当前位置: 仪器信息网 > 行业主题 > >

气相色谱手性柱

仪器信息网气相色谱手性柱专题为您提供2024年最新气相色谱手性柱价格报价、厂家品牌的相关信息, 包括气相色谱手性柱参数、型号等,不管是国产,还是进口品牌的气相色谱手性柱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱手性柱相关的耗材配件、试剂标物,还有气相色谱手性柱相关的最新资讯、资料,以及气相色谱手性柱相关的解决方案。

气相色谱手性柱相关的论坛

  • GC手性色谱柱

    LC手性色谱柱的固定相一般是多糖、纤维素等,那GC手性色谱柱得固定相一般都是什么物质啊?和常规的GC色谱柱区别主要在哪啊?

  • 【求助】气相色谱手性柱和一般的气相色谱柱的区别

    我想测几种手性有机氯农药,用HP-chiral 的气象色谱手性柱,但不知道手性柱和一般的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱有什么区别?有GC-ECD可不可以?有哪些需要注意的地方?这种柱子能够分开a-hch dde吗?很急,谢谢各位帮忙啦!

  • 【求助】麻烦大家帮忙推荐下气相色谱手性柱的生产厂家或代理商

    我是做酶催化的,现在有个样品想用气相色谱分析,但现在实验室的气相手性柱分不开,想再购买一根气相手性柱,但是又怕买来的气相手性柱不合适。请大家帮我推荐个能帮忙分析样品的生产厂家或代理商,我想让厂家帮忙分析找根合适的气相手性柱再购买。麻烦大家给推荐下生产厂家或代理商。

  • 气相色谱 手性药物分离

    湖南这边,请教哪位大神知道有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]手性柱的工厂,制药小厂分离手性混合物用,毫克级,谢谢。

  • 选购气相手性色谱柱

    各位版友,我们目前有个产品分别有R跟S两种构型,而且没有紫外吸收,目前我们的条件只能通过气相色谱的方法对它进行检测,由于普通的气相色谱柱也无法分开,所以想选购一根气相的手性色谱柱,有知道哪个厂家对外试样的吗?只能试好了才能购买那个厂家的柱子。

  • 手性柠檬烯用手性气相色谱柱分离不开

    (+)柠檬烯和(-)柠檬烯用手性[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱(cyclodex-B,30*0.25*0.25)分离不开,且有拖尾。(+)柠檬烯在17.4分钟左右出峰,(–)柠檬烯在17.03左右出峰。但是这两个的混合物在17.06左右出峰,而且只有一个峰,理论来说的话,应该是有两个峰的,一个(+)柠檬烯,一个(–)柠檬烯。程序升温条件:50度保持一分钟。两度每分钟升至160度,保持一分钟。[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272300305626_8909_5574626_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272300305978_7846_5574626_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272300305880_5870_5574626_3.png[/img]

  • 分享一篇关于手性色谱柱的文献

    分享文献《气相色谱法测定不对称合成手性4-苯基-2丁醇反应液中的3种组分》,这篇文章里采用了手性毛细管柱对样品进行分离。大家是否使用过手性色谱柱,可以分享一下。http://www.cnki.com.cn/Article/CJFDTotal-LHJH201612028.htm

  • 【明日开播】手性药物杂质的气相色谱分离与优化

    [align=left][b]会议简介:[/b][/align][font='微软雅黑',sans-serif][color=#656565] [/color][/font][font='微软雅黑',sans-serif]因不同的对映体在人体内常常具有不同的生物活性,手性药物已成为当今国际新药研究和开发的方向之一。实际应用中,利用手性固定相实现手性色谱分离既直接又简单,已成为中手性药物杂质分析的首选。手性对映体几乎具有完全一样的性质,这使得手性分离更具挑战性,如何选择手性色谱柱、如何获得理想的手性分离是大家普遍关心的问题,本次讲座我们将围绕[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]手性柱的选择与分离优化与大家共同探讨。[/font][align=left][b][font='微软雅黑',sans-serif][color=#333333]主讲老师:[/color][/font][/b][/align][align=left][b][font='微软雅黑',sans-serif] 吴华[/font][/b][/align][align=left][font='微软雅黑',sans-serif] 2003[/font][font='微软雅黑',sans-serif]年加入安捷伦,长期从事实验室耗材特别是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]耗材的技术支持,具有丰富的方法开发及应用经验。[/font][/align][align=left][font='微软雅黑',sans-serif][/font][/align][align=left][url=https://www.instrument.com.cn/webinar/meeting_18265.html]点击打开链接[/url][/align][align=left]欢迎大家参会交流![/align]

  • 研创手性色谱柱

    随看手性化合物的生理机能的迅速开发和市场要求的日益增长,手性技术的发展也呈现出日新月异的突破。而手性色谱柱在手性技术发展中所起到的作用亦日益增大, 已成为手性技术中不可缺小的部分。用手性固定相直接拆分手性化合物而作为基本原理的手性色谱柱,在20年前便作为商业产品进入了市场。其应用范围之广,分析精度之高已广为所知,在医药开发,不对称合成,生物化学研究等方面都做出了极其重大的贡献。   研创生物技术株式会社在手性固定相和手性色谱柱的研究开发领域里具有多年的丰富经验,并一直处于研究开发的最前沿。

  • 气相色谱柱的类型

    气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。

  • 【讨论】气相色谱 手性分离怪现象

    大家有没有遇到这样得现象,同一根色谱柱在同一台仪器上运行,突然有一天手性样品检测结果消旋了,更换色谱仪器后,样品是正常的ee值,样品中其他色谱峰倒是没有明显异常

  • 【资料】气相色谱手性分离(71讲 待续)

    【资料】气相色谱手性分离(71讲 待续)

    [B][center][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]手性分离 (1) 手性化合物分离的重要性(1)[/center][/B]手性是宇宙间的普遍特征, 从原子到人类本身都不是对称的。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中糖为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的。人们也发现海螺的螺纹和缠绕植物也都是右旋的。面对这一不对称的生物界,作用于它们的药物,农药的手性又是怎样呢?早期的氯霉素和合霉素是一个例子,氯霉素是(1R, 2R-)构型的单一异构体,而合霉素则是未经拆分的消旋体,其中包括无活性的另一(1S, 2R)异构体。多帕胺(DoPa)是治疗帕金森症的有效药物, 临床实验证明仅(S)-异构体有效, (R)-异构体则产生严重的副作用。镇静剂Thalidomide曾在欧洲广泛使用,但它只有(R)-异构体具有镇静作用, 一些孕妇服用此药后引起胎儿畸变, 实验证明, 这是(S)-异构体副作用的结果。在农用化学品中, 手性与杀虫剂、除草剂以及植物生长调节剂等的生物活性也有着十分密切的关系,如溴氰菊酯,它有三个手性中心八个异构体,活性最高的异构体(3R, 1R, S)的杀虫活性是最差的(3S, 1S, R)的七十多倍。杀虫剂Asana中有二个手性中心, 有四个异构体,只有一个异构体是强力杀虫剂, 而另三个则对植物有毒。三唑类杀菌剂Paclobutrazol(2R, 3R)-构型有高杀菌作用,低植物生长控制作用,而另一(2S, 3S)-构型则作用相反,表1.1中列出部分手性药物和农药不同异构体的生物活性实例。表2-1 手性药物和农药的不同异构体的活性实例[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911091431_182894_1912472_3.jpg[/img][1] 北京理工大学博士学位论文,1998

  • 【转帖】手性色谱柱知识介绍

    手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系:第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱,另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种:刷(Brush)型或称为Prikle型纤维素(Cellulose)型环糊精(Cyclodextrin)型大环抗生素(Macrocyclic antibiotics)型蛋白质(Protein)型配位交换(|Ligand exchange)型冠醚(Crown ethers)型刷型:刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类中的第一种类型。刷型手性固定相分为π电子接受型和π电子提供型两类。最常见的π电子接受型固定相是由(R)-N-3,5-二硝基苯甲酰苯基甘氨酸键合到γ-氨丙基硅胶上的制成。此类刷型手性色谱柱可以分离许多可提供π电子的芳香族化合物,或用氯化萘酚等对化合物进行衍生化后进行手性分离。π电子供给型固定相常见的是共价结合到硅胶上的萘基氨基酸衍生物,这种固定相要求被分析物具有π电子接受基团,例如二硝基苯甲酰基。醇类、羧酸类、胺类等,可以用氯化二硝基苯甲酰、异腈酸盐、或二硝基苯胺等进行衍生化后,用π电子供给型固定相达到手性分离。刷型固定相的优势在于其易于合成。合成方法在Bill Prikle的著作中有详细的说明。另外,刷型固定相具有高的容量因子,因此具有高的选择因子。它的不利之处在于它仅对芳香族化合物有效,有时不得不进行衍生化反应。但值得一提的是,这种衍生化反应是非手性衍生反应,所以不存在手性衍生的问题。刷型手性色谱使用的流动相基本是极性弱的有机溶剂,这对于制备色谱来讲未必是缺点。近来,刷型固定相出现了π电子供给和接受基因的混合固定相。如:WHELK-O和BLAMO,及α-BURKE-Ⅱ固定相。α-BURKE-Ⅱ相十分适用于β-阻断剂的手性分离。典型的流动相为二氯甲烷-乙醇-甲醇混合物,比例为85:10:5。加入10mM醋酸铵可以调整保留时间。SS BLAMO Ⅱ,同时具有π电子供体区和受体区,形成手性裂缝,因此对于某些分子具有很高选择性。纤维素型:纤维素型手性色谱柱的分离作用包括相互吸引的作用及形成包埋复合物。它们属于Wainer分类中的第2种类型。市售的手性色谱柱为微晶三醋酸基、三安息香酸基、三苯基氨基酸盐纤维素固定相。很多化合物可通过此类型的色谱柱得到分离。这种类型的手性色谱柱种类也很齐全。流动相使用低极性溶剂,典型的流动相为乙醇-己烷混合物。但特别要注意由于氯可以使纤维素从硅胶上脱落,因此要确保流动相中无含氯溶剂。这种类型的手性色谱柱主要的制造商之一是日本的Daicel公司,他们生产的纤维素酯和氨基甲酸纤维素柱可以分离多种生物碱和药物。特别值得一提的是OD柱。在某手性化合物异构体的分离中,分离度超过了25,这意味着载样量可以很高,对于制备十分有利。纤维素固定相的每个单元都为螺旋型,而且这种螺旋结构还存在极性作用、π-π作用及形成包埋复合物等手性分离因素。淀粉代替纤维素制成的此类手性柱显示了和纤维素柱不同的选择性,但是稳定性较差。因为淀粉是水溶性的,因此流动相中必须绝对无水才能保证柱子寿命。目前此类型的柱子能分离80%左右可能面临到的所有手性化合物。此类柱子通常用于正相系统,用正己烷-乙醇,正己烷-异丙醇混合溶剂为流动相。OD柱也可用于反相的情况,但流动相必须含有高浓度的高氯酸盐缓冲液,以防止固定相溶解。即使这样,使用较长时间以后色谱柱也难免要受到损害,但是在某些情况下使用反相系统分离效果要优于使用正相系统。环糊精型: 环糊精是通过Bacillus Macerans 淀粉酶或环糊精糖基转移酶水解淀粉得到的环型低聚糖。通过控制环糊精转移酶的水解反应条件可得到不同尺寸的环糊精。市售的环糊精主要是α、β、γ三种类型,分别含6、7、8个吡喃葡萄糖单元。环糊精分子成锥筒型,构成一个洞穴,洞穴的孔径由构成环糊精的吡喃葡萄糖的数目决定。环糊精类型及洞穴的孔径等见下表:环糊精 糖元数目 洞穴孔径 可进入洞穴的分子类型 手性中心数目α 6 4.5-6.0 5-6元环的芳香族化合物 30β 7 6.0-8.0 联苯或萘 35γ 8 8.0-10.0 取代芘和类固醇 402,3位仲羟基分布在环糊精洞口,6位伯羟基在环糊精分子的外部,这意味着洞穴内部是相对疏水的区域。用环糊精手性固定相产生手性识别要求被拆分物的疏水部分能嵌入环糊精洞穴中,形成可逆的、稳定性不同的包合物,环糊精洞口的羟基和被拆分物的极性基团相互作用。由于形成包合物速度较慢,因此可能导致色谱峰峰形较差,同样也影响了其在制备色谱中的应用。环糊精固定相的选择性取决分析物的分子大小;α-环糊精只能允许单苯基或萘基进入,β-环糊精允许萘基及多取代的苯基进入,γ-环糊精仅用于大分子萜类。β-环糊精手性固定相应用范围最广。Ibuprofen通过β-环糊精色谱柱得到分离,说明了pH值对氢键的影响。当流动相的pH=7时,观察不到拆分的迹象。pH=4时,可达到好的分离效果。通常分离氨基酸时,常采用低的pH值,以抑制酸性基团的离子化,同时也增强氨基的质子化。磷酸三乙胺盐、乙酸三乙胺盐证明对β-环糊精色谱柱来说是很好的缓冲液。通常缓冲液是0.1%三乙胺溶液,用磷酸或醋酸调节到合适的pH值。高的流速会降低形成复合物的能力,低流速分离效果较好,0.5-1ml/min的流速最好。另外,增加缓冲液的浓度可以克服流速的影响,因为它可以增加环糊精洞穴和流动相的吸引力。常用缓冲液及其使用浓度如下表所示:缓冲液 浓度 目的TEAA(乙酸三乙胺盐) 0.01-2%NH4NO3 10-500mM (用于减小包埋)柠檬酸盐 10-200mM (特别适合于酸性化合物)醋酸铵 10-200mMpH值选择见下表:醇和胺 pH4(加强NH的离子化)酸 pH7优化手性分离条件要考虑的方面有:pH值对分离度的影响;流速对分离度的影响;柱温、有机相比例、缓冲盐浓度对分离度的影响。环糊精的修饰:最近,对环糊精的修饰使环糊精型手性色谱柱可以分离更多的化合物,并可用于气相手性色谱分离。衍生化是通过将不同的基因键合到环糊精洞穴表面的羟基上。衍生化反应包括乙基化、S-羟基丙基化、生成S或R-萘基乙基氨基甲酸盐、3,5二甲基苯基氨基甲酸盐和环状对甲苯酰酯。这些新型的环糊精固定相有许多优点,它们可以分离更多化合物,价格上也有竞争力,由于改进了手性识别能力使其更适用于制备色谱。配位交换型:手性配位交换色谱(Chiral Ligand Exchange Chromatography,CLEC)由Davankov发明,是通过形成光学活性的金属络合物而达到手性分离,属于Irving Wainer分类中的第4类手性固定相,主要用于分离氨基酸类。由于此类固定相是由手性氨基酸—铜离子络合物键合到硅胶或聚合物上形成,因此流动相中必须含有铜离子以保证手性固定相上的铜离子不至流失。其它的过渡金属元素也已用于手

  • 手性色谱柱知识介绍

    手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系:第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱,另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种:刷(Brush)型或称为Prikle型纤维素(Cellulose)型环糊精(Cyclodextrin)型大环抗生素(Macrocyclic antibiotics)型蛋白质(Protein)型配位交换(|Ligand exchange)型冠醚(Crown ethers)型刷型:刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类中的第一种类型。刷型手性固定相分为π电子接受型和π电子提供型两类。最常见的π电子接受型固定相是由(R)-N-3,5-二硝基苯甲酰苯基甘氨酸键合到γ-氨丙基硅胶上的制成。此类刷型手性色谱柱可以分离许多可提供π电子的芳香族化合物,或用氯化萘酚等对化合物进行衍生化后进行手性分离。π电子供给型固定相常见的是共价结合到硅胶上的萘基氨基酸衍生物,这种固定相要求被分析物具有π电子接受基团,例如二硝基苯甲酰基。醇类、羧酸类、胺类等,可以用氯化二硝基苯甲酰、异腈酸盐、或二硝基苯胺等进行衍生化后,用π电子供给型固定相达到手性分离。刷型固定相的优势在于其易于合成。合成方法在Bill Prikle的著作中有详细的说明。另外,刷型固定相具有高的容量因子,因此具有高的选择因子。它的不利之处在于它仅对芳香族化合物有效,有时不得不进行衍生化反应。但值得一提的是,这种衍生化反应是非手性衍生反应,所以不存在手性衍生的问题。刷型手性色谱使用的流动相基本是极性弱的有机溶剂,这对于制备色谱来讲未必是缺点。近来,刷型固定相出现了π电子供给和接受基因的混合固定相。如:WHELK-O和BLAMO,及α-BURKE-Ⅱ固定相。α-BURKE-Ⅱ相十分适用于β-阻断剂的手性分离。典型的流动相为二氯甲烷-乙醇-甲醇混合物,比例为85:10:5。加入10mM醋酸铵可以调整保留时间。SS BLAMO Ⅱ,同时具有π电子供体区和受体区,形成手性裂缝,因此对于某些分子具有很高选择性。纤维素型:纤维素型手性色谱柱的分离作用包括相互吸引的作用及形成包埋复合物。它们属于Wainer分类中的第2种类型。市售的手性色谱柱为微晶三醋酸基、三安息香酸基、三苯基氨基酸盐纤维素固定相。很多化合物可通过此类型的色谱柱得到分离。这种类型的手性色谱柱种类也很齐全。流动相使用低极性溶剂,典型的流动相为乙醇-己烷混合物。但特别要注意由于氯可以使纤维素从硅胶上脱落,因此要确保流动相中无含氯溶剂。这种类型的手性色谱柱主要的制造商之一是日本的Daicel公司,他们生产的纤维素酯和氨基甲酸纤维素柱可以分离多种生物碱和药物。特别值得一提的是OD柱。在某手性化合物异构体的分离中,分离度超过了25,这意味着载样量可以很高,对于制备十分有利。纤维素固定相的每个单元都为螺旋型,而且这种螺旋结构还存在极性作用、π-π作用及形成包埋复合物等手性分离因素。淀粉代替纤维素制成的此类手性柱显示了和纤维素柱不同的选择性,但是稳定性较差。因为淀粉是水溶性的,因此流动相中必须绝对无水才能保证柱子寿命。目前此类型的柱子能分离80%左右可能面临到的所有手性化合物。此类柱子通常用于正相系统,用正己烷-乙醇,正己烷-异丙醇混合溶剂为流动相。OD柱也可用于反相的情况,但流动相必须含有高浓度的高氯酸盐缓冲液,以防止固定相溶解。即使这样,使用较长时间以后色谱柱也难免要受到损害,但是在某些情况下使用反相系统分离效果要优于使用正相系统。环糊精型: 环糊精是通过Bacillus Macerans 淀粉酶或环糊精糖基转移酶水解淀粉得到的环型低聚糖。通过控制环糊精转移酶的水解反应条件可得到不同尺寸的环糊精。市售的环糊精主要是α、β、γ三种类型,分别含6、7、8个吡喃葡萄糖单元。环糊精分子成锥筒型,构成一个洞穴,洞穴的孔径由构成环糊精的吡喃葡萄糖的数目决定。环糊精类型及洞穴的孔径等见下表:环糊精 糖元数目 洞穴孔径 可进入洞穴的分子类型 手性中心数目α 6 4.5-6.0 5-6元环的芳香族化合物 30β 7 6.0-8.0 联苯或萘 35γ 8 8.0-10.0 取代芘和类固醇 402,3位仲羟基分布在环糊精洞口,6位伯羟基在环糊精分子的外部,这意味着洞穴内部是相对疏水的区域。用环糊精手性固定相产生手性识别要求被拆分物的疏水部分能嵌入环糊精洞穴中,形成可逆的、稳定性不同的包合物,环糊精洞口的羟基和被拆分物的极性基团相互作用。由于形成包合物速度较慢,因此可能导致色谱峰峰形较差,同样也影响了其在制备色谱中的应用。环糊精固定相的选择性取决分析物的分子大小;α-环糊精只能允许单苯基或萘基进入,β-环糊精允许萘基及多取代的苯基进入,γ-环糊精仅用于大分子萜类。β-环糊精手性固定相应用范围最广。Ibuprofen通过β-环糊精色谱柱得到分离,说明了pH值对氢键的影响。当流动相的pH=7时,观察不到拆分的迹象。pH=4时,可达到好的分离效果。通常分离氨基酸时,常采用低的pH值,以抑制酸性基团的离子化,同时也增强氨基的质子化。磷酸三乙胺盐、乙酸三乙胺盐证明对β-环糊精色谱柱来说是很好的缓冲液。通常缓冲液是0.1%三乙胺溶液,用磷酸或醋酸调节到合适的pH值。高的流速会降低形成复合物的能力,低流速分离效果较好,0.5-1ml/min的流速最好。另外,增加缓冲液的浓度可以克服流速的影响,因为它可以增加环糊精洞穴和流动相的吸引力。常用缓冲液及其使用浓度如下表所示:缓冲液 浓度 目的TEAA(乙酸三乙胺盐) 0.01-2%NH4NO3 10-500mM (用于减小包埋)柠檬酸盐 10-200mM (特别适合于酸性化合物)醋酸铵 10-200mMpH值选择见下表:醇和胺 pH4(加强NH的离子化)酸 pH7优化手性分离条件要考虑的方面有:pH值对分离度的影响;流速对分离度的影响;柱温、有机相比例、缓冲盐浓度对分离度的影响。环糊精的修饰:最近,对环糊精的修饰使环糊精型手性色谱柱可以分离更多的化合物,并可用于气相手性色谱分离。衍生化是通过将不同的基因键合到环糊精洞穴表面的羟基上。衍生化反应包括乙基化、S-羟基丙基化、生成S或R-萘基乙基氨基甲酸盐、3,5二甲基苯基氨基甲酸盐和环状对甲苯酰酯

  • 【讨论】手性色谱柱

    谁作手性方面的工作,请教一下,如果作产品,如手性色谱柱,市场会怎么样呢?需要怎么作,大家能否提供一个思路。

  • 手性色谱柱常见问题

    Q:正相手性色谱柱使用前需要注意什么? A:将正相手性色谱柱AD-H、AS-H、OD-H、OJ-H接上液相色谱仪之前先要保证液相色谱系统中的所有管路均为正相流动相。如果液相系统里面是反相溶液,比如水/乙腈=50/50(v/v)。那么需要先用无水乙醇或者无水异丙醇冲洗液相的所有管路(包括所有溶剂入口、六通阀、检测器等),然后用正相流动相冲洗液相的所有管路,最后再接上正相手性色谱柱;如果液相系统的反相流动相中含有缓冲盐,要先用纯水冲洗HPLC系统,然后用无水乙醇或者无水异丙醇冲洗液相的所有管路,最后用正相流动相冲洗。 Q:正相手性色谱柱中保存液是什么? A:正相手性色谱柱AD-H、AS-H、OD-H、OJ-H中的保存液是正己烷/异丙醇=90/10(v/v)。其它手性色谱柱的保存液请查阅使用说明书上的说明。 Q:新柱CHRALPAK IA和CHRALPAK IB与原来的大赛璐手性柱有什么区别? A:CHRALPAK IA和CHRALPAK IB是将多糖衍生物共价键合在硅胶上,而大赛璐原来的手性柱固定相都是将多糖衍生物涂敷在硅胶表面的。正因为是共价键合,所以CHRALPAK IA和CHRALPAK IB柱能使用任何液相流动相,比如四氢呋喃、氯仿、丙酮、甲基叔丁基醚、乙酸乙酯等。CHRALPAK IA和CHRALPAK IB与大赛璐原有的正相柱相比,扩大了溶剂选择的范围,增加了新的分离选择性,在原来大赛璐手性色谱柱上分不开的化合物有可能在CHRALPAK IA和CHRALPAK IB上得以分开。CHIRALPAK®IA是将淀粉-3,5-二甲苯基氨基甲酸酯键合在硅胶表面(5 µm),相应的涂敷型色谱柱是CHIRALPAK®AD (CHIRALPAK®AD-H);CHIRALPAK®IB是将纤维素-3,5-二甲苯基氨基甲酸酯键合在硅胶表面(5 µM), 相应的涂敷型色谱柱是CHIRALCEL®OD (CHIRALCEL®OD-H);CHIRALPAK®IC将纤维素-3,5-二氯苯基氨基甲酸酯键合在硅胶表面(5 µM)( 注意:相应的涂敷型色谱柱没有商品化)。 Q:CHIRALPAK AD-H、CHIRALPAK AS-H、CHIRALCEL OD-H、CHIRALCEL OJ-H四款正相色谱柱的区别是什么? A:区别是固定相的种类不同。CHIRALPAK AD-H、AS-H的硅胶表面涂敷的是直链淀粉衍生物;CHIRALCEL OD-H、OJ-H的硅胶表面涂敷的是纤维素衍生物。CHIRALPAK AD-H的硅胶表面涂敷的是直链淀粉-三(3,5-二甲苯基氨基甲酸酯);CHIRALPAK AS-H硅胶表面涂敷有直链淀粉-三; CHIRALCEL OJ-H硅胶表面涂敷有纤维素-三[/f

  • 手性色谱柱再生

    我有个大赛路的AD-H手性色谱柱,昨天做样发现峰性很差,我怀疑柱子坏了,请问这柱子能再生么/

  • 【采购学堂24】手性柱与一般色谱柱的区别(液相色谱)

    色谱柱是色谱仪器中重要组成部分之一,它是分离不可缺少的一部分。因此不同的样品分类,用到不同的色谱柱,一般色谱柱可简单分为以下几类:1.根据所有的担体材料分为三种:(1)硅胶型:机械强度高,易制成小颗粒,理论塔板数高。(2)聚合物型:在广泛的PH值范围内稳定。(3)羟基磷灰石型:对蛋白质等生物高分子样品有特殊的选择性。2.根据分离方式分为:(1)正相:SIL--磷脂、NH--糖、维生素E,CN--甾类激素。(2)反相:ODS(C18)、(C8 CN TMS Pheny1)低分子量化合物。(3)离子交换等。手性色谱柱(Chiral HPLC Columns)是众多色谱柱中的一种。其是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。

  • [分享]:手性色谱柱知识介绍(zz)

    手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系:第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种:刷(Brush)型或称为Prikle型纤维素(Cellulose)型环糊精(Cyclodextrin)型大环抗生素(Macrocyclic antibiotics)型蛋白质(Protein)型配位交换(|Ligand exchange)型冠醚(Crown ethers)型刷型:刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类中的第一种类型。刷型手性固定相分为π电子接受型和π电子提供型两类。最常见的π电子接受型固定相是由(R)-N-3,5-二硝基苯甲酰苯基甘氨酸键合到γ-氨丙基硅胶上的制成。此类刷型手性色谱柱可以分离许多可提供π电子的芳香族化合物,或用氯化萘酚等对化合物进行衍生化后进行手性分离。π电子供给型固定相常见的是共价结合到硅胶上的萘基氨基酸衍生物,这种固定相要求被分析物具有π电子接受基团,例如二硝基苯甲酰基。醇类、羧酸类、胺类等,可以用氯化二硝基苯甲酰、异腈酸盐、或二硝基苯胺等进行衍生化后,用π电子供给型固定相达到手性分离。刷型固定相的优势在于其易于合成。合成方法在Bill Prikle的著作中有详细的说明。另外,刷型固定相具有高的容量因子,因此具有高的选择因子。它的不利之处在于它仅对芳香族化合物有效,有时不得不进行衍生化反应。但值得一提的是,这种衍生化反应是非手性衍生反应,所以不存在手性衍生的问题。刷型手性色谱使用的流动相基本是极性弱的有机溶剂,这对于制备色谱来讲未必是缺点。近来,刷型固定相出现了π电子供给和接受基因的混合固定相。如:WHELK-O和BLAMO,及α-BURKE-Ⅱ固定相。α-BURKE-Ⅱ相十分适用于β-阻断剂的手性分离。典型的流动相为二氯甲烷-乙醇-甲醇混合物,比例为85:10:5。加入10mM醋酸铵可以调整保留时间。SS BLAMO Ⅱ,同时具有π电子供体区和受体区,形成手性裂缝,因此对于某些分子具有很高选择性。纤维素型:纤维素型手性色谱柱的分离作用包括相互吸引的作用及形成包埋复合物。它们属于Wainer分类中的第2种类型。市售的手性色谱柱为微晶三醋酸基、三安息香酸基、三苯基氨基酸盐纤维素固定相。很多化合物可通过此类型的色谱柱得到分离。这种类型的手性色谱柱种类也很齐全。流动相使用低极性溶剂,典型的流动相为乙醇-己烷混合物。但特别要注意由于氯可以使纤维素从硅胶上脱落,因此要确保流动相中无含氯溶剂。这种类型的手性色谱柱主要的制造商之一是日本的Daicel公司,他们生产的纤维素酯和氨基甲酸纤维素柱可以分离多种生物碱和药物。特别值得一提的是OD柱。在某手性化合物异构体的分离中,分离度超过了25,这意味着载样量可以很高,对于制备十分有利。纤维素固定相的每个单元都为螺旋型,而且这种螺旋结构还存在极性作用、π-π作用及形成包埋复合物等手性分离因素。淀粉代替纤维素制成的此类手性柱显示了和纤维素柱不同的选择性,但是稳定性较差。因为淀粉是水溶性的,因此流动相中必须绝对无水才能保证柱子寿命。目前此类型的柱子能分离80%左右可能面临到的所有手性化合物。此类柱子通常用于正相系统,用正己烷-乙醇,正己烷-异丙醇混合溶剂为流动相。OD柱也可用于反相的情况,但流动相必须含有高浓度的高氯酸盐缓冲液,以防止固定相溶解。即使这样,使用较长时间以后色谱柱也难免要受到损害,但是在某些情况下使用反相系统分离效果要优于使用正相系统。

  • 手性色谱柱活化再生方法

    用手性色谱柱,正常进了30个摸索拆分条件的样品,峰形正常。后进了一个拆分剂定位样品5-硝基间苯甲酸,色谱柱峰形异常。急求该色谱柱活化,再生方法。

  • 求助关于手性气相色谱柱的问题

    有一个没有紫外吸收的小分子化合物,大致信息如下:1、 为烷基链状化合物2、 结构中含有酯基、酰胺基和氯3、 结构中不含有不饱和双键4、 样品熔点为52℃左右5、 结构中含有一个手性碳原子想选择一种手性气相柱进行手性拆分,但是以前没有接触过手性气相柱,想请教大家给点意见,大概需要选择哪种类型的手性气相柱呢?

  • 【资料】手性色谱柱的一些常见类型

    手性色谱柱是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。常见的手性色谱柱有以下两种类型:  A、配位交换型:  手性配位交换色谱(ChiralLigandExchangeChromatography,CLEC)由Davankov发明,是通过形成光学活性的金属络合物而达到手性分离,属于IrvingWainer分类中的第4类手性固定相,主要用于分离氨基酸类。  由于此类固定相是由手性氨基酸—铜离子络合物键合到硅胶或聚合物上形成,因此流动相中必须含有铜离子以保证手性固定相上的铜离子不至流失。其它的过渡金属元素也已用于手性配位交换色谱,但铜离子应用最广。形成络合物的过程十分缓慢,因此有时需提高柱温,最佳温度约50℃。  手性配位交换色谱仅对α-氨基酸和其类似物有效。β-氨基酸很难用手性配位交换色谱得以分离。手性配位交换色谱可用于制备,由于流动相中存在铜离子,虽然铜离子能用离子交换柱除去,但增加了样品处理的困难。  B、大环抗生素型:  大环抗生素型手性色谱柱是最近发展起来的,通过将大环抗生素键合到硅胶上制成的新型手性色谱柱。大环抗生素型手性色谱柱的出现归功于DanArmstrong的贡献。此类色谱柱常用的大环抗生素主要由三种:利福霉素(Rifamycin),万古霉素(Vancomycin),替考拉宁(Ticoplanin)。利福霉素作为手性添加剂在毛细管电泳分离手性化合物方面得到了成功运用。万古霉素和替考拉宁分子结构中存在“杯”状结构区和糖“平面”结构区。此类色谱柱性质稳定,可用于多种分离模式。手性分离基于氢键、π-π作用、形成包合物、离子作用和肽键等。  替考拉宁分子量为1885,结构中存在20个手性中心,3个糖基和4个环。酸性基团在多肽杯”/“裂层”的一端,碱性基团在它的另一端。酸性基团和碱性基团提供了离子作用点。糖基在三个平面上,可折叠起来将化合物分子包埋在多肽“杯”中。  万古霉素分子量为1449,结构中存在18个手性中心,3个环。万古霉素具有“篮状”结构,它的附近还有一个可弯曲的糖平面,可将分析物分子包埋在“篮子”中。羧基和仲氨基分布在“篮子”的边缘,参与和分析物分子产生离子作用。万古霉素手性色谱柱可用于反相模式、正相模式和极性模式。万古霉素手性色谱柱可以分离胺类、中性酰胺、脂类。但对于酸性化合物选择性较低。在反相模式中,有机相常用四氢呋喃、乙腈和甲醇。水相常用三乙胺-乙酸缓冲液。色谱柱适用的pH范围为4-7。通常优化碱性化合物手性分离条件时,选择pH=7为起点比较好。另外四氢呋喃、乙腈有最好的选择性。有时采用纯的甲醇和乙醇作流动相也可达到好的分离效果。万古霉素手性色谱柱也可用正相模式,采用正己烷/乙醇为流动相。

  • 手性色谱柱知识介绍——分类与详细参数 性能

    手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。 在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍 生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。 第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种: 刷(Brush)型或称为Prikle型 纤维素(Cellulose)型 环糊精(Cyclodextrin)型 大环抗生素(Macrocyclic antibiotics)型 蛋白质(Protein)型 配位交换(|Ligand exchange)型 冠醚(Crown ethers)型

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制