/min;进样量:50 μL。  3 结果与讨论  3.1 淋洗液的选择和优化 实验采用非抑制电导检测的方法检测硼酸。对于硼酸等弱电离酸根来说,淋洗液pH值越高,酸根电离越厉害,所被测的电导值也越高,也就是检测灵敏度提高,但是一般淋洗液pH值升高,背景电导急剧增大,无法有很好的检测效果。而混合两性离子溶液,具有一定的缓冲容量和洗脱能力,即使在很高的pH值下,背景电导依然很低。而且只要选择恰当的两性离子,淋洗液的pH值可以根据不同的弱酸的pKa任意调节,可以应用于不同弱电离酸根的非抑制电导检测。  氨基酸是典型的两性离子。LArg是20种常见氨基酸中pI值最大的一种(10.76)。因此,选择其为实验两性离子;CHES,(N环己烷基氨基)乙磺酸,一种常见的两性离子,有很强的洗脱能力,与LArg混合可以形成pH在10左右的淋洗液,背景电导则只在70 μS左右。实验表明:LArg∶CHES的浓度比越大,淋洗液pH值越高,淋洗的强度越大,背景电导相应升高,分析物质保留时间缩短。但是,如果CHES浓度太大,会引起淋洗液背景电导过高,而没有检测信号,因此实验采用2.5 mmol/L的浓度进行优化。以2.5 mmol/L CHES浓度为基础,进行LArg:CHES浓度比为2∶1、3∶1、4∶1 和5∶1实验,考虑了背景电导和保留时间的关系,发现2∶1(LArg:CHES ,5 mmol/L 2.5 mmol/L),溶液pH值为919,硼酸保留时间为9.42min;而比例增加到3∶1和4∶1时,溶液pH值相应增加到9.21和9.42,同时淋洗强度增加,硼酸的保留时间则下降到了6.80min和5.53 min,综合考虑背景电导和保留时间的关系,认为3∶1的淋洗液最为合适。  3.2 淋洗液中甘露醇浓度的优化 硼酸与甘露醇等多醇物质结合成一价络合物[boratemannitol]-后,性质相当于一价阴离子。灵敏度和检出限都有很大的改善。实验结果表明,甘露醇浓度为60 mmol/L的时候,系统的背景电导较低,保留时间最短。而且添加甘露醇后,硼酸的保留时间显著下降,系统稳定性增强;两性离子的浓度提高,淋洗液的淋洗效果增强,对于硼酸的淋洗有一定的促进作用。  3.3 样品测定 根据淋洗液优化的结果,选择淋洗液为:7.5 mmol/L L精氨酸 2.5 mmol/L CHES 60 mmol/L甘露醇,流速:1 mL/min;进样量为:50 μL。对标准样品检测,结果表明:硼酸保留时间的标准偏差为1.02%,峰面积的标准偏差为1.19%,峰高的标准偏差为2.97%,进样量X(mg/L)与峰面积Y之间的线形回归方程为:Y= 6129.3X 800.16,回归系数为0.9994。检出限为9.27mg/L,可以应用于一般的含硼酸的工业制品或化学试样的测定。对一化学硼酸样品进行测定,样品中硼酸根的质量百分含量为39.71%,加标100 mg/L,测定回收率为131.3%。出自[URL=http://bbs.chemdown.cn]http://bbs.chemdown.cn[/URL]

  • 14.3 反相离子对色谱法测定马尾松松针中莽草酸的含量

    反相离子对色谱法测定马尾松松针中莽草酸的含量 马廉举, 刘 新(重庆医科大学药学院, 重庆400016)摘要 目的: 建立反相离子对色谱法测定马尾松松针中莽草酸的含量方法。方法: 采用D iamonsil C18色谱柱( 250 mm @ 41 6 mm, 5 Lm ), 流动相为5 mmo l/L磷酸溶液( 先用2 mo l/L氢氧化钠调至pH 612, 再加入四丁基溴化铵, 使其浓度为1 mm o l/L)-甲醇( 90B10), 检测波长为217 nm, 流速为11 0 m l/m in, 柱温为25e 。结果: 莽草酸在5~ 300 Lg /m l范围内与峰面积呈良好的线性关系( r= 01 9999), 样品的平均回收率为97151%, RSD为0199%。结论: 此方法准确、简便, 适用于马尾松松针中莽草酸的定量分析。关键词 莽草酸; 马尾松松针; HPLC; 离子对

  • 【分享】离子交换色谱法 分离模式示意图

    【分享】离子交换色谱法 分离模式示意图

    离子交换色谱法(ion exchange chromatography, IEC)  IEC使用的是低交换容量的离子交换剂,这种交换剂的表面有离子交换基团。带负电荷的交换基团(如磺酸基和羧酸基)可以用于阳离子的分离,带正电荷的交换基团(如季胺盐)可以用于阴离子的分离。由于静电场相互作用,样品阴离子以及淋洗剂阴离子(也称淋洗离子)都与固定相中带正电荷的交换基团作用,样品离子不断地进入固定相,又不断地被淋洗离子交换而进入流动相,在两相中达到动态平衡,不同的样品阴离子与交换基的作用力大小不同,电荷密度大的离子与交换基的作用力大,在树脂中的保留时间就长,于是不同的离子相互分离。[img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901091028_128337_1613111_3.jpg[/img]

  • 关于离子交换色谱

    最近在做GB5009.11-2014,液相新手,请问阴离子交换色谱柱是不是就是阴离子色谱柱,感觉网上查了说法不一样,查书发现,确实有阴离子交换色谱法跟阴离子色谱法。所以现在有点晕圈,还有阴离子色谱法叫做淋洗液的东西是不是就是流动相啊?应该是吧?那怎么网上和书很多都叫淋洗液呢?

  • 【原创大赛】离子色谱法测定饮料中的山梨酸、苯甲酸和糖精钠

    离子色谱法测定饮料中的山梨酸、苯甲酸和糖精钠黄选忠 杜宏山 邹大喜(湖北兴山县疾病预防控制中心,443711)摘要 建立了以青岛盛翰色谱公司生产的SH-AC-1型阴离子交换柱为分离柱,以1.5 mmol/LNa2CO3为淋洗液,流量为1.5mL/min,采用等度洗脱的方式测定食品中山梨酸、苯甲酸和糖精钠的方法,山梨酸、苯甲酸的线性范围为0~30.0mg/L, 糖精钠的线性范围为0~15.0mg/L,方法应用于饮料等样品中山梨酸、苯甲酸和糖精钠的测定,其结果与气相色谱法相吻合,加标回收率分别为:97.9%~98.4%、96.5~96.8%和100.6%~104.4%,5次平行测定的相对标准偏差分别为:1.68%~3.92%、2.32~4.08%和2.02%~3.95%(n=5),按样品稀释50倍计方法的检出限分别3.5、2.5和1.5 mg/L。关键词 离子色谱法,饮料,山梨酸,苯甲酸,糖精钠食品中山梨酸、苯甲酸和糖精钠的测定方法国家标准推荐的主要有气相色谱法和高效液相色谱法等,其中,气相色谱法样品前处理方法繁杂,而高效液相色谱法虽然样品前处理方法简单但仪器价格偏贵基层实验室少有配置,使其应用受到限制。离子色谱法以其灵敏、快速、试剂消耗少、无环境污染等优点而备受广大分析工作者的青睐,已应用于食品中山梨酸、苯甲酸和糖精钠等多种添加剂的分析,但这些方法大多使用的是进口色谱柱并采用KOH淋洗液梯度洗脱方式进行测定,而进口色谱柱特别是具有梯度洗脱功能的离子色谱仪的价格普遍偏贵,目前基层实验室装备较少难以应用,因此研究用国产普通色谱柱和普通色谱仪测定食品中山梨酸、苯甲酸和糖精钠是一项有意义的工作,本工作研究了用国产普通色谱柱和色谱仪测定食品中山梨酸、苯甲酸和糖精钠的各种条件和可行性,结果表明,以1.5 mmol/LNa2CO3溶液作淋洗液,流量为1.5ml/min,用SH-AC-1型阴离子交换柱为分离柱,采用等度洗脱的方式可使山梨酸、苯甲酸和糖精钠较好分离,各组分的峰面积与其浓度在一定的范围内具有良好的线性关系,且各组分的保留时间在14 min以内,具有分析应用价值。据此,建立了以青岛盛翰色谱公司生产的SH-AC-1型阴离子交换柱为分离柱,以1.5 mmol/LNa2CO3为淋洗液等度洗脱的方式测定食品中山梨酸、苯甲酸和糖精钠的方法,山梨酸、苯甲酸的线性范围为0~30.0mg/L, 糖精钠的线性范围为0~15.0mg/L,方法应用于饮料等样品中山梨酸、苯甲酸和糖精钠的测定,获得了满意的结果。1、实验部分1.1主要仪器CIC-200型离子色谱仪(青岛盛翰色谱公司),抑制器:检测器:电导检测器,定量环体积为25μL;分离柱,SH-AC-1型阴离子交换柱(250×4.0mm i.d,青岛盛翰色谱公司,批号:1404016); 1.2 仪器工作条件 柱箱温度35℃,电流:50mA。1.3主要试剂山梨酸、苯甲酸和糖精钠标准溶液:1000 mg/L,按照文献方法配制。临用时用纯水将各种标准溶液稀释成含山梨酸、苯甲酸各250.0 mg/L、 糖精钠125.0mg/L的混合标准应用液; 75 mmol/LNa2CO3淋洗液贮备液,临用时用纯水稀释50倍使用。实验所用试剂均为AR及以上级,实验用水为超纯水(18.2ΜΩ·cm)。1.4 实验方法1.4.1 标准曲线的绘制 取0.10、0.20、0.60、1.00、2.00和3.00 mL混合标准液于25 mL容量瓶中加纯水至刻度,混匀,配制成含山梨酸、苯甲酸1.0、2.0、6.0、10.0、20.0、 30.0mg/L和糖精钠0.5、1.0、3.0、5.0、10.0和15.0mg/L标准系列,各进样1 mL上机(淋洗液:1.5mmol/L Na2CO3溶液;流量:1.5mL/min;量程:1档)测定各成份峰面积(S),以S对浓度绘制工作曲线。1.4.2 样品测定 将样品稀释50倍经0.45μm滤头过滤后进样1 mL上机(条件同1.4.1)测定各成份峰面积(S),以标准曲线法定量。2、结果与讨论2.1 Na2CO3浓度的选择 在高效液相色谱法中选择适当的淋洗液是改善分离度(R)的有效方法,为保证山梨酸、苯甲酸和糖精钠的有效分离,同时当以Na2CO3作淋洗液时,NO3-的保留时间与苯甲酸的保留时间比较接近,考虑到样品中可能存在的NO3-对苯甲酸测定的影响,为此进行了Na2CO3淋洗液浓度的选择实验,结果见表1。从表1可见,当Na2CO3浓度在1.0~表1 Na2CO3浓度对分离度和保留时间的影响(流量1.0 ml/min)组分/浓度(mg/L)1.0mmol/L1.5mmol/L2.0mmol/L保留时间(min)R保留时间(min)R保留时间(min)R山梨酸(20)11.4872.689.6302.668.4382.29苯甲酸(20)19.091.4615.5981.1613.4631.03NO3-(10)22.5091.7817.8701.6315.2121.60糖精钠(10)26.048/20.645/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制