当前位置: 仪器信息网 > 行业主题 > >

气相色谱定量法

仪器信息网气相色谱定量法专题为您提供2024年最新气相色谱定量法价格报价、厂家品牌的相关信息, 包括气相色谱定量法参数、型号等,不管是国产,还是进口品牌的气相色谱定量法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱定量法相关的耗材配件、试剂标物,还有气相色谱定量法相关的最新资讯、资料,以及气相色谱定量法相关的解决方案。

气相色谱定量法相关的资讯

  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日热烈欢迎yuen72先生再次光临仪器论坛进行讲座!  自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。  再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。  欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~  参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:  论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 毛细管气相色谱仪对复杂样品的定性定量分析
    在现代分析化学领域,毛细管气相色谱技术因其分离效率和精确的分析能力而被广泛应用。尤其在面对组成复杂的样品时,毛细管气相色谱仪显示出其优势。本文将深入探讨它在处理复杂样品时的定性和定量分析能力,以及其在实验过程中的应用策略和注意事项。   毛细管气相色谱仪的核心部分是长而细的毛细管柱,内壁涂有固定相。这种设计极大地增加了相互作用的表面积,使得样品分子能在气相和固定相之间进行成千上万次的交互作用。通过精准控制色谱条件如载气流速、温度程序等,可以实现复杂混合物中各组分的有效分离。   在进行定性分析时,毛细管气相色谱通常与质谱(MS)或傅里叶变换红外光谱(FTIR)联用,以增强识别未知化合物的能力。例如,气相色谱-质谱联用技术可以提供样品中每个峰的质谱图,通过数据库比对实现快速鉴定。这种方法尤其适用于石油产品、植物提取物、香精香料等复杂样品的分析。   定量分析方面,仪器通过与标准物质的保留时间和峰面积或峰高对比,实现高精度的定量测定。使用内标法或外标法定量,可以根据实际需要选择最合适的方法。内标法通过添加已知浓度的内部标准物来校正样品处理过程中可能出现的损失,从而提高定量的准确性。外标法则依赖于标准曲线,适用于可以精确控制样品进样量的情况。   操作时,需特别注意温度的控制和优化。升温程序必须精心设计以确保所有组分都能得到有效分离而不致于峰展宽或峰形失真。载气的选择和流速的调整也至关重要,氮气和氦气是常用的载气,它们具有化学惰性,不会与样品发生反应。   维护和日常检查对于保持设备的最佳性能也是必要的。定期检查和更换进样口的隔垫、衬管和色谱柱,可以防止样品交叉污染并保证分析的重现性。   综上所述,毛细管气相色谱仪是分析复杂样品的强有力工具。通过优化分析条件和适当的操作维护,可以实现对复杂样品中各个组分的高效、准确的定性和定量分析。
  • 气相色谱-串联质谱法测定葡萄中78种农药残留的定量校准方法评估
    以柠檬酸盐缓冲体系的QuEChERS方法为前处理方法,气相色谱-串联质谱联用仪为检测仪器,建立了葡萄中78种农药残留的检测方法。以添加回收法评估了葡萄中4种基质匹配校准方法的定量结果,评估了4种校准方法的线性回归系数,回收率和精密度。结果表明:在添加回收试验中,添加水平为0.01 mg/kg时,4种校准方法在0.005~0.1 mg/L范围内,78种农药的质量浓度与对应的峰面积间线性关系良好,R2均大于0.99,大部分农药的精密度均可满足农药残留检测的要求。然而,在使用空白基质溶液配制的标准工作溶液进行校准时,无论是外标法还是内标法,回收率均无法兼顾所有分析对象。使用基质匹配标准溶液得到的基质标准曲线表现更好,其外标法和内标法的回收率范围分别为82%~114%和81%~110%,相对标准偏差范围分别为2.3%~18%和1.2%~17%,符合食品理化检测的质量控制要求,适合实验室日常监测采用。 气相色谱_串联质谱法测定葡萄中78种农药残留的定量校准方法评估_余巍.pdf
  • 中心切割气相色谱法通过验收 补国标不足
    2014年3月31日,福建省质量技术监督局组织专家对国家化学工业气体产品质量监督检验中心承担的福建省质量技术监督局科技项目《乙烯、丙烯中微量烃类杂质的中心切割气相色谱分析方法研究》进行了项目评审。评审专家组认真听取了项目实施情况的汇报,审查了相关文件资料,认为该项目组全面完成了合同书规定的任务,一致同意该项目通过验收。  乙烯、丙烯是工业的基础,是生产有机化工、合成纤维、塑料、合成橡胶、医药、日用化学品等化工产品的最广泛的基本有机原料。乙烯、丙烯中杂质含量的高低影响着生产企业的社会和经济效益而且对下游生产装置的工艺操作设备运行乃至产品质量都将产生重要的影响和制约作用。  由于国家标准GB/T 3391-2002《工业用乙烯中烃类杂质的测定气相色谱法》和GB/T 3392-2003《工业用丙烯中烃类杂质的测定气相色谱法》两项标准中规定的方法存在较大缺陷,乙烯、丙烯色谱峰会覆盖与之相邻的乙烷、丙烷、丙烯等杂质峰,严重影响了烃类杂质的准确定性和定量。  此次验收通过的课题针对国家标准的不足,采用中心切割气相色谱法测定工业用乙烯、丙烯中微量烃类杂质的含量,利用多维色谱对乙烯、丙烯峰进行中心切割,使杂质能得到分离,实现定性与定量。本课题成果能有效检测工业用乙烯和丙烯的纯度,对于化工产业的良性发展具有重要意义。  本项目制定了一份地方标准《工业用乙烯丙烯中烃类杂质的测定气相色谱法》,研制出具有中心切割功能的多维气相色谱1台。研究成果在国内处于领先水平。
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 将取消气相色谱法 测定染料产品中氯化甲苯
    在染料生产和纺织品生产过程中,氯化甲苯得到了广泛应用,但其对环境及人身健康安全有着较大的危险性,故而,各国及行业组织均对氯化甲苯化合物的残留做了严格的限量。我国早在2009年就制订发布了有关氯化甲苯测定的标准,即GB/T 24167-2009《染料产品中氯化甲苯的测定》,但其在实施应用中存在各式各样的问题,故而业内提出了修订该标准。近日,由沈阳化工研究院有限公司、国家染料质量监督检验中心主要起草的《染料产品中氯化甲苯的测定》已经修订完成,正面向社会征求意见。拟实施日期:发布后个月正式实施。与GB/T 24167-2009相比,更改了标准适用范围;删除了气相色谱测定方法;更改了方法原理;更改了标准溶液制备方法;更改了样品溶液制备方法;更改了色谱分析条件;更改了方法的检出限;更改了方法准确度判定要求;更改了氯化甲苯目标物种类。标准中规定了采用气相色谱-质谱法(GC/MS)测定染料产品中12种氯化甲苯残留量的方法,而该方法的原理是在超声波浴中,用二氯甲烷提取试样中的氯化甲苯,采用气相色谱-质谱联用仪(GC/MS)进行分离和测定,峰面积外标法定量即可。标准中也明确表明实验过程中需要用到的仪器设备包括具有EI源的气相色谱-质谱联用仪、色谱柱、分析天平、超声波发生器、提取器、离心机、氮吹浓缩仪等。目前《染料产品中氯化甲苯的测定》新标准处于意见征集阶段,相信2021年将会公示执行。随着对燃料染料产品把控的越来越严格,对于我们自身的健康安全就愈发有保障,并减少环境污染和资源浪费。
  • 禾信质谱发布全二维气相色谱-飞行时间质谱联用仪新品
    全二维气相色谱-飞行时间质谱联用仪GGT 0620,是一套集合了全二维气相色谱和高时间分辨率飞行时间质谱的分析系统,用于复杂样品的精准定性定量检测。与常规GC-MS相比,该系统具有峰容量大、分辨率高、灵敏度高、族分离、瓦片效应等特点,对复杂样品的全组分分析具有极强的优势。结合飞行时间质谱的快速分析特点,使整套系统具备高采集速率、高灵敏度、高分辨、高质量精度的性能。 产品原理GC×GC是在传统的一维气相色谱上发展起来的一种新的色谱分离技术。其主要原理是,使用核心部件调制器将两支不同固定相的色谱柱以串联方式连接。从第一根柱流出的每个组分都经过调制器聚焦,再脉冲进样到第二根柱继续分离,极大的增强了色谱系统的分离能力。 特点及优势高灵敏度EI源,保证极低检出限EI/SPI 复合电离源可选,软硬电离辅助定性专利设计离子筛选功能,消除背景离子干扰500谱/秒超快采集速度,确保超窄色谱峰的完整呈现自动化前助理进样+系统控制+数据采集+数据处理一体化的软件工作站新型固态热调制器,可调制C2-C40化合物,体积功耗小、无需制冷剂可配备大气、水体VOCs连续在线监测方案模块,可实现在线分析 应用领域 环境中VOCs、POPs等分析 材料、过程VOCs分析 石油化工产品分析 食品风味研究、非法添加与真假鉴别 香精香料分析 中药有效成分分析 代谢组学研究 其他没有良好解决方案的复杂体系或未知物体系分析应用案例1. 环境中VOCs、POPs分析GGT 0620可用于离线或在线分析空气、颗粒物、水样、土壤以及材料中的挥发性有机物(VOCs)和持久性有机物(POPs)化学组成和含量,提供最全面最准确的化合物组分信息和定量结果。 样品:多氯联苯混合标样(直接进样)结果:从1Cl到10Cl,定性检出近100种组分2. 食品风味/香精香料GGT 0620可对食品饮料、烟草、中草药、农产品及天然香料等原料中的挥发性物质进行全面精细分析,为食品、农业、香精香料等行业中风味鉴定、质量控制、工艺优化和真伪甄别等提供技术支持。 样品:大米样品(SPME进样)结果:检测出2-乙酰-1-吡咯啉,多种醇类、酯类、醛酮类及有机杂环类化合物:吡嗪、呋喃等大米的主要风味物质3. 食品接触材料? GGT 0620分析食品接触材料中的矿物油,矿物油中饱和烃MOSH与芳香烃MOAH族类得到完全分离,形成了清晰的边界。 4. 石油石化产品分析GGT 0620对原油、油田沉积物、以及各种中低馏分石油产品(汽油、煤油、柴油等)的化学组成进行分析,可实现族类分离、全组分分析、或目标化合物定量等,广泛用于石油勘探、石油化工、煤化工、化工环境监测等领域。 样品:柴油(直接进样)结果:定性检出816种组分;显著族分离 创新点:1.高灵敏度EI源,具有专利离子筛选功能,显著提高灵敏度2.配备独特的数据统计分析软件,提供多种分类,比对,鉴定模型3.可实现大气、水体VOCs连续在线监测全二维气相色谱-飞行时间质谱联用仪
  • 酱油中氯丙醇含量的测定 气相色谱质谱法
    前言氯丙醇(Chloropropanols)是是一种在化学制作豉油的过程中所产生的毒性致癌物,同时具有抑制雄性激素生成的作用,使生殖能力减弱。对人体危害极大。日常比较常见的为以下三种:1-氯-2-丙醇 (ClCH2CHOHCH3);3-氯-1,2-丙二醇 (3-MCPD)及1,3-二氯-2-丙醇 (1,3-DCP)。本文参考《GB/T 5009.191-2006 食品中氯丙醇含量的测定》,进行了酱油中3-氯-1,2-丙二醇(3-MPCD)的测定,优化改进了用于样品预处理的硅藻土材料,调整活度,成功开发了Cleanert MCPD氯丙醇专用柱,结果表明满足实验要求,并大大简化了材料预处理过程,提高工作效率。 1 仪器及材料仪器:Agilent GC-MS 7890-5975c;涡旋混合器;超声仪;氮吹仪;恒温箱。材料: 3-氯-1,2-丙二醇(3-MPCD)标准品;乙酸乙酯、丙酮、正己烷为色谱纯;七氟丁酰基咪唑;无水硫酸钠;超纯水;氯化钠。固相萃取柱:Cleanert MCPD (氯丙醇专用柱),2.5g/12mL,P/N:LBC2500122 实验方法2.1 标准溶液配制准确称取0.1g氯丙醇标准品于100mL容量瓶中,用乙酸乙酯定容到刻度,得到浓度为1mg/mL的储备液。用丙酮将储备液逐渐稀释,得到1&mu g/mL标准工作液。2.2 饱和氯化钠溶液称取氯化钠290g,加水溶解并稀释至1000mL,超声20min。2.3 GC-MS操作条件色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:230℃,不分流进样程序升温:50℃(1min)2℃/min 82℃进样量:1&mu L流速:1 mL/min接口温度:250℃电离方式:EI电离能量:70eV溶剂延迟:7min离子源:230℃四级杆:150℃检测模式:选择离子检测,SIM离子:253/275/289/291/4532.4 样品处理称取2.5g酱油直接上样Cleanert MCPD固相萃取柱,静置平衡10min,用15 mL乙酸乙酯洗柱,收集洗脱液。将洗脱液在35℃下氮气吹至近干(不可全干)。加入2 mL正己烷,摇匀,快速加入50&mu L七氟丁酰基咪唑,将样品瓶拧紧,涡旋20秒,将样品瓶置于70℃恒温箱中反应30min,取出冷却至室温,向样品瓶中加入2 mL饱和氯化钠溶液,涡旋1min,静置2min,取上层有机相至另一干净的样品瓶中,重复1次洗涤操作以除去杂质。将有机相经少量无水Na2SO4除水后转移至进样样品瓶中,待GC-MS检测3 实验结果3.1 标准溶液色谱图在GC-MS操作条件下(4),得到标准溶液色谱图如图1.图1 标准溶液色谱图(浓度为50ng/mL)3.2 样品色谱图准确称取6份酱油,其中5份分别加入浓度为1&mu g/mL的标准溶液0.1mL,按照样品处理方法(5),将6份样品进行净化衍生,得到酱油样品加标色谱图及酱油样品色谱图如图2、图3.图2 酱油样品加标色谱图(浓度为50ng/mL)图3 酱油样品色谱图3.3 加标回收率及精密度 表1 加标回收率及精密度 1#2#3#4#5#平均回收率(%)RSD(%)n=5回收率(%)88.083.990.583.692.187.603.84 4 结论实验结果表明,Cleanert MCPD氯丙醇专用柱适用于酱油中氯丙醇的预处理,能净化酱油样品,实验加标回收率及RSD能满足定量实验的要求。本实验方案与国标方法相比更简便,使用的化学试剂量仅为国标方法的1/20,有利于操作人员的身体健康及环境;实验时间较国标方法短,更加适合于大批量酱油样品的前处理。 订货信息 产品名称规格、包装订货号价格Cleanert MCPD2.5g/12mL, 20支/包LBC250012580DA-5MS30m*0.25mm*0.25&mu m;1支1525-30024200
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 色谱检测方法新国标来啦——GB/T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法
    检测方法 气相色谱仪仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.32mm x 0.25μm柱温程序:初始温度60℃,保持1min,以20℃/min升到300℃,保持3min;进样口温度:250℃;检测器温度:300℃;分流比:2:1;进样量:1μL;标准曲线浓度:5mg/L,25mg/L,50mg/L,75mg/L,100mg/L胺鲜酯、多效唑-色谱图 标准灵敏度要求是:测定水溶性肥料时,胺鲜酯和多效唑的检出限是10mg/kg,定量限是30mg/kg;测定有机肥等直接施用肥料产品时,胺鲜酯和多效唑的检出限是2.5mg/kg,定量限是7.5mg/kg。 岛津推荐仪器 气相色谱仪:Nexis GC-2030 / AOC-30系列 Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。扫码了解更多信息 气相色谱仪:GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息
  • 《气相色谱百问精编》一书正式出版发行
    仪器信息网讯 由北京理工大学傅若农教授主审并作序,广东省生物制品与药物研究所副主任徐明全、仪器信息网李仓海为主编的《气相色谱百问精编》一书已于2013年5月正式出版发行。  现如今气相色谱仪在实验室的普及程度已经很高,但在使用中往往会出现各种问题和故障,对于刚刚入门的分析人员来说这确实是一大障碍。因此,为了让用户快速地掌握气相色谱的使用操作,解决日常分析和维护中的问题,仪器信息网仪器论坛依靠广大网友,发挥集体智慧,共同编写了《气相色谱百问精编》一书。  该书从招募编者到组织编写、审核、校正、出版前后历经近2多年时间,组织了十几位工作在仪器分析前线的行业专家进行搜集、整理以及筛选等工作。全书共计约34万字,分别从“气路与温控系统、进样系统、分离系统、检测系统、信号记录系统、气相色谱-质谱联用技术”等六个章节进行了详实的介绍和阐述,将气相色谱在日常分析时遇到常见的疑难问题,结合多年科研、教学和实践工作经验,以提出问题、分析原因、解决问题及结合实际案例的方式进行解答。  本书针对气相色谱分析中出现的常见问题,以问答的形式,结合农药残留检测、食品、医药、化工、环境保护等方面的实际应用案例,做了较为详细的解答,共精选了103个问题。在解答过程中,编者力求做到简明扼要、深入浅出、通俗易懂、新颖实用。该书不论对刚刚学习气相色谱的人员,还专门从事气相色谱分析和检测的一线人员都具有一定的帮助作用。  附:图书章节介绍:  第一章 气路与温控系统  第一节 气体与气路  第二节 温控系统与温度设置  第二章 进样系统  第一节 进口洋与衬管  第二节 进样器与气化室  第三节 固相微萃取、顶空进样与吹扫捕集进样  第四节 与进样系统有关的其他问题  第三章 分离系统  第一节 色谱柱的选择与安装  第二节 色谱柱分析条件的选择  第三节 色谱柱的使用与维护  第四节 色谱柱异常现象的处理  第四章 检测系统  第一节 检测器的普适性问题  第二节 FID的常见问题  第三节 TCD的常见问题  第四节 FPD在检测中遇到的问题  第五节 ECD在检测中遇到的问题  第六节 NPD在检测中遇到的问题  第五章 信号记录系统  第一节 基线问题  第二节 灵敏度问题  第三节 色谱峰异常问题  第四节 保留时间问题  第五节 异构体峰定量  第六章 气相色谱-质谱联用技术  详情点击:http://bbs.instrument.com.cn/shtml/20130507/4718536/  仪器论坛介绍:  仪器论坛(http://bbs.instrument.com.cn)是仪器信息网最早的栏目,也是仪器行业内从业人员最多的在线论坛,每天都会接纳数万用户访问。在这里,无论您是提问还是学习,都可以得到满意的答案。另外,仪器论坛版面目前还有大量版主职位空缺,欢迎有经验、有空闲时间的业内资深从业人士前去申请,共同为论坛的建设、发展贡献自己的力量。论坛版主申请网址:http://bbs.instrument.com.cn/resume/ ,期待您的加盟!
  • 《饲料中36种农药多残留测定气相色谱-质谱法》国标通过终审
    10月22日至23日,全国饲料工业标准化技术委员会在北京组织召开了2008年第七次饲料工业标准审查会。由上海市兽药饲料检测所负责制定的《饲料中36种农药多残留测定气相色谱-质谱法》和修订的《饲料添加剂维生素E》两个国家标准在本次审查会上顺利通过终审。  根据我国农药残留的现况和对农药残留的检测需求,上海市兽药饲料检测所制定了《饲料中36种农药多残留测定气相色谱-质谱法》的国家标准。该标准能对饲料中的四大类36种农药同时进行确认和定量,提高了饲料中农药多残留的检测能力,对畜禽产品的安全具有重要意义。此外,鉴于《饲料添加剂维生素E》这一标准已颁布实施多年,标准中的一些检测方法已显陈旧,无法正确检验和评价产品质量。上海市兽药饲料检测所通过对目前国内外检测方法和生产厂家企业标准的研究,对原标准进行了修订,使修订后的标准更切实际,实用性和普适性更强,能准确的评价饲料添加剂维生素E产品质量。
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 气相色谱仪详细解析以及未来发展趋势?
    随着技术水平的不断提高,气相色谱仪作为一种高效、快速、高灵敏度的分析仪器正逐渐普及并广泛应用。信息时代的来临,气相色谱仪的更新换代十分迅速,研究如何在色谱仪系统开发中应用计算机技术、电子技术,从而提高色谱仪的智能化水平有着重要的现实意义。 近日,有研究机构发布2017-2021年气相色谱市场报告,指出,未来全球气相色谱市场将以5.2%的年符合增长率增长。 气相色谱法作为色谱法的一种,是一种广泛使用的分离分析方法。它以气体为流动相,固体或均匀涂渍在载体上的液体为固定相,通过组分在气液(固)两相间不断分配,实现混合组分的分离。混合物分离后按顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组份的色谱峰,达到鉴别和定量的目的。分离过程在柱内进行,色谱柱所用的填充物是固体吸附剂,也可以是涂在惰性担体上的高沸点液体。被分析的样品在高温气化后被气体流动相带入柱内,由于不同组分在柱内受到的阻力不同,流动中被逐渐拉开达到分离的目的。且由于每种样品组分吸附、脱附的作用力不同,所反应的时间也不同,最终结果使混合样品中的组分得到完全地分离。样品前处理自动化是市场发展的趋势之一。在全球气相色谱仪市场,实验室和研究设施的自动化已经获得较大程度的发展。样品前处理设备有助于帮助简化实验操作。实验室自动化技术被广泛的应用在生物、化学领域,尤其是在高通量筛选、自动化临床分析测试、诊断学、组学以及大规模生物制剂复制。报告分析,新兴市场的制药市场是气相色谱仪市场增长的主要驱动力。由于广泛使用仿制药,投资减少,报销环境的变化以及严格的政府有关产品安全和价格的规定,全球制药业正在经历危机。因此,制药厂商转而开拓快速增长的新兴市场以寻求发展。这些地区由于其高速增长潜力、快速增长的GDP、医疗保健支出增加、可用的高成本效益的资源以及不断变化的监管环境而被称为“新兴”市场。 北京华盛谱信仪器有限责任公司生产的6000型气相色谱仪是在吸收了国内外先进技术的基础上,自行研制的新型气相色谱仪。大部分元器件还是引用进口,并且采用了进口的电子技术,采用美国进口技术,进样死体积减少,结构设计合理,操作简便,使灵敏度,稳定性大大提高。该仪器可广泛应用于石油、化工、食品、卫生防疫、质检、科研院校等领域。 该仪器六路控温,控温精度达到±0.1℃,柱箱温度为室温20℃~400℃,进样器温度为室温20℃~400℃,检测器温度为室温20℃~400℃,五阶程序升温,升温速率为0.1℃~39.9℃/min,且各阶恒温保持时间设定范围为0~655/min,除具以上参数外,其还具有以下特点:数字化控制、中文键盘、操作简单;液晶屏幕显示、同时显示多组参数;双自动后开门;可装配各种专用仪器;可以同时安装两套填充柱注样系统和一套分流/不分流毛细管柱注样系统;该仪器技术指标详细介绍:热导检测器灵敏度大于5000mv.ml/mg;氢焰检测器敏感度小于 8×10-12g/s,自动点火功能;氮磷检测器检测限≤1×10-12g/s(N)检测限≤1×10-13g/s(P);火焰光度检测器检测限≤8×10-11g/s(S)检测限≤4×10-12g/s(P)公司提供的售后服务在购买仪器前,我们会协助您全面了解仪器的性能特点及仪器选型的全面咨询服务。根据客户需求可以为您提供仪器的配套设备,如:色谱工作站、氮氢空发生器、标准气体、色谱柱等。购买仪器后会派专业技术人员上门免费安装、启动和调试,并且本公司长期供应仪器的易损、易耗件.
  • 安捷伦创新推出J&W 5Q气相色谱柱新品,提升气相色谱性能
    2024年8月21日,北京——安捷伦科技公司 (纽约证交所:A)近日推出全新Agilent J&W 5Q 气相色谱柱,该产品标志着气相色谱柱技术的重大飞跃。安捷伦在气相色谱领域拥有超过50年的创新发展历程,始终引领着气相色谱柱的性能标准。全新Agilent J&W 5Q气相色谱柱结合了安捷伦备受行业认可的超高惰性与超低流失技术,能够在严苛的应用中表现出出众的性能和耐用性。Agilent J&W GC/MS 5Q气相色谱柱产品外观在当下的气相色谱-质谱联用(GC/MS)分析工作流程中,气相色谱柱面临复杂基质和活性分析物的挑战,实验室需要产出痕量水平的精确报告。因此,为保持符合监管标准或其他分析要求的数据质量,实验室通常需要更频繁地更换色谱柱、清洁离子源,甚至可能重新分析样品,这不仅降低了实验室效率,还增加了运营成本。 Agilent J&W 5Q气相色谱柱在处理活性分析物时可提供出色的峰对称性,在降低色谱柱流失方面树立了新的行业标准。该色谱柱可提高灵敏度,确保准确度和质谱保真度,实现最具挑战性的痕量分析物的精准定量。此外,此款新型气相色谱柱的老化时间更短,且尤其能耐受可能缩短色谱柱寿命的苛刻条件。即使在特别严苛的条件下——例如在使用氢气作为载气,以及在环境分析工作流程所涉及的新型分析物时,Agilent J&W 5Q气相色谱柱出色的灵敏度和色谱柱耐用性能够起到至关重要的作用,因而整个系统的性能可获得显著提升。安捷伦化学部副总裁兼总经理David Edwards表示:“新品色谱柱的发布标志着我们在气相色谱柱技术上的一项重大进步。全新J&W 5Q气相色谱柱经过精心设计,能够满足现代分析实验室的严格要求。该色谱柱能够降低色谱柱更换频率、提高系统性能,不仅提升了数据质量,还显著提高了实验室效率,降低了运营成本。这款备受客户期待的创新气相色谱柱产品,体现了安捷伦提供先进解决方案的承诺,助力科学家更轻松、更可靠地实现分析目标。”Agilent J&W 5Q气相色谱柱提供多种尺寸选择,拓宽了实验室在多个市场和应用领域中的分析选择,包括环境样品中的PFAS检测、食品中农药残留分析等。其改进的性能进一步巩固了安捷伦作为优质解决方案供应商的地位,不断突破分析方法的界限,确保业界领先的安捷伦气相色谱系统用户能够充分挖掘仪器的性能和价值。关于安捷伦科技安捷伦科技有限公司(纽约证交所:A)是分析与临床实验室技术领域的全球领导者,致力于为提升人类生活品质提供敏锐洞察和创新经验。安捷伦的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。2023财年,安捷伦的营业收入为68.3亿美元,全球员工数为18,000人。如需了解安捷伦公司的详细信息,请访问 www.agilent.com 。
  • 顺应检测需求 《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》迎来首次修订
    3月17日,生态环境部发布关于征求国家生态环境标准《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)》意见的通知。通知中指出,为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部编制了《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》国家生态环境标准征求意见稿,现公开征求意见。  此次发布的标准是对《环境空气挥发性有机物的测定罐采样/气相色谱-质谱法》(HJ759-2015)的修订。HJ759-2015首次发布于2015年,起草单位为江苏省环境监测中心。本次为第一次修订,修订的主要内容如下:——删除目标化合物中甲硫醇和甲硫醚2种组分 ——增加瞬时采样的时间范围 ——细化不同规格采样罐基于不同采样时间的恒定采样流速,并增加恒定采样流量的计算公式 ——“仪器和设备”中增加自动采样器 ——增加标气罐加湿要求和提供加湿方式 ——增加“SIM”扫描方式的方法检出限和标准曲线 ——增加绘制标准曲线中标准使用气浓度,确保定量的准确性 ——删除气体浓缩仪的限定条件和具体的条件参数,减少对浓缩工作原理的单一化要求,强调浓缩仪功能,增强对满足使用要求的不同工作原理浓缩仪的兼容性 ——将定性判别方法由相对保留时间改为保留时间 ——增加标准曲线方程的定量计算方法 ——增加采样前对过滤器和流量控制器的性能检查步骤以及在“质量保证和质量控制”中对流量控制器的性能检查要求,提高采集样品的代表性 ——增加采样罐被抽至真空后的保存时间和清洗完采样罐的抽检频次 ——增加以摩尔分数(nmol/mol)为单位的检出限浓度 ——在“质量保证和质量控制”中增加采样罐气密性检查和惰性检查的内容 ——在“注意事项”中增加12条建议 ——增加附录E,提供样品罐加湿计算公式。  据了解,HJ759-2015制订之初,大气浓缩仪原有2大品牌商,均为液氮制冷型,仪器工作原理基本一致。HJ759-2015发布之后,原两大品牌也推出新浓缩仪产品,原理和参数均略有改变,并且市场上新出一款电制冷原理的浓缩仪和一种采用色谱柱实现吸附和浓缩功能的浓缩仪。由于制定标准时技术发展单一的原因以及标准中对浓缩仪工作原理的限定,使得后面推出的浓缩仪无法被积极有效的应用起来,也一定程度上制约了该标准方法的有效使用。本次修订将以检测结果准确性为导向,放宽对仪器设备的具体参数的要求,以适应仪器不断更新的趋势。目前环境空气中首要污染物主要为臭氧和PM2.5。VOCs是造成臭氧污染的重要前体物,其大气化学反应的产物是PM2.5中的重要组分,也是导致灰霾天气的重要前体物,是治理空气污染问题的“拦路虎”。改善空气质量是目前我国最重要的任务之一,在“十四五”期间,VOCs也取代原先的SO2成为空气质量考核指标之一,在政策和标准的双重支撑下,相信VOCs监测市场将在近几年内得到快速发展。  附件:环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)
  • 珀金埃尔默Torion助力新国标《水中挥发性有机物的测定便携式顶空/气相色谱质谱法》
    近期,生态环境部办公厅发布了《水质挥发性有机物的测定 便携式顶空/气相色谱质谱法(征求意见稿)》,该标准规定了地表水、地下水、生活污水、工业废水和海水中挥发性有机物的现场快速定性和56种目标化合物的定量分析。珀金埃尔默Torion T-9仅需80秒即可完成标准中56种VOCs的定性定量分析,可从容应对环境突发事件的应急监测需求。减少了样品运输和保存过程中待测物质的变化,具有实验室分析方法不可替代的优势。随着我国经济的增长,工业发展迅猛,在化工品生产、运输和储存过程中导致的挥发性有机物(VOCs)污染事故频发,严重影响了当地的人民生活、社会稳定和经济发展。VOCs并非单一的化合物种类众多,具有迁移性、持久性和毒性是一类重要的环境污染物。VOCs会对空气、水、土壤等造成严重伤害和污染,其中水与我们的生活息息相关。目前,国内外针对水中VOCs的检测标准主要是顶空气相色谱法、顶空气相色谱质谱法、吹扫捕集气相色谱质谱法等均为实验室检测标准。珀金埃尔默Torion T-9便携式气质配合SPS-3顶空工作站可以在突发应急现场分析水中VOCs,样品分析速度快,检测56种VOCs仅需80秒,同时峰形尖锐分离效果好。在满足新标准的同时可在突发性环境应急事件中快速提供检测结果,指导应急策略。Torion T-9便携式气质技术优势:SPME/CME/顶空/热脱附等多种样品前处理方式创新的环状离子阱比常规离子阱离子容量高400倍开机5分钟做样3分钟升温速率高达2.5℃/s无基础用户一天培训可独立操作隔膜泵/涡轮分子泵的真空系统非耗材省心省成本图1 56种VOCs与2种内标总离子流图1-氯乙烯;2-1,1-二氯乙烯;3-二氯甲烷;4-反-1,2-二氯乙烯;5-1,1-二氯乙烷;6-氯丁二烯;7-顺-1,2-二氯乙烯;8-2,2-二氯丙烷;9-溴氯甲烷;10-氯仿;11-1,1,1-三氯乙烷;12-1,2-二氯乙烷;13-1,1-二氯丙烯;14-苯;15-四氯化碳;16-1,2-二氯丙烷;IS1-氟苯(内标);17-三氯乙烯;18-二溴甲烷;19-一溴二氯甲烷;20-顺-1,3-二氯丙烯;21-反-1,3-二氯丙烯;22-1,1,2-三氯乙烷;23-甲苯;24-1,3-二氯丙烷;25-二溴氯甲烷;26-1,2-二溴乙烷;27-四氯乙烯;28-氯苯;29-1,1,1,2-四氯乙烷;30-乙苯;31/32-对/间-二甲苯;33-溴仿;34-苯乙烯;35-邻-二甲苯;36-1,1,2,2-四氯乙烷;37-1,2,3-三氯丙烷;38-异丙苯;39-溴苯;40-正丙苯;41-2-氯甲苯;42-4-氯甲苯;43-1,3,5-三甲基苯;44-叔丁基苯;45-1,2,4-三甲基苯;46-1,4-二氯苯;IS2-1,4-二氯苯-d4(内标);47-仲丁基苯;48-1,3-二氯苯;49-4-异丙基甲苯;50-1,2-二氯苯;51-正丁基苯;52-1,2-二溴-3-氯丙烷;53-1,2,4-三氯苯;54-萘;55-六氯丁二烯;56-1,2,3-三氯苯;图2 1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出解卷积谱图在突发应急事件中,由于便携质谱检测结果是制定应急决策的重要依据,不但要快而且要准。Torion T-9内置强大的谱库的同时还具备独特的解卷积功能,可以轻松鉴定极为复杂的化合物,即使有化合物共流出也可以实现准确定性和定量。如图2所示1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出通过Torion T-9的内置谱库和解卷积功能可以准确识别出这4种物质。Torion T-9便携式气质为突发应急保障而设计,总重量仅14.5公斤,仪器从启动到样品分析仅需5分钟,样品分析时间3分钟以内,在福建泉港C9泄露、江苏海安工业园泄露、青岛上合峰会、武汉军运会等突发事件和重大会议保障上起到了关键的作用。
  • 气相色谱-三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯
    建立了气相色谱-三重四极杆串联质谱法测定乳粉中22种邻苯二甲酸酯含量的方法。乳粉样品以水溶解,通过乙腈提取,以氯化钠盐析后,采用气相色谱-三重四极杆串联质谱的多反应监测模式( MRM) 进行定量分析。结果表明,采用基质匹配标准曲线,在5 ng/mL~500n g/mL范围内,22种邻苯二甲酸酯线性关系良好,相关系数(r)均大于0.99,方法检出限在1.0 μg/kg~5.0 μg/kg范围,定量限在3.0 μg/kg~15.0 μg/kg范围。在奶粉基质中3个加标水平下邻苯二甲酸酯的平均回收率在82.4%~111.4%之间,平行测定6次相对标准偏差(RSD)2.4%~9.5%。该方法高效便捷、灵敏度高、稳定性好,适用于乳粉中22种邻苯二甲酸酯检测。 气相色谱_三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯_王金翠.pdf
  • 【行业应用】赛默飞发布气相色谱-质谱法测定锂电池电解液组分
    赛默飞世尔科技(以下简称:赛默飞)近日发布法测定锂电池电解液组分的解决方案,通过操作简单,科学准确,灵敏度高的分析方法,满足锂电池电解液组成成分分析要求。锂电池电解液是电池中离子传输的载体,一般由锂盐和有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱质谱进行定性、定量。方法操作简单,9种酯类化合物检出限在3.0 μg/L-30.0 μg/L 之间。 样品中的9 种酯类化合物用乙酸乙酯稀释至合适浓度后直接进样,采用赛默飞新型Thermo ScientificTM TRACETM 1300 气相色谱仪,配合Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统检测和确证,外标法定量。结果表明,9 种酯类化合物的回收率为92.4.3-105.3%,6次平行测定的RSD 值≤ 4.16%。解决方案下载,请查看:http://tools.thermofisher.com/content/sfs/brochures/Measurements%20of%20electrolyte%20components%20in%20the%20lithium%20battery%20by%20GCMS.pdf 更多产品信息,请查看:TRACETM 1300 气相色谱仪https://www.thermofisher.com/order/catalog/product/14800400?ICID=search-product ISQTM 系列四极杆 GC-MS 系统https://www.thermofisher.com/order/catalog/product/IQLAAAGAAJFALOMAYE?ICID=search-product ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 《粮油检验 粮食中硫酰氟残留量的测定 气相色谱法》征求意见发布
    由国家粮食和物资储备局组织起草的《粮油检验 粮食中硫酰氟残留量的测定 气相色谱法》标准已形成征求意见稿,现向社会公开征求意见,截止日期为2023年7月19日。意见反馈邮箱:tc270sc1@ags.ac.cn。粮食中硫酰氟的测定方法现状及分析硫酰氟(Sulfuryl fluoride,简称 SF)是国际上常用的一种广谱熏蒸剂,分子式 SO2F2,由于其具有杀虫效果好、渗透性强、杀虫谱广、杀虫速度快、散气时间短、对发芽率没有影响、毒性中等、不燃、不爆、不腐蚀、没有残渣、使用温度范围广等优点,通过直接或与磷化氢气体混合使用的方式,用于粮食害虫熏蒸。美国环境保护局(EPA)、食品法典委员会(CAC)、欧盟、日本和加拿大等规定了粮油中硫酰氟残留限量,GB 2763-2016 中规定粮食中最大残留为 0.1mg/kg,但没有提供相应的检测方法标准,经检索,未找到相关的国家和行业方法标准,仅有测氟离子残留的标准,但不能直接测定粮食在熏蒸后对硫酰氟的吸附造成的残留含量。随着硫酰氟熏蒸剂使用的逐渐增多,残留检测需求也逐渐增多,急需制定相应的检测标准方法,用于实验室准确定量检测。本标准的制定将填补我国粮食中硫酰氟残留量定量检测标准的空白,可以为中国好粮油行动计划提供标准支持,从根本上保障我国粮食中硫酰氟残留量的检测和监测,提升我国粮食质量安全检测的水平。本标准的试验原理试样在密闭容器中经加热使硫酰氟释放,经过一定时间后可达到平衡,采用顶空进样注入具有电子捕获检测器的气相色谱仪分析测定,以保留时间定性,外标法定量。 检出限及定量限本方法检出限为3 μg/kg,定量限为10 μg/kg。粮油检验 粮食中硫酰氟残留量的测定 气相色谱法.pdf2 粮油检验 粮食中硫酰氟残留量的测定 气相色谱法-编制说明.pdf
  • 《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》征求意见
    近日,由 TC270(全国粮油标准化技术委员会)归口,南京海关动植物与食品检测中心起草的国家标准计划《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》已完成征求意见稿编制,现公开征求意见。  橄榄油(Olive Oil)是以油橄榄树的果实为原料制取的油脂。根据加工工艺不同,可以分为初榨橄榄油和果渣油,初榨橄榄油又可根据品质分为不同等级,其中以特级初榨橄榄油营养价值最高。我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨,其中 80%依赖进口。  然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高。经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。 本文件规定了脂肪酸乙酯含量的气相色谱-质谱联用测定方法。本文件适用于特级初榨橄榄油中脂肪酸乙酯含量的测定。  方法提要:  试样中脂肪酸乙酯用正己烷溶解,经硅胶固相萃取柱净化,气相色谱-质谱联用仪分析,内标法定量。  仪器和设备:  1.气相色谱-质谱仪,配置有电子轰击(EI)源。  2.分析天平:感量 0.0001 g、0.00001 g。  3.固相萃取装置。  4.涡旋振荡器。  5.旋转蒸发仪。  色谱条件: 1.载气流速:1 mL/min。  2.进样口温度:300 ℃。  3.进样模式:不分流进样,分流阀打开时间为 1.00 min。  4.载气:氦气(纯度≥99.999 %)。  5.柱温:初始温度 150 ℃,以 20 ℃/min 升至 200 ℃,以 2.5 ℃/min 升至 240 ℃,保持 1.5 min,以 35 ℃/min 升至 310 ℃,保持 2 min。  6.进样量:1 μL。  质谱条件:  1.电离方式:电子轰击电离源(EI 源,电子能量 70 eV)。  2.离子源温度:230 ℃。  3.接口温度:280 ℃。 4.溶剂延迟时间:5 min。  5.数据采集方式:选择离子检测(SIM)模式。定量离子、定性离子和保留时间参考值详见表 1。  检测方法的灵敏度、准确度和精密度:  1.灵敏度  本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。  本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。  2.准确度  本文件在添加水平为 4.00 mg/kg~20.00 mg/kg 时,回收率范围为 90.7 %~106.6 %,参见附录 C。  3.精密度  在重复性条件下获得的 2 次独立测定结果的绝对差值不得超过算术平均值的 10%。  更多详情请见附件。 征求意见稿.pdf 编制说明.pdf
  • 2013年上半年气相色谱新品盘点
    仪器信息网讯 自1955年珀金埃尔默推出第一台商品化气相色谱仪,气相色谱已经走过近60年历程,技术也已相当成熟。近年来,气相产品主要创新体现在三个方面:第一,与质谱联用,小型化与便携性,强调在所有细分应用市场获得快速与专业分析结果的重要性 第二,应对更加痕量样品的分析挑战 第三,继续关注减少氦气用量,普遍关心氢气作为载气,以及替代载体气体,包括净化的空气。  2013年各大厂商推出的气相色谱新品也部分反映了如上发展方向,以下是部分新品信息:  安捷伦7890B GC系统  7890B GC的主要特色是改善了性能和易用性,其他特点包括质谱选择检测、惰性样品通路和载气计算。同期推出的升级的5977A质谱检测系统,配备了新设计的离子源,以及具有较高压缩比、专为轻气体(如氢和氦)设计的涡轮分子泵。【产品详细信息】   岛津Tracera GC系统  Tracera GC是在GC-2010 Plus平台上构建,主要创新在于推出了全新开发的介质阻挡放电等离子体检测器(BID)。BID比TCD的灵敏度高100倍以上,比FID的灵敏度高2倍以上,可以满足0.1ppm含量水平上所有类型痕量成分的分析需求。【产品详细信息】   Apix GCAP便携式微型气相和MAX-ONE紧凑型GC系统  这两款气相都是基于硅微阀的进气口,毛细管柱和高频纳米度量谐振探测器。该系统可以使用净化空气或传统的压缩载气。现有的应用涵盖烷烃、永久性气体、挥发性有机化合物等。 APIX分享2013年Pittcon撰稿人铜奖。【产品详细信息】  INFICON Micro GC Fusion系统  Micro GC Fusion系统采用快速程序升温的毛细管柱操作,这提高了C12+烃分析的灵敏度。该系统采用微机电系统(MEMS)的进样口和检测器,组合柱可以同时并行分离,并且具有触摸屏的用户界面和无线通信功能。【产品详细信息】  岛津HS-20系列顶空进样器  HS-20系列顶空进样器包括两种模式:传统的静态顶空进样法的定量环模式,以及为需要更高灵敏度应用提供的动态顶空进样Trap模式。该HS-20样品盘可容纳10毫升和20毫升样品瓶90个,炉温可加热到到300℃,用于分析高沸点化合物。【产品详细信息】   赛默飞TriPlus 300顶空自动进样器  TriPlus 300是一款顶空阀件和定量环式自动进样器,它具有120位样品盘,在加热炉中可以放置18位样品盘。顶空单元加热区温度设定范围为30-300° C。当TriPlus 300与公司Trace 1300系列GC仪器配合使用时,可以让使用者将自动进样器在几分钟内从一个GC 移动到另外一个上,期间并不需要改变GC 的气路装置。【产品详细信息】(编译:杨娟)
  • 生态环境部发布《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》等7项国家生态环境标准
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施与国际公约履约工作,近期,生态环境部发布《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)、《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)、《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)、《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)、《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)、《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)和《地表水环境质量监测点位编码规则》(HJ 1291-2023)等7项国家生态环境标准。《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)为第一次修订,适用于环境空气和无组织排放监控点空气中65种挥发性有机物的测定。与原标准相比,本标准在适用范围中增加了无组织排放监控点空气,完善了采样技术要求和前处理、定量方式的性能指标要求,支撑细颗粒物和臭氧协同控制工作及《关于消耗臭氧层物质的蒙特利尔议定书》履约监测。《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)为首次发布,规定了连续监测系统的组成和功能、技术验收、运行维护、质量保证和质量控制以及数据审核和处理等要求,有利于推动非甲烷总烃连续监测技术在固定源管理中的标准化、规范化应用,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)等标准实施。《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)为首次发布,适用于固定污染源排放口处烟气黑度的测定,解决了林格曼黑度图板携带不便、摆放受限、易损褪色等问题,进一步提高烟气黑度测定结果的准确性和可比性,支撑《锅炉大气污染物排放标准》(GB 13271-2014)等标准实施。《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)为首次发布,适用于地表水、地下水、生活污水和工业废水中丙烯酸的测定,填补了水中丙烯酸分析方法标准空白。本标准具有前处理方法简单、灵敏度高、重复性好等优点,支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)为首次发布,适用于土壤和沉积物中相关酮类和醚类化合物的测定,填补了土壤和沉积物中醚类化合物分析方法标准空白,拓展了酮类化合物分析对象范围,操作简便,易于推广,支撑土壤风险评估及管控工作。《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)为首次发布,适用于土壤和沉积物中3种指示性毒杀芬同类物的测定,填补了土壤和沉积物中毒杀芬分析方法标准空白。本标准具有准确性好、灵敏度高等优点,支撑《新污染物治理行动方案》实施。《地表水环境质量监测点位编码规则》(HJ 1291-2023)为首次发布,适用于地表水环境质量常规监测点位的编码工作。本标准明确了监测点位控制级别、流域水系、行政区划、水体类型和顺序等要素的编码方法,规范了监测点位编码工作,在点位信息维护、数据联网与应用、信息公开等方面发挥重要作用。上述7项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,支撑国际公约履约工作具有重要意义。
  • 盘福发布盘福QitVenture 1便携式气相色谱质谱仪(便携式GC-MS)新品
    QitVenture 1便携式GC-MSQitVenture 1是新一代便携式气相色谱仪/质谱联用仪(GC/MS),分析时间更短,5分钟内现场提供定性和定量的实验室测量结果。操作简单,全傻瓜式操作,只要按下一个按钮,即可识别和量化挥发性有机化合物(VOCs)、有毒工业化学品(TICs)、有毒工业材料(TIMs)、化学战剂(CWAs)和半挥发性有机化合物(SVOCs)。内置的GC柱提供了极好的分辨率,能够识别ppm(百万分之一)- ppb(十亿分之一)范围内的分析物。前置的高清面板清楚地显示了化学物质的浓度和危险程度的相关信息,帮助操作人员快速做出影响生命、健康和安全的重要决策。系统具有良好的重复性,即使环境因素改变,也能确保结果的一致性。简单的图形化界面,内置强大的目标化合物数据库,自动匹配化合物数据库,并且支持用户建立自己的数据库,可以NIST谱库联用,轻松鉴定未知化合物,配有自主知识产权的解卷积算法,轻松鉴定复杂的重叠峰。具有强大的数据分析功能,能够显示总离子流图、提取离子流图,能进行背景扣除、基线提取等。优势一览:1、分析速度快,单质谱1分钟;色谱联用模式一般为5分钟,实验数据与实验室GC/MS相当。2、内置GPS,记录数据的准确采样位置。3、灵敏度高、动态范围大,优于ppb的检测限。兼容定量管和吸附热解析技术,覆盖微量到痕量浓度的样品检测。4、质量范围宽,质量范围18-600 amu。支持挥发性有机物(VOCs)、部分半挥发性有机物(SVOCs)和难挥发性有机物(NVOCs)的检测。5、定性准确,3级串联质谱技术在现场快速分析中极具优势。6、便携性好,体积小,支持便携、车载、船载等多种工作方式,接口通用,允许附件快速扩展。7、运行时间长,内置高性能电池和载气,充满一次电/气可以分析多个试样。应用领域:1、环境监测:环境事故现场大气、水、固体中VOC/SVOC检测。 2、防化军事:各项危险品检测,如化学毒剂和生物毒剂检测。3、石油化工:装置反应物在线监测,余气在线监测,管道泄漏检测。4、航空航天:燃料泄漏检测肼、偏二甲肼、二甲基肼,航天员身体健康检测,飞船舱内空气质量分析,空间环境监测。5、公共安全:室内空气质量检测,工作场所空气质量检测。 6、刑侦科学和毒(敏感词)品检测7、食品安全与医疗卫生 8、国土安全与快速应急反应9、消防应用QitVenture 1便携式GC-MS/消防应用 新形势下的消防要应对火灾与救援工作,无所不在的有毒有害气体(易燃易爆性气体、有毒无机气体、易挥发性有机化合物)的检测也就成为各级各类消防队伍所必须面对的问题。近年来出现的特大火灾和爆炸事故有:1、连云港赣榆区宏兴研磨有限公司4.21爆炸事故。2、2019年澳大利亚东海岸森林火灾持续至今仍未熄灭。3、昆山中荣金属制品有限公司8.2工厂爆炸事故。有机化合物、易燃易爆气体的国际公认检测方法是GC-MS,由于消防事故的应急性和火灾态势的瞬息万变,能够在现场进行快速方便的对有害气体进行检测显得十分必要。QitVenture 1可以通过无人机携带检测器进行高空作业。QitVenture 1便携式GC-MS/环境监测应用 当今世界,环境问题不仅成为了制约人类社会经济发展的关键因素,也成为了威胁人类健康的污染物存在的环境介质,可分为水体、空气、土壤三类:1、水中污染物可分为VOCs(挥发性有机物)和SVOCs(半挥发性有机物)。2、空气污染物包括有机氯农药,垃圾焚烧产生废气,多环芳烃,羰基化合物等。3、土壤污染物包括重金属离子,汞,酞酸酯,三嗪类除草剂等。QitVenture 1既具有气相色谱高分离效能,又具有质谱准确鉴定化合物结构的特点,可同时、准确、快速测定微量的多种污染物,能够适应目前待测有机化合物种类繁多与应用领域多样化的需求。QitVenture 1便携式GC-MS/防化军事应用 防化军事主要任务是进行化学、核辐射侦察与放射性沾染观测,指导其他部队对核武器和化学武器进行防护,并协助地方有关部门组织群众实施上述防护。QitVenture 1便携式GC-MS可以对化学毒剂,如沙林毒气、介子气等进行现场检测,如可以应用于装甲防化侦察车,以轮式装甲地盘为平台,集成QitVenture 1便携式GC-MS,可实现对空气中和地表面化学毒剂及有害物质快速检测,并鉴定出其成分,为后方决策提供依据。创新点:QitVenture 1型便携式气相色谱质谱联用仪,采用微型离子阱质量分析器和低功耗线性射频电源,使得仪器的质量范围更宽,可测试的物质和种类更多,覆盖半挥发性有机物VOC和SVOC的检测;采用金属毛细管富集和闪蒸技术,升温速率达25-30℃/s,可得到更好的质谱峰形;全程高温伴热,系统最高伴热温度150℃,适合高沸点半挥发有机物(SVOC)的需要。盘福QitVenture 1便携式气相色谱质谱仪(便携式GC-MS)
  • 傅若农讲述气相色谱技术发展历史及趋势(1)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   一、气相色谱伴随和促进科技革命的发展  16世纪以来,世界科技大致发生了五次革命(两次科学革命和三次技术革命),包括近代物理学诞生、蒸汽机和机械革命、电力和运输革命、相对论和量子信息化革命等。  近几年国内外对第六次科技革命的核心内涵正在讨论探索之中,没有达成共识。 徐光宪院士认为第六次科技革命的核心内涵必须解决当前中国和世界的迫切问题,缓解世界经济危机,使各国都走上健康的发展道路。目前大致有14个问题值得我们特别关注:  (1)彻底改造污染环境的化工厂,建立绿色化学和化工以及冶金企业。  (2)现在的化工原料主要来自石油或煤炭(利用煤焦油或电石)。因为它们也作为能源燃料使用,如果维持现在的消耗速度,世界的石油资源将在几十年内耗竭,煤炭资源在一二百年内耗竭。  (3)温室气体二氧化碳的减少排放问题,即少用煤和石油,大力发展节能材料和新能源,如稀土节能灯,利用稀土材料做发电机的风能,利用稀土光电转换材料的太阳能,利用钍的核能等。  (4)不可再生、不能取代的稀土等矿产资源的节约高效开采,保护环境和综合利用。开发从废品中回收稀土的技术,避免浪费和快速耗竭稀土以及其他不可再生的战略矿产资源。  (5)淡水资源节约利用和海水的高效、低成本淡化问题。  (6)高新技术材料的研发和合成问题。  (7)海洋和太空资源(例如海底的可燃冰和月球上大量的He-3核聚变能源)的开发利用问题。  (8)人类的健康和新药物、新医学以及人工器官的研发问题。人工生命的合成,使化学与生物学互相连接的问题。研究合成直接导向病灶的靶点药物,大幅降低药物的副作用。  (9)人工合成固氮酶,使水稻、小麦等非豆科植物,也能利用空气中的氮,不必使用氮肥,或用生物科技新技术培养含有固氮酶的非豆科植物,引发农业科学技术的革命。  (10)研究光合作用的基本原理,找出光合作用的催化机理,提高太阳能的利用效益,有可能引发农业技术的革命。  (11)天气预报、地震预报、台风预报,以及其他自然和人为灾难的预防和急救问题。  (12)军事科学技术问题。中国要呼吁世界和平,必须有先进的军事科学技术,才有维护世界和平的发言权。世界上主要国家的军力必须平衡,才能制止第三次世界大战。  (13)和平科学的理论和实践问题。20世纪发生了两次世界大战和不断的局部战争,21世纪必须避免第三次世界大战,因为如果发生,那将是毁灭一半人类的核大战。所以必须研究和平科学的理论和实践。  (14)研究世界人口的节制和优生优育问题,研究中国和世界各国人民和谐相处,共同富裕、共同幸福的理论和实践。  并且认为大化学(广义分子科学)革命与上述14个世界迫切需要解决问题的前10个问题密切相关。  大化学的支柱之一是分析测试,而在分析测试技术中,色谱和与其相联用的检测技术又是关键性重要领域,所以它们必然是第六次科技革命的进程中重要工具,实际上近年色谱和与其相联用的检测技术在不断发展,以适应各个领域的需要。  二、气相色谱技术初期的发展  气相色谱是色谱领域中发展较早、相当成熟的技术,由于它是快速、简易、相对便宜而又重复性好的分析方法,可以分析各种基质中的成分,如石油石化产品、环境污染物、药物、食品等等,而且由于气相色谱所固有的高分离效率以及可以和各种灵敏的、选择性好的检测器相连接,所以配备各种检测器的气相色谱仪成为各个领域成分鉴定、分析不可或缺的工具。色谱学的发展是伴随着科技革命,而又促进科技革命的发展进程。  第三次科技革命(20世纪四五十年代)发生在二战后,资本主义推行福利制度与国家垄断资本主义,政局稳定。20世纪初科学理论的重大突破和一定的物质、技术基础的形成,出现了对石油、人工合成材料、分子生物学和遗传工程等高新技术的需求,人们在研究这些复杂物质混合物时,就需要把他们分离开来考察其性能,因而必然要发展各种分离技术,而色谱是分离技术中效率最高的一类方法,所以在上世纪四十年代末五十年代初诞生了以气体为流动相,液体或固体为固定相的气相色谱,1955年PerkinElmer公司开发出第一台气相色谱仪。而第一台气相色谱仪的诞生有一个传奇的故事。  在 1953-1954 年间,PerkinElmer公司的代表首次听到气相色谱先驱者A.T. James 和 A.J.P. Martin在英国伦敦British Medical Council实验室,以及 C.S.G.Phillips在牛津大学所进行的GC研究工作。随后访问了他们的实验室,学习了这一新技术的原理,以这一信息为基础,在位于美国康涅狄格州Norwalk的公司总部启动了研究开发这一仪器的计划,最终在 1955 年推出了世界上第一台商品化气相色谱仪 Model 154 Vapor Fractometer (Model 154 气相色谱仪)。  在当时,这一仪器的主要特点是:使用了空气恒温器(&ldquo 柱箱&rdquo ),可以使分离色谱柱在室温和150 ° C之间保持恒温,有一个快速蒸发器,可以用注射器通过橡胶隔垫把液体和气体样品送到载气里,以及使用热敏型热导检测器。同时,PerkinElmer提供了具有广泛分离能力的标准色谱柱,从而可以让仪器成功地分析各种样品。这一仪器立即获得了成功,在美国分析化学杂志(Analytical Chemistry,AC)的社论里对其评价为:&ldquo 是一个自动分析的辉煌典范&rdquo ,它得到的色谱图&ldquo 赏心悦目&rdquo 。在仪器推出之后不久,PerkinElmer 公司出版了一本简单的小册子,解释气相色谱的原理和如何选择操作参数。AC在新的一期社论里赞美这一小册子,把它称做&ldquo 一个简短而信息充实的概要&rdquo ,帮助&ldquo 传播科学技术知识&rdquo 。自然,在推出 Model 154 以后,PerkinElmer的研究和开发工作并没有停息,在1956年初又推出一个改进的型号,即Model 154-B,在这一新型号仪器上使用温度提高到225 ° C,并可选择旋转阀和各种定量进样管,用于气体的进样。这一措施十分引人注目,现在众多公司提供的多端口进样和切换阀设计都可以追溯到这一个阀的设计上。Model 154-B 气相色谱仪  (图注:在这一装置左侧的门后是色谱柱箱,在右侧上面的面板是加热控制部件,热导检测器的控制器在右侧下面的面板上。流量计在中间部位,左侧的下面是注射器的加热进样口,电位差计记录仪常放在另外的地方,Model 154和这一仪器的样子和尺寸相同。)  (以上信息转自PerkinElmer公司资料&ldquo PerkinElmer 公司气相色谱仪的发展过程&rdquo )  三、国内气相色谱初期(上世纪50到60年代)的发展历程  新中国建立后百废待兴,各个工业部门蓬勃发展,其中以石油和煤为主要能源的研究和工业急需发展,因而发展气相色谱就成为必不可少的前提了。下面是色谱老专家俞惟乐老师在1980年为美国分析化学写的有关中国气相色谱发展的历程(Anal. Chem. 1980, 52:324R-360R):  中国从1955年开始进行气相色谱的研究,首先进行气相色谱研究的是中科院大连石油研究所,之后,中科院在北京、上海和长春的一些研究所也参与进来,几年之后气相色谱的研究和应用便普及开来。  1958年,中科院大连石油研究所一分为三,分别成立了中科院大连化学物理研究所,中科院兰州化学物理研究所和中科院太原煤炭化学研究所。拆分后,三个所都进行他们各自所关心的气相色谱研究,如色谱条件的优化、色谱固定相的研究、色谱仪各种配件的研制。  在此阶段,中国高校在进行气相色谱的教学之外,也进行气相色谱的专业研究和基础数据的编纂,出版了十多本有关气相色谱的教科书、手册及字典。此外,在这20年中,我国科学界举办了三次气相色谱学术会议。第一次全国色谱报告会于1961年10月在大连举行,共收到45篇报告。4年后在兰州举行第二次全国色谱报告会,发表的报告数达到100篇。受四人帮动乱干扰,全国色谱学术报告会中断,十年之后的1979年,在大连召开了第3届全国色谱报告会(包括气相色谱、液相色谱和薄层色谱),此次共收到有12篇综述报告和122篇论文。这一时期各个工业部门、研究单位和高校也组织了许多有关气相色谱的讨论会、报告会,而且地方的科学学会也各自举行地方气相色谱会议,部分有关气相色谱的论文在科学通报、化学学报、燃料化学学报上发表。  有关这一时期国内气相色谱仪器的发展,俞惟乐老师在上述综述文章中提到:上世纪60年代初已经有商品化的气相色谱仪了,但商品化仪器仍然不能满足一些研究所、大学和各个工业部门的要求,他们相继开发适合自己需求的专用气相色谱仪,当时有大约十个国家级工厂可提供20多种型号的气相色谱仪,年产量大约有2000台。  在这些产品中有上海分析仪器厂的103型气相色谱仪及北京分析仪器厂的SP 2308型气相色谱仪。SP 2308型气相色谱仪配备了各种现代化检测器、裂解器、色谱图积分仪和打印机。103型气相色谱仪可用填充柱和毛细管柱,103型和SP 2308型气相色谱仪都可用于实验室级别的制备。此外,其他型号的气相色谱仪器,有便携式及在线监测用气相色谱仪,用途也很广泛,包括专用于检测水分、比表面积、孔径分布等。其中二氧化碳激光裂解器气相色谱仪、半导体薄膜气相色谱仪,以及一些专用的原型机都是由一些研究机构制造。  国内记述这段历史的著作有大连化学物理研究所编纂的《气相色谱法》,1973年出版,书后列举了11种商品化气相色谱仪,SP-2302型、SP-2304型、SP-2305型、SP-2306型(北京分析仪器厂生产) 100型、102型(上海分析仪器厂生产) DQS-5101型(威海天平仪器厂生产) SP-01型、SP-02型、SP-05型(自动制备色谱仪)、SP-07型(大连第二仪表厂生产)。(未完待续)  (作者:北京理工大学傅若农教授)
  • 瑞德仪器发布室内空气TVOC气相色谱仪新品
    新房装修必有装修污染,若是没有治理达标或急于入住,居住者会很容易生病,甚至引发严重的病变。什么是TVOC?它是一种总挥发性有机物,英文全称Total Volatile Organic Compounds,指室温下饱和蒸气压超过了133.32pa的有机物,其沸点在50℃至250℃之间。室内空气TVOC检测已有国家标准: GB50325-2010《民用建筑工程室内环境污染控制规范》附录G和GB/T18883-2002《室内空气质量标准》 附录C,现有标准均采用热解吸/毛细管气相色谱法。 山东瑞德化工仪器供应国产TVOC气相色谱仪TVOC/热脱附/气相色谱仪方法原理 用以Tenax-TA为吸附剂的TVOC吸附管收集一定体积的空气样品,空气流中挥发性有机物保留在吸附管中。高温下进行热脱附,解吸挥发性有机物,采集管中待测样品随载气进入气相色谱中,分离后进入FID检测。以保留时间定性,峰面积定量。主要仪器配置及试剂1)GC-7890气相色谱仪,带FID检测器;2)一次热解析仪;3)大气采样器;4)TVOC专用分析柱;5)Tenax-TA吸附管6)TVOC系列浓度标准样品电子流量显示气相色谱仪,GC-7890气相色谱仪,可加EPC气相色谱仪★ 仪器内部设计3个独立的连接IP地址,可以连接到工作电脑(实验室现场)、分管电脑(如质检科、生产部等)、以及高管电脑(如环保局、技术监督局等),需要时可实时监控仪器的运行以及分析数据结果; ★ 仪器配备的工作站可以同时支持多台色谱仪接入,实现数据处理以及仪器反向控制,简化文档管理; ★ 仪器可以通过互联网连接到生产厂家,实现远程诊断、远程更新等(需用户设置); ★ 仪器配备的 8 吋彩色液晶触摸屏,支持热插拔,可作手持控制器使用; ★ 仪器采用了多处理器并行工作方式,使仪器更加稳定可靠;可选配多种高性能检测器选择,如 FID、TCD、ECD、FPD 和 NPD,zui多可同时安装三个检测器,满足复杂样品的分析需求。 ★ 仪器采用模块化的结构设计,后期维护简单方便。 ★ 全新的微机温度控制系统,控温精度高,可靠性和抗干扰性能优越;具有八路完全独立的温度控制输出,可实现二十阶程序升温,具有柱箱自动后开门系统,近室温控制能力得到提高,升/降温速度更快; ★ 仪器配置电子流量控制单元(EFC)、电子压力控制单元(EPC)实现了气路的数字化控制,大大提高了仪器的稳定和分析结果的重现性; ★ 色谱机内置低噪声、高分辨率 24 位 AD 电路,并具有基线存储、基线扣除的功能。 ★ 标配的工作站适于 WinXP 、Win2000、Win7、Win8、Win10 等操作系统。 我们提供环保、食品、石油、医药、煤炭、环境等行业色谱分析仪器。创新点:1、之前是压力表控制流量,现在是电子流量显示,也可带EPC控制流量2、原来是工作站不是内置的,目前可内置反控工作站3、外观美观4、应用性广室内空气TVOC气相色谱仪
  • 孰优孰劣?气相色谱、液相色谱大PK
    p style="text-indent: 2em "气相和液相是有机检测的两大基本仪器,占据着有机实验室的统治地位,虽然同做有机检测,但就两个仪器本身也有着较大区别,本篇文章将从流动相、固定相、分析对象、检测技术和制备分离5个方面进行比较。/pp  气相色谱是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。同为色谱技术之一,液相色谱也是一种分离与分析技术,它的特点是以液体作为流动相,固定相可以有多种形式,如纸、薄板和填充床等。那么,气相色谱和液相色谱相比各有什么特点呢?可以从以下几个方面进行比较:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/67f10b1e-e84f-40fc-a467-a87d254ca65a.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "流动相/span/strong/pp  GC用气体作流动相,又叫载气。常用的载气有氦气、氮气和氢气。与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。/pp  而在HPLC中,流动相种类多,且对分离结果的贡献很大。换一个角度看,GC的操作参数优化相对HPLC要简单一些。此外,GC载气的成本要低于HPLC流动相的成本。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "固定相/span/strong/pp  因为GC的载气种类相对少,故其分离选择性主要通过不同的固定相来改变,尤其在填充柱GC中,固定相常由载体和涂敷在其表面的固定液组成,这对分离有决定性的影响,所以,导致了种类繁多的GC固定相的开发研究。迄今已有数百种GC固定相可供我们选择使用,但常用的HPLC固定相也就十几种。/pp  故LC在很大程度上要靠选用不同的流动相来改变分离选择性。当然,毛细管GC常用的固定相也不过十几种。在实际分析中,GC一般是选用一种载气,然后通过改变色谱柱(即固定相)以及操作参数(柱温和载气流速等)来优化分离,而LC则往往是选定色谱柱后,通过改变流动相的种类和组成以及操作参数(柱温和流动相流速等)来优化分离。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "分析对象/span/strong/pp  GC所能直接分离的样品是可挥发、且热稳定的,沸点一般不超过500℃。据有关资料统计,在目前已知的化合物中,有20%~25%可用GC直接分析,其余原则上均可用LC分析。也就是说GC的分析对象远没有LC多。/pp  需要指出的是,有些虽然不能用GC直接分析的样品,通过特殊的进样技术,如顶空进样和裂解进样,也可用GC间接分析。比如高分子材料的裂解色谱就是如此。这在一定程度上扩大了GC分析对象的范围。此外,GC比LC更适合于气体的分析。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "检测技术/span/strong/pp  GC常用的检测技术有多种,比如热导检测器(TCD)、火焰离子化检测器(FID)、电子俘获检测器(ECD)、氮磷检测器(NPD)等,其中FID对大部分有机化合物均有响应,且灵敏度相当高,最小检测限可达纳克级。/pp  而在LC中尚无通用性这么好的高灵敏度检测器。商品LC仪器常配的也就是紫外-可见光吸收检测器(UV-Vis)和示差折光检测器(RI)。前者的通用性远不及GC中的FID,后者的灵敏度又较低,且不适于梯度洗脱。当然,不论GC还是LC,都有一些高灵敏度的选择性检测器,GC有ECD和NPD等,LC有荧光和电化学检测器。较为理想的检测器应该首推MS,但在这一点上,GC目前要优于LC。/pp  因为GC流动相的特点,它与MS的在线联用已不存在任何问题,特别是毛细管GC与MS的联用已成为常规分析方法。而LC与MS的联用就受到了流动相的限制。虽然目前已有多种接口,如离子束、热喷雾、电喷雾等,但流动相的选择还是受到明显的限制。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/dc79324a-3854-4369-a9f5-19ad962fc77f.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "制备分离/span/strong/pp  在新产品的研究开发过程中,或在未知物的定性鉴定工作中,常需要收集色谱分离后的组分作进一步分析,而某些高纯度的生化试剂则是直接用色谱分离来制备的。就这一点而言,GC在原理上应该是有优势的,因为收集馏分后载气很容易除去。然而,由于GC的柱容量远不及LC,如果用GC作制备,那是相当费时的。因此,制备GC的实用价值很有限。制备LC则有很广泛的应用。/pp  strong下面就来介绍一下,相比于气相色谱,液相色谱在以下三大方面所具备的优越性。/strong/pp  1. 气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。这使气相色谱法的使用范围受到了限制。/pp  2. 对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因:/pp  ①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。/pp  ②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。/pp  ③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。/pp  3. 和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。/pp  综上所述,与气相色谱相比,液相色谱在样品的适用性、分离能力以及样品回收方面都具备着一定的优越性。凭借着技术上的这些优势,液相色谱得以在更多领域得到广泛应用。/p
  • 方案:气相色谱 - 质谱法测定锂电池电解液组分
    目前针对电解液成分组成的测定方法或文献非常稀少,本文的目的是建立 简单,高效的气相色谱质谱检测方法,灵敏、快速测定锂电池电解液成分及 含量。 锂电池电解液是电池中离子传输的载体。一般由锂盐和 有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类 化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱 - 质谱进行定性、定量。方法操作简单,9 种酯类化合物检 出限在 3.0 μg/L-30.0 μg/L 之间。结论样品中的 9 种酯类化合物用乙酸乙酯稀释至合适浓度后 直接进样,采用赛默飞世尔新型的气相色谱质谱仪检测 和确证,外标法定量。结果表明,9 种酯类化合物的回 收率为 92.4.3-105.3%,6 次平行测定的 RSD 值≤ 4.16%。此 法操作简单,科学准确,灵敏度高,能够满足锂电池电 解液组成成分分析要求。 点击气相色谱 - 质谱法测定锂电池电解液组分 下载方案
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 进出口化妆品中二恶烷残留量的测定气相色谱串联质谱法实验室配套产品
    进出口化妆品中二恶烷残留量的测定气相色谱串联质谱法实验室配套产品 根据行业标准SN/T 1784-2006 二恶烷别名二氧六环,常态下为稍有香味的无色液体。主要用做乳化剂,去垢剂,作溶剂等。吸入,食入或经皮吸收后有麻醉和刺激作用,并会在体内蓄积。该方法通过试样在顶空瓶中经过加热提取后,用气相色谱/质谱法(GC/MS)进行测定,外标法定量,采用选择离子检测进行测定。 货号 名称 品牌 规格 报价(RMB) CDCT-C12865000# 1,4-二恶烷标准品 Dr 5ml 360.00 CFAA-33147-5ML# 1,4-二恶烷、1,4-二氧六环&ge 99.5% aNPEL 5ml 120.00 CBAC-36519-500G# 农残级无水氯化钠 Fluka 500g 450.00 CAEQ-4-003302-4000# HPLC级甲醇 CNW 4L 230.00 GAEQ-554421 CD-5MS气相毛细管色谱/质谱柱 CNW 30m*0.25mm*0.25um 5515.00 VBAP-320020E-2375-100# CNW 20mm钳口20mL平底透明顶空样品瓶 (带书写) for Carlo Erba/Dani/Fisons/Agilent CNW 100个/盒 310.00 VBAP-320020EA-2375-100# CNW 20mm钳口20mL圆底透明顶空样品瓶 (带书写) for CTC/Varian/Gerstel/Atas/Shimadzu/Triplus HS CNW 100个/盒 370.00 VEAP-5140F-20-100# 20mm钳口瓶用银色铝盖、含PTFE/丁基橡胶隔垫 (max to 100℃) CNW 100个/袋 350.00 VGAP-9300-20# 用于20mm钳口瓶的手动压盖器 CNW把 1900.00 VGAP-9320-20# 用于20mm钳口瓶的手动启盖器 CNW 把 2000.00 EKMD-PW124 PW214分析天平(最大量程:210g,可读性误差: 0.0001g,内部校准) Adam 台 10500.00 EDAA-2150TH# 2150 TH数控加热超声波清洗器(容量:6L,温控范围:室温-80℃) ANPEL 台 4580.00
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制