当前位置: 仪器信息网 > 行业主题 > >

气相色谱检测量

仪器信息网气相色谱检测量专题为您提供2024年最新气相色谱检测量价格报价、厂家品牌的相关信息, 包括气相色谱检测量参数、型号等,不管是国产,还是进口品牌的气相色谱检测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱检测量相关的耗材配件、试剂标物,还有气相色谱检测量相关的最新资讯、资料,以及气相色谱检测量相关的解决方案。

气相色谱检测量相关的论坛

  • 【文献】-气相色谱仪检测器的灵敏度和检测限测量结果不确定度的评定

    [b]摘要:依据JJF1059-1999《测量不确定度评定与表示》评定了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测器的主要技术指标灵敏度和检测限测量结果的不确定度。分析了各不确定度分量,建立了评定灵敏度!检测限测量结果不确定度的数学模型,并计算了其测量结果的扩展不确定度。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],检测器,评定,测量结果,数学模型,不确定度[/b][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29899][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测器的灵敏度和检测限测量结果不确定度的评定[/url]

  • 到底啥是气相色谱检测

    一、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器被测组分经色谱柱分离后,是以气态分子与载气分子相混状态从柱后流出的,人肉眼不可能识别。因此,必须要有一个装置或方法,将混合气体中组分的真实浓度(mg/mL)或质量流量(g/s)变成可测量的电信号,且信号的大小与组分的量成正比。此装置称[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器,其方法称[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测法。因此,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器是一种能检测[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]流出组分及其变化的器件。检测器通常由两部分组成:传感器和检测电路。传感器是利用被测物质的各种物理性质、化学性质以及物理化学性质与载气的差异,来感应出被测物质的存在及其量的变化。如热导检测器(TCD)就是利用被测物质的热导系数和载气热导系数的差异;火焰电离检测器(FID)、氮磷检测器(NPD)等都是利用被测组分在一定条件下可被电离,而载气不电离;火焰光度检测器(FPD)就是利用被测物质在一定条件下,可发射不同波长的光,而载气N[sub]2[/sub],却不发光等等。所以,传感器是将被测物质变换成相应信号的装置。它是检测器的核心。检测器性能的好坏,主要取决于传感器。检测电路是将传感器产生的各种信号转变成电信号的装置。从传感器送出的信号是多种多样的,有电阻、电流、电压、离子流、频率、光波等。检测电路的作用是测定出这些参数化,并将其变成可测量的电信号。如TCD中热丝阻值的变化,利用惠斯顿电桥变成电信号;各种[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]电离产生的离子流,用电场收集、微电流放大器放大后,才显示出它的变化;而FPD不同波长光的强度,即是利用光电倍增管进行光电转换,然后微电流放大得到结果等。二、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法的一部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用;二是其他有关条件的优化。一个好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法,应该是这两方面均处于最佳状态。它们的具体要求是:(1)检测器的正确选择和使用建立[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。通常用单检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器(2)其他条件的优化一个良好的检测方法除考虑检测器本身外,还应考虑检测器前后色谱峰或信号不失真,不变形。因此,要求柱后至检测器峰不变宽、不吸附,以谱带宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。可见,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法是以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器为中心展开的。

  • 【求助】氨气 气相色谱 监测

    工业废气中的氨气(100ppm)的测量能用气相色谱检测吗?求救。。。。。。。。。。。。最好附上气相色谱测量的具体方法或者其他推荐的方法!!!不胜感激!!

  • 【求助】气相色谱 检测样品发现问题了?

    【性命求助】气相色谱测量高纯氢气中的微量氧,怎样保安全?上司让我用气相色谱测量5个9氢气的氧气, 从取样到分析,无不存在大量氢气, 连分析过程也是,我用的是TCD检测器,测量钢瓶气的氧气那点浓度,我想没人敢说他的TCD测得出来, 我用的变温浓缩,一次分析样品氢气要用8升, 再加之载气也是氢气。 这么多氢气实在很可怕!房间也就是普通的办公室改造的,有台空调。请问怎么保命阿

  • 【讨论6】报一报你的气相色谱柱的型号及检测组分

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]讨论…6你的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱采用的是什么型号的柱子(色谱填料或固定液)?你用它检测的是什么组分?例:PLOT Q柱; 用它来测量氧、氮、氩中的碳氢化合物; 5A分子筛柱; 用它来测量氧、氮、氩中的常量氧、微量氢; PQ柱; 用它来测量氧、氮、氩中的微量CO、CO2、N2O 改性硅胶柱; 用它来测量氧、氮、氩中的碳氢化合物; 在此欢迎各位参与作答!

  • 气相色谱仪分析的检测器种类

    [align=center] [size=24px] [b]气相色谱仪分析的检测器种类[/b][/size][/align] 用于气相色谱仪分析的检测器种类繁多,在一般分析工作中,最常用的有热导检测器、氢焰检测器、电子捕获检测器、火焰光度检测器、热离子检测器等。这里将讨论气相色谱仪检测器的四大分类及其应用等方面的基础知识。  对气相色谱仪检测器的基本要求如下:  ① 噪音较小,灵敏度高;② 死体积小,响应迅速;③ 性能稳定,重现性好;④ 信号响应,规律性强。  在气相色谱法中,检测器的分类较常用的有四种分类法。  1.按响应时间分类  ⑴ 积分型检测器  积分型检测器显示某一物理量随时间的累加,也即它所显示的信号是指在给定时间内物质通过检测器的总量。例如:质量检测器、体积检测器、电导检测器和滴定检测器等,此类检测器在一般色谱分析中应用较少。  ⑵ 微分型检测器  微分型检测器显示某一物理量随时间的变化,也即它所显示的信号表示在给定的时间里每一瞬时通过检测器的量。例如:热导检测器、氢焰检测器、电子捕获检测器和火焰光度检测器、热离子检测器等,此类检测器为一般色谱分析中的常用检测器。  2.按响应特性分类  ⑴ 浓度型检测器  浓度型检测器测量的是载气中组分浓度瞬间的变化,也即检测器的响应值取决于载气中组分的浓度。例如:热导检测器和电子捕获检测器等。  ⑵ 质量型检测器  质量型检测器测量的是载气中所携带的样品组分进入检测器的速度变化,也即检测器的响应值取决于单位时间组分进入检测器的质量。例如:氢焰检测器、火焰光度检测器、热离子检测器等。  3.按样品变化情况分类  ⑴ 破坏型检测器  在检测过程中,被测物质发生了不可逆变化。例如:氢焰检测器、火焰光度检测器、热离子检测器。  ⑵ 非破坏型检测器  在检测过程中,被测物质不发生不可逆变化。例如:热导检测器和电子捕获检测器。  4.按选择性能分类  ⑴ 多用型检测器  对许多种类物质都有较大响应信号的检测器称为多用型检测器。例如:热导检测器和氢焰检测器等属于多用型检测器。  ⑵ 专用型检测器  仅对某些种类物质有较大的响应信号,而对其他种类物质的响应信号很小或几乎不响应的检测器则称为专用型检测器。例如:电子捕获检测器、火焰光度检测器、热离子检测器等。  有时也把上述分类法结合起来。例如:把热导检测器称为微分-浓度-非破坏-多用型检测器,氢焰检测器称为微分-质量-破坏-多用型检测器。

  • 气相色谱热导检测器(TCD)的工作原理

    气相色谱热导检测器(TCD)的工作原理

    在气相色谱仪中,采用热导检测器(TCD)检测物质成分的浓度变化,具有构造简单、测定范围广、稳定性好、线性范围宽等优点。所以跟小伙伴儿们分享一下TCD检测器的工作原理。 气相色谱热导检测器(TCD)是基于气体热导和热电阻效应的一种检测装置,它检测气体浓度的过程是通过热电阻与被测气体之间热交换和热平衡来实现的。热导检测器主要由热导池体、热敏元件及惠斯顿电桥等单元构成。热导池体在结构上就是一个有气体流通的金属体气室,并将电阻率较大的温敏元件置于其中,一般多用四个元件,在电路上组成典型的惠斯顿电桥电路。图1就是TCD检测器的工作原理图。http://ng1.17img.cn/bbsfiles/images/2017/10/2015032710022045_01_2984502_3.png图1 TCD检测器的工作原理图1—进样器;2—色谱柱;3—参考臂;4—测量臂;R1 R2—参考臂电阻;R3 R4—测量臂电阻 图2是TCD检测器的等效电路图。http://ng1.17img.cn/bbsfiles/images/2015/03/201503271004_539836_2984502_3.png图2 TCD检测器的等效电路图 根据TCD检测器的工作原理图,可以看出,只通入载气时,惠斯通电桥处于平衡状态,M、N 两点电位相等,电位差VMN 为零。再通入样气后,由于参考臂上通入的是纯载气,而测量臂上通入的是载气和样气的混合气体,其导热系数不同于纯载气,从热丝向四周传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 两点电位不等,即存在电位差不为零,通过对电压进行检测、分析,从而定性、定量的测出被测物质的成分和含量。

  • 气相色谱检测无机液体

    [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]三氧化硫可以使用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]定量检测吗?如果可以的话,色谱条件是啥?或者能同时测量[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]三氧化硫和14烯含量吗?在救救孩子吧,孩子快要疯了

  • 气相色谱仪常用的检测器

    [align=center][b][size=18px] 气相色谱仪常用的检测器 [/size][/b] [/align] 检测器(detector)--能检测色谱柱流出组分及其量的变化的器件,又称鉴定器。是检测色谱分离组分物理或化学性质或含量变化(多数情况是将其转化为相应的电压、电流)的一种仪器装置。它是色谱系统中的关键部件,色谱分离过程的眼睛。  对检测器的要求是:灵敏度高,线性范围宽,重现性好,稳定性好,响应速度快,对不同物质的响应有规律性及可预测性。  检测器的分类  根据检测器的输出信号和组分含量的关系分,可以分为:  质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比。  浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。  根据其测定范围可分为:  通用型检测器:对绝大多数物质够有响应。  选择型检测器:只对某些物质有响应;对其它物质无响应或很小。  目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型)、火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。具体原理和使用范围如下:  热导池检测器(Thermal Conductivity Detector,TCD),由于它结构简单,灵敏度适宜,稳定性较好,线性范围较宽,适用于无机气体和有机物,它既可做常量分析,也可做微量分析,zui小检测量mg/ml数量级,操作也比较简单,因而它是目前应用相当广泛的一种检测器。  火焰离子检测器(flame ionizationdetector,FID)是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度zui好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。FID用氢气作为燃烧气,其中掺有氦气,氮气等洗脱剂,在一个圆筒状的电极里的喷嘴处燃烧。喷嘴与电极间电压高达几百伏,当含碳溶质在喷嘴处燃烧时,产生的电子/离子对被喷嘴和电极处收集起来产生电流,该电流被放大并传送到记录仪或电脑数据采集系统的A/D转换器处。它对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。  火焰光度检测器(Flame Photometric Detector,FPD),是zui近三十年才发展起来的一种高选择性和高灵敏度的新型检测器。它对含硫、含磷化合物的检测灵敏度很高。目前主要用于环境污染和生物化学等领域中,它可检测含磷含硫有机化合物(农药),以及气体硫化物,如甲基对硫磷,马拉硫磷,CH3SH,CH3SCH3,SO2,H2S等,稍加改变还可以测有机汞、有机卤化物、氯化物、硼烷以及一些金属螯合物等。  电子捕获检测器(Electron Capture Detector,ECD),目前气相色谱中常用的一种高灵敏度、高选择性的检测器。它只对电负性(亲电子)物质有信号,样品电负性越强,所给出的信号越大,而对非电负性物质则没有响应或响应很小。电子捕获检测器对卤化物、含磷、硫、氧的化合物,硝基化合物、金属有机物、金属螯合物,甾类化合物。多环芳烃和共轭羰基化合物等电负性物质都有很高的灵敏度,其检出限量可达10-9~10-10克的范围。所以电子捕获检测器在环境保护监测、农药残留、食品卫生、医学、生物和有机合成等方面,都已成为一种重要的检测工具。  总而言之,检测器的发展方面,均向着高灵敏度,高重复性,反应快,线性宽等的方向发展.并且,正逐渐洐生出专门分析某些化合物的检测器。

  • 气相色谱仪各种检测器的介绍

    [align=center][b][size=24px]气相色谱仪各种检测器的介绍[/size][/b][/align][size=18px] 气相色谱仪或高效液相色谱仪是专供实验室对液体或溶于液体的固体样品进行常量和微量分析和检测,特别适用于农药、化肥、医药、防疫、环保、商检、食品、饮料、酒类、饲料、石化、煤炭、染料、精细化工等敏感行业中质量监督检测与控制;在氨基酸分析有机化工、有机合成、分析化学、生物化学、生物工程、国防教学等研究领域广泛应用。以下由仪器色谱技术人员介绍气相色谱仪的各种检测器。 1、热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用蕞广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。[font=&] 2、氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度而进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。[/font] 3、电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析衡量电负性有机化合物蕞有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰、基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,蕞常用的是高纯氮。 4、火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。 5、氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。 6、质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。 7、光离子化检测器(PID)是通用型的非放射性检测器。它使用高能紫外线作为能源将分子电离,检测限为10-12~10-9数量级。它对大多数有机物都有响应信号,美国EPA己将其用于水、废水和土壤中数十种有机污染物的检测。被测物质经色谱柱分离后,进入离子化池,离子化池的上盖为真空紫外无极放电灯的窗口,两侧是电极。电极收集在真空紫外辐射下产生的离子,并产生离子电流,电离电流经放大后,由色谱工作站进行数据处理、记录、显示和存储。本检测器使用一只具有10.6eV能量的真空紫外无极气体放电灯作为光源。[/size]

  • 你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    检测器是气相色谱分析中不可或缺的部分,被称做色谱仪的“眼睛”。被测组分经色谱柱分离后,以气态分子与载气分子相混状态从柱后流出,必须要有一个装置或方法,将混合气体中组分的真实浓度或质量流量变成可测量的电信号,且信号大小与组分量成比例关系,此装置就是检测器,是一种能检测气相色谱流出组分及变化的器件。检测器按照不同方法有不同的分类:按照性能特征分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201417_614520_2384346_3.png按照工作原理分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614522_2384346_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614521_2384346_3.png 大家可以发现气相色谱检测器的种类繁多,而平日里我们最常见到的检测器有电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰离子化检测器(FID)和质谱仪(MSD)等。今天就和大家聊一聊这些检测器的选择问题。通性 MSD与ECD、NPD、FID等都可作为GC的检测器,提供GC分离后的组分相关信息。样品经色谱柱分离后,各成分按保留时间不同,顺序地随载气进入检测器,检测器按时间及其浓度(质量)的变化,把组分化合物转化成易于测量的电信号,经过必要的放大传递给记录仪或计算机,最后得到该样品的色谱图及定性和定量信息。区别 ECD、NPD、FID都属于有一定选择性的检测器,仅对某类特征化合物有响应,可以排除样品中其他组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应,在总离子流色谱图上表现出来。对不同的化合物,各种检测器的适用性和信号响应有所差别,见图1,具体如下:①电子捕获检测器(ECD)是灵敏度最高的气相色谱检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β-射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。ECD仅对那些能俘获电子的化合物(含电负性元素)有响应,如卤代烃、含N、O和S等杂原子的化合物,但线性范围较窄。②氮磷检测器(NPD)是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐如Na2SiO3、Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。NPD对氮、磷化合物有较高的响应,灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如有机磷及氨基甲酸酯类农药等。③火焰离子化检测器(FID)由Harley和Pretorious发明,演化自Scott发明的燃烧热检测仪(Heat of Combustion Detector)。FID工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统的A/D转换器处,从而检测被色谱柱分离出的组分。④质谱检测器(MSD)是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。MSD不仅能给出色谱图(即总离子流色谱图,TIC),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是GC定性分析的有效工具。将色谱的高分离能力与MS的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。MSD数据处理工作量非常大,一般必须配计算机系统才能有效地工作;根据仪器配置不同,还可以采用EI、CI等电离方式,结合不同扫描方式,提高灵敏度与准确度。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/06/201506241721_551410_2989334_3.png图1 气相色谱不同检测器灵敏度对比

  • 浅谈气相色谱检测器的分类

    浅谈气相色谱检测器的分类

    了解检测器的分类,可从整体把握其性能特征和工作原理。按检测器的性能特征和工作原理分成两种分类法。一、按性能特征分类从不同的角度去观察检测器性能,有如下分类:1.对样品破坏与否组分在检测过程中,如果其分子形式被破坏,即为破坏性检测器,如FID、NPD、FPD、MSD等。组分在检测过程中,如仍保持其分子形式,即为非破坏性检测器。如TCD、PID、IRD等2.按响应值与时间的关系检测器的响应值为组分在该时间的累积量,为积分型检测器,如体积检测器等。现[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中,此类检测器一般已不用。检测器的响应值为组分在该时间的瞬时量,为微分型检测器。现常见的均为此类型检测器。3.按响应值与浓度还是质量有关检测器的响应值取决于载气中组分的浓度,为浓度敏感型检测器,或简称浓度型检测器。它的响应值与载气流速的关系是:峰面积随流速增加而减小,峰高基本不变。因当组分量一定、改变载气流速时,只是改变了组分通过检测器的速度,即改变了半峰宽,其浓度不变。如TCD、PID等。凡非破坏性检测器,均是浓度型检测器。当检测器的响应值取决于单位时间内进入检测器的组分量时,为质量(流量)敏感型检测器或简称质量型检测器。它的响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变。因当组分量一定,改变载气流速时,即改变了单位时间内进入检测器的组分量,但组分总量未变,如FID、NPD、FPD、MSD等。4.按不同类型化合物响应值的大小检测器对不同类型化合物的响应值基本相当.或各类化合物的RRF值之比小于10时,称通用型检测器,如TCD、PID等当检测器对某类化合物的RRF值比另一类大十倍以上时,为选择性检测器。如NPD、ECD、FPD等。二、按工作原理(检测方法)分类按检测器的性能特征分类对把握检测器的某项性能十分有益,但众多的检测器,各有多种性能。某检测器归哪类,似乎没有一个内在的规律可循。如按工作原理或检测方法分类,因一种检测器只有一份工作原理,比较明确,有一定的规律可循,比较容易掌握。从工作原理考虑,检测器是利用组分和载气在物理或(和)化学性能上的差异,来检测组分的存在及其量的变化的。这些差异有多方面:利用组分与载气物理常数,如热导系数、密度等的差异来检测,称为物理常数检测法;利用组分与载气的光发射、吸收等性能的差异来检测,称光度学检测法等。上述方法中,不少都是分析化学中比较成熟的检测方法,如光度法、电化学法和质谱法,经过近二十余年的发展,现已为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法所用。这些装置已成了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中的一个检测器。因此,现[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已成表中阵容。[img=,645,555]https://ng1.17img.cn/bbsfiles/images/2019/03/201903141525006405_8602_2384346_3.png!w645x555.jpg[/img]有的文献还将检测器分成总体性能检测器( bulk property detector)和溶质性能检测器( solute property detector)两大类。前者是测量组分进入检测器前、后流动相某些总体物理性能的变化,如表中之1法。后者是测量流动相不具备的(或十分小)而溶质(即组分)具有的某性质,如俘获电子(ECD)发射光谱(AFD、FPD)等,如表中之2-5法。

  • 安捷伦6890气象色谱如何降低检测限

    本人现在用安捷伦6890气象色谱pid检测器测量氯化物,最低检测限是4mg/L,或4ppm。不知道如何能降低检测限。已经测量没有漏气,已经调整载气流速和split ratio。请高手指点一二。万分感谢。

  • 气相色谱仪FID检测器结构特点、基本操作、常见故障及排除

    [align=center][b][size=18px]气相色谱仪FID检测器结构特点、基本操作、常见故障及排除[/size][/b][/align] 在气相色谱仪众多检测器中,FID检测器(氢火焰离子化检测器)是气相色谱蕞常用一种检测器,它具有灵敏度高、线性范围宽、应用范围广、易于掌握等特点,特别适合于毛细管气相色谱。FID检测器对大多数有机化合物有很高的灵敏度,灵敏度比热导检测器TCD高100-10000倍。[b]一、结构特点[/b]  气相色谱仪FID检测器由离子座、离子头、极化线圈、收集极、气体供应等部分组成,离子头是检测器的关键部分。  微量有机组分被载气带入检测器以后,在氢火焰的作用下离子化。产生的离子在发射极和收集极的外电场作用下定向运动形成微电流。有机物在氢火焰中离子化效率极低,估计每50万个碳原子仅产生一对离子。离子化产生的离子数目,在一定范围内与单位时间进入检测器的被测组分的质量成正比。  微弱的离子电流经高电阻(108~1011 Ω)变换成电压信号,经放大器放大后,由终端信号采集即得出色谱流出曲线。在正常点火的情况下FID信号大小受离子化效应和收集效应的影响。其中离子化效应的影响因素有样品性质(不同的物质校正因子不同)和火焰温度(受几种气体的流量比影响);收集效应的影响因素有极化电压和喷嘴、极化极、收集极的相对位置。因此对同一样品要获得高灵敏度必须选择蕞佳氢气、载气、空气的流量比;蕞佳的喷嘴、极化极、收集极的相对位置与适当的极化电压。氢气、载气、空气的流量可通过实验摸索蕞佳条件,一般理论比为30∶30∶300。[b]二、基本操作[/b]  1)拧开各气体总压开关(逆时针旋转为开) ,旋转各调节阀,使各压力表 指示在 0.3~0.4 MPa(顺时针旋转为开) 。  2) 通入载气 2) 将载气流量调至 20~30ml/min (N , (载气压力表 1: 0.05MPa; 。 载气压力表 2:0.03 MPa)  3) 通载气约 10min 后 (若长期停机后重新启动操作时, 通载气 15min 以上) , 开启色谱仪电源总开关,设置所需柱箱、汽化、检测器 2 的工作温度。 柱箱温度必须低于色谱柱固定相蕞高使用温度(不锈钢色谱柱的使用温 度≤230℃, 毛细管色谱柱的使用温度≤300℃) 汽化室和检测器温度必须 , 高于 100℃(若无高沸点的组分一般设置 150℃) ,设置好后按运行键即 可升温。  4)将“灵敏度选择”置于 2 档,讯号衰减开关置于 1 档。打开微电流放大器 开关,旋转零位调节电位器,使基线在零位附近(在此之前应打开计算 机,进入 1 通道界面) 。  5)旋转空气流量调节阀,将空气流量调至 200~300 MPa(空气压力表指示 在 0.02~0.03 MPa,一般调至 0.03 MPa)待检测器温度升到 100℃时,即 可打开 H2,并旋转 H2 调节阀到压力表指示 0.02 MPa 附近,打开 H2 点 火开关阀,用电子点火枪在 FID 检测器出口处点火,点燃后关闭 H2 点 火开关阀。  6)待基流稳定后,准备进样(一般进样量为 0.4~0.5ml),进样后立即按下 带有“A”字样的按扭,此时开始采样。  7)当所有测试完毕停机时,必须先将 H2 开关阀关闭,再将微电流放大器 开关关闭,退出升温开始降温,待柱箱温度降至室温,汽化和检测器温 度降至 70℃以下时,关闭载气、空气、H2 和色谱仪电源总开关。[b]三、常见故障及排除[/b]  1、 进样后色谱不出峰  故障原因及排除方法如下:  (1)未点着火 首先用一冷的光亮的铁板置于检测器的上方,若有细小水珠生成,则证明火已点着;反之证明火未点着,此时,需检查氢气、氮气、空气的密封情况是否完好,是否有漏气现象。其次用皂沫流量计测量流速是否正常,适当增大氢气的流速,减小载气与空气的流速,待点着火后再将各流速调至蕞佳流速位置。  (2)信号输出中断 检查从色谱仪到工作站的信号线连接情况,观察有无接触不良或断开的情况。另外,在进样后用万用表测量色谱信号输出,观察有无信号输出,若无信号输出则证明此故障由色谱仪引起,需做进一步检查。  (3)收集极绝缘不好 测量收集极与仪器外壳的电阻应大于1013 Ω。  (4)其它方面的原因 主要包括进样垫损坏、色谱柱断裂(毛细管柱比较常见)、微量进样器损坏等。  2、基线噪声波动大  (1)电器方面的原因 首先将检测器信号线断开,在采集状态下观察基线运行情况,如果基线波动很大则可判断该故障是电器方面的原因,此时,需要进一步检查仪器接地是否良好(接地电阻应小于5 Ω)、线路板及各插件是否松动等。  (2)测量系统污染 断开信号线后,在采集状态下检查基线运行的情况,如果基线运行正常则证明测量系统污染。需要检查色谱柱是否失效(需活化处理)、柱进口是否污染(更换玻璃丝、玻璃衬管等)、检测器污染,主要是离子头的污染,因为此处高温会有杂质碳结,需要小心拆下检测器用中性溶剂清洗。  3、空气峰掩盖组分峰  分析微量组分时,如分析液态氧气中总烃含量时,氧信号峰保留时间蕞小,随后是甲烷、乙烷、乙烯等,如果调整不好会出现氧气覆盖甲烷或将氧气峰误判为甲烷峰。排除办法是逐渐降低氢气流速,依次进样可观察到氧气峰逐渐降低,调节至满意为止。

  • 气相色谱检测甲醛

    大侠们: 有谁利用过气相色谱检测含量为200ppb的甲醛气体?气相色谱各项设置参数是多少?

  • 【分享】气相色谱仪分析检测使用方法探讨

    气相色谱分析检测过程中,气相色谱仪对所用的气体纯度有较高的要求,为即达到工作要求,又能延长仪器寿命,所用气体的纯度要达到或略高于仪器自身对气体纯度的要求;否则,若使用不符合要求的低纯度气体,会造成一系列不良影响;一般情况下,气体纯度选择应掌握以下原则,即微量分析比常量分析要求高,毛细管柱分析比填充柱分析要求高,程序升温分析比恒温分析要求高,浓度型检测器比质量型检测器要求高,配有甲烷装置的FID比单FID要求高,中高档仪器比低档仪器要求高. 气相色谱仪的气路系统,是一个载气连续运行、管路密闭的系统。气路系统的气密性,载气流速的稳定性,以及流量测量的准确性都对色谱实验结果有影响,需要注意控制。 气相色谱中常用的载气有:氢气、氮气、氦气、氩气和空气。 这些气体除空气可由空压机供给外,一般都由高压钢瓶供给。通常都要经过净化、稳压和控制、测量流量。 气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度最好的这类问题。 1、气体纯度的要求 根据每一家用户具体使用的哪一类(高、中、低档)仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于:①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高(保持)仪器的高灵敏度,而且会延长色谱柱、色谱仪(气路控制部件、气体过滤器)的寿命。实践证明,作为中高档仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度、高精度要求的样品时,要想恢复仪器的高灵敏度是十分困难的。而对于低档仪器,作常量或半微量分析,选用高纯度的气体,会增加运行成本,有时还增加了气路的复杂性,因此选用气体的纯度要求达到或略高于仪器自身对气体纯度的要求即可,这样既可以达到工作要求,又能延长仪器的寿命,还不至于增加仪器的运行成本。 一般说来,痕量分析或毛细管色谱的载气纯化程度,要高于常规分析。特别是电子捕获、热导池检测器,载气纯度直接影响灵敏度和稳定性,一定要严格净化。 2、气体纯度低可能造成的不良影响 根据分析对象,色谱柱的类型,操作仪器的档次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 2.1样品失真或消失:如H2O气使氯硅样品水解; 2.2色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG固定液断链。 2.3有时某些气体杂质和固定液相互作用而产生假峰; 2.4对柱保留特性的影响:如H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大;2.5检测器:TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命;FID:特别是在Dt≤1×10-11/S下操作时,CH4等有机杂质会使基流激增,噪声加大不能进行微量分析; 2.6在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当柱温升高时不但引起基线漂移,还可能在谱图上出现比较宽的“假峰”。 2.7仪器影响 2.7.1各类过滤器加速失效; 2.7.2调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; 2.7.3气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 2.7.4检测器的寿命 对于FID,水蒸汽会影响分析结果,直至影响检测器的寿命;对ECD和TCD的寿命最明显,这点应引起用户特别注意。 3、对气体纯度选择的一般原则 3.1从分析角度讲,微量分析比常量分析要求高,也就是说,气体中的杂质含量必须低于被分析组分的含量,如果用TCD分析10mL/m3的CO,则载气中的杂质总含量不得超过10mL/m3,因为99.999%纯度的气体则含0.001%的杂质,相当于10mL/m3所以对于10mL/m3的痕量分析,载气的纯度应高于99.999%;于FID使用气体,碳氢化合物含量必须很低,载气中的大量氧杂质只要不对色谱柱造成影响,就不影响FID的性能,而操作ECD,载气中的氧气和水的含量必须很低等。 3.2毛细管柱分析比填充柱分析要求高; 3.3程序升温分析比恒定温度分析要求高; 3.4浓度型检测器比质量型检测器要求高; 3.5配有甲烷装置的FID比单FID操作的对载气中的微量CO,CO2要求要高得多。 3.6从仪器寿命和保持仪器的高灵敏度讲,中高档仪器比低档仪器要求高。 4、操作不同检测器推荐使用的气体纯度 我们推荐气体纯度的技术要求,通常用于常规分析,对于特殊高灵敏度的痕量分析应采用高一级纯度的气体,如果不在意色谱柱和仪器的使用寿命,或分析样品组分浓度很高时,也可以不使用过高纯度的气体,由于各个制气厂设置不同,其杂质含量将有所不同;为满足不同的使用要求,选用不同厂家不同纯度的气源后,可以通过气体净化处理满足分析要求,对于不同杂质的气体采用何种净化方法和装置,留待以后再加以讨论。 [colo

  • 气相色谱仪分析检测使用方法探讨

    气相色谱仪的气路系统,是一个载气连续运行、管路密闭的系统。气路系统的气密性,载气流速的稳定性,以及流量测量的准确性都对色谱实验结果有影响,需要注意控制。  气相色谱中常用的载气有:氢气、氮气、氦气、氩气和空气。  这些气体除空气可由空压机供给外,一般都由高压钢瓶供给。通常都要经过净化、稳压和控制、测量流量。  气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度最好的这类问题。1 气体纯度的要求  根据每一家用户具体使用的哪一类(高、中、低档)仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于:①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高(保持)仪器的高灵敏度,而且会延长色谱柱、色谱仪(气路控制部件、气体过滤器)的寿命。实践证明,作为中高档仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度、高精度要求的样品时,要想恢复仪器的高灵敏度是十分困难的。而对于低档仪器,作常量或半微量分析,选用高纯度的气体,会增加运行成本,有时还增加了气路的复杂性,因此选用气体的纯度要求达到或略高于仪器自身对气体纯度的要求即可,这样既可以达到工作要求,又能延长仪器的寿命,还不至于增加仪器的运行成本。  一般说来,痕量分析或毛细管色谱的载气纯化程度,要高于常规分析。特别是电子捕获、热导池检测器,载气纯度直接影响灵敏度和稳定性,一定要严格净化。2 气体纯度低可能造成的不良影响  根据分析对象,色谱柱的类型,操作仪器的档次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能:  2.1样品失真或消失:如H2O气使氯硅样品水解;  2.2色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG固定液断链。  2.3有时某些气体杂质和固定液相互作用而产生假峰;  2.4对柱保留特性的影响:如H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大;  2.5检测器:TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命;FID:特别是在Dt≤1×10-11/S下操作时,CH4等有机杂质会使基流激增,噪声加大不能进行微量分析;  2.6在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当柱温升高时不但引起基线漂移,还可能在谱图上出现比较宽的“假峰”。  2.7仪器影响  2.7.1各类过滤器加速失效;  2.7.2调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵;  2.7.3气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。  2.7.4检测器的寿命  对于FID,水蒸汽会影响分析结果,直至影响检测器的寿命;对ECD和TCD的寿命最明显,这点应引起用户特别注意。3 对气体纯度选择的一般原则  3.1从分析角度讲,微量分析比常量分析要求高,也就是说,气体中的杂质含量必须低于被分析组分的含量,如果用TCD分析10mL/m3的CO,则载气中的杂质总含量不得超过10mL/m3,因为99.999%纯度的气体则含0.001%的杂质,相当于10mL/m3所以对于10mL/m3的痕量分析,载气的纯度应高于99.999%;于FID使用气体,碳氢化合物含量必须很低,载气中的大量氧杂质只要不对色谱柱造成影响,就不影响FID的性能,而操作ECD,载气中的氧气和水的含量必须很低等。  3.2毛细管柱分析比填充柱分析要求高;  3.3程序升温分析比恒定温度分析要求高;  3.4浓度型检测器比质量型检测器要求高;  3.5配有甲烷装置的FID比单FID操作的对载气中的微量CO,CO2要求要高得多。  3.6从仪器寿命和保持仪器的高灵敏度讲,中高档仪器比低档仪器要求高。4 操作不同检测器推荐使用的气体纯度  我们推荐气体纯度的技术要求,通常用于常规分析,对于特殊高灵敏度的痕量分析应采用高一级纯度的气体,如果不在意色谱柱和仪器的使用寿命,或分析样品组分浓度很高时,也可以不使用过高纯度的气体,由于各个制气厂设置不同,其杂质含量将有所不同;为满足不同的使用要求,选用不同厂家不同纯度的气源后,可以通过气体净化处理满足分析要求,对于不同杂质的气体采用何种净化方法和装置,留待以后再加以讨论。  综上所述,新气相色谱仪接入气源时一定要做到心中有数,决不能随意接入,否则会造成色谱柱失效、检测器寿命缩短、甲烷化装置等的损坏、信噪比减小得无法使用等,最终导致分析数据严重失真,失去了分析的意义,为工作带来严重的损失。

  • 气相色谱仪各种检测器的真实使用情况揭秘

    气相色谱仪各种检测器的真实使用情况揭秘

    【讨论】气相色谱仪的8种检测器---你用的是哪种?http://bbs.instrument.com.cn/shtml/20100627/2634459这个帖子你还有印象吗,帖子调查总共大约有180个版友参与,可以说基本体现了目前气相色谱仪的检测器的使用情况。其实目前使用的最多的检测器,就是六种,其他有很几个特殊的、专属性强的检测器,都使用者较少,或者行业专用,下面简单介绍下几个常用检测器。1、热导检测器  热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。2、氢火焰离子化检测器  氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。3、电子捕获检测器  电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。4、火焰光度检测器  火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。5、氮磷检测器 氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。6、质谱检测器  质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱 -质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。而这些检测器的原理和检测特性,造成了很多版友再采购仪器时,都是根据自己所需检测的样品而定。约180个版友的气相色谱仪各种检测器的真实使用情况,统计后如下图所示。http://ng1.17img.cn/bbsfiles/images/2014/01/201401042146_486668_1608710_3.jpg图中所示的其他检测器,包括表面声波检测器,ASD电化学硫检测器及SCD硫化物化学发光检测器,催化燃烧检测器(CCD),光离子化检测器(PID)等,这些检测器的使用人较少。而版友在讨论的时候,还说到了碱火焰电离检测器 (AFID)等很少见的检测器,其实NPD就是由碱火焰电离检测器 (AFID) 发展而来。1964年Karman和Giuffrida首次报道了钠火焰电离检测器, 对含磷和卤素化合物有选择性的响应, 以后又有多种形式。它们均是用氢火焰加热挥发性的碱金属盐, 产生碱金属蒸汽, 表现出对含磷、 卤素和氮化合物均有极高的灵敏度和选择性。遗憾的是其背景信号和样品信号均不稳定, 噪声大、 热离子源寿命短, 难以实用。1974年Kolb和Bischoff提出了一种新的碱源改造方案, 使检测器稳定性显著改善, 灵敏度明显提高。它对含卤素化合物不敏感, 而对氮、 磷化合物的响应比烃类大10000倍, 达专一性响应, 故以后通称氮磷检测器。实际上, 由于碱源的差异, 有些对含卤、 含氧化合物也有较高的灵敏度。所以现有的文献仍称AFID, 或热离子检测器 (TID) 、 热离子电离检测器 (TID) 或热离子专一 (灵敏) 检测器 (TSD) , 或无火焰热离子检测器 (FTD) 、 无火焰碱敏化检测器 (FASD) 等。从图已经很明显可以看的出,约180个人中,有150个人用过氢火焰离子化检测器、74个人用过热导检测器、74个人用过电子捕获检测器、55个人用过火焰光度检测器、36个人用过氮磷检测器、49个人用过质谱检测器,5个人用过氦放电离子化检测器,14个人用过其他的检测器。可见,气相色谱仪的常用检测器定位是氢火焰离子化检测器、热导检测器、电子捕获检测器、火焰光度检测器、氮磷检测器、质谱检测器。

  • 气相色谱FID检测,检测苯系物

    查阅文献发现,气相色谱FID检测废水土壤中苯系物,大多数前处理中都使用固相萃取,而且绝大多数都是运用顶空气相,能不能不用顶空进样,而是手动或者自动进样检测??我的仪器是安捷伦气相色谱FID检测器,柱子是HP-5。如果不行的话,哪些有机物检测可以不用顶空呢,最好是苯系物或者有机氯也可以

  • 气相色谱法测量煤气

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]不仅能够方便的检测出煤气组分和煤气含萘,而且还可以准确的检测出贫富油含苯和煤气含苯,本文主要对煤气含苯的测定方法进行探讨。对煤气含苯量的测定原来采用活性炭吸附法、采用干冷冻法。这两种方法通气量大,测定时间长,不能及时指导生产,且苯系物中低沸点物质的毒性大,对人体有一定伤害。选用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法测量煤气含苯量,首先选择一定的分析条件,使煤气中苯、甲苯能与其它组分分离良好,煤气通过六通阀直接进气,用保留时间定性,用外标法乘以校正系数K直接定量。经过多次分析表明,该方法操作简便,结果准确,整个分析事件缩短到20min,对于及时指导生产有重要意义。1 试验方法及结果1.1仪器与试剂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],FID检测器,φ4mm×3m的不锈钢填充柱(10%阿皮松L)。数据处理系统是工作站。气源为氮气、氢气、空气发生器。进样装置为六通阀。纯苯纯度不低于99.9%。1.2色谱分析条件柱温:100℃,汽化温度:150℃,检测器温度:150℃,进样量:1ml,空气压力:0.2mpa,氢气压力:0.2mpa,氮气压力:0.3mpa。1.3标样的制备(1)塔后气体标样的制备。取两支100ml注射器,吸入100ml不含苯的空气,顶端用橡胶帽堵死,分别用1ul的微量注射器取纯苯0.25ul,穿过橡胶帽注入两个100ml的注射器中(将纯苯注入到注射器内预先放入的铁片上),然后震荡、摇匀,静置几分钟,使苯完全挥发均匀,然后通过1ml的六通阀注入色谱仪中,两个标样的峰高重复性应小于4%,取平均值H1。该标样的含苯量计算公式如下:C=(V苯×P苯)/V空气=(0.25×10-3×0.88)/(100×10-6)=2.2g/m3(2)塔前气体标样的制备。方法同上,取3ul纯苯溶于100ml空气中,即为塔前气体标样。此标样相当于空气中含苯26.4g/m3。(3)上述是自制标样的方法,也可以购进与塔前、塔后含苯浓度相近的标准气体做参照。图1是塔后标准气体的两个峰值,其峰高重复性为0.2%。1.4样品分析 将煤气取样口放散5~10min,以保证正压取样,并用煤气多次冲洗100ml针筒,将其中空气置换干净,然后取100~150ml气体,静置到室温后,在统一条件下分两次注入色谱柱中,两次进样苯峰高重复性应小于4%,否则,试样作废,取峰高平均值H2。图2是塔后煤气的平行样峰高,其重复性为1.98%。1.5结果计算 煤气含苯量=H2/H1×C×K g/m3式中的H2为煤气中的苯峰高;H1为标样苯峰高;C为标样浓度;K为经验系数=100/粗笨中的苯含量。粗笨中的苯含量随焦化工艺的调整及气温变化而不同,可在一定条件下,通过蒸馏过色谱分离检测得出。根据经验,一般粗笨中的苯含量在60%~80%。1.6准确度实验 将色谱法与干冷冻法进行对比实验,结果见表1.由表1可知,两种方法的再现性小于4%,表明色谱法的准确度能够满足要求。表1 两种分析方法的结果对比(g/m3)样品名称色谱法冷冻法误差0506塔前27.1927.620.430509塔前27.2027.440.240512塔前28.9228.540.380506塔后3.243.160.080509塔后3.894.040.150512塔后4.083.920.16表2 将密度测定结果(g/m3)样品名称1号2号3号4号5号平均值重复性0513塔前27.7028.1227.4427.6628.2127.832.7%0513塔后3.644.023.773.623.153.642.4%1.7精密度测定 用10个100ml的注射器分别取塔前、塔后气样各5个,在室温下静置3~5min后,按照上述方法,在相同的实验条件下测定煤气中粗笨的含量。测定结果见表2,其重复性小于3%,由此可见,色谱法的精密度高,能够满足指导生产的需要。2 注意事项(1)气体标样应在测定前配制,且温度应保持在室温下,当室外气温低时,应置于50℃左右的烘箱中加热10min以上,使其挥发均匀。(2)制备标准气体时,所用空气要求不含苯,可加活性炭管过滤空气。(3)测定样品及标样时,仪器条件和样品温度应一致,进气时要缓慢匀速。(4)取气样时不能使用橡胶气袋,橡胶气袋易吸收煤气中的苯等有机物,致使结果偏低。

  • 气相色谱中的机械阀和流量测量

    1 概述使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。以毛细柱进样口的流量/压力控制而言,具有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。检测器方面,控制氮气、氢气或者空气流量,使用的则是稳压阀-针型阀、稳压阀-气阻或者稳压阀-稳流阀-气阻等多种类型。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c0/8a/dc08a510e26cb533a22ac325ac839f7a.png[/img]2 常用的阀及其作用使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ea/2c/fea2c026008aafb95327a153da06791d.png[/img]对于控制阀而言,所有的阀都有进口和出口;如果需要显示压力,则会有另外一个出口,用于连接压力表。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/51/3cf51a8b9fc4b7b80188c69fbb8bbc51.png[/img]2.1 稳压阀稳压阀的作用是保证[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]内部各气路控制部件(如稳流阀、针型阀等)可以在稳定的气体压力下工作。稳压阀可以在气源压力(阀前)或者输出流量(阀后)发生波动时候,提供/保持恒定的压力。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中,稳压阀的作用主要可以体现在以下方面:(1)为针型阀提供稳定的气体压力,保证针型阀精密调节流速;(2)安装在稳流阀之前,提供恒定的气体压力,保证其正常工作;(3)安装在气阻(阻尼管、毛细柱等)之前,为其提供稳定的气体压力或者调节阀后输出压力,从而获得所需要的流速。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/73/77/373771bffeb7805fb7066f1e7c235519.png[/img]其使用方法是,通过调节旋钮可以调节(即设定)阀后的压力,压力可以在压力表上显示出来。气源压力(阀前)或者输出流量(阀后)发生波动时候,稳压阀均可保持恒定的输出压力。一般而言,气路管接入仪器之后的第一个机械阀便是稳压阀,以此来保证[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]内部各气路控制部件(如稳流阀、针型阀等)可以在稳定的气体压力下工作。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/f7/68/cf7684e36e7d7c42949a36f12d5d23e3.png[/img]2.2 稳流阀稳流阀的作用是保证在阀后的阻力发生变化的情况下,保证流量的稳定。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中分析中,填充柱由于内部填充了一定粒度的单体,毛细柱由于长度较长且内径较小,因此,气体在色谱中流动会有一定的阻力,而阻力的大小和色谱柱所处柱温箱的温度有关。温度越高,阻力越大。因此而言,如果在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的恒温分析中(柱温箱温度保持不变),温度不变则色谱柱阻力不变。因此采用稳压阀保持进入色谱柱的气体压力恒定,则可以保持流量恒定。此时柱前压(即稳压阀阀后压力)就可以表示流量。但是当[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]采用程序升温分析时,柱温按照一定程序不断增加,气体的粘度不断增大,色谱柱的阻力也随之增加,如在这个时候保持柱前压不变,根据压力、阻力和流量的关系,色谱柱的流量将会随之减小。为了保证分析过程中流量不变,则需要使用稳流阀。其作用是使色谱柱的柱前压随着色谱柱阻力的增加而自动增加,从而保持色谱柱的流量不变。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/51/a0/651a069fafff28b40f39f3f9f9a23b4a.png[/img]其使用方法是,在恒温条件下,通过调节旋钮可以调节(即设定)阀后的压力,压力可以在压力表上显示出来。一定的压力对应一定的的流量;当色谱柱温度升高时候,稳流阀自动调节(升高)压力以维持流量不变。一般而言,稳流阀均位于稳压阀之后,且在进样口进气管路之前,以此来保证进入进样口的载气流量的稳定。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/72/36/87236239dc1c62a84bea85bb1c0b437d.png[/img]2.3 背压阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,使用到背压阀的情况,一般是在毛细柱进样口的分流部位(但并非所有的分流出口都使用背压阀作为控制阀),使用方式是和稳流阀或者稳压阀连用。其作用主要是保持进样口的压力恒定,同时可以通过调节背压阀来调节进样口的压力(即柱头压),从而调节毛细柱的流量。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/90/1f/d901fe1d8277e41ef75c344b86df2608.png[/img]背压阀的基本原理是:当系统压力比设定压力小时,膜片在弹簧弹力的作用下堵塞管路,减小内部气体排放;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,气体通过背压阀排出从而释放内部压力。简而言之,背压阀相当于一个可以自动开启和关闭的通路,通过开和关来保持阀前的压力不变。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/e9/70/3e9701509ad574f59ccd2d44d542fe15.png[/img]2.4 针型阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,常使用针型阀来调节空气、氢气以及尾吹气的大小。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/05/57/e05576a459581806d4c6219572feef82.png[/img]针型阀相当于一个可以调节阻力大小的调节器,一般用在稳压阀之后,在保持针型阀前端压力不变的情况下,通过调节针型阀开度(阻力)的大小来控制流量的大小。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/f1/eb/7f1eb3734bc9a143e221ef27d393f1bd.png[/img]3 稳压阀和背压阀的简单区别简单的说,稳压阀的作用是保持阀后的压力稳定,并且可以通过调节旋钮调节阀后压力的大小;背压阀的作用是保持阀前的压力稳定。背压阀是一个被动阀,在前端没有连用的控制阀(如稳流阀)的情况下,只能保证阀前的压力恒定,而不能调大前端的压力。4 流量测量的工具使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,在实际工作过程中,可能需要测量实际的流量大小。用来测量流量大小的工具一般是皂膜流量计等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c2/83/6c283541ca478b7cd69a3db279f00a2d.png[/img]使用的基本步骤是:(1)将橡胶头、乳胶管和皂膜流量计连接好;(2)将肥皂水倒入底部的乳胶滴头中,不要超过侧面连接乳胶管的侧口;(2)将乳胶管连接到要测量的气体的出口处;(4)挤压橡胶头,使产生一个皂泡;当皂泡上升到0刻度线时候开始计时,记录皂泡流经一定体积(如10ml)所须时间。(5)根据时间和对应皂泡所运行的体积,计算流量(单位一般是ml/min)。目前也有一些厂家提供电子式的皂膜流量计和使用质量流量计进行出口流量的测量,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/e6/93/1e69360e3c2e3c26c780118ab78526da.png[/img]4.2 小工具在使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器时候,有时候需要测量毛细柱的流量和分流流量以确定分析方法的分流比。相对于填充柱而言,毛细柱使用的流量较小,可能只有(1-3)ml/min,且毛细柱较细,不好和皂膜流量计连接测量。目前,不少厂家推出了用于计算毛细柱流量的软件工具,只需要输入使用的载气类型、柱前压、色谱柱的长度、内径和膜厚以及色谱柱的温度,就可以计算出来色谱柱的流量,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ad/93/1ad935a7dbbd7e1e75d65387de6ade04.png[/img]使用小工具进行压力流量计算,大大节省了使用仪器的复杂程度。以上便是《[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的机械阀和流量测量》的全部内容,使用机械阀控制仪器的流量和压力,虽然调节起来较为繁琐,但是有助于了解[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的气路控制原理和发展过程,有利于深入了解[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制