当前位置: 仪器信息网 > 行业主题 > >

气相分析检测器

仪器信息网气相分析检测器专题为您提供2024年最新气相分析检测器价格报价、厂家品牌的相关信息, 包括气相分析检测器参数、型号等,不管是国产,还是进口品牌的气相分析检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相分析检测器相关的耗材配件、试剂标物,还有气相分析检测器相关的最新资讯、资料,以及气相分析检测器相关的解决方案。

气相分析检测器相关的论坛

  • 制药企业液相分析采用的检测器类型以哪种普遍?

    我想问下,药厂检测分析部门用的液相色谱仪检测器以紫外检测器居多吗?像蒸发光,示差折光这些检测器用的很少,不是很普遍?问这个问题,主要是我现在对一种药物做检测分析方法研究,根据文献报道,检测器可以选用紫外(选择的检测波长是205nm),也可以用蒸发光,以蒸发光居多。我前期用这两种检测器都试过,蒸发光的结果更好,但是我老师一直反对我用蒸发光,说这种检测器在药厂用的不普遍,紫外检测器才是主流,建立的检测方法要能满足大部分企业的仪器条件才可以。我对企业实际情况不了解,蒸发光检测器用的很少?这种检测器不能普及?

  • ]气相分析 检测器问题,谢谢!!

    FID检测器测甲醛是否可以呢?请问:FID检测器测甲醛是否可以呢?但我看国标 (GB 18581) 是用分光光度计测的哦,是不是这个FID检测器不能测微量的甲醛呢?

  • 【原创大赛】荧光检测器光谱图定性排杂分析案例

    【原创大赛】荧光检测器光谱图定性排杂分析案例

    都知道LC带二级管阵列检测器的话,采集全波段光谱可以通过标样光谱图与样品中目标物光谱图比较进行初步排杂。近来发现,荧光检测器也可以这样初步通过光谱图比较排杂。整理出了一个案例,跟大家分享,有什么遗漏不当之处望批评指正! 一、食用植物油中苯并芘检测方法简述 前处理:用玻璃杯称取0.4g试样,精确到0.001g,用5mL正己烷溶解稀释,稀释液用活化后的专用小柱(ProElutAL-N 22g/60mL)净化,收集净化液浓缩近干,用乙腈/四氢呋喃(9/1)溶解并定容至1mL后HPLC分析色谱条件:安捷伦LC1200配荧光检测器 流动相:乙腈:水=97:3 进样量:5μL 流速:1.0mL/min 柱温:30℃ 检测器:激发波长384nm,发射波长406nm 标样:坛墨质检 2mL 1.12μg/ml二、标样与样品中苯并芘光谱对比分析 http://ng1.17img.cn/bbsfiles/images/2014/09/201409290952_516236_1635352_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409291002_516238_1635352_3.jpg说明:单从图1、图2两个色谱图来看,目标峰与标样保留时间一致,判断样品1、2中含有苯并芘。但结合图3、图4和图5来看,样品1中成阳性苯并芘峰的光谱图(图4)与标样中苯并芘峰的光谱图(图3)完全不一致;而样品2中成阳性苯并芘峰的光谱图(图5)与标样中苯并芘峰的光谱图(图3)一致。故初步判定样品1中成阳性苯并芘峰为干扰峰,样品1中不含苯并芘;而样品2中含苯并芘。结论:1、问了好几个在权威机构做液相分析的同行,都说只做过DAD的光谱定性,没做过荧光的光谱定性,恐慌。2、可惜我们还没有液质联用,要不然可以再进一步分析

  • 药物分析检测器

    药物分析中大家常用到哪些检测器呢?我们这用的比较多的是DAD,ELSD,CAD等。大家呢?都有什么优缺点呢?各检测器主要用于什么类型的物质呢?

  • 【求助】新手,疑惑,到底什么样的样品用液相分析?什么样的样品用气相分析?

    今天拿到一液体样品(化学试剂),要测其纯度,因为能够很好的溶于乙腈和水,就走了一针,想着怎么也该出个大峰,结果20分钟走完,啥也没有,于是反思:(1)是不是该样品不适合液相分析?更进一步说,什么样的样品可以进行液相分析呢?分析之前需要了解样品的哪些特性呢?请专家指教(2)是不是紫外检测器的波长不合适,254nm不出峰?这个该怎么才能知道呢?请专家指教!

  • 产物分析检测器

    [color=#444444]本人最近在做多元醇的氧化反应。反应时会产生一些酮类,醛类,以及酸类。因为液相色谱只有示差折光检测器。想请教一下仅仅利用示差检测器能否对这些物质进行定性和定量分析?谢谢大家[/color]

  • 产物分析检测器

    [color=#444444]本人最近在做多元醇的氧化反应。反应时会产生一些酮类,醛类,以及酸类。因为液相色谱只有示差折光检测器。想请教一下仅仅利用示差检测器能否对这些物质进行定性和定量分析?谢谢大家[/color]

  • 气相色谱仪分析的检测器种类

    [align=center] [size=24px] [b]气相色谱仪分析的检测器种类[/b][/size][/align] 用于气相色谱仪分析的检测器种类繁多,在一般分析工作中,最常用的有热导检测器、氢焰检测器、电子捕获检测器、火焰光度检测器、热离子检测器等。这里将讨论气相色谱仪检测器的四大分类及其应用等方面的基础知识。  对气相色谱仪检测器的基本要求如下:  ① 噪音较小,灵敏度高;② 死体积小,响应迅速;③ 性能稳定,重现性好;④ 信号响应,规律性强。  在气相色谱法中,检测器的分类较常用的有四种分类法。  1.按响应时间分类  ⑴ 积分型检测器  积分型检测器显示某一物理量随时间的累加,也即它所显示的信号是指在给定时间内物质通过检测器的总量。例如:质量检测器、体积检测器、电导检测器和滴定检测器等,此类检测器在一般色谱分析中应用较少。  ⑵ 微分型检测器  微分型检测器显示某一物理量随时间的变化,也即它所显示的信号表示在给定的时间里每一瞬时通过检测器的量。例如:热导检测器、氢焰检测器、电子捕获检测器和火焰光度检测器、热离子检测器等,此类检测器为一般色谱分析中的常用检测器。  2.按响应特性分类  ⑴ 浓度型检测器  浓度型检测器测量的是载气中组分浓度瞬间的变化,也即检测器的响应值取决于载气中组分的浓度。例如:热导检测器和电子捕获检测器等。  ⑵ 质量型检测器  质量型检测器测量的是载气中所携带的样品组分进入检测器的速度变化,也即检测器的响应值取决于单位时间组分进入检测器的质量。例如:氢焰检测器、火焰光度检测器、热离子检测器等。  3.按样品变化情况分类  ⑴ 破坏型检测器  在检测过程中,被测物质发生了不可逆变化。例如:氢焰检测器、火焰光度检测器、热离子检测器。  ⑵ 非破坏型检测器  在检测过程中,被测物质不发生不可逆变化。例如:热导检测器和电子捕获检测器。  4.按选择性能分类  ⑴ 多用型检测器  对许多种类物质都有较大响应信号的检测器称为多用型检测器。例如:热导检测器和氢焰检测器等属于多用型检测器。  ⑵ 专用型检测器  仅对某些种类物质有较大的响应信号,而对其他种类物质的响应信号很小或几乎不响应的检测器则称为专用型检测器。例如:电子捕获检测器、火焰光度检测器、热离子检测器等。  有时也把上述分类法结合起来。例如:把热导检测器称为微分-浓度-非破坏-多用型检测器,氢焰检测器称为微分-质量-破坏-多用型检测器。

  • 色谱分析常用的检测器有哪些?

    气相色谱分析常用的检测器有热导检测器、电子捕获检测器、氢火焰离子化检测器和火焰光度检测器。前两项属于浓度型检测器,后两项属于质量型检测器。对检测器的要求是:灵敏度高、检测度(反映噪声大小和灵敏度的综合指标)低、响应快、线性范围宽。

  • 【求助】用于气体分析的检测器问题

    紧急求助各位大侠: 本人想用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分析氢气含量,气体成分为氧气,氮气,二氧化碳,氩气,氢气,查阅资料得知适合该分析的检测器为TCD. 现在实验室有两台色谱仪,一台为GC9800,TCD检测器,可惜钨丝断了,不知能否修好。还有一台新的安捷伦6890,配有FID,ECD,还有专测氮磷的检测器。 请问检测氢气含量是否一定要用TCD检测器,而FID,ECD等都不行???恳求赐教!

  • 分析糖用什么检测器?

    蜂蜜国标中分析糖用RID示差折光检测器,也有人推荐ELSD蒸发光散射检测器的?我现在是岛津的LC-10A,岛津的RID性能怎么样?

  • 【讨论】双检测器同时进样分析

    一般GC都配有两个检测器,但大多为不同类检测器。我们是做农残分析的,按标准(NY761)要双柱定性,如果是双塔同时进样,相同检测器、同一升温程序而不同柱子同时检测,这样一次不就可以解决了吗!不知各位有这样用的吗?这样的话,一台设备可以同时干二份活,可以节省不少时间的。

  • 检测器流速变化和定量分析的关系?

    质量型检测器:载气流速变化,峰高变化,峰面积不变。浓度型检测器:载气流速变化,峰面积变化,峰高不变。我们做定量分析的时候,用的一般都是 面积法,两者之间到底是什么关系?有点迷惑,谢谢大家帮忙

  • PDHID检测器分析氦气中的氖气

    [align=center][size=18px]PDHID[/size][size=18px]检测器分析氦气中的氖气[/size][/align][align=left][size=16px]到底氦离子化检测器能不能分析氖气,有很多人会产生疑问。[/size][/align][align=left][size=16px]首先先从氦离子化检测器的原理上进行探讨,氦离子化[/size][size=16px]检测器的工作原理通常都认为是基于潘宁效应(Penning effect),它利用β射线,脉冲放电能量,以及在高压电场加速下获得能量的二次电子与氦原子碰撞,将载气中部分氦原子由基态跃迁到不同能级的激发态,生成亚稳态氦原子He*(23S,19.8ev)和氦离子He+(1S2S1/2,24.5ev)等,亚稳态氦原子间的相互碰撞又将部份的亚稳态氦激发为氦离子,放出电子,各种能级的激发态氦和其它高能粒子与样品中被测组份的原子或分子碰撞,将能量传递给它们,并使之电离。[/size][/align][align=left][size=16px]氦气电离时有两种电离能出现,而氖气的电离能(21.6ev)刚好是介于两者之间,理论上是有一定的响应,线性应该是没其它物质那么宽。[/size][/align][align=left][size=16px]实际上通过实验,采取多点浓度0.1ppm、0.5ppm、1ppm、5ppm、10ppm、15ppm、20ppm,[/size][size=16px]具体细节就不再详述[/size][size=16px],得出以下结论:[/size][/align][align=left]1, [size=16px]氦离子检测器对氦气中氖气[/size][size=16px]有一定的响应;[/size][/align][align=left]2, [size=16px]氦离子检测器对氦气中氖气的检测限在0.5ppm左右[/size][size=16px];[/size][/align][align=left]3, [size=16px]氦离子检测器对氦气中氖气的检测[/size][size=16px]的线性范围在0.5到10ppm之间。[/size][/align]

  • 如何选择高纯氧中杂质的分析的检测器

    高纯氧中的杂质主要是H2,AR ,N2 ,CO,CO2,CH4. 这些杂质在高纯氧中的含量<100ppb或甚至更小,所以我们应该选择什么检测器可以将他们检测出来呢?首先咋们分析下各中型号检测器的优点和缺点:1,热导检测器:它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应,最适合作微量分析(ppm级)。2,FID检测器:FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是目前应用最为广泛的气相色谱检测器之一。FID的主要缺点是不能检测永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢等物质。3,DID检测器:是一种可完成对多种微量气体成份含量进行高灵敏度检测的新型仪器。放电离子化检测器(DID)是一种通用的浓度型多功能检测器,它利用高能光电离检测样品成份,最低检测下限可达5~10PPB级浓度(5x10 -9~10x10 -9)。特别是当背景气体N2,Ar,Ne,He,H2等气体时,可检测其中的杂质成份包括:H2,Ar,Ne,O2,CH4,CO,CO2。所以做高纯气的分析还是选择DID检测器是做好的。

  • 气相色谱仪分析中检测器无信号输出的原因

    [align=center][b][size=24px]气相色谱仪分析中检测器无信号输出的原因[/size][/b][/align] 检测器的信号是气相色谱仪在分析目标样品时,样品经色谱柱分离以后在检测器上的响应值,通过信号的高低(峰面积或峰高)以及保留时间,对目标物进行定性定量。通常认为,一个合适的检测器应该对样品响应信号好并且稳定。但是,在分析过程中经常遇到检测器没有信号的情况,使得分析不能顺利进行。那么在气相色谱仪的分析中,造成检测器没有信号的原因有哪些?改如何解决?具体分析如下:  造成检测器无信号的原因很多,如信号线连接、进样系统、分离系统、检测器自身的问题、色谱工作站等。  1.样品未注入,由于注射器针头堵塞、进样口硅胶垫漏气等导致样品未进入分离系统;  2.检测器是否选择正确,信号线连接是否正常;  3.色谱工作站采集器是否打开,色谱软件设置是否正确;  4.色谱工作站采集器与计算机数据传输接口是否链接正常;  5.色谱柱与进样口和检测器链接是否正常;  6.色谱柱温度、进样器温度、检测器温度是否正常;  7.色谱柱是够出现断裂漏气情况;  8.检测器是否正常开启,参数设置是否正确;  9.载气、氢气、空气等气路连接是否正确;  10.检测样品浓度是否过低等。  解决方案 气相色谱仪在进样后,检测器没有信号输出。遇到这种情况,应当按照以上几种原因:样品、信号连接、进样针、进样口、检测器、色谱柱、气路的顺序逐一排查。  1.样品部分首先确认样品含需要检测的目标物,浓度配制是否正确。  2.信号连接及采集部分查看检测器输出信号线是否松脱,即确认检测器输出信号线与色谱工作站采集器的输入端连接是否正常。确保色谱工作站采集器输出端与计算机USB(或COM)接口连接正常,工作站通道选择正确。  3.进样部分确认样品是否正确注入,进样针有无堵塞;检查进样口硅胶垫是否老化漏气,确认衬管是否过脏需要更换。  4.检测器部分确定检测器的选择正确,确保所检测的目标物在所选择的检测器上有响应。检查确认检测器的温度、电流等参数设置正确。FID、FPD.NPD要检查氢气和空气及点火状况,ECD要检查电流是否设置正确,ECD、NPD要检查尾吹气设置是否正确,FPD要检查S、P滤光片是否安放正确。  5.色谱柱部分检查确认色谱柱与进样口和检测器连接正确,检查色谱柱是否出现断裂漏气等情况。  6.气路部分检查确认载气、氢气、空气等气路是否连接正确,气流大小设置是否正确,有无漏气等情况。 案例分析 一台气相色谱仪配备单进样口,并同时配备ECD和NPD,在日常的使用中可根据需要选择合适的检测器。  在一次使用ECD检测蔬菜中的有机氯农药残留约1个月后,欲使用NPD检测水果中的三唑类农药残留,发现在进样后不出峰,仪器不能正常检测。  首先查看进样针无堵塞现象,(3)解决方案 气相色谱仪在进样后,检测器没有信号输出。遇到这种情况,应当按照样品、信号连接、进样针、进样口、检测器、色谱柱、气路的顺序逐一排查。  更换进样口硅胶垫和衬管,检测器仍然无号,可排除进样部分问题。然后检查检测器输出信号线与色谱工作站采集器的输入端是否正常,信号线连接好,无脱落现象。  然后打开工作站;能正常地通过工作站控制仪器,并且查看工作站通道设置,一切正常。考虑到检测器出现无信号情况的前后没有更换载气(即氮气),且气瓶压力仍然维持在7.5MPa,排除载气问题。再用检漏液(最好是十二烷基磺酸钠溶液)检查载气的管线是否漏气,即载气的压力是否稳定,经检查管线不漏气。同时,考虑到整个气路的其他气体源(氢气发生器、空气发生器)没有任何变动,故排除气路问题。  考虑到实验室检测三唑类农药残留色谱柱的类型与以往正常检测无差异,同时检查色谱柱无断裂漏气等现象。经过在进样口端和检测器端重新安装色谱柱,检测器仍然无信号,故障依旧,排除色谱柱问题。  气相色谱的检测器通常需要设置的参数包括温度、各气体流量、电流等。这次故障中NPD已经排除温度和气路的问题,发现检测器信号很低,初步认定故障的问题出现在检测器部分。  拆开检测器,发现在NPD下端与色谱柱相连的部分出现生锈的痕迹。因此,怀疑由于南方天气潮湿,而在使用ECD的过程中,NPD长时间闲置,检测器下端没有堵死,并且没有开启尾吹气,在柱箱反复的升温降温过程中,NPD与色谱柱相连的部分生锈并堵住载气和样品的进入,造成检测器无信号。采用细砂纸对NPD锈迹进行打磨光亮后,重新安装开机,对铷珠进行烘烤老化后,仪器恢复正常。

  • 实验室分析仪器--气相色谱检测器种类介绍及原理分析

    [b]一、光离子化检测器[/b]光离子化检测器(PID)对大部分的有机物都有响应,在烷烃等饱和烃存在时对芳烃与烯烃化合物有选择性。它是利用密封的UV灯发射的紫外线使色谱柱流出的电离电位低于紫外线能量的分子电离。灯的强度为8.3~11.7eV,最广泛采用10.2eV。在电场作用下产生电信号。检测限可为pg级,线性范围可达10 [sup]6[/sup]。PID只使用一种载气(空气),不需其他辅助气体,灵敏度接近FID,并很容易与毛细管柱联用。由于它对S的灵敏度很高,对CH[sub]4[/sub]无输出信号,因此在环保和药物分析中引起人们极大的兴趣。在检测器联用中,由于FID与PID对脂肪族和芳香族化合物响应值不同,可以用其信号的比值来鉴别不同族的化合物。同样PID与NPD的联用,可用于鉴别伯、仲、叔胺化合物。[b]二、霍尔微电解电导检测器[/b]霍尔(Hall)微电解电导检测器(HECD或 HallD)是电导检测器(electrolytic conductivity detector,ELCD)的一种,在1974年由霍尔提出它是N、P和卤素化合物高选择性、高灵敏度的专用检测器,其线性范围和选择性可以和NPD、FPD、ECD媲美。化合物经色谱分离后进入反应炉,在高温催化作用下发生反应,生成小分子化合物,经涤气器除去干扰组分,再进入电导池,在电导池中发生电离反应,从而改变电导池的电导值,输出电信号,达到检测元素的目的。HalD按N方式工作时,可用来测定农药和除莠剂的残留量。按S方式工作时,其线性范围优于FPD,并且没有单焰FPD的熄灭问题。按卤素方式工作时,其选择性和线性范围都可达10,可以取代ECD分析有机氯农药。由于 Hall是湿式化学式检测器,远不如FPD、NPD、ECD方便,因此应用受限制。SRI公司开发了一种新型的于式电导检测器(DELCDM),其最低检测限比湿式电导器稍好,使用更方便,适宜推广。[b]三、原子发射检测器[/b]原子发射检测器(AED)是一种多元素检测器,可在挥发性化合物中发现除氦(即载气)之外的所有元素,同时具有优良的选择性。AED属光度检测法,它将等离子体作为激发光源,使进入检测器的组分蒸发、解离成气态原子,并将原子激发至激发态,再跃迁回基态,同时发射出原子光谱。测定每种化学元素特征光谱的波长及强度可确定物质中元素组成和含量。AED可以使用选择性和通用性两种方式工作。当AED使用杂原子通道时可作为选择性检测器检测,其灵敏度比其他[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]检测器(例如FPD)更高而且线性范围更宽;若AED使用碳、氢通道时可作为通用型检测器检测,灵敏度高于FID。由于大多数元素(除氢)在任何化合物里的响应因子几乎恒定,因此AED可以用响应因子在一定的误差范围内定量任何化合物,甚至可以使用任何含有一个或多个相同元素的化合物作为标样。AED近年来被广泛用于石化、环保、食品、药物代谢等领域的研究。[b]四、化学发光检测器[/b]化学发光检测器( chemiluminescence detector,CLD)是一种分子发射光谱检测法,原理是物质进行化学反应时,吸收了反应时产生的化学能,生成了处于激发态的反应中间体或反应产物,当它们由激发态回到基态时,发出一定波长的光,光强度与该物质的浓度成正比。与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用的化学发光检测器中硫化学发光检测器(SCD)和氮化学发光检测器(NCD)较为常见,是分析石油、环境、制药等领域样品硫化物或氮化物的专用检测器。与其他检测器相比,SCD与NCD有灵敏度高、选择性好、等摩尔响应、线性响应等优点。例如,SCD对硫化物选择性可达10[sup]7[/sup]S/C,FPD只有10[sup]6[/sup]S/C。但SCD与NCD只能检测一种元素,且价格相对较高。[b]五、氨离子化检测器[/b]氨离子化检测器( helium ionization detector,HD)是唯一能检测至ng/g级的通用检测器,也是一种非破坏性的、放射性的浓度型检测器。除氖以外,对其他无机和有机化合物均有响应,最早应用于高纯气体的分析,近年也逐渐用于复杂有机物和高分子量化合物的分析。HID的工作原理是比较复杂的电离过程,即电子与氨气碰撞形成亚稳态原子,该亚稳态原子的激发能传递到样品分子或原子;如果样品分子或原子的电离电位(IP)小于氨气亚稳态原子的激发电位(19.8eV),样品通过碰撞被电离产生微弱电流,从而得到了该样品的电流值,其值在一定的范围内与含量成比例关系。因此各种气体的电离能大小成为HD是否可以检测的关键。通常HD使用放射性氟源为激发能源,它有半衰期,能量随时间变化,导致仪器稳定性改变,另一方面,源所放射的射线污染载气后会危及人身健康。因此近些年HID慢慢被时性氢离子化所代、冲放电氯离子化检测器(PDHD)就是种商品化的非放射性离子化检测器。它利用氯气中稳定的、低功率脉冲放电作为电离源,使被测组分电离产生号、它的能量比HID稍微低一些,数值为17.7eV,均比表中各种气体的电离高(Ne除外)因此对气体来说,它也是通用型检测器。 PDHID也是非破坏性、浓度型检测器,而且在使用上更安全、性能更稳定,现主要用来测定各种气体中的痕量杂质。[b]六、多种检测器联用[/b]通常[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]使用单检测器检测,获得某一检测器的信息。当单一检测器不能满足要求时、可用两(多)个以上检测器组合在一起,同时或分时检测,得到两(多)个检测器信号这种“联用”的方法综合各检测器的响应特征适用于复杂样品分析,可为待测物提供更多的信息。两(多)个检测器的组合方式有串联和并联两种方式,本节只简单介绍几款以串联方式组合的检测器。串联组合的检測器有两种组合方式:分体式和一体式[b]1.分体式[/b]检测器的构造、响应机理和最佳操作条件不变,采用串联方式组合在一起,对同一样品同时进行信号采集,得到不同色谱图,为串联分体式组合。这种组合方式灵活性大,实验人员可根据需要自行组合。一般来说,串联的第一个检测器为非破坏性检测器,例如TCD、PIDHD、IR等;第二个可为破坏性检测器,例如FID、NPD、MSD等。但近年来也有两个检测器都为破坏性检测器,如FID-SCD、FID-NCD,在这种组合中一个检测器为通用型检测器,另一种是选择性检测器。[b]2.一体式[/b]检测器的响应机理不变,但适当改变结构和最佳操作条件,将它们组合于一体,样品待测物从色谱柱流出后进入检测器得到色谱图,为串联一体式组合。这种类型的检测器组合方式固定,由仪器厂商生产,实验人员不能任意改变。目前应用较多的串联一体式检测器有:Valco仪器公司的PDD检测器( pulsed discharge detector)就是一种集 PDHID、 PDPID和 PDECD于一体的检测器,可在不同工作模式下对不同类型化合物有响应,因此可以分析不同类型化合物。例如 PDHID模式下对除氖以外的所有气体都具有很好的响应值,可分析永久性气体;而在 PDPID模式下像一个特制的光电离检测器,对脂肪类化合物、芳香类化合物和胺类化合物或者其他化合物进行选择性的检测。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]( Inductively coupled plasma mass spectrometry,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])将感应耦合等离子体(ICP)作为质谱仪的电离源,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。质谱仪通过选择不同质荷比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]主要用途是进行化学元素分析检测,特别是对金属元素分析最擅长,也能分析B、P、As等非金属元素。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在10[sup]-9[/sup]或10[sup]-9[/sup]以下的微量元素,检测限可以达到10[sup]-12[/sup]级,广泛应用于地质、环境以及生物制药等行业中

  • 气相分析操作条件的确定

    在气相色谱分析中,我们要快速有效的分离一个复杂的样品,并获得满意的结果,除了要选择一根最佳色谱柱以外,还要对分离操作条件进行仔细的选择。色谱柱的好坏关系到分离的效果,而分离条件的设置又影响着色谱柱的分离。色谱柱和分离操作条件之间是是相辅相成的关系。本文将主要介绍气相分析操作条件的确定。初始操作条件的确定确定初始操作条件;色谱柱形式的选择;分离条件优化;程序升温。1、确定初始操作条件 进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过mg/ml时填充柱的进样量通常为1~5μL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2μL。如果这样的进样量不能满足检测灵敏度的要求,可考虑加大进样量,但以不超载为限。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。即首先要保证待测样品全部气化,其次要保证气化的样品组分能够全部流出色谱柱,而不会在柱中冷凝。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解组分的分解温度,常用的条件是250~350℃。实际操作中,进样口温度可在一定范围内设定,只要保证样品完全汽化即可,而不必进行很精确的优化。注意,当样品中某些组分会在高温下分解时,就应适当降低汽化温度。必要时可采用冷柱上进样或程序升温汽化(PTV)进样技术。 色谱柱温度的确定主要由样品的复杂程度和汽化温度决定。原则是既要保证待测物的完全分离,又要保证所有组分能流出色谱柱,且分析时间越短越好。组成简单的样品最好用恒温分析,这样分析周期会短一些。特别是用填充柱时,恒温分析时色谱图的基线要经程序升温时稳定得多。对于组成复杂的样品,常需要用程序升温分离,因为在恒温条件下,如果柱温较低,则低沸点组分分离得好,而高沸点组分的流出时间会太长,造成峰展宽,甚至滞留在色谱柱中造成柱污染;反之,当柱温太高时,低沸点组分又难以分离。 毛细管柱的一个最大优点就是可在较宽的温度范围内操作,这样既保证了待测组分的良好分离,又能实现尽可能短的分析时间。一般来讲,色谱柱的初始温度应接近样品中最轻组分的沸点,而最终温度则取决于最重组分的沸点。升温速率则要依样品的复杂程度而定。建议毛细管柱的尝试温度条件设置为:OV-1(SE-30)或SE-54柱:从50℃到280℃,升温速率10℃/min;OV-17(OV-1701)柱:从60℃到260℃,升温速率8℃/min;PEG-20M柱:从60℃到200℃,升温速率8℃/min。 检测器的温度是指检测器加热块温度,检测器温度的设置原则是保证流出色谱柱的组分不会冷凝同时满足检测器灵敏度的要求。大部分检测器的灵敏度受温度影响不大,故检测器温度可参照色谱柱的最高温度设定,而不必精确优化。载气流速的确定相对容易一些,开始可按照比最佳流速(氮气约为20cm/s,氦气约为25cm/s,氢气约为30cm/s)高10%来设定。然后再根据分离情况进行调节。原则是既保证待测物的完全分离,又要保证尽可能短的分析时间。用填充柱时,载气流速一般设为30ml/min。空气,300~400ml/min;氢气30~40ml/min;氮气(尾吹气)30~40ml/min。2 、色谱柱形式的选择2、色谱柱形式的选择 当欲测组分之间的相互分离系数很小时,即使对各种操作条件加以探讨,为使它们完全分离仍必须采用理论塔板数(N)大的色谱柱。理论塔板数N按一般填充柱≤微填充柱≤填充毛细管柱≤空心毛细管柱的顺序增加。由于N不同,有时色谱图也不相同。3 、分离条件优化3、分离条件优化 事实上,当样品和仪器配置确定之后,一个色谱技术人员最经常的工作除了更换色谱柱外,就是改变色谱柱温和载气流速,以期达到最优化的分离。柱温对分离结果的影响要比载气的影响大。简单地说,分离条件的优化目的就是要在最短的分析时间内达到符合要求的分离结果。气相分析条件的确定1、色谱柱的选择色谱柱是决定色谱分离的核心,因此首先要有一根高效的、对被分析对象有效的色谱柱。 主要从色谱柱的材料、固定相、半径、膜厚等方面进行选择。气相用色谱柱首先需要确定要使用的是填充柱还是毛细管柱。如果是做法规分析,则必须按有关法规的要求选择色谱柱。如一些产品的质量检验,尽管用毛细管柱可以得到更好的分析结果(分离效率高、分析速度快),但若国家标准或行业标准规定用填充柱,那你就应该用填充柱,否则你的分析结果不被法规所认可。对于新的或更新的方法,如果没有非常具有说服力的理由使用填充柱的话,推荐使用毛细管柱。2、载气流速的选择气相色谱最常用的载气是:氢气、氮气、氩气、氦气。 由速率理论可知,载气流速慢有利于传质,有利于组分的分离,但分析时间会加长;如果载气流速快有利于加快分析速度,减少分子扩散,但分离度降低。有时为了缩短分析时间,加大流量,但此时分离效果并不好。可见载气流速的快慢都会降低柱效。经过长时间的实验,发现对于一般色谱仪而言,载气流量为20-100ml/min。目前我们分析液化气用的是热导检测器,载气用的是氢气,其流量控制是30 ml/min。分析戊烷发泡剂用的是氢火焰离子化检测器,载气用的是氮气、燃烧气氢气和氧气,这三种气体的体积比是氮气:氢气:氧气为1:1:10,分析效果都是较好的。3、进样技术的选择在气相色谱分析中,一般采用注射器或六通阀门进样。在考虑进样技术的时候,以注射器进样为主来研究。a、进样量如果在进样过程中进样量大会导致:分离度小;保留值变化难于定性;峰高和峰面积与进样量不成线性关系,不能定量。 进样量与气化温度、柱容量和仪器的线性响应范围等因素有关。进样量应控制在瞬间气化,达到规定分离要求和线性响应的允许范围内。填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~10μl,气体样品一般为0.11~10ml,在定量分析中,应注意进样量读数准确。b、注射器里空气的排除 用微量注射器抽取液体样品,只要重复地把液体抽入注射器又迅速把其排回样品瓶,就可以将空气排除。还有一种更好的方法,那就是用计划注射量的约2倍的样品置换注射器3~5次,每次取到样品后,垂直拿起注射器,针尖朝上,留在注射器里的空气都应当跑到针管顶部,推进注射器塞子,空气就会全部被排掉。c、保证进样量的准确 用经置换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体。推进注射器塞子,直到读出所需要的数值。用纱布擦干针尖。至此准确的液体体积已经测得,需要再抽若于空气到注射器里。如果不慎推动柱塞,空气可以保护液体使之不被排走。d、进样手法 双手拿注射器。用一只手(通常是左手)扶针插入垫片,注射大体积样品(即气体样品)或柱前压力极高时,要防止从气相色谱仪注样器来的压力把注射器活塞弹出(即用右手的大拇指按压住活塞顶部)。 让针尖穿过垫片尽可能深的进入进样口,压下注射器活塞停留1秒钟,然后尽可能快而稳地抽出针尖(抽出的同时继续压住注射器活塞)。e、进样时间 进样时间长短对柱效率影响很大。若进样时间过长,遇使色谱区域加宽而降低柱效率。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。4、柱温的选择 柱温的选择十分关键,它将直接影响分离效能和分析速度。提高柱温,有利于降低组分在气液相中的传质阻力,有利于提高柱效, 同时纵向分子扩散项系数增大,提高分析速度,但柱选择性变差,分离度降低。 柱温适宜有利于组分的分离,但温度过低,被测组分可能在柱中冷凝,或者传阻力增加,使色谱峰扩张,甚至于拖尾,温度高有利于传质,但柱温高,分配系数变小,不利于分离。 对于沸程不太宽的简单样品,可采用恒温模式。在分析气体时,如选用的是气液分配色谱,可在50℃或常温下分析,如选用的是气固色谱,柱温要相应提高。 对于沸程相对较宽的复杂样品,如在一恒定的温度下分离,随着保留时间的增加,峰宽迅速增加,导致保留较弱的组分重叠,而保留较强的组分又因为分析时间长,张起峰展宽,峰高下降。 由于在气相色谱中,改变温度对组分的分离改变最为明显。可通过程序

  • 揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    这类检测器绝对属于检测器中的独门兵器,平时少有人用,仅限于某某门派或者家族独门使用,比如唐门的暗器,或者小李探花的飞刀,这类兵刃罕见于江湖,不过一旦出手,必定奏效,检测器中的荧光检测器,电导检测器等等就属于这类偏门武器。 平时我们很难见到这些兵刃行走于江湖,但是当它们出手的时候,必定是致命致胜的犀利招数。之所以说他们犀利,是因为他们对于分析某些类型的样品有非常好的效果,但可惜的是,这些样品的种类不多,或者应用的行业十分局限,所以这类兵刃也就很难在茫茫江湖中大显身手了,只有遇到正好相克的对手,才能轻松取胜。这类兵刃中,比较有典型代表性的应当属示差折光检测器(RID)和荧光检测器(FLD)了,另外,就是电性检测器一族。我们来一一说说他们的武功路数吧。=======================================================================1、示差折光检测器(RID)RID,简称示差,这是武林兵刃中最令人唏嘘感慨的一个,本来它是作为第一种被人们使用的兵器出现在武林的,是最早商品化的液相色谱检测器,可是现在沦落到只能偏居各类检测器的一隅,沧海桑田的变化,令人感慨万分。不过,造成这种变化的原因,完全是由于它自身的局限和特点,就像木棒,最早被人类用来当武器,主要是因为它随手可得,而且无需太多使用技巧,对付任何野兽都有效果,不过,随着石器加工的出现,以及后来金属冶炼技术的出现,木棒就逐步退出了作为常用武器的行列,偶尔只能在街头斗殴或者农民起义的场景中发挥一些余热。RID的境遇也差不多,由于这类检测器是检测经过流通池的液体的折光率的变化而产生响应的,所以具有很好的通用性,因为被分析物溶解在流动相中以后,一定会改变流动相的折光率,所以示差检测器可以对所有能进行液相分析的样品产生响应,在过去的年代,大家对分析的要求还很低,不要求灵敏度,不要求分析速度,在加上示差的这种通用性,让他当之无愧的成为了风靡一时的通用型检测器。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607267_2452211_3.jpg这就是示差检测器的基本原理,左边杯子里的是纯水,右边的是浓盐水,可以看到两种溶液对光的折射率是有差异的,示差检测器就是“显示这种差异”的检测器,不过,盐水的浓度要浓到什么程度才能显示出差异呢?答案是:很浓,很浓很浓...http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607265_2452211_3.jpgRID检测器工作原理图不过,随着技术进步,大家对分析的要求越来越高,速度,灵敏度上都有了更严格的要求,RID的弱点就日益凸显出来了:灵敏度低:通常示差检测器能分析的样品浓度都是在几个mg/mL以上的,这对于现在的分析要求来讲,实在是差的太远了。无法运行梯度方法:示差检测器靠得是检测流动相折射率的变化进行检测,如果流动相自己的折射率都一直在变化,示差就无法正常工作,梯度方法由于其中不同流动相的比例在不停变化,折射率也在不停变化,这就让示差检测器无法正常工作了。也是由于这个原因,示差检测器在使用的时候,通常要平衡非常久,保证流动相绝对均匀稳定之后,才能开始分析。另外,一切会影响折射率的因素:温度的变化,混合的均匀性,气泡等等对于示差来讲都是致命的。加上新检测的不断涌现,示差曾经的江湖大佬地位逐渐萎缩,不过,,幸运的是,它还没有完全消亡,由于价格便宜,一些经典的应用分析大家还是会选择示差,比如糖的分析(当然是在不追求灵敏度的情况下)。另外,示差凭着自己的一身底子,也在淡出江湖后给自己找了个适合的工作:体积排阻色谱的检测器,这是一类用于分析大分子聚合的专门技术,由于很多大分子化合物没有紫外吸收,所以就需要用到一个通用的检测器进行分析,而江湖新秀ELSD由于线性响应差的问题,经常会造成测定结果的偏差,而示差检测器正好弥补了ELSD的这项不足;另外就是这类分析当中,不会使用到梯度分析的方法,而且样品的含量都很高,所以正好也不会遇到示差检测器的短板,在加上价格便宜,示差检测顺理成章的就成了这类分析的“标配”。江湖新秀ELSD本来是为了做聚合物分析而产生的,后来确成了市场上的“通用设备”,而原本最通用的RID由于自身条件限制,只能在聚合物等一些很小的领域内继续发挥余热,这种角色和地位的转变,真是令人感触颇多啊…=======================================================================2、荧光检测器(FLD)接下来的一个代表,是荧光检测器(FLD),它的经历远远没有示差检测器那么曲折复杂令人唏嘘,因为,它天生就是被设计用来测定具有荧光响应的化合物的。荧光是什么?是化合物吸收了紫外光能量之后从激发状态变回基态时候以光能释放出来的一部分能量,大概可以理解为某人吃了大餐长了肉,之后用跑步的方式去减肥,那么吃的大餐就以出汗的方式被释放掉了,荧光检测器就是检测这个家伙在跑步过程中到底出了多少汗——即释放了多少强度的荧光的。知道了这个过程,我们可以看看荧光检测器的优势专属性:由于具有荧光响应的物质种类不多,所以,荧光检测器的专属性非常好,只对有荧光特性的物质才产生响应,其他一概不管,极大程度的减小了干扰。通常,多环芳烃这种含有超大共轭体系的化合物都是具有荧光响应的物质。看到这类能诱发密集恐惧症的分子结构,荧光检测器的用武之地就来了http://ng1.17img.cn/bbsfiles/images/2016/08/201608291331_607268_2452211_3.jpg灵敏度:荧光检测器的灵敏度非常高,很多情况下,其在灵敏度上的表现堪比质谱检测器,这是由于荧光检测器是属于发射光检测器,不同于紫外这类吸收光型检测器,由于不受到样品溶液本身等因素的影响,即使有很微量的光发射出来,也可以很好的被检测。除了上面两个最大的优势之外,荧光检测器在线性,流动相兼容性(只要避免一些有荧光淬灭效应的试剂就可以)以及采样频率上也都有不错的表现。那么大家要问,这么NB的检测器,为啥只能混到第三梯度里当个阿猫阿狗,主要的原因就在于,液相测定的应用里有荧光响应的东西,实在是太少了…连5%都占不到,算上大家为了利用荧光检测器的优势将样品衍生为有荧光响应的物质,也大概勉强就能占到10%吧。所以,荧光检测器的招式虽然犀利无比,但是由于钻入了牛角尖,它注定也只能做个江湖山的小配角了。=======================================================================3、电化学和电导检测器最后,我们要说一说电性检测器一家子,这类检测器,可以分为电化学和电导检测器两大类,前者,顾名思义,是利用了被检测化合物的电-化学性质进行检测的,这里面包括了极谱,库伦和安培检测器,利用了物质的氧化还原反应中间的电能变化进行检测,最常见的是安培检测器;后一种主要是利用了离子的电性进行检测,通常用做离子色谱法的专门检测器。比起上面提到的荧光检测器,这类检测器的招式就更加独门了,只对能产生“电”特定的物质才有响应,要不物质本身具有氧化还原特性,要不就是它自己本身就是个离子,其实,要是细算下来,液相能分析的化合物中,有着两类特

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制