当前位置: 仪器信息网 > 行业主题 > >

红外制样薄膜法

仪器信息网红外制样薄膜法专题为您提供2024年最新红外制样薄膜法价格报价、厂家品牌的相关信息, 包括红外制样薄膜法参数、型号等,不管是国产,还是进口品牌的红外制样薄膜法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外制样薄膜法相关的耗材配件、试剂标物,还有红外制样薄膜法相关的最新资讯、资料,以及红外制样薄膜法相关的解决方案。

红外制样薄膜法相关的资讯

  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • 前沿科技 | 全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析
    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,高也仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了大的挑战。 全新光学光热红外光谱技术光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。 红外&拉曼同步测量传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。 化学组分分布的可视化成像当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm?1处C-H伸缩振动显著增加。图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 μm线阵列。红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以佳的空间分辨率提供单波长图像。图4. 红外单波长成像层状材料的成分分布。 总结通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • 光学薄膜研究利器-日立紫外可见近红外分光光度计
    第12届上海国际高功能薄膜展会于5月17日在上海国家会展中心盛大召开,本届展会吸引了约600家薄膜相关行业的生产商和供应商。  对于光学薄膜等相关行业用户来说,必须借助紫外-可见-近红外分光光度计进行光学性能分析。  日立高新技术作为全球高端紫外-可见-近红外分光光度计生产商,参与了此次会议并,向与会者介绍了日立UH4150型分光光度计为光学薄膜研究者和生产者所能提供的专业解决方案,受到了与会用户的关注与一致好评。  日立UH4150是一款专业级别的分光光度计,对象定位于向各类光学样品。具有噪音低、准确性好、重现性高、检测器切换差异小、附件种类丰富等特点,能为客户提供完善的解决方案。 关于日立紫外/可见/近红外分光光度计UH4150,请点击链接:http://www.instrument.com.cn/netshow/SH102446/C185793.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 美国国家标准与技术局开发出太赫兹薄膜测量技术
    导读: 目前制造商们通过X-ray光谱仪和原子力显微镜来测定金属氧化物薄膜的结构。研究人员发现,还可以通过测量这些半导体薄膜的太赫兹吸收特性来精确探索它们的详细结构,这在红外和微波波段是做不到的。   概要:目前制造商们通过X-ray光谱仪和原子力显微镜来测定金属氧化物薄膜的结构。研究人员发现,还可以通过测量这些半导体薄膜的太赫兹吸收特性来精确探索它们的详细结构,这在红外和微波波段是做不到的。  5月14日消息,美国国家标准与技术局(NIST)开发了一种全新的太赫兹测量技术,能够用来监测半导体制造过程中质量缺陷和评估新绝缘材料。  通过修改现有的红外光谱测量仪,把波长转移到太赫兹波段,研究人员发现了一种全新的高效方法,可用来测量纳米级金属氧化物薄膜的结构,这种薄膜用在高速集成电路领域。  芯片制造商通过沉积复杂的金属层导体、半导体薄膜和绝缘的金属氧化物纳米薄膜来构建晶体管和导热。由于高漏电或过热可能会导致纳米器件低效或者失败,制造商们需要了解这些纳米器件的机械性能和绝缘性,以估计它们可以做得多小、能够有多高的运行频率。  当前制造商们通过X-ray光谱仪和原子力显微镜来测定金属氧化物薄膜的结构。研究人员发现,他们可以通过测量这些薄膜的太赫兹吸收量来精确探索它们的详细结构,这些在红外和微波波段是做不到的。  尽管太赫兹波对晶体和分子结构非常敏感,不过金属氧化物薄膜对太赫兹的吸收特性还是让NIST研究人员感到非常兴奋。  “没有人能够想到采用太赫兹光谱能够测量纳米厚度的薄膜,我们认为光波能够通过它们,我们观察到的信号还是很强的。”NIST的化学家和论文的作者Ted Heilweil表示。  NIST团队的人员发现,他们观察到的薄膜中的原子一起移动,吸收特定频率的光谱。通过分析这些吸收频率,研究人员可以分析他们想得到的晶体和非晶组成的金属氧化物薄膜的信息,这些的结构能够影响它们的功能。  该团队的试验显示,40纳米厚的二氧化铪薄膜在581 k (307 ° C)条件下生长,在晶体区域分布着一些不定型结构。纳米薄膜在低温下生长,但是有很多不定型结构。根据Heilweil的说法,太赫兹最低可以检测到5nm的厚度,这种技术的效率还跟金属氧化物的种类有关。该团队表示,所有实验过的金属氧化物都有不同的光谱特性。
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 普发特发布薄膜相变分析仪PTM1700型新品
    薄膜相变分析仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。薄膜相变分析仪技术特点:1、精密光学测量技术,可进行单层、多层和超小样品的测量,且灵敏度更高2、非接触式信号采集,避免了接触式探针测量对样品的损伤和不稳定性缺点3、先进的光探针技术,使得采样范围最小直径可达300微米4、全自动一-键测量,操作简单,省时、省事5、超高采样速率1测量快速、准确,工作效率高6、触摸屏操作与电脑操作两种模式,测量随心所欲7、升温速率无级可调,根据实际需求任意选择8、与DSC测量相比,具有超高性价比9、科研型与基础型,满足不同需求技术规格1、仪器型号PTM17002、工作波长1550nm (特殊需要波长可定制)3、样品台温度范围:室温~120°C,温度精度+0.1°C4、采样频率1Hz5、最小采样范围直径300um6、红外非接触测温模式7、自然冷却与风冷两种降温模式8、加热速率无级可调9、设定参数后自动测量出薄膜相变的热滞回线10、USB2.0高速数据接口11、测试分析软件可得到相变温度、热滞宽度等特性参数12.可以Exce形式导出各原始测试数据和分析数据,以word形式导出测试分析报告创新点:全自动薄膜相变分析仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。薄膜相变分析仪PTM1700型
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到智能全自动薄膜阻隔性测试仪
  • “曼”谈光谱 | 熟悉又陌生的金刚石薄膜
    一提到金刚石这个词想必大家都不陌生了,今天要说的也是金刚石家族的一个成员——金刚石薄膜。什么是金刚石薄膜?金刚石薄膜是20世纪80年代中后期迅速发展的一种优良的人工制备材料。通常以甲烷、乙炔等碳氢化合物为原料,用热灯丝裂解、微波等离子体气相淀积、电子束离子束轰击镀膜等技术,在硅、碳化硅、碳化钨、氧化铝、石英、玻璃、钼、钨、钽等各种基板上反应生长而成。几乎透明的金刚石薄膜(图片来源:网络)集诸多优点于一身的金刚石薄膜,它不仅具有金刚石的硬度,还有良好的导热性、良好的从紫外到红外的光学透明性以及高度的化学稳定性。在半导体、光学、航天航空工业和大规模集成电路等领域拥有广泛的应用前景。至今为止,已在硬质切削刀具、X射线窗口材料、贵重软质物质保护涂层等应用中具有出色的表现。随着金刚石薄膜的研发需求和生产规模不断壮大,是否有一套可靠的表征方法呢?当然有!拉曼光谱用于碳材料的分析已有四十多年,时至今日也形成了很多比较完善的理论。对于不同形式的碳材料,如金刚石、石墨、富勒烯等,其拉曼光谱具有明显的特征谱线差异。此外,拉曼光谱测试是非破坏性的,对样品没有太多要求,不需要前处理过程,可以直接检测片状、固体、微粉、薄膜等各种形态的样品。金刚石薄膜的应力值是非常重要的质量指标。金刚石薄膜和基体之间热膨胀的差异以及其他效应(如点阵错配、晶粒边界的成键和薄膜生长过程中的成键变化等)导致了生长后的薄膜存在残余应力。典型可见光激光激发的拉曼光谱在1000-2000cm-1包含了金刚石薄膜的应力信息。对于较小的应力,拉曼谱图表现为偏离本征频率的一个单峰,并且谱峰会变宽。在高达140GPa的压力下,拉曼位移甚至能够偏移到1650cm-1,与此同时线宽增加了2cm-1。下图是安东帕Cora5001拉曼光谱仪检测的一张典型的非有意掺杂的金刚石薄膜的拉曼谱图。图中可以发现,除了位于1332cm-1的一阶拉曼谱线以外,也能够观测到其他很多拉曼谱峰,典型谱峰的位置和指认如表1中所示。Cora 5001系列拉曼光谱仪在金刚石材料的检测中具备很大优势:碳材料分析模式:智能分析软件中的Carbon Analysis Model可以自动进行寻峰、进行峰形拟合,再计算碳材料特征拉曼峰的信息。一级激光:金刚石材料的拉曼检测多使用532nm激发,有时也需要使用785nm激光激发,Cora5001可以做到一级激光的安全性能。自动聚焦:Cora5001 (Direct)样品仓室内配置了自动聚焦调整样品台,根据仪器自带的聚焦算法可以轻松实现聚焦,使拉曼测试变得简单便捷。双波长可选:金刚石家族的拉曼光谱与入射激光波长密切相关,多一种波长选择也许会得到不同的信息,这为信息互补提供必要条件。“双波长拉曼”每个波长都配置独立的光谱系统,只需按一下按键即可从一个波长轻松切换到另一个波长,无需额外调整样品。
  • 豪迈集团海洋光学薄膜分部独立成新公司
    新公司成为豪迈集团健康光学与光子学部下属公司  微型光子学行业的领军人,海洋光学宣布旗下薄膜分部独立成为一家新公司,取名为海洋薄膜公司(www.oceanthinfilms.com ), 主要应用在科学、生物医药、国防、计量和娱乐行业,设计和制造获得专利的二向色滤光片及精密光学部件。     始创于1999年,海洋薄膜最初为海洋光学的分部,主要设计生产大量的二向色光学滤光片,用于根据波长选择性的光传输。这些精密光学滤光片及其他光学部件可整合到一些其它的应用上,例如可用于建筑及娱乐用安装的变色灯,可用于CCD相机及光谱成像等科学仪器,以及可用于国防目标命中系统。2008年11月,海洋薄膜收购了美国欧瑞康(Oerlikon)光学公司旗下的科罗拉多业务部门,这增强了海洋薄膜在生命科学、医疗和其他一些科学应用方面的光学部件及配件的供应能力。  海洋薄膜总裁费尔• 布什巴母(Phil Buchsbaum)说,“我们一直就被自己公司已有的挑战和机遇所激励。再加上收购欧瑞康为我们带来了额外的专业技术和生产能力,加之近期扩充了佛罗里达的生产设施,我们已经做好充分的准备立即开展工作,为各行各业生产新一代高品质的,具有创新性的光学元器件及薄膜产品。”  海洋薄膜位于美国科罗拉多,拥有110名雇员,并于近期扩充了其位于美国佛罗里达的生产设施。该团队使用高级光刻设备及真空淀积系统,为生产系统及原型光学系统提供模式化最优解决方案。  关于海洋光学——总部设在美国佛罗里达州的Dunedin市,是世界领先的光学感应解决方案供应商 - 提供光与物体相互作用的测量与解读的基本方法。加上海洋光学亚洲(中国)分部,海洋光学欧洲公司(荷兰)和Mikropack公司(德国),海洋光学自1989年以来在世界范围内销售了10万多台各种光谱仪。海洋光学的产品范围包括各种化学、生化传感器、分析测试仪器、光纤、样品池、采样附件、薄膜及光学元器件等。这些产品都广泛地被应用于医学和生物研究、环境监测、科学教育及娱乐灯光与展示等多种用途。海洋光学是豪迈集团公司下属的安全与探测部门的一个重要的子公司。
  • 宁波材料所在sp2c-COFs薄膜制备及海洋能源器件方面取得进展
    共价有机框架(COFs)材料是一类由重复有机单元通过共价键连接具有二维拓展结构的多孔晶体材料。该类材料具有高结晶度、均一孔径分布和高比表面积等特点,因此广泛应用在气体储存和分离、能源储存、光电催化等领域。   其中二维sp2碳共轭共价有机框架(sp2c-COFs)具有有序π堆叠、丰富活性位点、可调谐开放纳米孔道结构、可定制化分子构筑基元与强共价连接键等特点。并且得益于碳碳双键增强的π共轭电子跃迁、超高的化学/热稳定性及高电子迁移率等特性,sp2c-COFs的高效构建是半导体器件、能源催化、选择性分离膜等前瞻性新兴技术及苛刻环境领域内研究的热点。   然而,sp2c-COFs的构筑受阻于高度不可逆的C=C成键过程;此外,目前报道的sp2c-COFs都是以粉末形式存在的,粉末的不溶性和共价有机薄膜制备困难的问题,阻碍了这些材料在相关分离膜、能源或光电器件中的应用。   中国科学院宁波材料技术与工程研究所界面功能高分子材料团队在张涛研究员的带领下对二维sp2碳共轭共价有机框架材料可控构筑及前沿基础应用进行了深入研究。该团队前期提出多种可靠新型单体、碳碳双键构筑路径及含有稳定性增强效应sp2c-COFs的设计策略(J. Am. Chem. Soc. 2022, 144, 13953 ACS Catal. 2023, 13, 1089 Chem. Mater. 2023, 10.1021/acs.chemmater.2c03083),突破了当前缩聚策略和单体种类的局限性,实现数类高度共轭sp2c-COFs的制备。   近期,该团队提出一种表面自组装单分子层(SAM)辅助的表面引发席夫碱介导羟醛缩合反应(SI-SBMAP)技术,实现sp2c-COF薄膜(命名为TFPT-TMT和TB-TMT)在多种基底上的可控构筑(图1)。并且得益于均匀的氨基单分子层提供的反应成核位点,通过SI-SBMAP合成的sp2c-COF薄膜展现了连续均匀的形貌和高度有序的晶体结构,并拥有高的比表面积和均一的孔径分布等结构特征(图2和3)。这些优点使得该薄膜材料在海洋渗透发电装置中展现出极高功率密度和稳定性。   为了解sp2c-COF薄膜的形态演变,进一步收集了不同反应时间的样品,并通过扫描电镜对其进行了分析。已知2D COFs中的平面三嗪基团由于强的π-π相互作用有助于促进COF层沿z轴的垂直堆叠,从而导致结晶度增强并形成棒状或带状形态。   因此,与三嗪基团较少的TB-TMT薄膜相比,TFPT-TMT薄膜中大量的三嗪基团倾向于形成更长的纤维。得益于表面引发技术可适用于多种基底的优势,sp2c-COF薄膜也可以在NH2-SAM修饰的其他各种基材上制备,包括聚丙烯腈(PAN)膜、玻璃纤维、铝片等。并且在PAN基底上制备的sp2c-COF薄膜尺寸可达18cm×7cm,为大面积制备sp2c-COF薄膜提供了新的途径(图4)。   在进一步的实验中,利用TFPT-TMT薄膜高化学稳定性、明确的准一维通道、高孔隙密度的优点,将其集成到海洋渗透发电装置中。该设备在50倍盐度梯度(pH=14恶劣条件)下输出功率密度高达14.1 Wm-2,中间电阻低至17.74 kΩ,优于大多数报道的COF膜,达到商业基准(5 Wm-2)的近3倍(图5)。这项工作为sp2c-COF薄膜的合成提供了一种新型、可靠的方法,并证明了其具有在极端酸碱条件下能源相关器件中的巨大应用潜力。   该工作近期以“Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp2 Carbon-Conjugated Covalent Organic Framework Thin Films”为题发表在Journal of the American Chemical Society期刊上,本研究得到了浙江省自然科学基金(LR21E030001)、国家自然科学基金(52003279)、浙江省创新创业领军团队引进项目(2021R01005)、宁波市重点研发计划(2022ZDYF020023)的支持。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • “金刚石薄膜电极式海洋盐度传感器研制与应用”获2022年度青岛市科技进步一等奖
    8月22日上午,青岛市委、市政府召开全市科技创新大会,深入学习贯彻习近平总书记关于科技创新的重要论述,认真落实全省科技创新大会精神,总结成绩,表彰先进,研究部署我市科技创新工作。市委书记陆治原出席会议,为市科学技术最高奖获得者颁奖并讲话,市委副书记、市长赵豪志主持,市人大常委会主任王鲁明出席。大会宣读了《青岛市人民政府关于2022年度青岛市科学技术奖励的决定》。2022年度青岛市共授予科学技术最高奖1人,自然科学奖10项(一等奖3项、二等奖7项),技术发明奖3项(一等奖1项、二等奖2项),科技进步奖105项(一等奖22项、二等奖83项),国际科学技术合作奖1人。山东省科学院海洋仪器仪表研究所作为第一完成单位共获市科学技术奖4项,其中科技进步一等奖2项(全市共22项),二等奖2项;获奖数量创历史新高。   “山东省科学院海洋仪器仪表研究所海洋仪器装备成果转化卓越贡献团队”荣获2022年度青岛市科技进步奖科技成果转化卓越贡献个人(团队)类一等奖(全市共3项)。该奖项体现了研究所在科技成果转化工作的突出成绩和社会贡献。近年来,研究所通过不断探索创新,牵头建设国家海洋技术转移中心海洋仪器领域分中心、国家海洋监测装备产业技术创新战略联盟、青岛市海洋监测装备创新创业共同体,加入了青岛市科技创新服务机构库,构建了从市场技术需求对接、专利布局与保护、成果中试、成果推广应用、成果产业化等全链条技术服务体系;打造了可复用可移植的科研机构成果转化模式;推动了系列具有自主知识产权的重大仪器装备产业化;成立产业化公司8家,总注册资本18457万元,社会资本投资5807万元,提供就业实习岗位28个,工作岗位上百个,已吸引就业人员70余人。   “金刚石薄膜电极式海洋盐度传感器研制与应用”荣获2022年度青岛市科技进步一等奖,彰显了团队在海洋盐度传感器领域的领先地位。该项成果由海洋功能薄膜材料与应用创新单元盖志刚研究员主持完成,突破了海洋盐度核心传感电极材料及其器件化“卡脖子”技术,建立了从金刚石薄膜敏感材料设计制备,到盐度传感器研制应用及系列化传感器市场化的国产化替代技术链条,形成了系列化的温盐深传感器产品,打造核心技术自主可控、国内唯一的金刚石薄膜温盐深传感器产品线,有力支撑了国家海洋立体监测网络建设和海洋强国战略。
  • 宁波材料所氧化物薄膜晶体管人工光电突触研究取得进展
    人工视觉智能技术在安全、医疗和服务等领域颇有应用潜力。然而,随着网络化和信息化的发展,基于冯诺依曼构架的现有视觉系统因功耗问题难以实时处理海量激增的视觉数据。仿生人类视觉的光电突触器件可集图像信息采集、存储和处理于一体,有效解决现有视觉系统存在的时效性、功耗等问题。非晶氧化物半导体薄膜晶体管(TFT)作为传统电子器件在显示、电子电路等领域已实现产业化应用。因此,基于氧化物TFT的创新器件在产业工艺兼容性、与后端电路的在板集成等方面优势明显,在仿生人类视觉神经突触器件的研发方面,亟待解决如可见光响应弱、频率高效选择性、不同波段信号串扰等一些关键科学和技术问题。   中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队阐明了非晶氧化物半导体器件中与氧空位息息相关的突触权重调控的微观机理,为提高可见光响应奠定了理论基础,设计了背沟道修饰pn异质结的光电突触TFT,有效耦合了三端器件的栅压调控和两端器件的内建电场调控功能,兼具高光电响应、易集成、低功耗等优势。   近期,该团队携手福州大学教授张海忠团队,设计了基于InP量子点/InSnZnO的光电TFT的仿生视觉传感器,将氧化物半导体优异的电传输特性和InP量子点良好的宽光谱响应特性有机结合,使器件具有优异的栅极可控性和可见光响应特性,通过简单控制栅极偏置实现初始状态的调控,仿生模拟了人眼暗视和明视环境下适应功能的切换。该工作构建的TFT阵列在感知红绿蓝三原色字母时均表现出逼真的环境自适应特征。此外,基于该光电传感阵列的三层衍射神经网络用于手写数字识别模拟,准确率可达93%。该研究为开发环境适应性人工视觉系统开辟了新途径,并对神经形态光电子器件的研发具有启发性意义。   相关研究成果发表在《先进功能材料》(Advanced Functional Materials,DOI: 10.1002/adfm.202305959)上。研究工作得到国家自然科学基金和宁波市重大科技攻关项目等的支持。人眼明暗适应过程与氧化物光电薄膜晶体管光电流变化过程的类比演
  • 1950万!武汉大学采购原子层薄膜沉积仪等
    项目编号:HBT-13210048-225732项目名称:武汉大学原子层薄膜沉积仪、三维激光扫描测振仪、原位光电热催化真空红外分析平台采购项目预算金额:1950.0000000 万元(人民币)最高限价(如有):1950.0000000 万元(人民币)采购需求:本项目为3个项目包,接受同一供应商多包投标与中标。具体内容见下表。主要技术及服务要求等详见第三章货物需求及采购要求。包号序号货物名称是否接受进口产品单位数量是否为核心产品项目包预算(万元)011原子层薄膜沉积仪是台1是350021三维激光扫描测振仪是台1是500031原位光电热催化真空红外分析平台是台1是1100 合同履行期限:交货期:01包合同签订后 270 日内;02包合同签订后 180 日内;03包合同签订后 240 日内。本项目( 不接受 )联合体投标。
  • 岛津积极参与福建省光电薄膜科技茶会
    近日,由福州大学和福建省发改委6.18组委会办公室主办、福建省平板显示技术工程实验室和6.18项目成果交易服务中心承办、岛津国际贸易(上海)有限公司赞助的福建省光电薄膜科技茶会于福州大学召开。参会来宾有福建省发改委和福州大学的领导、福建省光电薄膜行业的相关专家和上下游企业领导。岛津公司积极参与了本次科技茶会。茶会会场情景 大会由福州大学的郭守良教授主持,福州大学的领导首先致欢迎词、福州大学郭守良教授介绍了福建省平板显示技术工程实验室功能及技术成果;福州大学于光龙博士介绍了光电薄膜技术;福州大学李福山博士介绍了有机光电薄膜技术及其应用。 岛津国际贸易(上海)有限公司上海分析中心王娟娟介绍了题为《岛津紫外可见近红外分光光度计在光学镀膜、半导体等行业的应用》,介绍了岛津UV3600和SoldSpec-3700特点以及在光学镀膜、半导体等行业的应用实例。近年来,随着光学材料的发展,对近红外波段的反射和透过的测量也越来越重视。岛津UV-3600是具有世界领先水平的高性能的紫外可见近红外分光光度计,具备高灵敏度的世界上独一无二的三检测器系统,保证了整个测量范围的高灵敏度,并采用高性能的双单色器实现了超高的分辨率和超低的杂散光。测量范围覆盖紫外、可见和近红外区域,满足多种领域的测量要求。岛津的紫外可见分光光度计产品线非常丰富,从最普通的单光束分光光度计到测量范围可以扩展到深紫外、近红外区域的UV-VIS-NIR分光光度计。岛津高端产品SolidSpec-3700/3700DUV采用了PMT/InGaAs/PbS三个检测器,新加入的InGaAs实现了近红外区的超高灵敏度;并重新设计光路,设计了超大的样品室,实现了大样品的无损测试,同时在主机标准配置了积分球装置;通过使用最新设计的检测器,光源,以及积分球,使得SolidSpec-3700DUV的测试范围可以扩展到165nm。岛津紫外产品的先进性和其独特的应用引起与会者的高度关注。岛津公司上海分析中心王娟娟介绍岛津紫外可见近红外分光光度计在光学镀膜、半导体等行业的应用 会议最后,福建省发改委项目成果推进处的聂秉丰对大会做了总结发言。会后,会代表参观了福州大学的福建省平板显示技术工程实验室,并在参观过程中进行了热烈的讨论。与会者参观福州大学的福建省平板显示技术工程实验室 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 新品发布:FOLI30V真空型傅里叶变换红外光谱仪
    产品简介FOLI30V真空型傅里叶变换红外光谱仪,是荧飒光学全新推出的一款高端研究级红外光谱仪。与传统的红外光谱仪不同,真空红外,顾名思义,就是采取全真空光学设计,所有红外光路及样品均处于真空环境中,测试过程无需担忧大气中CO2和水蒸气的强吸收带来的影响。这种设计,既提高了整体光路的光通量,又有利于检测诸如单分子层薄膜的弱信号。目前,真空型红外已经广泛应用在纳米表面分析、聚合物工业、材料科学、制药、半导体及催化等领域。FOLI30V真空型红外光谱仪,整机采用全铸铝材质,独立式光学腔设计,配置无油减震泵,可对整体光学腔进行快速抽真空,并实时显示真空度。主机配置有密封隔离罩,用户可以单独对样品腔进行真空操作,极大提高用户的测样效率。FOLI30V真空型红外光谱仪,可选配近-中-远全红外波段,标配独特的红外元器件,一次测量即可采集样品的中红外及远红外谱图,覆盖6000-50cm-1光谱范围,获得样品分子全部的振动和转动结构信息,而无需担心远红外波段强烈的水蒸气吸收干扰。此外,FOLI30V可以配置外置水冷汞灯光源及液氦Bolometer检测器,使用户的测量范围扩展到10 cm-1,达到太赫兹的研究波段。同时,用户可以更换近红外光学系统,软件自动切换光路,使光谱范围达到12500 cm-1,在同一光学平台上,真正实现远、中、近红外谱区的研究。除了标配的光路之外,FOLI30V可以配置多个外接光路口,连接各种外置光学腔,比如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等,极大丰富了研究者的光学平台和研究领域。FOLI30V配置有各类无机化合物、有机金属络合物、聚合物、添加剂、有机化合物等红外光谱数据库,数据库全部显示中文名称。此外,软件提供用户快速自建库功能,允许用户开发新的中文数据库,以便不断更新自我检测能力。产品特点* 全真空的光学设计,真空度≤0.2mbar;* 软件自动切换近、中、远谱区检测器和光源覆盖整个红外谱区12,500-10cm-1;* 一次测量获取中、远谱区的光谱信息:6,000-50cm-1;* 高光谱分辨率: ≤0.25cm-1 * 去除大气中水蒸汽、CO2的强吸收干扰;* 不受实验室环境温度变化的影响;* 光通量更高,更灵敏;* 稳定性更高,可重复性更好;* 可配备纯金刚石晶体的ATR附件,实现真空状态下测量;* 可整体或单独对样品腔进行抽真空,提高测试效率 * 可配置多个外接光路口,连接各种外置光学腔,如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等 * 可连接长光程气体池,测量高分辨气体光谱。产品参数配置清单应用领域* 自组装超薄膜研究* UHV真空密封超高真空腔* 低温基质隔离* 硅单晶中III、V族杂质的定量(B,P,Al,Sb,As,Ga,In)* 真空环境下对催化剂进行原位漫反射表征* 无机及有机配位化合物的研究* 分子晶体的晶格振动吸收* 气体分子的纯转动光谱的研究欢迎咨询产品咨询热线:021-59130260公司地址:上海市嘉定区沪宜公路1101号南翔智地三期-越界产业园,201802邮箱:info@insaoptics.com网址:www.insaoptics.com
  • 宁波材料所在耐蚀石墨烯薄膜缺陷修复方面取得进展
    石墨烯以其优异的化学稳定性和不透过性被认为是最具潜力且已知最薄的防腐材料。化学气相沉积法(CVD)常用来制备大面积和高品质的石墨烯薄膜,但研究人员发现CVD法生长石墨烯的过程中不可避免地会引入不同类型和不同尺寸的本征缺陷,如空位、针孔、裂纹和石墨烯岛晶界等。缺陷的存在,导致金属基体直接暴露在腐蚀介质中,引发金属基体和石墨烯之间的电偶腐蚀,加速了金属基体的腐蚀速度。缺陷除了会降低石墨烯薄膜的防腐性能外,还会降低电学性能,尤其是在腐蚀发生以后。目前已有一些修复石墨烯缺陷的方法,比如通过原子层沉积(ALD)方法在石墨烯上沉积钝化氧化物(例如ZnO和Al2O3)。氧化物覆盖整个石墨烯表面,可以提升石墨烯膜层的耐腐蚀性能。但是,ALD方法需要数小时且对缺陷不具有高的选择性,沉积在石墨烯的无缺陷区域的氧化物往往会显著降低石墨烯的电学性能。到目前为止,修复石墨烯缺陷的最大挑战是高效性和精准性,同时又不影响其化学稳定性和电学性能。近期,中国科学院宁波材料技术与工程研究所海洋实验室苛刻环境材料耦合损伤与延寿团队设计了一种快速、精准修复石墨烯缺陷的方法,可以在15分钟内高效地修复石墨烯上多尺度和多类型缺陷,在提高石墨烯膜层腐蚀防护性能的同时不影响石墨烯优异的导电性能。研究人员基于溶液蒸发过程中1H,1H,2H,2H-全氟辛硫醇(PFOT)分子在石墨烯缺陷位置的原位自组装(图1),通过硫醇与缺陷位点暴露的铜基底形成化学键快速修复缺陷。采用原子力显微镜和拉曼光谱联用技术验证PFOT修复石墨烯缺陷的精准度,发现PFOT选择性吸附在不同类型和尺寸的石墨烯缺陷上,在石墨烯完整区域没有出现PFOT分子。图1 CVD石墨烯涂层缺陷的快速修复过程示意图研究人员通过显微红外、XPS和DFT计算(图2)揭示了化学键的形成机制,实验表征和DFT计算得出的结果具有非常好的一致性。PFOT分子与暴露在缺陷位置的基底铜原子和石墨烯缺陷边缘的碳原子形成非常强的共价键,并且,PFOT分子与完整无缺陷的石墨烯表面形成弱的范德华键,在清洗过程中很容易去除,这就是PFOT精准修复石墨烯缺陷的原因。图2 PFOT修复石墨烯缺陷的六种吸附构型此外,硫醇与基底铜原子和缺陷边缘碳原子之间的化学键导致PFOT分子扩散到缺陷位置的Ehrlich-Schwoebel势垒降低。这就使得PFOT分子可以很快(仅在15分钟内)且精准的修复石墨烯缺陷。研究人员进一步使用FIB制样并采用TEM观察修复后缺陷位置石墨烯与PFOT分子的微观结构,发现PFOT分子只在石墨烯缺陷处的铜基底上生长,与无缺陷完整石墨烯具有明显且精确的分界,这充分验证了上述PFOT修复石墨烯缺陷机制和化学键合机制(图3)。图3 PFOT修复石墨烯缺陷的显微机制该铜基石墨烯缺陷精准修复的方法展现出普适性,除了PFOT分子以外,高效且长效的修复石墨烯缺陷需要满足以下三个关键要求:(1)修复物质必须与金属基底有牢固的化学键合,确保长期的化学稳定性,使得修复缺陷具有长效性;(2)修复物质不会与完整无缺陷的石墨烯表面形成化学键,确保修复不会影响石墨烯优异的电学性能;(3)修复物质含有疏水性官能团,以降低腐蚀性介质在表面的润湿性从而提升石墨烯膜层的腐蚀防护性能。
  • 薄膜透湿性、透氧性、透气性标准物质,让您的仪器有标准可依
    广州标际包装设备有限公司薄膜透湿性、透氧性、透气性标准物质研讨会(第二期)在广州东山宾馆顺利举办,并取得圆满成功。本次研讨会受到了各界专家的高度重视,中检院、包装联合会、广州质检、广州药检、安姆科、南方包装、伊利集团、华南计量院、贵州计量院、湖南工业大学等纷纷出席了本次标准物质发布会,共同见证这一盛举,掀起了一股对广州标际产品关注的新浪潮。本次研讨会的主要内容有:1、透气性、透氧性、透湿性标准物质简介、研制过程及应用;2、标准物质校正、校准、检定方法;3、标准物质测试及性能介绍;4、透气性、透氧性、透湿性标准物质不确定度评定;5、透气性、透氧性、透湿性测试过程数据异常及误差分析;6、包材实验室建设方案;7、仪器用户权限和数据追踪介绍。近年来,因包装质量隐患引发的食品药品霉变、酸败、氧化、潮解、涨袋等安全问题愈发凸显,国务院下发的《计量发展规划(2013-2020年)》中,食品安全、药品安全更是成为重中之重,促使食品企业开始重新审视包装质量控制的重要性。标准物质主要应用于食品包装和药品包装的透气性、透湿性、透氧性进行校正、校准和检定。标准物质是检验食品药品包装保证的最重要一道工序。广州标际研制出薄膜透气性、透氧性、透湿性标准物质,先后获国家二级标准物质认定,成为亚太地区首家薄膜透气性、透氧性、透湿性标准物质研制单位。广州标际研发的透气性标准物质适用于所有GB/T1038-2000压差法透气性仪器校正、校准及检定;透湿性标准物质适用于所有GB/T1037-1988杯式法透湿性仪器校正、校准及检定;透氧性测定仪适用于所有GB/T 19789-2005电量法透氧仪仪器校正、校准及检定。
  • 岛津应用:多层薄膜的可视观察的同步测定
    使用岛津红外显微镜AIM-9000及AIMsolution分析软件,可以在对扫描点进行可视观察的同时,测定该扫描点的光谱。通过可视观察的同步测定可以实时确认各扫描点的图像和光谱。另外,因为AIMsolution分析软件以相同颜色显示各扫描点及其光谱,所以不仅可视觉确认扫描信息,还可以简单地进行大气校正等数据处理和检索操作。 本文向您介绍通过可视观察的同步测定对多层薄膜进行分析的示例。使用AIM-9000、AIMsolution Measurement软件和AIMsolutin分析软件,在每一个操作步骤都可以瞬间获得准确的数据,实现了前所未有的轻松分析。 了解详情,敬请点击《可视观察的同步测定-多层薄膜的透射测定-》
  • 纳米薄膜材料制备技术新进展!——牛津大学也在用的薄膜沉积系统,有什么独特之处?
    一、纳米颗粒膜制备日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。集成了纳米颗粒源的MiniLab125磁控溅射系统 传统薄膜材料的研究专注于制备表面平整、质地致密、晶格缺陷少的薄膜,很多时候更是需要制备沿衬底外延生长的薄膜。然而随着研究的深入,不同的应用方向对薄膜的需求是截然不同。在表面催化、过滤等研究方向,需要超大比表面积的纳米薄膜。在这种情况下,纳米颗粒膜具有不可比拟的优势。而传统的磁控溅射在制备纯颗粒膜方面对于粒径尺寸,颗粒均匀性方面无法实现控制。气相沉积法、电弧放电法、水热合成法等在适用性、操作便捷性、与传统样品处理的兼容性等方面不友好。在此情况下,Moorfield Nanotechnology推出了与传统磁控溅射和真空设备兼容的纳米颗粒制备系统。不同条件制备的颗粒粒径分布(厂家测试数据)不同颗粒密度样品(厂家测试数据)纳米颗粒制备技术特点:▪ 纳米颗粒的大小1 nm-20 nm可调;▪ 多可达3重金属,可共沉积,可制备纯/合金颗粒;▪ 材料范围广泛,包括Au、Ag、Cu、Pt、Ir、Ni、Ti、Zr等▪ 拥有通过控制气氛制造复合纳米粒子的可能性(类似于反应溅射)▪ 的纳米颗粒层厚度控制,从亚单层到三维纳米孔▪ 纳米颗粒结构——结晶或非晶、形状可控纳米颗粒膜的应用方向:▪ 生命科学和纳米医学: 癌症治疗、药物传输、抗菌、抗病毒、生物膜▪ 石墨烯研究方向:电子器件、能源、复合材料、传感器▪ 光电研究:光伏研究、光子俘获、表面增强拉曼▪ 催化:燃料电池、光催化、电化学、水/空气净化▪ 传感器:生物传感器、光学传感器、电学传感器、电化学传感器 二、无机无铅光伏材料下一代太阳能电池的大部分研究都与铅-卤化物钙钛矿混合材料有关。然而,人们正不断努力寻找具有类似或更好特性的替代化合物,想要消除铅对环境的影响,而迄今为止,这种化合物一直难以获得。因此寻找具有适当带隙范围的无铅材料是很重要的,如果将它们结合起来,就可以利用太阳光谱的不同波长进行发电。这将是提高未来太阳能电池效率降低成本的关键。近期,牛津大学的光电与光伏器件研究组的Henry Snaith教授与Benjamin Putland博士研究了具有A2BB’X6双钙钛矿结构的新型无机无铅光伏材料。经过计算该材料具有2 eV的带隙,可用做光伏电池的层吸光材料与传统Si基光伏材料很好的结合,使光电转换效率达到30%。与有机钙钛矿材料相比,无机钙钛矿材料具有结构稳定使用寿命更长的优势。而这种新材料的制备存在一个问题,由于前驱体组分的不溶性和复杂的结晶过程容易导致非目标性的晶体生长,因此难以通过传统的水溶液法制备均匀的薄膜。Benjamin Putland博士采用真空蒸发使这些问题得以解决。使用Moorfield Nanotechnology的高质量金属\有机物热蒸发系统,通过真空蒸发三种不同的前驱体,研究人员成功沉积制备出了所需要的薄膜。真空蒸发具有较高的控制水平和可扩展性,使得材料的工业化制备成为可能。所制备的薄膜在150℃退火后,XRD图。所制备的薄膜在150℃退火后,表面SEM图 三、Moorfield 薄膜制备与加工系统简介Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立二十多年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。高精度薄膜制备与加工系统 – MiniLab旗舰系列和nanoPVD台式系列是英国Moorfield Nanotechnology公司经过多年技术积累与改进的结晶。产品的定位是配置灵活、模块化设计的PVD系统,可用于高质量的科学研究和中试生产。设备的功能和特点:▪ 蒸发设备:热蒸发(金属)、低温热蒸发(有机物)、电子束蒸发▪ 磁控溅射:直流&射频溅射、共溅射、反应溅射▪ 兼容性:可与手套箱集成、满足特殊样品制备▪ 其他功能设备:二维材料软刻蚀、样品热处理▪ 设备的控制:触屏编程式全自动控制
  • 行业解决方案 | 布劳恩赋能钙钛矿薄膜制备
    钙钛矿(Perovskite)是具有特定晶体结构的材料,晶体结构中可以嵌入许多不同的阳离子,从而可以开发多种工程材料。在过去几年中,这种材料已被广泛用于钙钛矿太阳能电池(PSC)的研发。钙钛矿太阳能电池是一类以金属卤化物钙钛矿材料作为吸光层的太阳能电池。作为第三代新型太阳能电池,在过去的几年里发展极为迅速。单节钙钛矿太阳能电池的转换效率已经从 2009年的3.8%上升到2023年的26.1%。钙钛矿/晶硅叠层太阳能电池转换效率已达到33.7%,超过了单节晶硅太阳能电池所达到的最高转换效率。相比于晶硅电池,钙钛矿电池具有原料成本低、生产工艺简单,极限转换效率高、高柔性等优势,可以应用于光伏发电、LED等领域,发展前景广阔。作为光伏行业的重要参与者,MBRAUN在钙钛矿薄膜制备应用方面具备丰富的研发和产业经验。可结合客户需求,为客户提供从研发、中试到量产级别的设备,系统和半自动/自动化整体解决方案。以下是MBRAUN部分相关产品概览:01物理气相沉积钙钛矿材料具有蒸发温度低,腐蚀性强,难以共蒸等特点,从而影响工艺的可重复性和稳定性。MBRAUN专门设计了拥有专利技术的真空镀膜系统用于蒸镀低沸点钙钛矿材料。该系统的核心理念是对整个系统进行温度控制,以防止出现沉积后的二次蒸发现象。所有部件均均采用耐腐蚀材料和易于清洁维护的特殊设计,特别适用于具有腐蚀性和毒性的钙钛矿材料。目前该系统已被多个知名学府和研究机构应用,2022年12月,德国HZB使用PEROvap蒸镀系统制备的钙钛矿/晶硅叠层太阳能电池的转换效率达到32.5%。02旋涂在实验室级别的钙钛矿研究中,旋涂法是最被广泛应用的一种方法。尽管这种方法材料利用率很低,且随着基底面积增大,中心和其辐射边缘成膜不再均匀,但是对于优化薄膜厚度,研究钙钛矿结晶及其分解机理有极大的方便之处。MBRAUN提供的旋涂设备具有可编程功能,能够编辑储存包括速度、加速度和旋涂时间在内的多个参数,方便用户灵活地开展前沿研究,尤其是研究对空气敏感的材料。同时可提供各种可选配件,如半自动注液系统、脚踏开关和内衬(便于清洁)等。全系列标准的和定制的真空吸盘,带有快速更换装置,使旋涂功能变得更加全面完善。03狭缝涂布狭缝涂布机的设备造价显著低于真空镀膜设备,却可以达到很高的材料利用率(高达95%)。狭缝涂布技术广泛应用于许多前沿高科技领域,可以将液体材料涂布到刚性或柔性基板上以制备功能膜层。特别是在大尺寸大容量薄膜太阳能电池的生产制造上,狭缝涂布技术不断获得业界关注并被普遍认为具备产业化潜力。在狭缝涂布技术应用中应特别注意环境中粉尘对涂布工艺的影响。在不合格的无尘环境下进行狭缝涂布工艺,纳米级薄膜(干膜厚度)将被完全破坏。为了避免这个问题,MBRAUN开发了小型洁净系统,可以在惰性气体环境下运行,并在该环境内同时实现ISO1的洁净等级。04热板湿法制膜设备需要经过良好的固化后才能形成均匀的薄膜,以制备高效率的器件。热板是MBRAUN工艺设备系列中的最新设计之一,用于在可控条件下固化在刚性基片上沉积的有机薄膜。具有非常好的温度均匀性、温控精度、工艺稳定性、可重复性,以及高度的灵活性,应用范围覆盖基础研究到复杂的制造工艺。05自动化当用户开始关注如何消除人为失误、增加产能以及提高工艺重复性和稳定性时,就一定会需要自动化解决方案。MBRAUN作为钙钛矿电池领域的整体方案头部厂商,在超净生产环境管控(无水、无氧、无尘),自动化物流,工艺生产和检测设备集成整合,生产安全管理,生产信息记录等领域具备丰富的技术和经验储备。多年来,MBRAUN设计并交付了一系列从半自动化到全自动化范围的高度集成的系统,为客户量身定制解决方案,充分满足客户的每个特定需求,在行业内获得高度好评。如果您有相关需求,欢迎致电布劳恩!
  • 涂布纸和带纹理薄膜的准确渗透测试
    数据研究证明,纸质包装是塑料包装的最佳替代品。因此市场上推出了许多新的纸基和塑料纸混合包装。虽然纸基材料更可持续,制造成本更低,但纹理和不规则表面会导致边缘扩散和气体入侵。因此这种材料很难评估渗透性。MOCON新开发的纸基材料测试舱盒,既节省了时间又提高了实验室的效率,使这项繁杂的任务变得简单了。纸质阻隔膜通常是涂层或多层结构,这使得渗透测试更加困难涂布纸或纹理薄膜的工艺和结构意味着评估这些材料通常是困难和主观的。测试时样品的边缘部位给气体横向扩散创造了条件,测试气体和载气通过其进入测试腔并影响测试结果。因为正在分析的测试气体流量可能会被稀释,从而产生较低的渗透率,或者通过泄漏造成传感器感应到额外的测试气体,从而增加气体流量。涂层纸结构突出了扩散机制和边缘泄漏MOCON涂层纸渗透测试解决方案消除边缘扩散并简化样品制备传统测试使用铝箔面罩来测试薄膜渗透率,需要大量的准备时间和复杂的设置,增加了人为因素的风险,导致可重复的数据更少。边缘效应舱盒能够在不使用面罩、油脂或环氧树脂的情况下测试涂布纸或带纹理的薄膜。测试过程非常简单,只需放置好裁剪样品并扭紧其周边螺钉即可。凸起的圆形边缘限定了测试区域(5cm² 或10cm² ),在形成气密密封的同时消除了边缘扩散的可能性。一旦扭紧螺钉,凸起的边缘就会径向压紧薄膜,防止气体在测试区域外横向流动(图1)。因为密封是通过压缩力实现的,所以不需要铝箔面罩和环氧树脂,从而提高了测试效率。图1.消除纸张结构中的边缘扩散传统测试情况下,铝箔面罩无法完全粘附到所有涂层和基底上,导致了高于准确结果的氧气透过率(OTR)值。与传统测试相比,边缘效应舱盒可以对表面粗糙或纹理薄膜形成密封,OTR的数值更准确(图2)。图2.使用传统面罩与边缘效应舱盒的OTR结果对比这种专用的边缘效应测试舱盒与MOCON所有的新型渗透仪器兼容,使您能够更轻松地获得涂布纸或者纹理薄膜的可靠测试数据。MOCON的测试方案样品制备只需要5分钟就可以完成,不论是用于生产还是实验室研发,测试结果稳定性更好。
  • 荧飒光学重磅发布:FOLI30V真空型傅里叶变换红外光谱仪
    FOLI30V真空型傅里叶变换红外光谱仪产品简介FOLI30V真空型傅里叶变换红外光谱仪,是荧飒光学全新推出的一款高端研究级红外光谱仪。与传统的红外光谱仪不同,真空红外,顾名思义,就是采取全真空光学设计,所有红外光路及样品均处于真空环境中,测试过程无需担忧大气中CO2和水蒸气的强吸收带来的影响。这种设计,既提高了整体光路的光通量,又有利于检测诸如单分子层薄膜的弱信号。目前,真空型红外已经广泛应用在纳米表面分析、聚合物工业、材料科学、制药、半导体及催化等领域。FOLI30V真空型红外光谱仪,整机采用全铸铝材质,独立式光学腔设计,配置无油减震泵,可对整体光学腔进行快速抽真空,并实时显示真空度。主机配置有密封隔离罩,用户可以单独对样品腔进行真空操作,极大提高用户的测样效率。FOLI30V真空型红外光谱仪,可选配近-中-远全红外波段,标配独特的红外元器件,一次测量即可采集样品的中红外及远红外谱图,覆盖6000-50cm-1光谱范围,获得样品分子全部的振动和转动结构信息,而无需担心远红外波段强烈的水蒸气吸收干扰。此外,FOLI30V可以配置外置水冷汞灯光源及液氦Bolometer检测器,使用户的测量范围扩展到10 cm-1,达到太赫兹的研究波段。同时,用户可以更换近红外光学系统,软件自动切换光路,使光谱范围达到12500cm-1,在同一光学平台上,真正实现远、中、近红外谱区的研究。除了标配的光路之外,FOLI30V可以配置多个外接光路口,连接各种外置光学腔,比如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等,极大丰富了研究者的光学平台和研究领域。FOLI30V配置有各类无机化合物、有机金属络合物、聚合物、添加剂、有机化合物等红外光谱数据库,数据库全部显示中文名称。此外,软件提供用户快速自建库功能,允许用户开发新的中文数据库,以便不断更新自我检测能力。产品特点* 全真空的光学设计,真空度≤0.2mbar;* 软件自动切换近、中、远谱区检测器和光源覆盖整个红外谱区12,500-10cm-1;* 一次测量获取中、远谱区的光谱信息:6,000-50cm-1;* 高光谱分辨率: ≤0.25cm-1 * 去除大气中水蒸汽、CO2的强吸收干扰;* 不受实验室环境温度变化的影响;* 光通量更高,更灵敏;* 稳定性更高,可重复性更好;* 可配备纯金刚石晶体的ATR附件,实现真空状态下测量;* 可整体或单独对样品腔进行抽真空,提高测试效率 * 可配置多个外接光路口,连接各种外置光学腔,如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等 * 可连接长光程气体池,测量高分辨气体光谱。产品参数配置清单应用领域* 自组装超薄膜研究* UHV真空密封超高真空腔* 低温基质隔离* 硅单晶中III、V族杂质的定量(B,P,Al,Sb,As,Ga,In)* 真空环境下对催化剂进行原位漫反射表征* 无机及有机配位化合物的研究* 分子晶体的晶格振动吸收* 气体分子的纯转动光谱的研究
  • 高通量组合薄膜制备及原位表征系统
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "高通量组合薄膜制备及原位表征系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title="LIBE-STM.jpg" width="350" height="321" border="0" hspace="0" vspace="0" style="width: 350px height: 321px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 应用前景尚不明确。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 发明专利:201510446068.7、201510524841.7/p/td/tr/tbody/tablepbr//p
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • 塑料薄膜制样机增幅迅猛 加速对应试验机市场发展
    塑料薄膜制样机得益于国家推进经济结构调整、支持科技进步、关注民生等有关政策措施的带动,得以迅猛发展,行业增幅高于大部分制造业。  中国经济持续增长的同时也刺激了对仪器的需求,其市场长期以两位数的速度发展,从而使得中国成为了世界上最重要的市场之一。在生命科学分析仪器的同行看来,中国当今经济形势为仪器行业的发展提供了良好的环境。  国外先后开发了多种控制形式的薄膜制样机,控制系统广泛应用在各个厂家的试验机上。他们又将计算机技术逐渐的应用到试验机上。我国电子式万能试验机也得到了一定的发展,但是,由于一方面长期习惯于仿制国外产品,国产测试设备缺乏创新能力,另一方面受开发制造成本和工艺所限,我国还没有形成具有国际竞争力的系统级规范化标准化产品。  目前,国内制样机厂家众多,有实力的厂家也越来越多地参与到试验机市场的竞争中来。随着科学技术的发展,一些新兴的行业对试验用夹具提出了新的要求,例如要求夹具结构小、无磁性,耐腐蚀等等。由于试验机夹具使用的特殊性,以及新材料的不断出现,夹具的设计一直处在被动的局面。我们每天都会碰到新材料,需要设计新的夹具。  随着社会的进步,塑料薄膜制样机科学技术的高速发展,各类新材料层出不穷,原有材料的性能也有了质的飞跃。如何合理、安全、高效的应用材料,其力学性能的检验是一项非常重要的工作。在这一大环境的推动下,近年来材料制样机行业也有了长足的发展。各种新技术、新方案被大量的应用在试验机领域,因而制样机的性能有了非常大的提高,使用领域也较过去有了非常大的拓展。
  • 日立UH4150再次携手光学薄膜专业软件Macleod培训班
    作为光学薄膜测量专业光度计生产商,日立高新于2016年7月22日再次携手光学薄膜设计软件Essential Macleod在中国的独家代理讯技光电科技(上海)有限公司,参加了台湾国立中央大学李正中教授主讲的“薄膜光学与镀膜技术培训班”。此次培训班吸引了全国各地的知名薄膜制造企业,以及中科院和高效的专家学者参与。   日立高新发表了题为《日立UV-VIS-NIR光度计-光学薄膜测量实例和技巧》的报告,介绍了光学器件专用测量仪器UH4150型紫外-可见-近红外分光光度计在此行业的多种应用方案及测量技巧。方案包括棱镜、偏振片、透镜、镜片、各种微小样品、大型建筑玻璃、以及成品镜头等。   UH4150是专业的光学测量仪器,Macleod是中国市场占有率第一的光学薄膜设计软件。日立光度计uds格式数据可直接导入Macleod软件,避免了手动载入的误差和麻烦。日立和讯技公司联手,将硬件和软件结合,为客户同时提供专业的成套解决方案,对客户有重要的意义。 关于日立紫外/可见/近红外分光光度计UH4150,请点击链接:http://www.instrument.com.cn/netshow/SH102446/C185793.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。图一:IV曲线图图二:量子效率量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。图三:系统整体图先进的光源配置:系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。图四:普通卤素灯的光谱图图五:普通氙灯的光谱图独特的测试光路设计:大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。强大的偏置光配置:为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。功能全面高效的软件:软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。图六:功能强大的图标管理功能特点总结:1、实现内外量子效率同步测试2、双光源测试,契合IEC标准,提高测试准确性3、双路可调偏置光,轻松实现三节电池测试4、功能强大的测试软件
  • 我国自主知识产权薄膜透光组件研制成功
    从启动项目至今,仅仅经过 31天的时间,该公司天威薄膜研发检测中心自主研发的具有我国自主知识产权太阳能薄膜透光组件,于今日正式下线。  试验和检测数据表明,该太阳能薄膜透光组件电池性能达到国际同行业领先水平,表明中国企业开发掌握了大面积硅基薄膜透光光伏组件的关键制造技术与工艺,为未来开发更多满足客户个性化需求的产品奠定了坚实的基础,标志着天威集团进军太阳能光伏发电行业迈出了坚实的一步。  据天威薄膜研发检测中心副主任贾海军博士介绍说,该透光组件透光率达 30%,可用于立面透明幕墙,相比于晶体硅透光组件,太阳能薄膜透光组件外观更加优美,高温和弱光性能好,可以在阴天微弱光线下发电,同标称功率下发电量最多。  据悉,天威薄膜研发检测中心是全世界技术最先进、涵盖工艺最全面的薄膜太阳能技术研发中心之一,不仅可以进行大面积硅薄膜太阳能电池的试制生产,还可以进行新一代高效率太阳能电池的基础研究和产品研发。同时,该中心还可为本企业、华北乃至整个中国其他企业提供符合行业相关标准的样品试制、产品检测检验等服务,对于拉动中国光伏行业发展具有重要意义。
  • 美研制出增强薄膜太阳能电池吸光技术
    据英国《自然》杂志网站近日报道,尽管薄膜太阳能电池应用广泛,但其也有“先天不足”:薄膜越薄,制造成本越低,但当其变得更薄时,会失去捕光能力。美国科学家表示,当薄层厚度等于或小于可见光的波长时,其捕光能力会变得很强。科学家们可据此研制出厚度仅为现在商用薄膜太阳能电池厚度的1%、但捕光能力却大有改善的薄膜太阳能电池。  科学家们用射线—光极值这一理论最大捕光值来标识一种材料最多能捕获多少光线,但是,只有当材料具有一定的厚度时,才能达到这一峰值。目前,科学家们已经制造出了吸光层的厚度仅为0.1纳米的薄膜太阳能电池,但这样纤细的薄膜会漏掉很多光。  然而,现在,加州理工学院应用物理和材料科学教授哈里阿特沃特和同事在最新一期《纳米快报》杂志上指出,他们找到了一种巧妙的方法,使薄层能帮助太阳能电池超越射线—光极值。他们发现,当薄层的厚度小于可见光的波长(400到700纳米)时,薄层会同这些可见光的波特性相互作用而不是将可见光看成一条直直的射线。阿特沃特说:“当我们制造出的薄层厚度等于或小于可见光的波长时,一切规则都改变了。”这样,一种材料的吸光能力不再取决于厚度,而取决于光线和吸收材料之间的波作用。  通过计算和计算机模拟,阿特沃特团队证明,让一种材料对光更有“胃口”的技巧在于,制造出更多“光态”让光来占领,这些“光态”就像狭缝一样,能吸收特定波长的光。一种材料的“光态”数量部分取决于该材料的折射率,折射率越高,其能支持的“光态”就越多。  其实,早在2010年,斯坦福大学的教授范汕洄(音译)和同事就将“光态”数确定为一种材料能吸入多少光线的主要因素。他们用一种折射率较高的材料将一种折射率低的材料包围,结果发现,高折射率材料的出现能有效提高低折射率材料的折射率,增强其捕光能力。  阿特沃特团队对上述结论进行了延伸,最新研究表明,薄膜吸光器内挤满 “光态”会大大增强其捕光能力。而且,可通过几种方式(比如,用金属或晶体结构包住吸光层或将吸光器嵌入一个更复杂的三维阵列中)来提高吸收器的有效折射率。范汕洄表示:“最新研究表明,我们可以采用多种不同的方法有效地突破射线—光极值。”  美国托莱多大学的罗伯特柯林斯表示,阿特沃特团队的研究是“非常关键的第一步”。但他也认为,这项技术还面临着诸多挑战,比如,需要额外的工业过程来制造这些超薄的薄膜,这会导致成本增加。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制