当前位置: 仪器信息网 > 行业主题 > >

锂电池真空干燥箱

仪器信息网锂电池真空干燥箱专题为您提供2024年最新锂电池真空干燥箱价格报价、厂家品牌的相关信息, 包括锂电池真空干燥箱参数、型号等,不管是国产,还是进口品牌的锂电池真空干燥箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池真空干燥箱相关的耗材配件、试剂标物,还有锂电池真空干燥箱相关的最新资讯、资料,以及锂电池真空干燥箱相关的解决方案。

锂电池真空干燥箱相关的资讯

  • 真空干燥箱先抽真空再加热的原因
    真空干燥箱通常会与真空泵联接使用(见下图),为样品提供加热和真空环境。 WIGGENS系列真空干燥箱安全性能优异,含有易燃性溶剂情况下可以安全进行干燥。真空干燥箱和真空泵,是有严格先后启动顺序。 真空干燥箱为什么必须先抽真空再升温加热,而不是先升温加热再抽真空呢? 1.产品放入真空干燥箱里抽真空是为了去除样品中可以抽去的气体成分。如果先加热产品,气体遇热就会膨胀。对样品将是潜在威胁。真空干燥箱的箱体是密封的,箱体内的气体膨胀,会对箱体产生潜在威胁。 2.如果真空干燥箱按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,使真空泵效率下降。 3.加热后的气体导向真空压力表,真空压力表就会产生温升。如果温升超过了真空压力表规定的使用温度范围,就可能使真空压力表产生示值误差。 真空干燥箱正确的使用方法应该先抽真空再升温加热。待真空干燥箱达到了额定温度后如发现真空度有所下降时再适当加抽一下,这样做对于延长真空干燥箱的使用寿命是有利的。WIGGENS真空控制器通过配置真空控制器,用于精确控制真空干燥箱恒定的真空度。真空控制器可以在真空干燥箱到达设定真空度后,关闭真空泵。当真空度降低,需要再次启动真空泵时,真空控制器会再次启动真空泵。 真空控制器不仅可以精确的控制真空干燥箱的真空度。通过控制真空泵的间歇启动,可以有效延长真空泵的使用寿命。
  • 真空干燥箱先抽真空再加热的原因
    真空干燥箱通常会与真空泵联接使用(见下图),为样品提供加热和真空环境。 WIGGENS系列真空干燥箱安全性能优异,含有易燃性溶剂情况下可以安全进行干燥。真空干燥箱和真空泵,是有严格先后启动顺序。 真空干燥箱为什么必须先抽真空再升温加热,而不是先升温加热再抽真空呢? 1.产品放入真空干燥箱里抽真空是为了去除样品中可以抽去的气体成分。如果先加热产品,气体遇热就会膨胀。对样品将是潜在威胁。真空干燥箱的箱体是密封的,箱体内的气体膨胀,会对箱体产生潜在威胁。 2.如果真空干燥箱按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,使真空泵效率下降。 3.加热后的气体导向真空压力表,真空压力表就会产生温升。如果温升超过了真空压力表规定的使用温度范围,就可能使真空压力表产生示值误差。 真空干燥箱正确的使用方法应该先抽真空再升温加热。待真空干燥箱达到了额定温度后如发现真空度有所下降时再适当加抽一下,这样做对于延长真空干燥箱的使用寿命是有利的。WIGGENS真空控制器通过配置真空控制器,用于精确控制真空干燥箱恒定的真空度。真空控制器可以在真空干燥箱到达设定真空度后,关闭真空泵。当真空度降低,需要再次启动真空泵时,真空控制器会再次启动真空泵。 真空控制器不仅可以精确的控制真空干燥箱的真空度。通过控制真空泵的间歇启动,可以有效延长真空泵的使用寿命。
  • 为什么真空干燥箱要先抽真空再加热?
    p  真空干燥箱通常会与真空泵联接使用(见下图),为样品提供加热和真空环境。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8fc47a3c-ea87-4a2a-9b5b-8c3d83e70789.jpg" title="1.jpg"//ppbr//pp  WIGGENS系列真空干燥箱安全性能优异,含有易燃性溶剂情况下可以安全进行干燥。真空干燥箱和真空泵,是有严格先后启动顺序。br/br//ppspan style="color: rgb(192, 0, 0) "strong真空干燥箱为什么必须先抽真空再升温加热,而不是先升温加热再抽真空呢?/strong/span/ppbr/1、产品放入真空干燥箱里抽真空是为了去除样品中可以抽去的气体成分。如果先加热产品,气体遇热就会膨胀。对样品将是潜在威胁。真空干燥箱的箱体是密封的,箱体内的气体膨胀,会对箱体产生潜在威胁。br/2、如果真空干燥箱按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,使真空泵效率下降。br/3、加热后的气体导向真空压力表,真空压力表就会产生温升。如果温升超过了真空压力表规定的使用温度范围,就可能使真空压力表产生示值误差。/pp  真空干燥箱正确的使用方法应该先抽真空再升温加热。待真空干燥箱达到了额定温度后如发现真空度有所下降时再适当加抽一下,这样做对于延长真空干燥箱的使用寿命是有利的。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ac252a0c-5a89-41ed-b4c5-4b214ded07f7.jpg" title="2.jpg"//pp style="text-align: center "strong真空控制器/strong/pp style="text-align: left "  通过配置真空控制器,用于精确控制真空干燥箱恒定的真空度。真空控制器可以在真空干燥箱到达设定真空度后,关闭真空泵。当真空度降低,需要再次启动真空泵时,真空控制器会再次启动真空泵。真空控制器不仅可以精确的控制真空干燥箱的真空度。通过控制真空泵的间歇启动,可以有效延长真空泵的使用寿命。/p
  • 真空干燥箱:工作原理、特点、技术参数及使用方法
    真空干燥箱是一种常用的实验室设备,它通过降低环境气压和升高温度,快速有效地去除样品中的水分和溶剂。由于其具有干燥速度快、干燥效果好、使用方便等优点,真空干燥箱在科研、制药、化工、食品等领域得到了广泛应用。本文将介绍真空干燥箱的工作原理、特点、技术参数及使用方法等方面的知识。真空干燥箱的工作原理是利用真空泵将箱体内的空气抽出,降低气压,同时加热样品以促进水分和溶剂的蒸发。这种干燥方法可以在较低的温度下实现,从而避免了高温对样品的损害。此外,真空干燥还可以有效地防止氧化和污染,提高干燥效果和样品质量。上海和晟 HS-DZF-6021-MT 无油真空干燥箱真空干燥箱的优点包括:干燥速度快、效率高;可降低样品在高温下变质的可能性;可避免空气中的氧气对样品产生氧化作用;可减少能源消耗,因为可以在较低的温度下实现干燥。然而,真空干燥箱也存在一些不足之处,例如:需要定期维护和保养;对样品形状和大小有一定限制;不能干燥所有类型的样品。真空干燥箱的技术参数包括真空度、温度和湿度等。真空度指的是箱体内的气压,一般分为低真空、高真空和超高真空三种。温度是控制样品干燥速度的重要因素,可根据样品的特性和需要进行调节。湿度则表示箱体内的水分含量,对于某些样品需要严格控制湿度以避免水分的引入。使用真空干燥箱时,需按照以下步骤进行操作:将样品放入干燥箱内,并将干燥箱密封;连接真空泵并启动设备;调整真空度和温度等参数以满足样品干燥需求;记录干燥时间和观察干燥效果;干燥完成后,关闭设备并取出样品。在使用过程中,需要注意以下几点:真空干燥箱应放置在平稳的工作台上,避免震动和高温;使用前需检查设备的密封性能和管道连接是否良好;根据样品的特性和要求合理设置真空度和温度等参数;如果出现异常情况,应立即关闭设备并检查故障原因;定期对真空干燥箱进行维护和保养,保证其长期稳定运行。总之,真空干燥箱是一种高效的实验室设备,可快速有效地去除样品中的水分和溶剂。在使用过程中,应按照操作规程正确使用和维护保养设备,以保证其正常运行和使用寿命。同时,还需要注意安全问题,避免意外情况的发生。
  • 上海同城服务:技术工程师上门指导真空干燥箱操作
    上海同城服务:技术工程师上门指导真空干燥箱操作 在当今快节奏的商业环境中,企业对于设备的操作效率和便捷性有着极高的要求。然而,面对复杂的技术设备,即使是最精明的客户也可能需要额外的帮助。最近,我们就遇到了这样一个情况:一位客户在我们公司定制了一款真空干燥箱,却在操作过程中遇到了难题。 幸运的是,客户与我们都位于上海,这个便利的地理位置为我们提供了一个快速响应的机会。了解到客户的需求后,我们立即采取行动,为客户安排了一位资深的技术工程师,提供上门指导服务。 我们的技术工程师携带了必要的工具和详尽的操作手册,前往客户所在地。面对面的交流让工程师能够更直接地理解客户的需求,并提供个性化的指导。工程师首先向客户详细介绍了真空干燥箱的工作原理和关键性能指标,确保客户对设备有一个全面的认识。 随后,工程师进行了现场演示,从设备启动到干燥过程的每一个步骤,都进行了详细的操作说明。客户在工程师的指导下,逐步掌握了真空干燥箱的操作流程,并对设备的功能和优势有了更深入的理解。 为了确保客户能够独立操作,工程师还特别强调了设备的日常维护和故障排除技巧,这些都是保证设备长期稳定运行的关键。客户对于工程师的专业指导和耐心教学表示了极高的赞赏。 通过这次上门服务,我们不仅解决了客户的燃眉之急,也展现了我们对服务质量的不懈追求。我们相信,通过提供这样贴心、专业的服务,能够进一步加深与客户之间的信任和合作。 未来,我们将继续秉承“客户至上”的服务理念,不断提升我们的服务水平,确保每一位客户都能获得满意的购买体验和无忧的售后支持。因为我们深知,客户的成功,也是我们不断前进的动力。
  • 瑞士SALVIS真空干燥箱VC 20现货促销!
    瑞士Salvis实验室真空干燥箱+Vacubrand真空泵套装Vacucenter现货促销!! 作为实验室一款基本的仪器,Salvis提供了20L和50L两款型号的真空干燥箱,基本满足客户不同的实验需要。源自瑞士的精密工艺,使温度的控制精度在± 0.1℃,并确保了整个腔体内温度的稳定性。 杰出的质量品质以及优良的售后服务使Salvis的产品被广泛应用于生物、化学工程、制药、食品、化妆品、电子等科研及生产领域。 无湍流干扰环境 通过精确控制的针阀,释放环境空气和惰性气体进入腔体,腔体内内伞形进气口,保证无湍流气体产生。便捷菜单 LCD显示程序操作步骤和设置信息,可编程50个独立的程序,可设置温度、时间、升温速率、风扇转速等。双安全门锁 更安全,关闭门时门贴合密封条而不会弹开。高品质设计便于清洗 腔体内部四周圆角设计,确保清洁无死角。内置隔板保证有效的热传导和最佳抗化学性能。 VC20VC50电源230/115230/115实用体积/L2050重量/kg4862外尺寸W× H× D mm545× 375× 425645× 475× 525内尺寸W× H× D mm250× 250× 320350× 350× 420隔板(标配/最多)1/31/5隔板承重/kg2020温度范围,室温+5- ℃200200温度均一性50/150℃,± ℃1.0/2.41.0/2.6温度波动150℃,± ℃0.20.2程序/步骤50/1550/15定时 h999999斜率升温YesYes泵抽速 50/60Hz m3/h1.9/2.1极限真空度 mbar15噪音 50Hz typ dBA45CE标识有
  • BHM诚征瑞士SALVIS真空干燥箱VC20代理合作
    诚征瑞士SALVIS真空干燥箱VC20代理合作 瑞士SalvisLab隶属于RENGGLI集团,是一个家专业生产实验室烘箱、真空干燥箱、培养箱及玻璃器皿清洗器的厂家,在几十年的发展过程中,始终坚持以人为本的设计理念,强调安全,精确和耐用。其生产的真空干燥箱有如下特点:* Vacucenter符合GLP/GMP标准; * 安全性能好:具有双层安全玻璃。通过压力传感器,未有真空前,不进行加热;开门后,加热停止。 * 欧洲设计理念,欧洲质量。 * 真空干燥箱和VACUUBRAND真空泵标准配套,性价比极高。 现面向全国区域诚征代理商合作,欢迎各地代理商朋友来电来函与我们联系洽谈。北京总公司电话/传真:(010) 6217 6493/(010) 6218 0570E-Mail:bmhbj@bmh-corp.com.cn上海办事处电话/传真:(021) 5448 1023/(021) 5448 1022E-Mail:bmhsh@bmh-corp.com.cn广州办事处电话/传真:(020) 8331 8289,(020) 8331 8292/(020) 8331 6160E-Mail:bmhgz@bmh-corp.com.cn 北京博劢行仪器有限公司 2006 年 2 月
  • 瑞士SALVIS真空干燥箱VC20 2006年促销-BMH
    2006年 真空干燥箱SALVIS VC20特价促销1.配置:SALVIS VC20真空干燥箱2.技术性能:SALVIS VC20真空干燥箱:1)实用体积:20L;2)最高温度:200℃;3)隔板最多3层,标配1层;4)PID控制器,LCD显示参数;5)程序 x 步骤:50 x 156)时间:999h7)可选配RS232/RS422接口3.价格:50,000RMB/台4.交货期:现货5.保修期:2年6.特惠:1)赠送德国VACUUBRAND真空泵:——型号:MZ 2C——技术参数:泵的级数 二级 最终真空度 9mbar 排气速度 50Hz 33 L/min 排气口压力 2 bar 进气口规格 10mm I.D. 出气口规格 10mm I.D. 发动机功率 180 W 发动机转速 1500/1800rpm 外形尺寸(L x W x H) 266 x 241 x 170 mm2)有效期:2006年1月至2006年6月止。7.特别提示:现面向全国范围内诚征SALVIS VC20真空干燥箱代理商,欢迎有意者与我司洽谈联系。 北京博劢行仪器有限公司电话:010-62176493 传 真:010-62180570E-mail:bmhbj@bmh-corp.com.cn 2006 年 1 月
  • 宾德发布真空干燥箱BINDER VDL 56新品
    创新点:快速,温和干燥通过大面积导热版优化热传导符合ATEX标准触摸式控制器可图形显示压力和温度值可通过USB接口读取数值大型观察窗真空干燥箱BINDER VDL 56
  • Lab Companion发布Lab Companion 真空干燥箱 OV-11新品
    应用范围:* 农业遗传研究、退火处理、半导体和其它电子部件无菌储藏、干燥、一般烘干、固体和液体的脱气、电镀、水份精密测定硅片干燥、真空嵌置、挥发性树脂和聚合物的测试基本参数:* 腔体容积:28升* 真空范围:0 ~ 0.1MPa* 接口尺寸:真空口尺寸 ?10mm, 通气口尺寸 ?10mm* 温度范围:室温+5℃ ~ 250℃* 温度波动:0.1℃* 温度变化:3.7℃* 内尺寸:302×305×302mm* 外尺寸:680×453×495mm* 净重:63Kgs操作特点:* 微处理PID控制器;* 自动校准功能和自动调节功能;* 数显定时功能:1分钟到99小时59分钟;* 背光式LED显示器和直观易懂的控制面板(分别率为0.1℃);* 高温限定设置和开门警报功能;* 可存储3组常用温度,以便随时取用 * RS-232通讯接口结构特点:* 独立真空口和通气口;* 钢化玻璃门可以清晰观察内部情况* 由于有弹簧顶住玻璃门,加上硅胶垫圈和自动门闩式的把手就可以提供完美的密封;* 块式加热器附着于内腔外壁的架子上,就可以提供均匀的温度;* 氟橡胶的门垫圈也使用酸性物质的处理(选配)。备注:* 由于参数不断跟新,如若未通知请谅解。* 技术参数符合DIN 12880标准创新点:1)密封圈改为氟橡胶,具有防腐蚀功能;2)透明钢化玻璃观察窗加装保护套,防止破裂伤害操作人员。Lab Companion 真空干燥箱 OV-11
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • OPTON的微观世界|第12期 锂电池负极材料的显微世界
    概 述 锂离子电池作为一种新型无污染、可再生的二次能源装置,具有输出电压高、比容量高、寿命长等优点,因此成为了手机、笔记本电脑、电动汽车以及航空航天领域的理想电源之选。正极材料、负极材料、电解液以及隔膜是锂离子电池的核心组成部分,电解液的主要作用是承载着锂离子在正负极之间的传导,组成部分包括锂盐、有机溶剂以及功能添加剂。隔膜起着隔开正、负极材料的作用,防止二者接触造成短路,其主要是由过孔的高分子聚合物薄膜构成,在实际应用过程中,锂离子电池充电/放电就是靠锂离子在正、负极材料中可逆的嵌入/脱出来完成。作为锂电池的核心组成之一——负极材料,今天就随小编来一起探究锂离子电池负极材料的神秘世界吧。一、样品制备 为了更好地观察锂电池负极材料的内部结构,小编们决定观察负极材料的截面,但是传统的截面样品制备方式或多或少地会使样品形貌失真,比如剪切的话会使样品表面产生应力,为了更好地观察负极材料的真实结构,于是小编们将样品制备在挡板上,采用Gatan的氩离子抛光仪对样品截面进行抛光处理后观察。图一:(A)、原始样品(B)、将样品剪切合适后粘在挡板上(C)、抛光处理后的样品图一:样品的制备二、锂电池负极材料的SEM分析采用ZEISS的sigma 500电镜观察样品的形貌,从图二的A图负极材料截面宏观形貌图可以看出锂电池负极材料分为上中下三层, 从图二的B图可以看出负极材料其形貌存在层状结构,从图二的C、D图可以看出出现了不同的成分衬度,代表着不同的元素分布。三、锂电池负极材料的元素分析 结合图三的A图SEM图和能谱面分布B、C图可以看出,锂电池负极材料的上下两层主要是石墨且掺杂有硅。自锂电池问世以来,石墨一直是负极材料的主流,石墨为层状结构,层与层之间通过范德华力结合在一起,层内碳原子统统以sp2杂化的共价键结合。其具有的优良导电性和高度结晶的层状结构,有利于锂离子的嵌入与脱出,且其具有工作电压平台较低以及稳定性好等特点,但是其理论比容量仅为372mAh/g,实际生产应用的产品已经能达到360mAh/g,接近其理论比容量,因此石墨负极已经难有提升空间。硅理论比容量高达4200mAh/g,而且具有较低的嵌锂电位,然而,硅在电化学循环过程中,体积变化高达400%,严重影响其比容量、库伦效率和循环稳定性等电化学性能,因此为充分利用硅和石墨的优点,同时克服其缺点,在石墨材料中掺硅是获得高比容量负极材料的有效途径。 根据锂电池的工作原理和结构设计,负极材料需涂覆于导电集流体上。金属箔是锂离子电池集流体的主要材料,其作用是将电池活性物质产生的电流汇集起来,以便形成较大的电流输出。通过图三的能谱面分布D图可以看出锂电池负极材料采用的金属箔是铜箔,这主要是铜箔具有良好的导电性、质地较软、制造技术较成熟、价格相对低廉等特点,因而成为锂离子电池负极集流体首选。一般将配好的负极活性浆料均匀涂覆在铜箔表面,活性材料厚度为50~100um,经干燥、滚压、分切等工序,制得负极电极,铜箔在锂离子电池内既可充当负极活性材料的载体,又可充当负极电子收集与传导体。结 论 通过扫描电镜的显微观察以及能谱分析,可以看出该锂电池的负极材料主要由掺硅的石墨涂覆在铜箔上组成,是一种常见的锂电池负极材料,人们为了获得性能更好的负极材料,已经出现了众多类型的锂电池负极材料,但是随着大家对锂电池负极材料的研究越来越深,锂电池负极材料的种类也将更加丰富。根据锂离子电池的形状锂离子电池可分为圆柱形的锂离子电池、方形的锂离子电池、扣式锂离子电池等,下图是锂离子电池的结构图。图五:(A)、圆柱形锂离子电池的结构(B)、方形锂离子电池的结构(C)、扣式锂离子电池的结构图五:锂离子电池的结构图下期有什么精彩内容呢?敬请期待吧!
  • 欧阳明高院士详解锂电池技术发展方向
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/60583ae0-3699-426f-8348-785105fbf7fb.jpg" title="ouyangminggao.jpg"//pp  近年来,随着国内外电动汽车产业的快速发展,作为核心零部件的动力电池产业备受关注,各家企业不仅要扩张产能规模确保产量供应,还面临着持续提升产品能量密度等关键指标的“攻坚战”。当前国内外动力电池技术进展如何?有哪些值得关注的前瞻性技术?未来数年的发展节奏是怎样的?近期,中国电动汽车百人会执行副理事长、中国科学院院士欧阳明高对上述行业关心的重点话题从技术角度进行回应,对业内外人士全面了解当前动力电池技术水平概况提供了重要参考。/pp style="text-align: center "strong  300瓦时/公斤目标取得重大突破/strong/pp  《汽车纵横》:安全、续驶里程长、寿命长等是消费者选购新能源汽车时考虑的关键性指标,动力电池是决定这些指标的核心零部件,近年来,在消费者需求及相关部门的政策法规推动下,安全、长寿命、高比能量的动力电池已成为产业需求的主流。比如2017年3月份,国家工信部等四部委联合颁布《促进汽车动力电池发展行动方案》,指出到2020年,要求新型锂离子动力电池单体比能量超过300瓦时/公斤。目前国内动力电池技术在这些方面进展如何?达到哪些指标?/pp  欧阳明高:按照规划,2020年要实现动力电池能量密度300瓦时/公斤目标。目前承担新能源汽车专项项目的有三个团队:宁德时代新能源、天津力神和合肥国轩。这三个团队目前采用的技术路线大同小异,即正极采用高镍三元,负极是硅碳,这种电池目前技术指标已经接近应用要求,到2020年,比能量300瓦时/公斤的电池的产业化已经取得了实质性突破,现在从比能量角度看都已经达到,例如宁德时代新能源的电池研究成果的循环寿命基本在1000次左右,能量密度达到304瓦时/公斤,其他两家也差不多。当然还有部分企业安全性标准还没有完全满足。用300瓦时/公斤的单体电池大概能做出200-210瓦时/公斤的电池系统,因为基本是软包电池,而非方形电池。国内在去年年底、今年年初,动力电池的能量密度单体达到230瓦时/公斤左右,系统大约150瓦时/公斤左右。到2018、2019年还需要再提高50-70瓦时/公斤,我认为是可以做到的。至于单体350瓦时/公斤、系统260瓦时/公斤是我们力争的目标。/pp  如何落实2025年400瓦时/公斤的目标?/pp  《汽车纵横》:刚刚您提到,实现2020年300瓦时/公斤的目标在技术上已经有重大突破。再往后展望五年,到2025年动力电池将力争实现哪些目标?将采用何种技术路线?您认为哪种前瞻技术最值得关注?目前中国在这些前瞻技术领域有无研究?/pp  欧阳明高:面向2025年产业化,我们希望冲击单体电池能量密度达到400瓦时/公斤的目标。300瓦时/公斤的实现改变的是负极,从碳变成硅碳,到400瓦时/公斤要变的是正极,目前可选的正极材料有好几种,现在新能源汽车重点专项取得突破性进展的是高容量富锂锰基正极材料,有两个单位承担了前沿基础项目,一个是物理所,改善了富锂锰基正极循环的电压衰减,达到的指标是正极循环100周之后电压衰减降到了2%以内,这是一个重大的进展。另外一个是北京大学的团队,首次研制出了比容量400毫安时/克的富锂锰基正极,实现400瓦时/公斤应该是没有问题的,甚至可能更高。这更为开发比能量大于500瓦时/公斤的新型锂离子电池提供了可能,但循环尚存在一定不确定性。/pp  更加前沿的技术是固态电池。目前国内有多家研究机构和产业单位在做,包括中科院青岛能源所、宁波材料所,物理所等,也包括宁德时代新能源、中航锂电等。最近宁波材料所与赣锋锂业合作,投资5亿元人民币,致力于推进固态电池产业化,计划2019年量产,2020年产品进入电动汽车市场。固态电池无疑是2017年全球电池领域最热的一个技术名词。/pp style="text-align: center "strong  全固态锂电池技术何以在全球大热?/strong/pp  《汽车纵横》:固态电池与我们听到的全固态锂电池是否是一回事?什么才是全固态锂电池?如何理解这些概念上的区别?/pp  欧阳明高:全固态锂电池,这几个词每一个字都不能少、不能变,“全固态”与“固态”不同,“锂电池”和“锂离子电池”不是一个概念。所谓“全固态锂电池”是一种在工作温度区间内所使用的电极和电解质材料均呈固态,不含任何液态组分的锂电池,所以我们全称是“全固态电解质锂电池”。根据其是否可以反复充放,可进一步分成全固态锂一次电池和全固态锂二次电池,一次电池其实已经有用的。全固态锂二次电池又分成全固态锂离子电池和锂金属电池,这两个概念又要区别,所谓全固态金属锂电池的负极用的是锂金属,目前在用的动力电池的负极多为碳、硅碳或者钛酸锂。/pp  全固态锂电池的概念比锂离子电池出现得更早,锂离子电池只有25年左右的历史,是日本人发明的,真正用于车上也就10多年,很年轻但是进步很快。早期所指的全固态锂电池,都是以金属锂为负极的全固态金属锂电池。这就是以前的概念。/pp  《汽车纵横》:固态锂离子电池跟全固态锂电池的具体区别是什么?/pp  欧阳明高:固态电池,不一定是全都是固态电解质,还有一点液态,是液态与固态混合的,差别在于混合的比例是多少。真正的固态锂离子电池,其电解质是固态,但在电芯中有少量的液态电解质 所谓半固态,就是固态电解质、液态电解质各占一半,或者说电芯的一半是固态的、一半是液态的,所以还有准固态锂电池,即主要为固态,少量是液态。/pp  《汽车纵横》:全固态锂电池有哪些特点特别是优势?为什么能引起全球动力电池产业的关注和投入研发?/pp  欧阳明高:主要因素是它能解决目前困扰动力电池发展的两大关键问题,即安全性差和能量密度低。全固态锂电池有几个潜在的技术优势,首先,它安全性高,由于采用高热稳定性的固态电解质,代替了易燃的常规有机溶剂电解液,电池燃烧问题可以得到有效解决。第二,能量密度高,由于金属锂的容量超高,基于相同正极时,固态金属锂电池与常规液态锂离子电池相比,其能量密度可以得到大幅提升。需要说明的是,由于固体电解质密度和使用量高于液态电解质,在正负极材料相同时,全固态锂电池优势不明显。第三,正极材料选择的范围宽,因为全固态锂电池可以直接采用金属锂为负极,不要求正极结构中必须含锂,一些高容量的贫锂态材料也可以作为正极 此外,无机固态电解质宽的电压窗口也为高电压正极材料的应用提供了可能。第四,系统比能量高,由于电解质无流动性,可以方便地通过内串联组成高电压单体,利于电池系统成组效率和能量密度的提高。/pp style="text-align: center "strong  真正的全固态金属锂电池技术尚未成熟/strong/pp  《汽车纵横》:从您介绍的优势来看,全固态锂电池能解决当前动力电池产品的不少不足之处。但它为何还没有大规模应用于市场?主要存在哪些问题?您如何评价这类技术的整体发展水平?/pp  欧阳明高:它的第一个问题是固态电解质材料的离子电导率偏低。现在有三种固态电解质,一种是聚合物,一种是氧化物,一种是硫化物。现在有用聚合物电解质的电池,搭载于法国的一些车辆上,它的问题就是需要加热到60度,离子电导率才上来,电池才能正常工作。目前氧化物电解质一般比液态的还要低很多。只有硫化物固体电解质的一些指标接近液态电解质,比如丰田就是用硫化物的固体电解质,所以固体电解质主要的突破是在硫化物的固体电解质。/pp  第二个问题就是固/固界面接触性和稳定性差。液体跟固体结合是很容易的,渗透进去即可。但是固体和固体接触性和稳定性就是它的很大的一个问题。硫化物电解质虽然锂离子导电率已经提高,但是仍然有界面接触性和稳定性问题。/pp  第三个问题是金属锂的可充性问题。在固态电解质中,锂表面同样存在粉化和枝晶生长问题。其循环性甚至安全性等还需要研究。当然还有一个问题,就是制造成本偏高。/pp  基于上述问题,特别是固态界面接触性、稳定性和金属锂的可充性问题,真正意义上的全固态金属锂电池技术,现在仍然还是不成熟的,还存在技术不确定性。目前展现出或者有突破的、有性能优势和产业化前景的主要是固态锂离子电池和固态聚合物锂电池。/pp  《汽车纵横》:目前国内外关于固态锂电池的研究进展如何?有哪些值得关注的企业或技术突破?/pp  欧阳明高:现在固态锂电池持续升温,美国、欧洲、日本、韩国、中国都在投入。各个国家心态不太一样。例如美国,以小公司、创业型公司为主。美国有两家公司值得关注,都是初创公司,一个是S-akit3,其最新研发的电池有望使电动汽车的续驶里程达到500公里,现在还处于初级阶段。还有一个Solid—State。美国主要立足于颠覆性技术。日本则专注于无机固体电解质的大容量的固态锂电池,最着名的是丰田公司,其产品将在2022年实现其商品化。丰田做的不是全固态锂金属电池,而是固态锂离子电池,其负极是石墨类,用硫化物电解质,高电压正极,单体电池容量15安时,电压是十几伏,我认为这是靠谱的。所以在日本,并没有颠覆,还是基于锂离子电池,正负极还可以用以前的一些材料或技术。韩国专注于无机固体电解质的大容量固态锂电池的研发工作,也采用石墨类负极而不是金属锂负极,与日本相似。中、日、韩三国的情况类似,因为我们已有了很庞大的锂离子电池产业链,不希望推倒重来。/pp style="text-align: center "strong  如何评价动力电池各技术路线的前景?/strong/pp  《汽车纵横》:针对当前国内外动力电池领域的技术发展现状,请您综合评估一下各种技术路线或研究方向的前景。/pp  欧阳明高:第一,锂离子动力电池有望于2020年前实现300瓦时/公斤目标,目前国内外技术研发基本处于同一水平,但安全性研究尚待加强。这种电池的核心是安全性。/pp  第二,作为实现远期目标的两类新体系,锂硫、锂空气电池方面,目前国内外进展相对缓慢,2017年没有看到突破性的进展。从原理来看,锂硫电池的重量比能量跟体积比能量基本相当,所以它的体积比能量要提上来是有相当难度的。新能源乘用车特别是轿车对体积比能量的要求可能比重量比能量还要重要,虽然有400瓦时/公斤的电池,体积比能量也只有400瓦时/升,这对于轿车而言不太好用。一般情况下,锂离子电池的重量比能量能达到300瓦时/公斤,体积比能量就可以达到600瓦时/升。锂空气电池集合了锌空气电池、氢燃料电池、锂二次电池的所有难点。相比而言氢燃料电池更具竞争优势。/pp  第三,固态电池的研发产业化持续升温,但受到固/固界面稳定性和金属锂负极可充性两大问题的制约,真正的全固态锂电池技术还没有成熟,但是以无机硫化物作为固态电解质的锂离子电池出现突破。总体看固态电池发展的路径,电解质可能是从液态、半固态、固液混合到固态,最后到全固态。至于负极,会从石墨负极到硅碳负极再到合金化负极,我们现在正在从石墨负极向硅碳负极转型,最后有可能采用金属锂负极,但是目前还存在技术不确定性。/pp  第四,中国在高容量富锂正极材料方面于2017年取得了一些突破,基于高容量富锂正极和高容量硅碳负极的革新型锂离子电池比锂硫和锂空气电池更具可行性。/pp  《汽车纵横》:根据各种技术进展的分析,您如何判断未来动力电池技术的发展趋势?预计将按照怎样的节奏推进?/pp  欧阳明高:我们专家组对动力电池技术的发展趋势做了一次优化迭代,(但这不是国家电池技术路线图的依据,仅供参考),具体如下:/pp  2020年,实现动力电池比能量300瓦时/公斤、比功率1000瓦时/公斤,循环1000次以上,成本0.8元/瓦时以内的目标是确定的,相对应的材料是高镍三元,现在国内动力电池用的镍、钴、锰的比例由3:3:3转向6:2:2,再转变为8:1:1,即镍变成8,钴的比例进一步降到1甚至是0.5。负极要从碳负极向硅碳负极转型。这是我们当前的技术变革。/pp  到2025年,正极材料性能进一步提升,富锂锰基材料目前取得重要突破,当然还会有其他材料。2020-2025年,我们要努力实现动力电池比能量从300瓦时/公斤上升至400瓦时/公斤,每瓦时成本从0.8元以内降到0.6元以内。此时一般性价比的纯电动轿车合理的续驶里程是300—400公里。/pp  到2030年,希望在电解质方面取得突破,也就是2025-2030年最大的突破可能在电解质,固态电池会实现规模化、产业化,电池单体比能量有望冲击500瓦时/公斤。2030年,常规的电动汽车续驶里程应该可以达到500公里以上。当然需要其它技术的配合。如果电耗极大,例如冬天百公里电耗高达三四十度,电池再好也实现不了。现在电动车越做越大,例如大型SUV,车身重、风阻系数大,是一个值得改进的问题。/ppbr//p
  • 应用故事 | 热质联用研究废旧锂电池极片在热解过程中的产气情况
    从2010年开始,随着新能源、3C电子和电动工具等领域的快速发展,对锂电池的需求量与日俱增,越来越多的企业投身于锂电池的生产制造,据统计,2015年我国动力电池装机总量为16.5GWh,2022年提高到296GWh。随着时间的推移,使用过程中电池的性能会逐渐衰减,直至报废,目前动力锂电池的平均使用寿命约为4-8年,因此从2018年开始,前期使用的锂电池已开始陆续退役,废旧电池的处理和回收规模后续将越来越大,据估计,2019-2025年我国退役动力电池装机总量预计将由0.2GWh上升至52.0GWh。对于废旧锂电池,目前主要有两种处理方法,一是梯次利用,即将退役电池用在储能等其他领域,这主要针对磷酸铁锂电池;二是拆解回收,即将退役电池进行放电和拆解,提炼原料,从而进行循环利用,有效节约生产成本,三元电池目前以拆解回收为主。回收的主要方法有火法冶金、湿法冶金和生物浸出等,其中湿法冶金回收率较高,日益成为锂电池回收的主要工艺方法。商用锂电池通常由塑料或金属外壳、正极(Al箔上的锂金属氧化物)、负极(Cu箔上的石墨)、电解液(LiPF6、DMC、EC、EMC等)、粘接剂(如PVDF)和隔膜组成,回收的主要目标是正极上的有价金属,如锂、钴、镍。但是,电池废料中的有毒物质在回收预处理过程中排放的废气和导致的潜在危险是一个需要考虑的严重问题。了解电池材料在热解过程中产生的废气种类,有助于选择合适的废气处理措施,降低相关的风险,优化回收工艺。本文以废旧三元电池为例,介绍热质联用方法分析拆解电池极片在热解过程中产生的逸出气体。先将废旧电池进行放电处理,然后在手套箱中拆解,拆出正极片,晾干后进行真空包装。测试仪器为STA-QMS,测试前在空气下打开包装,快速称量样品,放入坩埚,然后放入炉腔内,通入Ar吹扫,将炉腔内的气氛置换为纯净的惰性气氛,以10K/min从35℃升温到700℃,Ar气氛,质谱采用扫描模式,从1amu扫描到120amu。下图为正极片的失重及质谱信号(质谱信息较多,所以分成4张图显示),样品的失重过程主要分为3个阶段,失重量分别为3.62%、2.13%和3.09%。根据质谱的检测结果,第一个阶段的气体产物比较复杂,跟NIST谱库对照后,判断逸出气体可能为H2(m2)、H2O(m18)、HF(m19)、CxHy(m14、m15、m16、m26、m27、m29、m30、m42)、C2HF(m31、m44)、C2H2F(m44、m45、m46)、C3H4O3(m29、m43、m88)、POF3(m69、85、104),第二阶段产物相对简单,逸出气体可能为H2O(m18)、C2H6O(m15、29、45、46)和CO2(m44),第三阶段的逸出气体可能为O2(m16、m32)、CH3F(m33、m34)、CO2(m22、m44)和C2H2F(m44、m45、m46)。通过以上分析可知,200℃以下产生的含氟气体主要来源于电解液,除此以外还有溶剂挥发产生的烃类、酯类物质、及水(游离水或结合水)和氢气,200℃-380℃之间,气体产物主要为水(反应水)、溶剂分解产生的醚类气体和CO2,380℃-700℃间主要为PVDF分解的产物,气体产物为CO2及一些含氟气体,O2可能来源于正极活性物质的分解。利用热质联用可以对极片样品在整个热解过程中的气态产物进行连续检测,从而可以分析极片热解的演变过程,了解气体释出过程和气体类型,为电池回收工艺提供理论基础和指导。热质联用测试正极片分解1热质联用测试正极片分解2热质联用测试正极片分解3热质联用测试正极片分解4作者王荣耐驰仪器公司应用实验室
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 脱颖而出——岛津携手三星SDI天津工厂锁定锂电池元素分析
    为了确保材料性能和电池安全性,元素分析一直是锂电企业的重点检测项目。等离子体发射光谱(ICP-OES)作为兼具灵敏度和基体耐受性的多元素分析技术,是锂电企业元素分析的顶梁柱。天津三星视界有限公司,也称三星SDI天津工厂,于2019年10月导入了岛津ICPE-9820用于正负极材料的分析。两年多来,小I(ICPE-9820)在三星SDI工厂鉴比例、控杂质,严把质量关。今天,我们来聊聊小I与三星SDI的结缘故事。 三星SDI之天津三星视界有限公司 目前,全球锂离子电池行业(本文中所提到锂电池均指锂离子电池)呈现中、日、韩三足鼎立的格局。作为韩国锂电池三强之一,三星SDI在锂电领域的成绩颇为突出。根据韩国市场研究机构SNE Research制作的2021年11月全球动力电池企业榜数据,三星SDI动力电池装机量排名第六。 图1 三星SDI天津工厂 三星SDI天津工厂,成立于1996年9月,由三星SDI和天津市电子仪表工业总公司合资成立。作为成熟的锂离子电池生产企业,天津工厂业务涵盖显示和电池领域,尤其消费电池多年居全球前列。 小I与三星SDI之缘起 为了保证电池安全性和性能,生产中对材料和工艺均有严格的监控指标。电池材料中,正极、负极、隔膜和电解液是关键组成部分,直接影响电池安全、寿命和能量密度。其中主体元素配比和杂质含量对产品质量控制与产品性能具有重要影响。因此,元素分析是锂电池企业日常检测的重要项目。 在三星SDI天津工厂,电池产线参考韩国总部配套了两台ICP用于主量元素和杂质元素的分析。由于样品量大,小I的两台同行有时会出现故障,所以迫切需要新成员来分担检测压力。 小I与三星SDI之结缘 灵敏度和精密度评估 2019年8月,三星SDI天津工厂启动了新的仪器评估计划。小I(ICPE-9820)代表岛津参加了本轮比对测试,对给定溶液中的Cr、Fe、Ni和Zn元素进行测试,评估灵敏度和精密度。 表1 灵敏度评估结果 在灵敏度和精密度评估中,小I的各项数据均优于客户现有仪器:标液回收率为98.8%-101%,优于97.2%-103%;RSD值<0.99%,优于<3.67%. 表2 精密度评估结果 注:带*的数据由已有品牌ICP-OES测定,标液浓度为0.25mg/L. 图2 岛津ICPE-9800系列电感耦合等离子体发射光谱仪 未知样测试评估 在两个未知样品的测试中,两台仪器所得结果相近,但小I仍表现出更好的精密度。 表3 样品分析结果注:带*的数据由已有品牌ICP-OES测定。2#样品Ni的分析结果偏高,可能是样品运输中污染导致。N.D.代表未检出。 出色的表现让小I在本轮评估中脱颖而出。2019年10月,三星SDI天津工厂与岛津完成合作,小I入驻天津,开始承担起锂电正负极材料的品质监控任务。 小I与三星SDI之驻厂体验 初一入厂,小I就迅速进入角色,与其它两位ICP伙伴一同分担正极中主量元素、正负极和电解液中杂质的检测,丝毫不显新人的青涩,在主量元素和P、S等深紫外杂质元素的分析上甚至承担了更多的工作量。 不过,厂内的工作确实很辛苦,小I和小伙伴们都是24h连轴转,因为不管白天还是晚上,产线上的样品都是间隔一段时间就送来一批。小I因为是真空光室,轻装上阵不需要吹扫,晚间的样品常常以它作为主力军,小I从不挑拣拉胯,照单全测,体现出应对复杂基体的耐受性。更难能可贵的是,小I的状态很好,入厂至今,“身体”一直倍儿棒,测嘛嘛香。 小I优秀背后的坚持 小I出色的表现,得益于它的自身条件,独特的真空光室,赋予了它对P、S等深紫外区元素的高灵敏度和稳定性,更无需吹扫,运行起来经济又方便。而垂直炬管和CCD检测器的设计则让它对各种基体都能适用,而且数据处理上十分灵活。 图3 岛津ICPE-9800性能特点 当前锂电行业发展如火如荼,小I系列在锂电材料检测上的应用也越来越广泛,例如以标准加入法测试三元材料元素杂质和内标法测试主量成分(表4),在对正负极材料中S元素的测试上表现尤其出色(图4)。 表4 三元材料中杂质元素检测备注:*样品结果浓度单位%;N.D.-未检出。 图4 负极材料中S元素分析稳定性 用户心声 2019年10月至今,两年多的时间里,小I在三星SDI天津工厂坚守岗位,稳定发挥,获得了用户的一致好评。让我们听听来自用户的声音—— “我们以前有两台其它品牌的ICP,但有时候会出故障。我们这儿是24h三班倒的,仪器一坏就麻烦了。所以19年导入新ICP的时候,我们也经过了全面的考察,比如标准曲线线性、检出限、稳定性、测样速率等,最后选择了参数更好的岛津ICPE-9820。但故障率还是用久了才能体现,所以刚安装时候也担心。现在两年多用下来,都没出过什么问题,而且数据比那两台还稳定,我们很满意。现在主要就用这台的数据,它还有一点挺方便的,不用吹扫,稳定得很快,我们都爱用!” 图5 三星SDI天津工厂的岛津ICP-9820运行中 结语 ICP-OES作为兼具灵敏度和基体耐受性的多元素分析技术,对锂电池行业原材料和正负极材料、电解液等主量成分和杂质元素检测分析均具有良好适用性。岛津ICPE-9800系列在性能比对中脱颖而出,顺利入驻三星SDI天津工厂,更在两年多的使用中表现出优越的稳定性和耐受性,为锂电产品保驾护航,助力锂电行业稳健发展。 撰稿人:张敏 *本文内容非商业广告,仅供专业人士参考。
  • 岛津原子力显微镜在锂电池行业应用集英
    锂离子电池广泛用于手机、相机、玩具等小型电子设备以及混合动力汽车和电动汽车中。锂离子电池由阴极、阳极、隔膜和电解质组成,其中构成阴极和阳极的粉末状材料往往通过粘合剂保持聚集状态。无论是现有锂电池的各部分材料、工作性能,还是新型锂电池的开发,原子力显微镜均深入应用其中。01隔膜材料的工作状态下的孔隙变化目前最常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜是非常合适的观察工具。对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,隔膜需要实现在快速产热(温度120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状。范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。02锂电池正极材料工作状态观察为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。另一方面,正极中的三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图1至图3示出了EPMA数据,图4至图6示出了SPM数据。在EPMA结果中,图1是成分图像(COMPO),图2是C和F分析的叠加图像,图3是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图2中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图3中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图4是SPM获得的表面形貌图像,图5是低偏压激励下小电流分布图像,图6是高偏压激励下大电流分布图像。结合图4和图2,对比可知道活性材料的分布与形貌;结合图2,可认为图5中电流区域为导电剂;同时对比图5和图6,从图5中扣除图6的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图5和图3,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解各个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。03新型负极材料的开发最常用的负极材料是石墨,但近年来硅(Si) 因其理论容量高于石墨而被视为下一代负极材料。但是由于Si负极材料在充放电过程中随着Li离子的进出而显着膨胀和收缩,因此Si材料的短板是容易破裂且寿命短。为了弥补这个问题,需要选择合适的硬粘合剂以牢固地粘合Si材料。我们设置了两种环境观察Si负极材料的不同,一种是现实中锂电池使用的电解液,另一种是N2气体环境。样品由附着在玻璃基板上的三种聚丙烯酸粘合剂(1)、(2)和(3)组成。在电解液环境为(A),N2气环境为(B)中进行观察。(A)将样品在含有1mol/LLiPF6的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)的混合溶液中浸泡24小时。24小时后进行观察,同时样品仍浸入电解液中。(B)将上述样品置于密闭环境控制室中,用N2置换室内气氛后,在N2气体中进行观察。实验结果如上图所示。(A)在电解液中的样品(1)上观察到约10nm的突起,而样品(2)和(3)都是平坦的。该结果表明样品(粘合剂)(2)和(3)均匀分布在电解液中。(B)在N2气体中观察时,样品(1)和(2)是平坦的,但在样品(3)上观察到20nm的突起。该结果不同于在电解质中观察到的结果,并证明了在实际用例环境中进行测量的重要性。04固态锂电池开发研究目前的锂离子电池内部使用有机溶剂电解液,在制作、运输、使用过程中电解液可能泄漏,从而造成燃爆事故。而固态电池是采用固态电解质的锂离子电池,不含有任何液体。相比传统的液态锂离子电池,固态电池首先安全性能高,固体电解质取代可燃的液体电解质,有望克服锂枝晶的产生;其次能量密度高,负极可采用锂金属负极,极大提高能量密度;再次循环寿命长,可避免液体电解质再充放电过程中持续形成和生长固体电解质界面膜,理论上循环寿命可提高10倍以上;此外,固态电池电化学窗口宽达5V,高于液态锂离子电池的4.25V,适用于高电压正极材料;最后,固态电池无废液,处理相对简单,回收更加方便。当然,固态电池技术也存在一些很棘手的问题。粉体颗粒在电池充放电循环中会发生体积膨胀与收缩,由于不含有液体,因此颗粒与颗粒之间、层与层之间容易产生缝隙,带来接触不良,影响离子和电子的传输,电池内阻就会增加,在充放电过程中就会发生极化问题,导致倍率性能下降。因此,对固态电池的测试,除了要观察其形貌外,更重要的是获得表面形貌与其导电性之间的联系,分析不同形态与聚集状态对其工作状态的影响。为此,设定实验对两种固态电池材料进行分析,分别是钴酸锂(LiCoO2:以下称为LCO)和钛酸(Li4Ti5O12:以下称为LTO)。为了模拟固态电池内部工作环境,使用环境控制舱调节气氛,氧气0.7ppm或更少,水蒸气0.75ppm或更少。30微米范围内LCO形貌图像与电流分布图像30微米范围内LTO形貌图像与电流分布图像30微米LCO形貌图像和30微米LTO形貌图像均显示出2μm左右的高度差,并且表面粗糙度(Sa)分析显示,二者分别为341.5nm和333.6nm,非常相近。在LCO中还发现了几个缺口。相比之下,在LTO中没有发现间隙,表面较为完整。在30微米LCO电流分布图像中,表面电流分布不均匀,在41.7%的面积上检测到电流(使用颗粒分析软件分析)。在30微米LTO电流分布图像中,没有检测到电流,可能的原因是在未充电状态下LTO具备高电阻特性。5微米范围内LCO形貌图像、电流分布图像、粘性力分布图像5微米范围内LTO形貌图像、电流分布图像、粘性力分布图像5微米LCO形貌图像显示该电极材料中的晶粒尺寸约为2-5微米左右,并且它们之间存在间隙。同时也存在几百纳米大小的颗粒,如箭头所示。LTO形貌图像显示电极材料为板状晶体结构,箭头所示。在5微米LCO电流分布图像中,可发现电流在黄色虚线的左右两侧明显不同。对比5微米LCO形貌图像,可推测黄色虚线是裂缝的边界。此外,很明显箭头所指的几个几百纳米大小的晶粒处没有电流。推测其原因是这些颗粒因破碎脱落隔离于其他材料,未能形成电流通路。在5微米LTO电流分布图像中依然没有检测到电流。对比以上图像发现,5微米LCO粘性力图像与5微米LCO高度图像(e)和5微米LCO电流图像中的分布相关。同时5微米LTO粘性力图像与5微米LTO高度图像中的板状晶体(箭头所示)分布相关。通常,粘性力被认为是由毛细力、范德华力或样品表面水膜导致的电荷聚集引起的。然而,在本次测量中,水蒸气浓度为75ppm或更低,因此毛细力的影响很小。所以,粘性力图像可能代表范德华力或电荷力,这两种力可被用于展示电极材料的组成分布。根据上述信息,很可能LCO电流分布反映了材料的成分分布,并且电流的路径受晶粒之间的裂纹或间隙影响。LTO在这种情况下无法获得电流图像,可尝试充电以降低其内阻,然后进行测量。由以上案例可知,原子力显微镜可以广泛适用于现行的锂电池材料测试,同时在各类新型电池的研发中,也具备非常重要的作用。本文内容非商业广告,仅供专业人士参考。
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 中科院锂电池实验室落户金华
    “我们已经与中科院上海微系统与信息技术研究所签订合作协议,在金华成立以动力和储能锂离子电池相关课题研发为主的联合实验室,首期合作三年,全面提升金华汽摩配产业在动力研究方面的话语权。”昨天,浙江南博电源科技开发有限公司董事长陈庆武告诉记者,该公司的锂电池产品已经通过中试鉴定。  南博公司成立于2006年,在国家有关科研院所的技术指导下,从事研发、生产锂离子动力电池科技型新能源产品。  据了解,目前我国汽车产销量已达1300万辆。到2020年中国汽车保有量肯定要突破2亿辆,油品供应问题将非常突出。除了电动汽车,没有其他更有效的解决方案,因此电动汽车产业化发展已经列入国家“十二五”规划中。陈庆武告诉记者:“金华有青年、众泰、康迪、绿源、金大等多家整车制造厂,2009年锂电池市场需求已经超过9000万元,今年还要翻番。南博公司将投入1.8亿元资金,专门用于生产锂电池,加强产业化技术和工艺的研发。”  浙江力霸皇工贸集团副总经理李家亮,对锂电池的好处如数家珍。锂电池重量只有2.5至5公斤,是普通电池重量的1/4,使用寿命却为铅酸电池的3~5倍,锂电池电动车顺应了国家的环保要求,是我市电动车产业可持续发展的必然选择。浙江金大车业有限公司总经理章小理告诉记者,我市电动车产业发展路线一直采用跟随战略,虽然具备整车优势,但在新能源领域,是否能够摆脱跟随路线,逐步向领导者行列跨进,锂电池技术将成为关键突破口。如果南博公司能将电动车锂电池从目前的1200元降到800元,将改变金华电动车行业在国内的竞争格局。
  • 锂电池检测专题网络研讨会
    锂离子电池由于具备较高的性价比,自诞生之日起便以极快的速度抢占其他二次电池的市场份额,但是随着其应用范围的逐渐扩大以及单个电池的体积能量密度越来越高,容量越来越大,锂电池的安全性也越来越被人们所关注。为保障最终产品的质量,必须从锂电池的每个生产环节进行把控。珀金埃尔默特邀请广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,并联合TESCAN公司,举办“锂电池检测专题网络研讨会”日程安排:日期:2019年6月28日时间题目主讲人14:00-14:40动力电池关键材料检测现状 邵丹博士广州能源检测研究院主任工程师14:40-15:30珀金埃尔默锂电行业解决方案陈观宇珀金埃尔默资深应用工程师15:30-16:00TESCAN产品在电池领域表征中的应用张芳TESCAN资深应用工程师详情介绍:讲座题目一:动力电池关键材料检测现状内容简介:围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术等进行报告主讲人简介:邵丹,博士,广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,主要从事化学储能材料及产品的相关技术研发、以及先进检测技术引进。讲座题目二:珀金埃尔默锂电行业解决方案内容简介:1.锂电池正极材料主量元素分析方法介绍2.锂电池负极材料掺杂元素分析方法介绍3.锂电池电解液分析方法介绍4.ICP-MS在锂电行业的应用优势主讲人简介:陈观宇,珀金埃尔默原子光谱资深应用工程师,从事原子光谱技术多年,是ICP及ICPMS的资深应用专家,在锂电关键材料的成分分析应用领域有着丰富的实践经验。讲座题目三:TESCAN产品在电池领域表征中的应用内容简介:1. 扫描电镜微分析平台在电池正极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 2. 扫描电镜微分析平台在电池负极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 3. 扫描电镜微分析平台在电池隔膜表面结构表征的应用; 4. X射线显微镜在电池三维无损分析中的应用。 主讲人简介:张芳,TESCAN(中国)资深应用工程师,专注于电镜及电镜联用分析技术解决方案。即刻扫码占座吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制