全自动超滤系统

仪器信息网全自动超滤系统专题为您提供2024年最新全自动超滤系统价格报价、厂家品牌的相关信息, 包括全自动超滤系统参数、型号等,不管是国产,还是进口品牌的全自动超滤系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动超滤系统相关的耗材配件、试剂标物,还有全自动超滤系统相关的最新资讯、资料,以及全自动超滤系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

全自动超滤系统相关的厂商

  • 留言咨询
  • 留言咨询
  • 北京丰裕华环保科技有限公司是国家级高新技术企业,注册资金1000万元,厂房占地面积5000余平米。拥有水处理专项设计资质、省级卫生许可批件、公司综合信用等级评级为AAA级,拥有了多项水处理技术**证书,通过了ISO9001质量管理体系认证,荣获国家科技部创新基金立项支持,公司立足自我、开拓进取、已承担了多项省、市科技攻关项目。 公司拥有高级工程师5人,硕士学历10人,专职技术研发人员19人,目前已经取得了发明**2项,实用新型**11项,凭着十多年对膜分离技术的大量基础研究及应用,已经积累了多项的核心技术并开发了智能全自动软化综合控制系统,地下水除铁、除锰的多腔运行**技术,全自动软化水的节盐技术,UF超滤及MBR生物技术、节水型RO分质供水及无负压供水技术等。独立开发高纯水EDI模块及电源,可与各种进口全自动控制阀(富莱克)配套使用,成功地应用于软化水系统,纯净水(反渗透)预处理系统,中水系统及污水处理系统。其性能价格比在同类产品中具有极大优势。 已多年致力于水处理事业,水处理工程已遍及国内二十多个省、市地区。公司主营全自动软化设备及RO反渗透膜水质分离设备,UF超滤净水设备、EDI去离子水设备、电厂给水设备、全自动软化水设备、反渗透设备、矿泉水设备、除铁锰净水设备、超滤、钠滤设备、超纯水设备、分质供水设备、无负压供水设备及变频供水设备,污水设备,中水、混床设备,过滤除铁除锰、除氧等,同时销售水处理材料:石英砂、活性炭、自动加药设备,软化树脂、紫外线杀菌器、臭氧杀菌器、PP滤芯、PP滤袋、PT0.22微孔滤芯等,用于环保、化工、纺织、暖通空调、食品饮料及电厂、煤矿水处理的设计、安装、维护等一条路服务。 我公司在全自动软化水设备、纯净水系统的配件供应,设计选型,技术支持等方面有着较强的实力和独到的经验,已成为国内大多数水处理工程公司的材料供应首选厂家,公司以水处理设备材料的大批发为主,同时兼顾设备选型安装调试,并在全国各地拥有自己独立的售后服务和实验基地,在全自动软化水设备时设汁选型,安装调试及故障排除等方面有多年的经验,可为各级用户提供优质的产品,合理的价格,及时周到的售后服务!
    留言咨询

全自动超滤系统相关的仪器

  • 该系统提供了最大程度的操作灵活性和工艺放大性。可用于单抗,疫苗,血液及治疗性蛋白的中试及cGMP生产。和传统一次性技术相比,Smart TFF/Chrom的优点突出在两个方面:- 通过模块化提高了安装的简便性和快速性- 通过全自动化提高了工艺控制的及时性和再现性,历史数据的可追溯性,满足了不断提高的法规要求一台Smart控制系统可以用于超滤和层析两种应用,降低了资金投入,降低了占地面积,增加了灵活性。了解更多:也可参见本页面核心参数 – 样本下载中的资料手册。更过相关参数信息,请联系默克。
    留言咨询
  • Cogent M1超滤系统是一种完美并广泛适合于生物/ 化学大分子液体样品的分离、浓缩、透析等试验和小型制备的非常容易操作的半自动切向流超滤系统。它不仅满足生物/ 化学/ 环境科学/ 疾控实验室等的苛刻使用要求,其对21CFR Part 11法规的满足同样适合制药厂的GMP要求。因得益于默克领先的下游分离专业技术和多年以来累积的应用经验,Cogent M1包含了诸多创新和人性化的设计。这些设计不仅提高了设备的性能,而且具有极低的系统残留体积,保证了最大的可浓缩倍数和最佳的产品收率。全新升级的Cogent M1拥有创新的自动压力调节阀(Pressure Control Valve, PCV),可以实现工艺中跨膜压与压降的自动调节。系统具有一个内置天平的10 L贮罐,在外接补料泵的情况下,以补料或透析模式可处理多达100 L或更多的料液(视料液情况和滤膜性质而有所不同)。此外,系统自带的膜夹具上已集成了传感器和卫生接口,在很大程度上减少了系统的最小工作体积。根据流动特性,系统可以装配1-5个Pellicon 2 0.1 m2膜包或Pellicon 3 0.11 m2膜包。如果您选配Lab-scaleTM夹具,则支持的膜面积可从0.1 m2至1.14 m2。应用:操作方便的半自动化台式超滤系统,应用于日常小规模到中试规模超滤实验(浓缩、澄清、细胞收集、透析等)及工艺优化或中试规模的生产。- 通用性系统:适用于生产工艺缩小放大研究和小规模超滤/浓缩和透析工艺的理想设备- 高生产力:用户自行定制警报设置点和自动数据存储和导出- 操作方便、直观:多国语言显示(7种语言,包含中文)、触摸屏输入操作指令更多相关参数信息,请联系默克。
    留言咨询
  • 系统特性:- 双头蠕动泵减少脉冲,泵速:17-330 mL/min- 聚丙烯储罐,体积1 L- 最小工作体积(16 mL),系统具有极低的最小循环体积和残留量,可应用于小规模工艺研发和最大化产品回收率- 操作过程中进料压力可大至80 psi(5.5 bar)且具有较小的压力波动(3 psi),可耐受更高压差和膜透压工艺过程- 新型低残留夹具可装配一至三块Pellicon 3 88 cm2盒式超滤膜包(至264 cm2),也可同时装配三块Pellicon XL 50超滤膜包(至150 cm2),易于建立准确的同比缩小的实验模型用于工艺研发、滤膜选择和工艺参数摸索- 易于清洁,液体可通过流道完全排放,且适用于工业通用清洁剂的在线清洗(CIP)- 直观、多国语言显示(7种语言,包含中文)和触摸屏输入- 用户定制警报设置点,自动数据存储和导出- 设备坚固耐用,维护需求最小化- 真空虹吸式补料方式,满足料液补加和等体积透析工艺系统应用:使用方便的半自动化台式设备,适用于日常小规模超滤实验(浓缩、澄清、细胞收集、透析等)及小试工艺优化,是单克隆抗体、重组蛋白、疫苗、基因治疗药物、血液制品和其他生物大分子的纯化和浓缩的理想装置。- 通用性系统:适用于生产工艺缩放研究和小规模超滤/浓缩和透析的理想设备- 较高的生产力:用户自行定制警报设置点和自动数据存储- 操作方便,直观:多国语言显示、触摸屏输入操作指令了解更多:也可参见本页面核心参数 – 样本下载中的资料手册。更多相关参数信息,请联系默克。
    留言咨询

全自动超滤系统相关的资讯

  • 北京昊诺斯科技有限公司在昌平生命科学园举办密理博超滤知识讲座
    2011年4月20日,在默克密理博的支持下,北京昊诺斯科技有限公司在昌平生命科学园万泰药业会议室举行了密理博超滤操作及工业优化交流讨论会。此次研讨会由默克密理博行业市场主管-工艺解决方案部陈建锋主讲,为各位研究人员讲解超滤的各种基础知识与下游分离纯化工艺,并为各位与会者提供精美礼品,大家纷纷表示此次讲座受益匪浅,希望以后能多举办此种类型讲座。照片 北京昊诺斯科技有限公司系致力于为生命科学、生物检测、生物工程、药物研发等领域提供先进的实验室仪器设备及多层次服务的高科技公司。我们代理的国外产品绝大部分是专业领域内的世界一流品牌,主要有:美国赛默飞世尔公司索福,贺利氏品牌离心机、培养箱、生物安全柜、超低温冰箱等各类产品;默克密理博公司纯水、超滤、层析系统、流式细胞仪、完整性测试仪、生物反应器、多功能液相芯片平台;德国QIAGEN荧光定量PCR仪;日本Malcom超微量紫外分光光度系统、全自动核酸提取仪;泰世达系列实验室冻干机等。同时,同时,我们还销售同一集团下属的制造子公司北京鼎昊源科技有限公司生产的多种自产仪器,包括凝胶成像系统,各种小型台式离心机,恒温金属浴,各类振荡器,磁力搅拌器,组织研磨仪,及原位杂交工作站等等.
  • 理加LI-2100全自动真空抽提系统的海外之旅
    不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。LI-2100在海外的安装案例1. 巴西国家空间研究所(INPE)应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。科学家简介:Laura De Simone Borma (劳拉德西蒙娜博尔玛)1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。LI-2100在海外的安装案例2. 澳大利亚Flinders大学 College of Science and Engineering应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。 LI-2100在国内的部分安装案例1、沈阳气象局2、中国林业科学研究院亚热带林业研究所3、广西植物园4、中国科学院西双版纳热带植物园...发表文献1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199. 21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499. 25. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791 doi:10.3390/w12102791. 26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020. 27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321. 28. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.31. Yong LL, Zhu GF, Wan QZ et al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711 doi:10.3390/w12102711. 32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995. 34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 9369.42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2 from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807 https://doi.org/10.3390/su13020807.50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东农业科学, 47(2):54-60.61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区侧柏叶片水δ18O的模拟. 应用生态学报, 31(6): 1827-1834.63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6): 1835-1843.64. 孜尔蝶巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31(6): 1807-181665. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.67. 王锐, 章新平, 戴军杰等. 2020. 亚热带典型植物水分利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方法对比. 水土保持学报, 34(5): 267-276.69. 郝帅和李发东. 2021. 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.72. 王家鑫, 张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析. 干旱区地理, 44(5): 1449-1458.73. 王锐, 章新平, 戴军杰等. 2021. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征. 生态环境学报, 30(6): 1148-1157.74. 王欣, 贾国栋, 邓文平等. 2021. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.75. 武昱鑫, 张永娥, 贾国栋. 2021. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典型草原群落蒸散组分方法研究. 中国草地学报, 43(4): 87-95.LI-2100特点1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠2. 无需液氮:压缩机制冷,提高安全性3. 快速高效:一次可同时提取14个样品4. 全自动抽提:全过程无人值守5. 安全便捷:自我断电与自我保护功能6. 质量控制:故障提示与自动报警7. 全球首创:专利技术8. 氢氧稳定同位素前处理 性能指标提取速度>110 个/天可同时提取样品数14 个系统真空度<1000 Pa系统漏率<1 Pa/s抽提率>98%回收率99%-101%真空泵5 L/min, 24 V, 最大压力, 0.3bar制冷无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃制热电磁制热,最高制热温度可达 130℃显示与操作TFT LCD (7寸, 800*480 65536). 触摸式人机友好交互界面自动保护温度过高或超出设定温度值,加热系统自动关闭自动报警制冷系统故障提示并报警与真空泄露故障报警尺寸90 cm (H)×74 cm (W)×110 cm (D)重量120 KgLI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。
  • 盘一盘,那些年,三德科技建设的全自动制样系统
    2014年9月,三德科技正式对外发布SDIPS1000全自动制样系统(第一代),迄今已6年有余,期间,公司产品迭代升级,先后推出了1.5代智能制样系统、2代SDPS全通制样系统,及目前在售的SDRPS机器人制样系统。新技术不断发展,新产品不断涌现,那么最早实施的第一代制样系统,现在都还在运行吗?抑或早已搁浅了?今天,请大家与小编一起,来看看三德科技早期为原国电集团建设的2个SDIPS1000全自动制样系统,它们在用户那里,“过得”怎么样?1. 华能靖远发电有限公司(原国电靖远发电有限公司,以下简称“华能靖远”)用户素描:位于甘肃省白银市(距国电集团燃料智能化建设标杆电厂——国电兰州范坪不到100公里),隶属原国电集团,是一座坑口电厂,在役机组容量4×220MW,年需燃煤量约200余万吨,来煤运输方式为汽车、火车。建设内容:SDIPS1000全自动制样系统、采制对接系统特 殊 性:该公司需用的样品自动制备方案需要与采样系统无缝对接,且实现采样到0.2mm分析试样装瓶的全过程无人操作。在调研其他同类发电企业的产品应用情况、并比较三德科技与其他友商提供的自动制样解决方案,经先后3次组织专人到三德科技以及用户单位进行现场考察与体验后,最终确定使用三德科技的SDIPS1000自动制样系统。运行情况:2015年12月验收,2016年2月通过性能鉴定,目前设备运行正常,投运率大于98%,平均一天4个样,现场无人驻守运维,至今已完成制样7500余次(数据截至2021年4月15日)。项目实拍:2.国电宝鸡第二发电有限责任公司(以下简称“国电宝鸡”)用户素描:位于陕西宝鸡,隶属原国电集团,是西北750kV电网和西北与川渝电网直流联网的重要电源支撑点、陕西省规划的500万千瓦级电力能源基地之一,装机容量(4×300+2×660)MW,年需燃煤量约340万吨,来煤运输方式以火车煤为主、汽车煤为辅。建设内容:SDIPS1000全自动制样系统(含编码、封装以及与采样系统的连接)特 殊 性:2014年启动燃料智能化建设项目,在考察三德科技实施的国电靖远发电有限公司自动制样系统项目后,客户决定采用三德科技的自动制样系统。运行情况:2016年10月通过鉴定,11月以“优秀”的综合评价通过集团组织的专家组验收,目前设备运行正常,投运率大于98%,平均一天5个样左右,现场无人驻守运维,至今已完成制样7000余次(数据截至2021年4月15日)。项目实拍:真金不怕火炼,时间是最好的见证。面对燃料智能化管理这一新兴事物,在行业不成熟/产品不稳定/没有实施经验的情况下,诸多厂商蜂拥而上、跑马圈地之际,三德科技选择了“先技术,后市场”的发展路径,现如今,时间已经给出答案,厚积薄发的三德科技通过了实践的检验,做到了长期的投运,获得了市场的认可,真所谓“路遥知马力,步稳方致远”。

全自动超滤系统相关的方案

全自动超滤系统相关的资料

全自动超滤系统相关的试剂

全自动超滤系统相关的论坛

  • 全自动聚合物溶液外部过滤系统(EFS)

    全自动聚合物溶液外部过滤系统的主要功能专为GPC仪器过滤聚合物中炭黑、填料或者其它小尺寸颜料等添加剂。全自动聚合物溶液外部过滤系统的主要特点2 简单快速2 操作容易2 坚固耐用2 减少人工过滤造成的样品损失和污染2 无溶剂挥发,符合HSE规范详情见附件

  • 请教全自动样品前处理系统的知识

    请问各位大佬,有没有谁用过集“称量、溶解、稀释、过滤”等功能一体的全自动样品前处理系统?我想用这个前处理系统搭配液相色谱仪使用,实现实验室的自动化。如果有的话能请提供一下厂家,非常感谢!!类似于视频中的这个装置:http://v.youku.com/v_show/id_XMzQxNDk2NjIw.html?spm=a2h0k.8191407.0.0&from=s1.8-1-1.2

全自动超滤系统相关的耗材

  • 全自动样品制备系统
    M1030 全自动样品制备系统(ASaP),它能显著的提高经过切割、机械打磨和FIB加工的SEM样品的图象质量和分析数据的准确性,集等离子清洗、离子束刻蚀、反应离子束刻蚀、离子束喷镀功能于一身。带有气锁装置的装样系统,使得样品即使是在更换时也不影响整个设备的真空状态。样品尺寸:直径最大为25mm,厚度可达12.5mm
  • MERX全自动总汞系统样品瓶(含盖),72个/包
    认证的MERX全自动总汞系统样品瓶(含盖)40 ml,透明,72个/包
  • CHD-502N数字密度计-多样品全自动进样清洗系统
    CHD-502N数字密度计-多样品全自动进样清洗系统Multiple Sample ChangerCHD-502N数字密度计-多样品全自动进样清洗系统 主要特点:1. 连接数字密度计,由数字密度计控制操作程序。2. 可同时放置 30 个样品连续测定。3. 自动进样,排液,洗净,干燥。4. 内置真空加压泵,适用于30,000mPa.s高粘度样品测量。CHD-502N数字密度计-多样品全自动进样清洗系统 技术参数:样品数量: 30个样品。玻璃瓶尺寸: 20mL玻璃瓶。进样方式: 内置真空加压泵。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制