当前位置: 仪器信息网 > 行业主题 > >

立式量热仪

仪器信息网立式量热仪专题为您提供2024年最新立式量热仪价格报价、厂家品牌的相关信息, 包括立式量热仪参数、型号等,不管是国产,还是进口品牌的立式量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合立式量热仪相关的耗材配件、试剂标物,还有立式量热仪相关的最新资讯、资料,以及立式量热仪相关的解决方案。

立式量热仪相关的仪器

  • 立式热变形维卡软化点温度测定仪热塑性塑料压塑试样的制备GB9352-8811Plasties-Compression moulding testsperimens of thermoplastle materials本标准参照采用国际标准ISO 293-1986(塑料一热型性材料的压型试样)。1主题内容与适用范围本标准规定了制备热型性塑料压塑试样和制备可用于机械或冲压加工成试样的压塑片料所必须遵循的总的原则和步骤。本标准的试验步骤不推荐用于热塑性增强塑料。技术参数及指标1、温控范围:室温~300℃2、升温速率:120℃/h [(12±1)℃/6min]50℃/h [(5±0.5)℃/6min]3 温度误差:±0.5℃4、形变测量范围:0~10mm5 形变测量误差:±0.005mm6、形变测量显示精度:±0.001mm7、试样架(测试工位): 4、6(可选)8、试样支撑跨距:64mm、100mm9、负载杆和压头(刺针)重量:71g10、加热介质要求:甲基硅油或标准中规定的其它介质(闪点大于300℃)11、冷却方式:150℃以下水冷,150℃以自然冷却12、具有上限温度设定,自动报警。13、显示方式:液晶中(英)文显示、触摸屏控制14、可显示测试温度,可设定上限温度,自动记录试验温度,温度达到上限值后自动停止加热。15、变形测量方法 高精度数显千分表+自动报警。16、具有自动排除油烟系统,可有效抑制油烟散发,时刻保持室内良好空气环境。17、电源电压:220V±10% 10A 50Hz18、加热功率:3kW2引用标准GB1800-79公差与配合总论标准公差与基本偏差GB1031-83表面粗糙度参数及其数值3定义为了本标准的实施,特应用以下定义,3.1模塑温度:预热和模塑期间在最接近模塑材料的区域测得的模具或压板的温度,3.2 脱模温度:冷却结束时,在最接近模塑材料的区域测得的模具或压板的温度。3.3预热时间:在保持接触压力下,把模具内的材料加热到模塑温度所需要的时间,3.4 模型时间:在保持模塑温度下,施加全压的时间。孓5 平均冷却速率(非线性) 以恒定冷流体进行冷却,用模塑温度和脱模温度之差除以将模具冷却至脱模温度所需的时间,平均冷却速率用℃/min表示。36冷却速率:在一定温度范围内,用控制冷却流体的流速得到的恒定冷却速率,使每隔10min与规定的冷却速率的偏差不超过规定公差,冷却速率用℃/h表示4设备4.1模压机模压机的合模力应能提供不低于10MPa的压力(合模力与施压方向模腔投影面积的比值),在整个模塑期间,压力波动范围应在规定压力的10%以内。对压板的要求:.能加热到不低于240℃,b.能按5.3.2冷却方法表中给定的冷却速率冷却。模具表面任何部位间的温差在加热时不超过±2℃,在冷却时不超过士4℃.当加热和冷却系统设置在模具内时,也应满足上述要求。压板或模具的加热,可用高压蒸汽或通过适当管道系统传送的导热液或使用电加热元件进行 压板中国石油化工总公司1988-04-06批准1989-05-01实施立式热变形维卡软化点温度测定仪GB/T 9352-2008/15O 293:2004因此特别适于获得表面平整或内部不会产生空隙的试样。4.2.2制造模具应选用耐模塑高温和模塑压力的材料制造。为了得到表面状况良好的试样,模具与模塑材料接触的表面要抛光(推荐表面粗糙度为0.16Ra见GB/T 3505-2000)。模具表面镀铬有利于试样脱模。对于小尺寸的试样,强烈推荐有一个2”的斜度。可在模具上钻盲孔,以便使用热电偶或水银温度计在接近模塑料的区域测量温度。根据模压机的性能(见4.1),可在模具中装配类似于模压机压板上的加热和(或)冷却装置。抗机械冲击、经热处理后控伸强度可达到2200MPa的合金钢,一般可以满足制造这种模具的要求。但在模塑聚氯乙烯材料的特殊情况下,推荐使用经过处理其拉伸强度达到1050MPa的马氏体不锈钢。4.2.3类型4.2.3.1概述根据材料相关标准规定或有关利益双方商定,使用相应类型的模具。4.2.3.2港料式(画框)模具使用这种模具时,过量的材料被挤出,冷却过程中模塑压力仅施加在模框上,不施加在材料上。由于模塱件在冷却过程中收缩,其中心部分厚度要比边缘部分稍薄。如果粘附于模具上的塑料材料阻碍收缩,直接模压的试样也会产生缩痕或空隙。为了克服这些缺点,应优先从模压片材的中心部分冲切或机加工试样。模塑试片可使用简易而经济的溢料式模具。该模具由两块模板和夹在其中的一个模框(见图1)组成。上下模板可用抛光钢材或镀铬黄铜板制成,以利于脱模,厚度约为1mm~2mm。为防止塑料材料粘到模板上可在材料上盖一层软质箔,如铝悄或聚酯膜。不允许使用脱模剂。模框的厚度应与模塑试片的厚度相适应,模框尺寸的大小应保证在从模塑试片上冲切或机加工试样时,不使用其周边20mm宽的部分。4.2.3.3不滋料式模具这种模具(见图2)是由一个或两个阳模塞与一个阴模座装配而成,模塑和冷却期间,摩擦力忽略不计,模具允许压力连续施加在模塑材料上。模塑件的厚度取决于材料的数量、材料的热膨胀以及由于模具间隙造成的材料损失。损失量与材料在选定的模塑温度下的流动,施加的压力,加压时间及模具结构等有关。使用圆形的型腔便于正确引导在阴模内的阳模。推荐阴阳模的配合为H7/g6(见ISO 286-1),如直径200mm的圆模腔,间隙为15 μm~90 μm。模具可装一个或几个顶针以便脱模,在不溢料式模具内可使用薄垫片帮助控制模塑件的厚度,在冷却阶段开始时将其取掉。5步骤5.1模塑材料的制备5.1.1颗粒料的干燥按有关国际标准的规定或材料提供者的说明干燥颗粒料。如果没有说明,则在70℃±2 ℃的烘箱内干燥24h±1h。5.1.2预成型为了模塑均匀的压型试片,用粒料直接模塑是标准过程,可避免压塑试片表面不平整和内部缺陷。用粉料或粒料直接模塑时,为获得满意的最终试片,有时要求用热熔辊炼或混炼的预成型使熔体均匀化,使用的条件不能造成聚合物降解。通常,熔融后热熔辊炼或混炼不超过5min就可以达到此要求,所得到的预成型片应比模塑的试片厚些,尺寸也要足够供模塑试片之用,推荐使用干燥的气密容器贮存预成型片。立式热变形维卡软化点温度测定仪CB/T9352-2008/ISO 293,20045.2模皇将模具温度调节到有关国际标准规定或有关各方确认的模塑温度的±5℃以内。将称量过的材料(粒料或预成型片)放人经预热的模具中。如果模塑粒料,确认其均匀地铺展在楔具表面,熔鞋后,材料的盐要是够充满模腔,溢料式模具允许有约10%的损失,不溢料式模具允许有约3%的损失。用溢料式模具时,铺上软质箔(见4.2.3.2),然后将其放人已预热的模压机内。闭合模压机并在接触压力下对加人的材料预热5min,然后施加全压2min(模塑时间见3.4),井随即冷却(见5. 3)。为模型2mm的压塑片,对已均匀铺开的物料,标准的预热时间是5min,而较厚的模塑件预热时间应相应调整,注,接触压力是指压机刚好团合,不熟使材料死诺的是够低的压力,全压是帽足够使材料成沮并把多余的材料挤出的压力。5.3冷却5.3.1概述对于某些热塑性塑料,冷却速率影响其最终的物理性能,因此在表:中规定了冷却方法。表1冷却方法冷却方法平均冷却速率(℃/mi)(黑正53/(见3.6)/持部運搴(℃/备出AB3S±急冷D±03缓玲冷却方法应间压型试片的最终物理性能一起加以说明。一般在材料的有关国际标准中给出合适的持却方法。如未指定方法,可使用方法B(见5.3.2)。5.3.2 冷却方法应从表1中选择合适的冷却方法。立式热变形维卡软化点温度测定仪在采用急冷的情况下(见表中方法C),应使用合适的方法,例如使用一对钳子,迅速将模具从热压机移到冷压机上。如果没有给出其他说明,脱模温度≤40℃。用方法C(见4.1)时,需使用两台模压机。挫荐使用方法D制备没有任何内应力的模塑片成对预制片进行退火后的缓冷。6模塑试样或试片的检验冷部后检查模型试样或试片的外视(如缩痛,收缩孔、空包),并检查是否符合规定尺寸,如发现有任何躺陷应舍弃该试样或试片。使用有关国际标准规定的或由有关利益双方协商同意的方法,确保没有降解或不需要的交联现象,立式热变形维卡软化点温度测定仪试验报告试验报告应包括下列内容:a)注明采用本标准,b)试样尺寸及预期用途,
    留言咨询
  • 一、 RE-1002旋转蒸发器用途 RE-1002旋转蒸发器能在恒温加热,负压条件下旋转形成薄膜,高效蒸发,同时再蒸出溶媒冷凝回收。特别适合对热敏性物料浓缩,结晶,分离,回收等,是生物制药,化工,食品等行业科研,中试,生产的重要设备。二、 RE-1002旋转蒸发器参数基本参数型号RE-1002玻璃材质GG-17支架材质304不锈钢锅壳材质喷塑防腐锅胆材质不锈钢304底板尺寸500X550旋转瓶容积(L)10收集瓶容积(L)5旋转功率(W)180旋转速度(rpm)0-120真空度(Mpa)-0.098浴锅加热功率(kw)6浴锅控温范围(℃)室温~399控温精度(℃)±2升降行程180mm电源220V/50HZ外形尺寸950X500X1800包装重量(kg)127功能配置调速方式变频调速温度显示方式数显控温方式智能控温密封方式四氟组件密封升降方式浴锅手动升降冷凝器立式冷凝器连续加料34#标口加料阀放料方式四氟放料阀¢50
    留言咨询
  • 产品特点 热重立式炉由控制中心、加热炉主体、升降装置、水冷装置、测量装置及进气系统等构成,是一款自动化程度较高的产品。炉膛本身采用高纯氧化铝微晶纤维高温真空吸附成型,加热元件为电阻丝。散热系统采用双层风冷结构,炉体表面温度≤60℃。采用宇电控温仪和K型热电偶,可编程30段程序控温,控温精度±1℃。设备配有测重装置,可实时记录反应过程中物料重量变化,并可电脑记录控制进气流量。产品特点炉体具有自动升降功能,可设置多工位;壳体双层风冷设计,表面温度≤60℃;进气采用PC端控制,控制更精准;分析天平可实时记录反应失重情况。 项目型号TFD-1100-70-RZ可达温度1100℃(短期)额定温度1000℃炉管尺寸φ70*φ50*350mm(其他可定制)加热区长度220mm升温速率≤10℃/min额定功率3.5kW适配电源AC220V 50/60HZ外形尺寸800*500*1550mm重量60kg
    留言咨询
  • 特点:1. 主机:采用先进的传动系统,结构合理,经久耐用,实用性强。2. 智能温控:室温~180度范围温控,水油浴两用,蒸发更稳定。不容易冲料,安全。3. 底座、升降器、玻璃、水槽等设计紧凑,流畅。4. 升降平稳,无噪音。5. 浴锅的把手:方便装卸,设计更为人性化。6. 密封:选用PTFE材料,经特殊工艺技术处理,增强密封性,防腐性和耐磨性。 用途:新品RE-2000型立式球磨口 / 卧式球磨口 / 立式标准口 / 冷阱球磨口 旋转蒸发器,改进了原有同类产品的缺陷,在蒸发/产品稳定性/简单/安全等方面创立了新的更高标准,用于生化、制药、精细化工行业等的液体浓缩、精制、分离、结晶等过程,是化工、医疗、食品、环保、高等院校和科研实验室及工矿等单位的理想设备 技术参数:性能转数:转数20-200转/分温度调节范围:水温,室温-90度;油温,室温-180度功能 温度设置和显示:数字显示旋转设定:旋钮式烧瓶可使用的容量:0.25-2L升降器:跷板式按键,自动升降跷板式按键,自动升降,行程150mm 构成 电机:感应电机,输出功率40W加热锅:铝合金特氟龙,水浴和油浴两用冷却器:立式,耐高温优质玻璃精制双回流一体化标准口冷凝管配标准口收集瓶达到快速装卸试料烧瓶:圆型烧瓶(0.5L/1L/2L) 29口回收烧瓶:标准烧瓶(1L) 29口密封圈:PTFE复合材料+氟化橡胶双重密封圈总功率 / 电 压: 1.5KW ~220v50Hz
    留言咨询
  • XRW-300B3 三架立式热变形维卡软化点温度测定仪、维卡软化点温度测定仪(自动升降)功能、适用范围:主要用于塑料、硬橡胶、尼龙、电绝缘材料、长纤维增强复合材料、高强度热固性层压材料等非金属材料的热变形温度及维卡软化点温度的测定。操作方便、控制精确,是一种智能化极高的测试仪器,广泛应用于大专院校,科研单位及产品质量监督检验单位。采用PC机控制,试样架带有自动升降功能,位移传感器测变形,实时曲线绘制,直接在PC机上对试验数据进行二次处理,试验数据可以导入到OFFICE软件中,进行编辑排版。执行标准:符合GB/T 1633、GB/T 1634、GB/T 8802、ISO 2507、ISO 75、ISO 306、ASTMD 1525,ASTMD 648等标准要求。立式热变形维卡软化点温度测定仪技术参数:1)控温范围:室温~300℃2)温度误差:±0.5℃ 3)升温速度:50℃/h、120℃/h4)温度测量点:1个5)变形测量范围:-0.1mm~1.1mm 6)变形误差:±0.01mm7)使用介质:甲基硅油(客户自备);8)试样支承跨距:64mm、100mm9)冷却方式:150℃以上自然冷却,150℃以下水冷却或自然冷却;10)具有上限温度保护功能; 11)试验架数:3个12)控制方式采用单片机和PC机分布式控制系统;13) 仪器尺寸:880mm×580mm×1400mm14)所需空间:前后1m,左右0.6m15) 电源:4500VA 220VAC 50HZ立式热变形维卡软化点温度测定仪配置:1)主机 一台 2)试样架 3个3)热变形压头 3个4)维卡压针 3个5)品牌台式计算机 一台6)彩色喷墨打印机 一台7)基于WIN98\2000\XP中文版下试验软件一套8)电源线 一根9)信号线 一根
    留言咨询
  • DSC系列差示扫描量热仪/差热分析仪1、仪器简介 差示扫描量热法(DSC)这项技术一直被广泛应用。差示扫描量热仪既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流的关系。我公司的仪器为热流型差示扫描量热仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用难度低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。我公司有多种类型差示扫描量热仪,客户根据实验参数以及实验需求选择不同的型号。 差示扫描量热仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。不同型号的仪器,测试不同的指标。2、产品特点:2.1全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片;2.2仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便;2.3采用 Cortex-M3 内核 ARM 控制器,运算处理速度更快,温度控制更加精准;2.4采用 USB 双向通讯,操作更便捷,采用 7 寸 24bit 色全彩 LCD 触摸屏,界面更友好;2.5采用专业合金传感器,更抗腐蚀,抗氧化;2.6支持中/英文切换。2.7原始数据保存,分析,分析之后数据保存。2.8超高灵敏度,源自于更平的基线和更好的信噪比.2.9支持温度校准,调入基线,多点校准.2.10试验进行中,可查看实时数据。2.11支持时间/温度,(热流率 dH/dt)/温度切换。2.12智能软件可自动记录 DSC 曲线进行数据处理、打印实验报表.2.13数据支持导出 txt,excel,bmp 图片格式2.14支持曲线分析,平滑,放大,缩放功能。2.15支持多曲线打开,便于实验的重复性比较。3、仪器参数:3.1 全新的炉体结构,更好的解析度和分辨率以及基线稳定性;3.2 仪器下位机数据实时传输,界面友好,操作简便。DSCDSC-214DSC-204DSC-404DSC-214HDSC-404HDSC量程0~±600mW温度范围RT~600℃-40℃~-600℃-150℃~-600℃RT~600℃(带降温扫描)-150℃~600℃(带降温扫描)升温速率0.1~100℃/min温度精确度±0.01℃温度准确度0.001℃温度波动±0.01℃温度重复性±0.1℃DSC精确度0.001mWDSC解析度0.001mW工作电源AC220V/50Hz或定制控温方式升温、恒温、降温(全程序自动控制)程序控制可实现六段升温恒温控制,特殊参数可定制曲线扫描升温扫描、降温扫描、曲线扫描气氛控制两路自动切换(仪器自动切换)气体流量0-300mL/min(可定制其它量程)气体压力≤0.55MPa显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(锡),用户可自行矫正温度和热焓仪器热电偶三组热电偶,一组测试样品温度,一组测试内部环境温度,一组炉体过热自检传感器软 件带有温度多点校正功能设备尺寸500*500*300(mm)(长宽高)备注所有技术指标可根据用户需求调整GB/T19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则 警示一使用本标准的这部分时,可能会涉及有危险的材料,操作和设备,本标准不涉及与使用有关的所有安全问题的解决方法,本标准的使用者有责任在使用前规定适当的保障人身安全的措施并演定这些规章制度的适用性。1、范围GB/T19466本部分规定了使用差示扫描量热法(DSC)对热塑性塑料和热固性塑料包括模塑材料和复合材料等聚合物进行热分析的方法通则。本都分适用于GB/T19466第2至第7部分所叙述的应用差示扫描量热法对聚合物进行各种测定的方法。2、规范性引用文件 下列文件中的条款通过GB/T19466本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其新版本适用于本部分。GB/T2918-1998塑料试样状态调节和试验的标准环境(idtISO291:1997)术语和定义3、下列术语和定义适用于GB/T19466的本部分。3.1差示扫描量热法(DSC)Differentialscanningcalorimetry(DSC)在程序温度控制下,测定输入到试样和参比样的热流速率(热功率)差对温度和/或时间关系的技术。通常,每次测量记录一条以温度或时间为X轴,热流速率差或热功率差为Y轴的曲线。3.2参比样referencespecimen在一定温度和时间范围内,具有热稳定性的已知样品。注:通常,使用和装试样的样品皿相同的空皿作为参比样。3.3标准样品standardreferencematerial具有一种或多种足够均匀且确定的热性能材料。该材料能用于DSC仪器校准、测量方法的评价及材料的评估。3.4热流速率;热功率heatflux thermalpower:单位时间的传热量(dQ/dr)注:总传热量Q等于热流速率对时间的积分,见式(1),单位为J/kg或J/g。GB/T19466.1-2004/ISO11357-1:1997……………………………(1)式中:Q—总传热量,单位为焦耳每千克(J/kg);焦耳每克(J/g)。3.5焓变H:changeinenthalpy在恒定压力下,试样因化学、物理或温度变化而吸收(△H为正)或放出(△H为负)的热量,见式(2),单位为J/kg或J/g。……………(2)式中:△H——焓变,单位为焦耳每千克(J/kg);焦耳每克(J/g)。3.6恒压比热容cp:specificcapacityatconstantpressure在恒定压力及其他参数恒定下,单位质量材料温度升高1℃所需要的热量,见式(3)。……………(3)式中:aQ——在恒定压力下,使质量为m的材料升高aT℃所需要的热量,单位为焦耳(J);cp——恒压比热容,单位为焦耳每千克摄氏度J/(kgC)]或焦耳每克摄氏度[J/(g℃)]。分析聚合物时应小心,以保证测得的比热容不包含任何因化学或物理变化而产生的热量变化。3.7基线baselineDSC曲线上位于反应或转变区域以外,但与该区域相邻的部分。在该部分中,热流速率(热功率)差近于恒定。3.8准基线virtualbaseline假定反应热和/或转变热为零时,通过反应和/或转变区域所拟合出的基线。通常采用内插或外推方法在所记录的基线上画出。一般在DSC曲线上标示(见图1)。3.9峰peakDSC曲线上,偏离基线达到最大值然后又返回到基线的那部分曲线。注:峰的开始对应于反应或转变的开始。3.9.1吸热峰endothermicpeak输入到试样的能量大于相应准基线能量的峰。3.9.2放热峰exothermicpeak输入到试样的能量小于相应准基线能量的峰。注:根据热力学的惯例,当反应或转变是放热时,含变为负。吸热时,含变为正。吸热或放热的方向,通常在DSC曲线上表示。3.9.3峰高:peakheight峰最高点与准基线间的距离,用mW表示。峰高与试样质量不成比例关系。3.10特征温度characteristictemperatureDSC曲线上的特征温度如下:——起始温度Ti ——外推起始温度Tei ——峰温度Tp;——外推终止温度Tef ——终止温度Tf。4、原理在规定的气氛及程度温度控制下,测量输入到试样和参比样的热流速率差随温度和/或时间变化的关系。注:可使用功率补偿型和热流型两种类型的DSC仪进行试验。这两种方法所使用的测量仪器设计区分如下:a)功率补偿型DSC;保持试样和参比样的温度相同,当试样的温度改变时,测量输入到试样和参比样之间的热流速率差随温度或时间的变化。b)热流型DSC:按控制程序改变试样的温度时,测量由试样和参比样之间的温度差而产生的热流速率差随温度或时间的变化。这种测量,试样和参比样之间的温度差与热流速率差成比例。5、仪器和材料5.1差示扫描量热仪,主要性能如下:a)能以0.5℃/min~20℃/min的速率,等速升温或降温;b)能保持试验温度恒定在土0.5℃内至少60min;c)能够进行分段程序升温或其他模式的升温;d)气体流动速率范围在10mL/min~50mL/min,偏差控制在±10%范围内;e)温度信号分辨能力在0.1℃内,噪音低于0.5℃;f)为便于校准和使用,试样量最小应为1mg(特殊情况下,试样量可以更小);GB/T19466.1—2004/ISO11357-1:1997g)仪器能够自动记录DSC曲线,并能对曲线和准基线间的面积进行积分,偏差小于2%;h)配有一个或多个样品支持器的样品架组件。5.2样品皿 用来装试样和参比样,由相同质量的同种材料制成。在测量条件下,样品皿不与试样和气氛发生物理或化学变化样品皿应具有良好的导热性能,能够加盖和密封,并能承受在测量过程中产生的过压。5.3天平:称量准确度为士0.01mg。5.4标准样品:参见附录A。5.5气源:分析级6、试样 试样可以是固态或液态。固态试样可为粉末、颗粒、细粒或从样品上切成的碎片状。试样应能代表受试样品,并小心制备和处理。如果是从样片上切取试样时应小心,以防止聚合物受热重新取向或其他可能改变其性能的现象发生。应避免研磨等类似操作,以防止受热或重新取向和改变试样的热历史。对粒料或粉料样品,应取两个或更多的试样。取样的方法和试样的制备应在试验报告中说明。注:不正确的试样制备会影响待测聚合物的性能。其他有关资料,见附录B。7、试验条件和试样的状态调节7.1试验条件试验前,接通仪器电源至少1h,以便电器元件温度平衡。仪器的维护和操作应在GB/T2918-1998规定的环境下进行。注:建议仪器不要放在风口处,并防止阳光直接照射。测量时,应避免环境温度、气压或电源电压别烈被动。7.2试样的状态调节测定前,应按材料相关标准规定或供需双方商定的方法对试样进行状态调节。注1:除非规定了其他条件,建议按照GB/T2918-1998的规定对试样进行状态调节。注2:DSC得到的结果受状态调节影响很大。8、校准8.1总则至少应按照仪器生产厂的建议校准量热仪的能量和温度测量装置。注1:由于校正函数K(T)(见8.3)随温度而变化,所以不能表示为简单的比例系数。因此,对每一个参数,即温度或能量,有必要至少用两种标准样品进行校准。在附录A中给出的大多数标准样品,都能用于温度和能量两个参数的校准。注2:影响校准的因素:—-DSC量热计类型;----气体及其流速;——样品皿类型,尺寸及其在样品支持架上的位置;——试样的质量:——升温和降温速率;——冷却系统的类型。建议尽可能精确地确定实际测定条件,并用相同的条件进行校准。DSC仪器附带的计算机系统可能会自动校准某些参数。注3:建议定期用熔点接近于待测材料测试温度范围的标准样品对温度和能量测量装置进行校准。8.2温度校准进行温度校准的步骤如下:——选择至少两种转变温度处于或接近待测温度范围的标准样品;——用与测定试样相同的条件测定标准样品的转变温度。标准样品转变温度的定义为:在峰的前沿最大斜率点的切线与外推基线的交点(即:外推起始温度);一通过比较标准样品的标准值和记录值确定温度校正系数,除非计算机系统能根据标准值与记录值进行比较自动得到。注:在升温方式下,正确地校准仪器可给出一致的结果,但在降温方式下却不一定(因为过冷)。因为没有用于降温方式的标准样品,可只对升温方式进行温度校准。每次改变试验条件,都应进行温度校正。如果需要,也可按有关要求经常进行温度校准。温度校准的重复性应优于2%。8.3能量或热功率的校准DSC仪器能量(以J为单位)或热功率(以W为单位)的校准,就是测定校准函数K(T)或仪器灵敏度与温度的关系。灵敏度单位为mW/mV,它表示仪器指示的电信号E(T)与在温度T时传递给试样的功率P(T)的关系,如式(4)所示:P(T)=K(T)×E(T)………………(4)或用积分式,如式(5)所示……………(5)式中:P(T)——温度为T时DSC仪传递给试样的功率,单位为毫瓦(mW);K(T)——校准函数或仪器灵敏度,单位为毫瓦每毫伏(mW/mV);E(T)——仪器指示的电信号,单位为毫瓦(mW)。根据DSC仪的类型和待测的温度范围,可用仪器直接校准或用标准样品的熔融或热容的测试值与它们的标准值比较来进行校准。注:在选择校准方法时,建议参照仪器制造商的有关资料。按下述步骤进行校准:——选择两种或多种标准样品,其热容和熔点处于或接近待测的温度范围;——用与测定试样相同的条件测定标准样品;——记录转变热或热容的电信号E与温度的关系图;一通过比较标准值与记录值,确定能量或热功率校正函数。除非计算机系统能根据标准值与记录值比较自动地得到校正函数。能量校准应定期进行。这种校正的重复性应优于2%。9、操作步骤9.1仪器准备9.1.1试验前,接通仪器电源至少1h,使电器元件温度平衡。9.1.2将具有相同质量的两个空样品皿放置在样品支持器上,调节到实际测量的条件。在要求的温度范围内,DSC曲线应是一条直线。当得不到一条直线时,在确认重复性后记录DSC曲线。9.2将试样放在样品皿内9.2.1选择容积适当的样品皿,并保证其清洁;9.2.2用两个相同的样品皿,一个作试样皿,另一个作参比1(可用空样品皿或不空的样品皿);9.2.3称量样品皿及盖,精确到0.01mg 9.2.4将试样放在样品皿内;9.2.5如果需要,用盖将样品皿密封;9.2.6再次称量试样皿。9.3把样品皿放入仪器内用镊子或其他合适的工具将样品皿放入样品支持器中,确保试样和皿之间、皿和支持器之间接触良好。盖上样品支持器的盖。9.4温度扫描测量9.4.1设置仪器的程序,以进行需要的热循环。可使用两种类型的程序:连续或分步。9.4.2开始测量。测量期间所需的控制操作取决于测量类型和仪器相联的计算机的功能,参考仪器制造商的资料。9.4.3把样品支持器组件冷却到室温,取出试样皿,检验试样皿是否变形及或试样是否溢出。若试样溢出污染样品支持器,则按照制造商说明书进行清洗。四9.4.4称量试样皿,如果有质量损失,则可能发生另外的熔变。9.4.5如果怀疑有化学变化,打开试样血并检查试样。被损坏的皿不能再次用于测量。9.4.6按仪器制造商的说明书处理数据。聚合物DSC测定结果受样品和试样的热历史和形态的影响很大。建议进行两次测定,第二次测定在按规定的降温速率冷却以后进行,以确保试验结果的一致。有关资料见附录B。9.5等温测量注:根据所用仪器的类型,有两种不同的恒温步骤:即将试样在室温下装入样品支持器或在规定的测量温度下装入样品支持器。9.5.1在室温下放入试样9.5.1.1将样品皿放入样品支持器中。设置仪器的程序,使其以快速扫描速率达到预定温度。9.5.1.2当得到稳定的基线后,尽快使仪器达到规定温度。9.5.1.3恒温,记录以时间为横坐标的DSC曲线。9.5.1.4当吸热/放热反应或转变完成以后,仪器试验条件不变继续运行,直到再次得到稳定的基线。注:运行5min是合适的。9.5.1.5测试结束后,冷却仪器,取出样品皿。9.5.1.6称量装有试样的皿。9.5.1.7按仪器制造商的说明处理数据。注:当材料在室温和测量温度下没有发生反应或转变时,可将仪器温度直接升高到规定的测量温度。在这种情况下,基线是在室温下得到的。9.5.2在测量温度下放入试样9.5.2.1设置仪器的程序,仪器升温达到规定的测量温度。9.5.2.2让仪器温度达到稳定状态条件。9.5.2.3在此温度下将试样皿和参比皿放入样品支持器中,记录以时间为横坐标的DSC曲线。9.5.2.4当吸热/放热反应或转变完成以后,仪器试验条件不变继续运行,直到再次得到稳定的基线。注:运行5min是合适的。9.5.2.5测试结束后,冷却仪器,取出样品皿。9.5.2.6称量装有试样的皿。9.5.2.7按仪器制造商的说明处理数据。9.5.2.8如果在试验过程中有试样溢出,应清理样品支持器。清理按照仪器制造商的说明书进行,并用至少一种标准样品进行温度和能量的校准,确认仪器有效。10、试验报告试验报告应包括以下内容:a)注明参照本标准;b)标明受试材料的全部资料信息;c)所用DSC仪器类型;d)所用样品皿类型;e)每次使用的标准样品,特征值及用量;f)样品支持器组件中所用的气体及流速;g)取样、试样制备及试样状态调节的详细情况;h)试样质量;i)样品和试样在试验前的热历史;j)程序温度参数,应包括起始温度,升温速率,最终温度以及降温速率;k)试样质量的变化;1)试验结果;m)试验日期。试验报告应附DSC曲线。附录A(资料性附录)标准样品表A.1各种标准样品的转变或熔触温度及熔融焙附录B(资料性附录)一般建议 GB/T19466.1差示扫描量热仪适用于聚合物材料的比较测试。然而,使用本方法的测试结果常常受系统误差的影响,例如:不正确的校准、基线校准或试样制备等因素。建议用聚合物来做标准样品(同常规分析材料相似)用于待测材料的分析。这样有利于对不同仪器、时间和试样制备方法测得的数据进行比较。 GB/T19466.1差示扫描量热仪建议测试温度不要超出聚合物样品的分解温度。样品分解会导致样品从不带盖的样品皿中溢出或从密封的试样皿挤出而污染样品架组件。温度过高或温度扫描范围太大,会引起校准曲线线性的变化,导致结果不准确。 GB/T19466.1差示扫描量热仪当一条多峰的DSC曲线中的各个峰是可分开的,则对各峰的说明是相当确定的(参见本系列标准的第3部分中的3.7)。但更多的情况,DSC曲线中的峰是分不开的。这些类型的曲线是由于几个反应和/或转化同时发生的结果。在这种情况下,测得的热性能只能是:总、第一个反应或转变的起始温度和外推起始温度、最后一个反应或转变的外推终止温度和终止温度、以及几个峰温。仅用DSC曲线,不可能完全识别这些单个反应或转变。在某些情况下,调节升温或降温速率可能会有助于分离多峰现象。但是,降温速率对降温后升温扫描测得的特征温度有很大影响,应小心操作。 GB/T19466.1差示扫描量热仪DSC曲线在第一次升温扫描中有几个峰,而在第二次升温扫描时只有一个峰的现象,对聚合物来说是典型的。第二次升温扫描通常是随着一个准确迅速均匀的冷却过程后进行的。第一次升温扫描获得的信息可以说明聚合物经受的预热过程(如加工和试样制备)。因此,分析聚合物时,建议分三步进行DSC操作;第一次升温、然后降温和第二次升温。用上述步骤进行测试,记录试样皿中聚合物的初始质量及第二次升温前后的质量,可有助于识别各个不同的峰。要想得到不受热历史影响的样品材料的热性能信息,应使用第二次扫描的结果。
    留言咨询
  • QY-5型触控全自动汉显量热仪是量热仪系列产品中的销量较多的产品,这款产品采用液晶触摸屏操作显示,具有操作简单、经济适用的特点,广受用户青睐 一、适用对象适用于测定无烟煤、烟煤、褐煤、重油、生物质燃料等固态、液态可燃物质的发热量二、适用标准GB/T213-2008《煤的发热量测定方法》GB/T384-1981《石油产品热值测定方法》GB/T30727-2014《固体生物质燃料发热量测定方法》GB/T14402-2007《建筑材料及制品的燃烧性能燃烧热值的测定标准》ASTM D5865-13(煤与焦炭的发热量测定方法)ISO 1928:2009(固体矿物燃料发热量测定)BS EN 15400-2011(固体回收燃料发热量测试)三、技术特点(1)采用模块化的24位AD温度采集电路,了万分之一的测温*度(2)以嵌入式ARM为主控芯片,配置7寸真彩触摸液晶屏以及鼠标设备,实现了操作更简单、灵活;直接的人机交互方式,使用更方便(3)具备了计算机强大的数据处理功能和较强的可扩展能力,实现了对仪器功能的利用,历史数据的查询、打印变得简单轻松(4)测试过程全自动化操作,一键完成全部操作,自动搅拌、自动点火、自动打印高低位热值(5)采用电源逆变及净化技术,配置水质净化装置,系统检测不受电源电压、频率及水质的影响(6)数据处理功能丰富,用户能方便查询历史试验数据、当天数据、平行样数据等四、技术参数(1)仪器热容量:约10500J/K 稳定性:0.2% (2)氧弹耐压:20MPa(3)内外筒容量:2.3L 51L (4)测温装置使用环境温度:0-40℃ 分辨率:0.0001℃(5)重复性:重复性相对标准偏差≤0.1%,一年内热容量变化≤0.20%(6)再现性:符合以上国标要求(7)测试时间:单次试验时间约15分钟(8)点火方式:自动点火(9)氧弹材质:镍铬钼合金耐压20MPa ,工作压力:2.8~3.0Mpa(10)试样坩埚:坩埚根据客户所测定的样品来选择石英、陶瓷或镍铬材质 (11)电源电压:220V±10% 50Hz 功率:200W五、配件清单主机:1台;氧弹:1个;减压器;1个;放气阀:1个;点火丝:2管;棉线:2把;10ml量筒:1个;勺子:1套;镊子:1套;坩埚:2个;自动充氧仪:1个;氧弹支架:1个;苯甲酸:1瓶
    留言咨询
  • 自动氧弹量热仪 ATC 300A1. 产品简介:符合GB/T384、GB/T 213、ASTM4809、ASTMD240等标准的高度自动化的燃烧热值测量仪器。其测试时间快、测试范围广,能够快速准确地测试各种可燃物的燃烧热值。高精度控温系统保证测试结果的准确性和可重复性,智能化的操作界面使其易于操作。2. 产品特点氧弹自动升降、自动识别氧弹编号、自动充氧和放气、自动检测充氧压力、自动定量内筒水量,测试全过程自动完成,仪器操作简便内外桶自动进排水,无需人工干预,确保测试结果准确可靠独特的半导体制冷型水循环系统,带有高过滤性过滤器,能够检测温度变化趋势,对水温进行升温、保温、降温的控制,可快速实现水温平衡,减少环境干扰点火丝自动检测,点火电路短路保护功能触摸式彩色液晶显示屏,软件运行稳定,实时显示数据曲线,测试过程更直观数据自动校正,提供三种热值数据,即高位,低位,弹桶热值,可校正点火丝燃烧产生的热值、硝酸的热值、硫的热值、碳氢化合物的热值先进的串口技术,支持一机多控,实验过程互不干扰自动生成并保存图表、过程数据,支持历史数据查询双控制系统智能交互:集成彩色触屏与PC双终端操作系统,同步监控实验进行,操作更为安全便捷3. 测试标准GB 384-1981、GB/T 14402-2007、GB/T 213-2008、GB/T 30727-2014、ASTM 4809-18、ASTM D240-14、ASTM D5865-2012、ASTM E711-87、ASTM D54684. 技术规格工作环境——(15~30)º C;最大相对湿度80%,无冷凝点火方式——棉线和点火丝温度分辨率——0.0001℃测试模式——等温测试时间——常规法≤15min,快速法≤10min热值测试范围——≤34000J热容量精密度——≤0.10%热容量波动——≤0.20%氧弹最大承压——240bar氧弹材质——不锈钢、哈氏合金(防腐蚀)数据存储——≥10000次
    留言咨询
  • SDACM3200量热仪 400-860-5168转0560
    标准配置仪器主机/专用水箱/电脑主机尺寸:长500mm×宽600mm×高425mm主机重量:约65kg水箱尺寸:长550mm×宽356mm×高520mm水箱重量:约17.5kg适用范围主要适用于煤炭、焦炭、石油、生物质燃料、水泥黑生料、固/危废等固态或液态可燃物质的热值分析。符合标准GB/T213-2008 《煤的发热量测定方法》 GB/T384-1981 《石油产品热值测定法》GB/T30727-2014 《固体生物质燃料发热量测定方法》 ASTM D5865-2007 《煤与焦炭总热值的标准试验方法》ISO 1928-2009 《固体矿物燃料-氧弹式量热计测定总值并计算净热值》JC/T1005-2006 《水泥黑生料发热量测定方法》主要技术参数单次完整测试时间:≤15min温度分辨率:0.0001℃热容量稳定性:三个月内热容量变化≤0.25%热容量精密度:≤0.15%最大功率:0.15kW电源电压:AC220V±10%,50Hz±1Hz性能特点1.台式/立式自由组合,水量大,每次实验外桶水温变化<0.1℃(优于国标要求),热容量精密度符合国标要求。2.自动调水温、定水量、自动检测总水量,实验全过程自动完成。3.具有专家诊断功能,自保护、自诊断功能。4.所有数据实测,真实、客观,不采用软件校正改变测试结果。5.强大的数据处理、报表统计与打印功能,可联网、联天平。
    留言咨询
  • 适用范围:ZDHW-10L微机全自动量热仪适用于电力、煤炭、冶金、石化、环保、水泥、造纸、地勘、科研院校等行业部门测量煤炭、焦炭、石油等可燃物的发热量,符合国标GB/T213—2008《煤的发热量测定方法》的要求。性 能 特 点 1、 采用电子晶体制冷型水循环系统,可根据前次发热量决定制冷量,平衡循环水系,使水温保持相对恒定,减少环境影响,能够连续实验,完美的解决了上代量热仪连续实验后外筒水温升高造成数据偏差的缺憾,使连续的实验数据依然可靠稳定,真正发挥出自动量热仪的优势。2、 自动控制内桶水量和内外桶的水温,自动完成实验全过程。整个实验过程无须称水重、调水温等许多人工操作,极大简化实验步骤。3、 外观美观,选材考究,制作精良,更具有结构简单故障率低等特点。4、 部分元器件采用进口元件,进口精密感温探头,温度分辨率达到0.0001K;是整体集成电路更加稳定可靠。5、 电源采用逆变及净化技术,仪器运行不受外界电压波动影响。6、 内外桶系相互独立,互不影响,外桶控温稳定可靠。7、 不锈钢真空内桶,氧弹采用耐热、耐腐蚀的镍铬合金钢制作,传热更快。8、 搅拌系统采用德国原装进口电机,采用高效的磁力搅拌方式使内桶水快速对流,充分搅拌,测试主期稳定,搅拌效率更高,有效缩短测试时间。9、 测试速度快,所有数据实测,真实可靠,不采用软件校正改变测试结果。10、 采用先进的串口技术,搭配windonw操作系统,实现一机多控,相互间测试互不影响,软件运行稳定性高。数据处理功能丰富,用户能方便查询历史实验数据、当天数据、平行样数据等。11、 可连接电子天平,实现自动输入试样重量;可联网实现远程数据共享。12、 环境适应能力很强,精度更高、准确度和稳定性符合国标要求。技 术 参 数测温范围:5~40℃ 温度分辨率:0.0001K精密度:≤0.1%单样测试时间:15min左右热容量:约10450J/K外水桶容量:约40L内水桶容量:约2.1L电源电压:AC220(1±10%)V、50Hz主箱尺寸(mm):630×420×450主机重量:约60kg
    留言咨询
  • 全自动氧弹量热仪-燃烧热值测试仪 / 产品概述测试特性:燃烧热值适用领域:煤炭、冶金、电力、建筑、石油化工符合GB/T 384、GB/T 213、ASTM 4809、ASTMD 240等标准的高度自动化的燃烧热值测量仪器,其测试时间快、测试范围广,能够快速准确地测试各种可燃物的燃烧热值。高精度控温系统保证了测试结果的准确性和可重复性,智能化的操作界面使其易于操作。全自动氧弹量热仪-燃烧热值测试仪 / 产品特点氧弹自动升降、自动识别氧弹编号、自动充氧和放气、自动检测充氧压力、自动定量内筒水量,测试全过程自动完成,仪器操作简便内外桶自动进排水,无需人工干预,确保测试结果准确可靠独特的半导体制冷型水循环系统,带有高过滤性过滤器,能够检测温度变化趋势,对水温进行升温、保温、降温的控制,可快速实现水温平衡,减少环境干扰点火丝自动检测,点火电路短路保护功能触摸式彩色液晶显示屏,软件运行稳定,实时显示数据曲线,测试过程更直观数据自动校正,提供三种热值数据,即高位,低位,弹桶热值,可校正点火丝燃烧产生的热值、硝酸的热值、硫的热值、碳氢化合物的热值先进的串口技术,支持一机多控,实验过程互不干扰自动生成并保存图表、过程数据,支持历史数据查询双控制系统智能交互:集成彩色触屏与PC双终端操作系统,同步监控实验进行,操作更为安全便捷。测试标准:GB/T 384-1981、GB/T 14402-2007、GB/T 213-2008、GB/T 30727-2014、ASTM 4809-18、ASTM D240-14、ASTM D5865-2012、ASTM E711-87、ASTM D5468技术规格工作环境(15~30)º C;最大相对湿度80%,无冷凝点火方式棉线和点火丝温度分辨率0.0001℃测试模式等温测试时间常规法≤15min,快速法≤10min热值测试范围≤34000J热容量精密度≤0.10%热容量波动≤0.20%氧弹最大承压240bar氧弹材质不锈钢、哈氏合金(防腐蚀)数据存储≥10000次
    留言咨询
  • 塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定警示一使用本标准的这部分时,可能会涉及有危险的材料,操作和设备。本标准不涉及与使用有关的所有安全问题的解决办法。本标准的使用者有责任在使用前规定适当地保证人身安全的措施并确定这些规章制度的适用性。1、差示扫描量热仪(熔融和结晶温度及热焓的测定)范围GB/T19466.3的本部分规定了测定结晶和半结聚合物熔融和结晶温度及热的试验方法。2、差示扫描量热仪(熔融和结晶温度及热焓的测定)规范性引用文件下列文件中的条款通过GB/T、19466的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。GB/T19466.1—2004塑料差示扫描量热法(DSC)第1部分:通则(idtISO11357-1:1997)3、差示扫描量热仪(熔融和结晶温度及热焓的测定)术语和定义GB/T19466.1确立以及下列术语和定义适用于本部分。3.1熔融melting完全结晶或半结晶聚合物从固态向具有不同粘度的液态的转变阶段注:这种转变也可称的熔化,在DSC曲线上表现为吸热峰。3.2结晶crystallization聚合物的无定形液态向完全结晶或半结晶的固态的转变阶段。注:这种转变在DSC曲线上现为放热峰。对液晶,应把无定形液态用“有序液态”代替3.3C熔融晗enthalpyoffusion在恒压下,材料熔融所需要的热量,单位,kJ/kg3.4)结晶晗enthalpyofcrystallization在恒压下,材料结晶所放出的热量,单位kl/kg。3.5特征温度特征温度如下(见图1)——外推起始温度Ta,C,extrapolatedonsettemperature外推基线与对应于转变开始的曲线最大斜率处所作切线的交点所对应的温度。——峰温度Ta,C,peaktemperature峰达到的最大值(或最小值)所对应的温度。——外推终止温度Ta,"C,extrapolatedendtemperature外推基线与对应于转变结束的曲线最大斜率处所作切线的交点所对应的温度。注:用下标“m”注明与熔融现象有关的温度,下标“c”注明与结晶现象有关的温度,见图1。4、原理见GB/T19466.1-2004第4章。5、仪器和材料见GB/T19466.1—2004第5章。使用的气氛应为分析级的氮气或其他惰性气体。应使用清洁的镊子处理试样和样品皿。6、试样见GB/T19466.1—2004第6章。7、试验条件和试样状态调节见GB/T19466.1—2004第7章。8、校准见GB/T19466.1—2004第8章。9、操作步骤9.1打开仪器见GB/T19466.1—20049.1。接通仪器电源,使其平衡至少30min。使用与校准仪器相同的清洁气体及流速。气体和流速有任何变化,都需要重新校准。一般采用:氮气(分析级),流速50mL/min(1士10%)。经有关双方的同意,可以采用其他惰性气体和流速。9.2将试样放在样品皿内四见GB/T19466.1—20049.2。除非材料的标准另有规定,试样量采用5mg至10mg。称量试样,精确到0.1mg。样品皿的底部应平整,且皿和试样支持器之间接触良好。这对获得好的数据是至关重要的。不能用手直接处理试样或样品皿,要用镊子或戴手套处理试样。9.3把样品皿放入仪器内见GB/T19466.1-20049.3。9.4温度扫描9.4.1在开始升温操作之前,用氮气预先清洁5min。9.4.2以20℃/min的速率开始升温并记录。将试样皿加热到足够高的温度,以消除试验材料以前的热历史。通常高于熔融外推终止温度(Tefm)约30℃。样品和试样的热历史及形态对聚合物的DSC测试结果有较大影响。进行预热循环并进行第二次升温扫描(见GB/T19466.1-2004的附录B)测量是非常重要的。若材料是反应性的或希望评定预处理前试样的性能时,可取第一次热循环时的数据。试验报告中应记录与标准步骤的差别。9.4.3保持温度5min。9.4.4以20℃/min的速率进行降温并记录,直到比预期的结晶温度(Tefe)低约50℃。注1:经有关双方的同意,可以采用其他的升温或降温速率。特别是,高的扫描速率使记录的转变有高的灵敏度,另一方面,低的扫描速率能提供较好的分辨能力。选择适当的速率对观察细微的转变是重要的。注2:由于过冷,要达到足够低的温度变化时才能得到结晶,结晶温度通常大大低于熔融温度。9.4.5保持温度5min。9.4.6以20℃/min的速率(见9.4.4注1)进行第2次升温并记录,加热到比外推终止温度Tefm高约30℃。9.4.7将仪器冷却到室温,取出试样皿,观察试样血是否变形或试样是否溢出。9.4.8重新称量皿和试样,精确到士0.1mg。9.4.9如有任何质量损失,应怀疑发生了化学变化,打开皿并检查试样。如果试样已降解,舍弃此试验结果,选择较低的上限温度重新试验。变形的样品皿不能再用于其他试验。如果在测试过程中有试样溢出,应清理样品支持器组件。清理按照仪器制造商的说明进行,并用至少一种标准样品进行温度和能量的校准,确认仪器有效。9.4.10按仪器制造商的说明处理数据。9.4.11应由使用者决定是否进行重复试验。10结果表示10.1转变温度的测定调整DSC曲线图,使峰覆盖的范围能达到满量程的25%。通过连接峰(熔融是吸热峰,结晶是放热峰)开始偏离基线的两点画一条基线,如图1所示。如果存在多个峰,对每一个峰要画一条基线。对熔融转变部分曲线,应测量每一个峰并报告下列值:—一外推熔融起始温度Teim;——熔融峰温Tpm;——外推熔融终止温度Tefm。对结晶转变部分的曲线,应测量每一个峰并报告下列值:——外推结晶起始温度Tec;——结晶峰温Tpc;——外推结晶终止温度Tefc。图2转变焓的测定10.2转变恰的测定(见图2)测量DSC曲线上的峰与10.1所作的基线之间的面积。熔融烙△Hm(或结晶焓△Hc)的值用公式(1)计算,单位为kJ/kg。△H=ABT/W×△HsWs/AsBsTs……………………(1)式中:△H——试样的熔融焓或结晶焓,单位为千焦每千克(kJ/kg);△Hs——标准样品的熔融焓或结晶焓,单位为千焦每千克(kJ/kg)A——试样的峰面积,单位为平方毫米(mm2);As——标准样品的峰面积,单位为平方毫米(mm2)W——试样的质量,单位为毫克(mg);Ws——标准样品的质量,单位为毫克(mg);T——试样在Y轴的灵敏度,单位为毫瓦每毫米(mW/mm);Ts——标准样品在Y轴的灵敏度,单位为毫瓦每毫米(mW/mm)B——试样在X轴(时间)的灵敏度,单位为秒每毫米(s/mm)Bs——标准样品在X轴(时间)的灵敏度,单位为秒每毫米(s/mm)注1:现在的仪器可进行这种计算注2:当聚合物的固态和液态的比热容存在明显差异的情况下,可使用特殊形状的基线,如S形基线,以改进试验的结果。11、差示扫描量热仪(熔融和结晶温度及热焓的测定)精密度由于未获得足够的实验室间的数据,本试验方法的精密度尚未知道。在获得这些实验室间数据后,下个版本将增加精密度的说明。附录A给出了制标工作组对两种材料测得的数据,仅供参考。12、差示扫描量热仪(熔融和结晶温度及热焓的测定)试验报告见GB/T19466.1-2004,第10章。其中试验结果的第1项应包括下列内容:——每个峰的转变特征温度Tei、Tef和Tp值,℃,修约到整数位;——每个峰的含变△H值,kJ/kg,修约到小数点后一位。附录A(资料性附录)HDPE和PP测定结果精密度制标工作组用HDPE和PP样品在9个试验室之间进行了室间重复试验,并分别对熔融和结晶的Tei、Tp和Tef进行了精密度计算,见表A.1和表A.2。表A.1HDPE5000S精密度结果表A.2PP精密度结果
    留言咨询
  • 1全套设备应包括符合GB/T16172-2007、ISO5660-1/2/3/4-2002、ASTM E1354-2011等建筑材料热释放速率性能试验设备。 2 锥形量热仪包括试验装置、校准装置、烟密度测量装置、称重装置、气体分析柜装置、数据采集及标准测试软件组成。 3 试验装置包含辐射锥、排气系统、采样装置、变频风机装置等。 3.1 辐射锥额定功率为5000W,由电加热管构成,内外锥壳内填充公称厚度为13mm、公称密度为1000kg/m3的耐热纤维。 3.2 辐射锥的辐照度通过3支进口OMEGA热电偶控制,热电偶直径为1.0-1.6mm,采用PID温度控制模式,可通过调节温度,调节热辐射输出辐照度。 3.3 辐射锥应能在试样表面提供高达100KW/m2的辐射照度,在暴露试样的 正中部分50mm*50mm范围内,辐射照度应均匀,与中心辐射照度偏差不超过±2%。 3.4 点火电路采用一个10KV的电火花点火器外部点火,火花塞的点火间隔为3±0.5mm,电火花点火位于试样中心13±2mm位置。 3.5 提供水冷热流计校准,测量范围为0-100KW/M2,并附带循环水冷却装置。 3.6 进口甲烷校准流量控制器,推荐品牌为BROOKS、MKS或其他国际知名品牌,量程为0-30ml/min,精度不低于1.5%。 4 烟密度测量装置由激光光源及硅光二极管接收装置组成。 4.1氦氖激光光源,波长632.8nm,长时间稳定性:±2% 每8小时,噪音(RMS): 0.5% (30Hz-10MHz)。 4.2 硅光二极管包含主探测器及辅助探测器,线性度》99.8%,不稳定度《0.1%。 5 排气系统由集烟罩、排气风机、孔板流量计、风机的进气及排气管道组成。 5.1 集烟罩底部与试样表面距离为210±50mm。 5.2 节流孔板内径为57±3mm,厚度1.6±0.3mm连接量程为0-500pa进口微差压传感器,可测量节流孔板前后压差。 5.3 进口微压差传感器精度RSS*( 恒温下) ±1.0%FS,非线性度±0.98%FS,迟滞0.1%FS,非重复性0.05%FS,量程为0-500pa。 5.4 环状取样器上开有12个直径为2.2mm±0.1mm的孔,孔与气流方向反装。 5.4 风机通过变频器调节,可调节流量不低于0.024m3/s。 5.5 气体温度采用1.0-1.6mm的进口热电偶,安装位置为节流孔板上方100±5mm处。 6称重装置量程为0-2000g,精度0.1g,内置称重传感器,测试中漂移量低于0.1g。 7气体分析柜装置由气体取样装置和分析仪表组成。 7.1 气体取样装置包含取样泵、烟尘过滤器、除湿冷阱、水分过滤器和CO2过滤器。 7.2 进口隔膜泵,流量率:33L/min,真空度: 700 ㎜Hg,压力: 2.5 bar 7.3进口烟尘过滤器滤头为固体PTFE组成,内部为0.5umPTFE过滤材料。 7.4 进口水分过滤器滤头为固体PTFE组成,底部液体可通过蠕动泵排除。 7.5 进口压缩机式冷凝器,冷却容量320KJ/h,露点稳定度0.1度,露点静态变化0.1K,保护等级IP20。 7.6 进口品牌转子流量计,量程为0-1L/min。 7.7 英国仕富梅气体分析仪,O2范围为0-25%,测试精度为0.1%,响应时间小于12秒,顺磁氧传感器零点漂移/周:0.01%。 7.8 CO2检测范围0-10%,CO检测范围0-1%,测试精度为0.1%,响应时间小于12秒。 7.8 顺磁传感器及非色散红外传感器带温度控制和压力补偿,所有测量均可独立自动标定,19英寸机架安装。 8 数据采集系统,包含测试软件、台湾研华采集模块(不接受自制采集板卡及模块)、电脑。 8.1工控模块1:8路可独立配置的差分通道 高抗噪性:1kV浪涌保护电压输入,3KV EFT及8KV ESD保护 抗干扰性强:电源输入端1KV的浪涌保护,3KV EFT,8KV ESD保护 宽电源输入范围:+10~+48VDC 输入范围:+10~+48 VDC 易于监测状态的LED指示灯 支持50HZ/60HZ自动调整滤波参数 支持滤波器自动调谐或滤波器输出。 8.2 工控模块2:8路不同且可独立配置的差分通道 宽温运行 高抗噪性:1kV浪涌保护电压输入,3KV EFT及8KV ESD保护 宽电源输入范围:+10~+48VDC 易于监测状态的LED指示灯 支持2000VDC HI共模电压 支持单极性和双极性输入 支持+/- 15V输入范围 支持滤波器自动调谐或滤波器输出50Hz/60Hz。 8.3 工控模块:吸入类型:数字量输出,数字量输出:集电极开路40V(200毫安最大负载),12通道,I/O类型:吸入型输出。 8.4工控转换器:自动内部RS-485总线监督 自动数据流控制 最高采样速率115.2 kbps 3000 Vdc隔离保护。 8.5 模拟信号输出模块(V, Ma), 输出类型: mA, V, 隔离电压: 3000 Vdc, 输出范围: 0~20 mA, 4~20 mA, 0~10 V。 8.6 独立的C系数校准报告,报告信息包含气体分析仪数据、温度数值、压差数值等,投标文件需提供C系数校准报告,以及历史数值及曲线。 8.7 测试报告中包含热释放速率、热释放速率峰值、产烟量、热失重等数据,投标文件需提供测试报告,以及黑色PMMA标准试样历史数值。 8.8 投标文件需提供和国外知名品牌仪器的黑色PMMA标准试样的比对测试报告。 8.9 标准测试软件由VB编写,需可对各传感器校准,以及系统校准,投标文件需提供中英文软件操作文件,并提供详细说明,并提供各参数计算公式,并进行技术说明。 8.10控制电脑应为工业触摸屏电脑,能和控制柜完美结合,采用不小于15寸TFT LCD,分辨率不小于1024×768,高温制程五线电阻式触摸屏, 采用Intel Atom N2800 1.86GHz以上双核处理器,DDR3 2GB以上内存,网络接口不少于2个采用Intel82583V 10/100/1000Mbps接口, 不少于4个RS232/RS485可选串口,接口至少包括:VGA/2GLAN/5USB/4COM/LPT/AUDIO,采用磁耦隔离、浪涌和静电保护,直流9~30V宽压电源输入,具有过流、过压和反接保护措施。 9其他元器件均应采用国际知名品牌。 10 需提供标准样品一套,不少于3次试验用量,用于设备验收。
    留言咨询
  • 中英文名称:绝热反应量热仪/泄放尺寸设计量热仪 Vent Sizing Package 2品牌:Fauske & Associates LLC原产地:美国型号:VSP2 VSP2发展历史:VSP2 源于美国化学工程师协会(AIChE)为DIERS研究项目开发的一款量热仪,主要为获取可直接用于紧急泄放系统设计的测试数据。在1985年,该设备开始被称作DIERS Bench Scale Apparatus,但是后续经过FAI商业化,称为VSP,后来经过改进,成为更加自动化VSP2。因此,DIERS项目认为需要一种质量比较轻的样品池以使样品池的热惯性接近于实际生产情形,而不至于掩盖或者抵消化学反应失控行为。这一低Phi值绝热量热仪的数据可以直接用于放大而不需要复杂数据处理。VSP2稳定性:VSP2发展历史已经超过20多年,已经用于模拟如下极端情形,如冷却失效、搅拌失效、物料错投、间歇污染和外部火灾加热。VSP2还可以应用于除紧急排放口设计之外的很多领域,由于该设备可以看作是小的化学反应釜,可以跟反应安全评估一起用于工艺开发。VSP2还可以用于研究物料相容性,热量对工艺混合的影响、电池材料的稳定性和气体或蒸汽可燃性。VSP2使用一个受专利保护的低热惯性,温度和压力维持平衡的120 ml样品池。即使是很快的失控反应,也可以使用户获得精确的绝热温升和压升数据。FAI开创性研发的压力平衡系统可以使壁很薄,质量很轻的样品池用于高压下的封闭测试。这种低Phi值测试可以直接用于工艺放大。因此避免了为扣除厚壁样品池吸热效应相关的复杂修正计算过程。VSP2兼容性:VSP2可以获取绝热条件下的温升速率和压升速率数据,从仪器中获得的绝热数据可以用于表征反应体系及一些极端条件而引起的后果。由于其低热惯性,因此可以直接应用于实际反应釜泄放尺寸计算、淬灭系统设计及时工艺安全管理中要求的其它设备泄放参数设置。VSP2可以直接模拟工艺过程,包括: 冷却或搅拌失效 反应物的累积或混合 批次污染 热引发分解 停留潜伏期 在线液体/气体定量加料或取样 可测试固体、液体及两相混合物 闭口或开口泄放测试 小规模泄放测试 VSP2主要用于化学品、化学活性材料、含能材料等在合成工艺、储存、运输等过程中可能存在的反应风险、临界反应条件、危害程度、泄放条件、泄放速率、反应机理、二次分解机理等进行精确的定量研究,为化学过程研究开发提供更全面的化学动力学和热力学信息,提高研发效率,并完善对所研发化学物质性能更全面的了解和掌控。VSP2是获得泄放系统过程数据的工具,仪器的多用途设计,其测试数据可直接适用于工业尺寸。可以在实验室规模下,模拟实际的车间情形。(4)仪器设备优势VSP2是一款简洁,通用和自动化水平很高仪器,而占用的实验室空间和对操作人员要求最小化。测试数据以ASCII码表格的形式保存在文件中,可以方便的用其它数据处理软件打开。样品测试池有不锈钢、哈氏合金、钛合金和玻璃。也可提供内衬玻璃的不锈钢和哈市合金样品池。VSP2设计使更换配件保持最少,可以很容易在FAI的库存清单中找到。VSP2技术支持由FAI的专家和工程师团队提供。另外,FAI提供超级磁力搅拌可以搅拌浆状或者乳状的聚合反应液,或者对于非粘性样品可以提供常规搅拌。FAI也可以提供机械搅拌。在测试过程可以加入气体或者液体样品,也可以很容易做等温老化实验。VSP2使用美国化学工程师协会(AIChE) DIERS技术。作为工艺安全管理中工艺危害分析的重要环节,该设备可以低成本的获取工艺设计中的一些极端数据。VSP2可用于模拟如下极端情形,如冷却失效、搅拌失效、物料错投、间歇污染和外部火灾加热。测试可以在“闭口”或“开口”样品池进行,可以直接测试反应体系的蒸汽压或者产气速率。温升和压升速率等绝热条件下的测试数据可以直接在工艺放大过程用于泄放口尺寸设计、淬灭罐设计和其他工艺安全管理相关的紧急泄放系统参数设计。VSP2的通用性设计可以使废气直接排放在接收罐中以最小化的减少测试之间的清洗过程和用于指导废气处理系统的选择。 量热仪结构:不锈钢炉体,样品池外有样品池加热器和夹套加热器,通过控制加热器使夹套温度与样品温度保持一直,从而达到绝热效果。量热原理:样品池外有样品池加热器和夹套加热器,通过控制加热器使夹套温度与样品温度保持一直,从而达到绝热效果。加热温度范围:室温– 250 ℃压力范围:0-2000 PSI
    留言咨询
  • 技术参数:结构设计 水平式炉子及天平 天平设计 双杆双天平设计(膨胀自动补偿) 样品容量 200 mg (包括样品盘可达350mg) 天平灵敏度 0.1 μg 炉子类型 双丝缠绕 温度范围 室温~1500℃ 加热速率 - 室温到1000℃ 0.1~ 100 ℃/分钟加热速率- 加热速率 - 室温到1500℃ 0.1~ 25 ℃/分钟加热速率- 炉子降温 强制空气(从1500 ℃ 到50 ℃ 30 分钟) 热电偶 铂/铂铑(R型) 温度校正 金属标样居里点(一至五个点) DTA灵敏度 0.001 ℃ 量热精度/准确度 +/- 2% (根据金属标样) 数字式质量流量控制器 及气体自动气体切换器 标配真空度 到7 Pa (0.05Torr) 反应性气体接入口 标配(独立进气管) 双样品TGA测试 标配 自动优化的布阶恒温技术 标配 样品坩埚 铂金:40 μL,110 μL 氧化铝: 40 μL, 90 μL主要特点:真正同步的TGA/DTA,TGA/DSC测量 独特的双天平设计 真正的差示热流信号 隔离的反应气体通路 双样品TGA功能 先进的校正技术 DSC数据的动态归一处理热天平 Q600采用高可靠性的水平双臂双天平结构,同时完成DSC和TGA的测量。给出的重量信号为样品臂和参比臂的重量信号差,事实上,二者都会自动扣除天平臂的热膨胀和浮力效应。因此,相对于单臂梁的设计来讲,其结果漂移更小,重量测试的精度和准确度也更高。用户在测试微量的重量变化(0.1μg)时,就能受益于仪器的高灵敏度、精度和准确度。同时,仪器的独特性还在于它可以同时独立的对两个样品进行TGA测量。吹扫气体系统 Q600采用经长期实践证明性能Z佳的水平吹扫气路设计。Q600配有数字式质量流量控制器及气体自动切换器,控制流量的吹扫气体水平流过加热炉体,经过样品和参比盘后,后流出炉腔。反应性气体可以通过独立式的Inconel600气管进入,可以保护天平组件,并可以有效的吹扫到样品。出口可容易的与质谱仪或红外分析仪联用。此设计保证了更好的基线稳定性,较小的浮力效应,防气体回流,能将分解物质有效带出样品区。高分辨SDT 如果用标准方法(实验中始终保持线性加热速率)无法分离相邻的失重现象,Q600还提供自动的步阶恒温(SWI)方法,一种增加TGA分辨率的经典技术。这种方法为,在恒定的升温速率下加热样品,直到失重速率或总失重量超过操作者设定的界限时,仪器便恒定在该温度,直至失重过程完成。每一次失重过程发生时,都会重复这种升温、恒温的步骤,从而得到优异的失重分辨率。售后服务承诺 保修期: 1年 是否可延长保修期: 是 现场技术咨询: 有 免费培训: 不限次数 免费仪器保养: 1年1次 保内维修承诺: 质保期1年 报修承诺: 8-24小时到达现场
    留言咨询
  • 技术参数:结构设计 水平式炉子及天平 天平设计 双杆双天平设计(膨胀自动补偿) 样品容量 200 mg (包括样品盘可达350mg) 天平灵敏度 0.1 μg 炉子类型 双丝缠绕 温度范围 室温~1500℃ 加热速率 - 室温到1000℃ 0.1 ~ 100 ℃/分钟加热速率- 加热速率 - 室温到1500℃ 0.1 ~ 25 ℃/分钟加热速率- 炉子降温 强制空气(从1500 ℃ 到50 ℃ 30 分 钟) 热电偶 铂/铂铑(R型) 温度校正 金属标样居里点(一至五个点) DTA灵敏度 0.001 ℃ 量热精度/准确度 +/- 2 % (根据金属标样) 数字式质量流量控制器 及气体自动气体切换器 标配真空度 到7 Pa (0.05 Torr) 反应性气体接入口 标配 (独立进气管) 双样品TGA测试 标配 自动优化的布阶恒温技术 标配 样品坩埚 铂金:40 μL,110 μL 氧化铝: 40 μL, 90 μL主要特点:真正同步的TGA/DTA,TGA/DSC测量 独特的双天平设计 真正的差示热流信号 隔离的反应气体通路 双样品TGA功能 先进的校正技术 DSC数据的动态归一处理热天平 Q600采用高可靠性的水平双臂双天平结构,同时完成DSC和TGA的测量。给出的重量信号为样品臂和参比臂的重量信号差,事实上,二者都会自动扣除天平臂的热膨胀和浮力效应。因此,相对于单臂梁的设计来讲,其结果漂移更小,重量测试的精度和准确度也更高。用户在测试微量的重量变化(0.1μg)时,就能受益于仪器的高灵敏度、精度和准确度。同时,仪器的独特性还在于它可以同时独立的对两个样品进行TGA测量。吹扫气体系统 Q600采用经长期实践证明性能Z佳的水平吹扫气路设计。Q600配有数字式质量流量控制器及气体自动切换器,精确控制流量的吹扫气体水平流过加热炉体,经过样品和参比盘后,最后流出炉腔。反应性气体可以通过独立式的Inconel600气管进入,可以保护天平组件,并可以有效的吹扫到样品。出口可容易的与质谱仪或红外分析仪联用。此设计保证了更好的基线稳定性,较小的浮力效应,防气体回流,能将分解物质有效带出样品区。高分辨SDT 如果用标准方法(实验中始终保持线性加热速率)无法分离相邻的失重现象,Q600还提供自动的步阶恒温(SWI)方法,一种增加TGA分辨率的经典技术。这种方法为,在恒定的升温速率下加热样品,直到失重速率或总失重量超过操作者设定的界限时,仪器便恒定在该温度,直至失重过程完成。每一次失重过程发生时,都会重复这种升温、恒温的步骤,从而得到优异的失重分辨率。
    留言咨询
  • 鹤壁市华诺电子科技有限公司是一家专业研制、生产煤质采制样分析仪器仪表的高新技术企业,煤质分析产品主要包括:量热仪(热量计)系列,测硫仪(定硫仪)系列,马弗炉系列,水分测定仪系列, 粘结指数测定仪系列,胶质层测定仪系列,测氢仪系列,工业分析仪系列,哈氏可磨测定仪系列,灰熔点测定仪系列,转鼓机系列,破碎机系列,制样机系列等。产品广泛用于电力、煤炭、冶金、石化、环保、地质、水泥、大专院校及技术监督等行业及部门实验室、化验室。量热仪系列:ZDHW-9000C高精度微机全自动制冷量热仪(含电脑、打印机)ZDHW-8000A高精度微机全自动量热仪(含电脑、打印机)ZDHW-7000F高精度液晶全自动量热仪设备名称:ZDHW-9000C高精度微机全自动制冷量热仪(含电脑、打印机) 适用范围微机全自动量热仪主要适用于电力、煤炭、造纸、石化、水泥、农牧、医药、科研、教学等行业或部门测定煤炭、垃圾、生物质燃料、石油、化工、食品、木材等固体或液体可燃物质的热值。 采用标准GB/T483-2007《煤炭分析实验方法一般规定》GB/T 213-2008《煤的发热量测定方法》GB/T 384-1981《石油产品热值测定法》GB/T 30727-2014《固体生物质燃料发热量测定方法》GB/ T14402—2007《建筑材料及制品的燃烧性能燃烧热值的测定》GB/T 30991-2014《智能氧弹式热量计通用技术条件》JC/T 1005-2006 《水泥黑生料发热量测定方法》JJG 672-2001《氧弹热量计检定规程》ASTM D5865-2013《煤与焦炭的发热量测定方法》ASTM D5865-2007《煤与焦炭总热值的标准试验方法》ISO 1928-2009《固体矿物燃料-用弹式量热计测定总值并计算净热值》CEN/TS 14918 《固体生物燃料发热量测定方法》BS EN 15400-2011 《固体回收燃料- 发热量测试》IS: 1350-1970 《煤与焦炭的测定方法》GJB5891.29-2006《火工品药剂试验方法》第29部分《燃烧和爆热测定恒温法》 性能特点1、 自动标定量热仪热容量2、 输入硫、水分、氢等数据,即可换算并打印出弹筒发热量、高位发热量、低位发热量等数据。3、 采用日本原装进口搅拌电机,搅拌匀速稳定,性能可靠,抗干扰能力强。实现自动充水,自动调水温,自动定量水,自动搅拌,自动点火,降低人为误差。4、 量热仪支持点火丝和棉线两种点火方式5、 机箱外壳有水位指示线,可随时观察内筒是否缺水。6、 机箱外可随时观察点火电压、点火电流。7、 采用独创的冷却校正模型,保证了高、低热值试样测试结果的准确可靠。8、 不锈钢真空内筒,大容量外筒水箱,有制冷单元,热容量稳定,适应长时间连续做样。9、先进的压缩机制冷工艺,完全不受环境温度变化的影响,确保仪器内外筒温差符合国标要求。10、自动化程度高、自动利用内置定容器内桶水量,自动控制仪器内外桶水温温差,自动完成试验全过程。可与电子天平连接。11、独有弹筒,抗压强,主期时间缩短。实验室环境温度实时监控;超差的结果自动提示。12、样品编码和重量信息自动传送 测试数据备份和上传 实验数据防篡改。13、可实现登录权限管理,数据处理功能丰富,用户能方便查询历史试验数据、当天数据、平行样数据等。14、该产品即使在严酷环境下运行亦具有很好的性能和可靠度。15、结构紧凑,造型美观,安装、维护简便,故障率低。16、发热量测试的重复性和再现性优于国标GB/T212-2003的要求。17、采用Windows7操作系统,实现一机多控,相互间测试互不影响,软件运行稳定性高。 技术参数使用环境:0-65℃外水筒容量:约75L内水筒容量:约2. 1L制冷方式:压缩机制冷测试方法:国标法点火电压:20V点火时间:程序控制测温范围:0-40℃精密度:≤0.1%分辨率:0.00001K温度分辨率:0.0001℃热容量稳定性0.2%电源电压:AC220±10% 50Hz外形尺寸mm(长×宽×高):800×560×460制冷机尺寸mm:300×650×435
    留言咨询
  • 锥形量热仪 400-860-5168转1567
    一、锥形量热仪简介: 锥形量热仪是美国国家标准与技术研究院,简称NIST,原美国国家标准局的V. Babrauskas等人于1982年研制的, 是基于耗氧原理的材料燃烧性能测试仪器,经过30多年的不断改进和完善,锥形量热仪已经成为研究材料燃烧性能最重要的试验仪器之一。锥形量热仪是以氧消耗原理为基础的,采用耗氧量原理测量材料的热释放速率。所谓耗氧量原理就是:材料燃烧时消耗每一单位的氧气所释放的热量基本是相同的。Hugget在1980年发表的文章指出建筑业和商业中普遍使用的大多数塑料和其他固体材料都遵循这个规律,并测出这个值为13.1MJ/kg±5%。在实验中,将所有燃烧产生的烟气都收集起来并在排气管中经过充分混合后,精确的测出其质量流量和组分,同时将O2的浓度测出来,通过计算可得到燃烧过程中消耗的氧气质量,运用氧消耗原理,即可得到材料燃烧过程中的热释放速率,同时还能给出其它许多参数。目前,表征材料燃烧性能的试验方法较多,如氧指数法、UL94标准中的水平垂直燃烧法、垂直燃烧法及NBS 烟密度箱法等。它们多是传统的小型试验方法,试验操作环境与真实火灾相差较大,试验获得的数据也只能用于一定试验条件下材料间燃烧性能的相对比较,不能作为评价材料在真实火灾中行为的依据,锥形量热仪法由于具有参数测定值受外界因素影响小,与大型实验结果相关性好等优点被应用于很多领域的研究。 二、锥形量热仪标准技术参数:2.1、锥形量热仪采用分柜式设计方式,分析柜可移动,既可应用于锥形量热仪测试使用,也可连接大型热释放速率测试系统,符合ISO 5660、ASTM E1354、GB/T16172等现行国内外测试标准。2.2、集成测试机体和19英寸分析柜,内嵌PC型15英寸工业触摸屏电脑,用于整个控制和测试过程。2.3、锥形加热器额定功率5000W,热输出量0~100kW/m2,采用PID温度控制器控制,同时辐射锥可水平或垂直放置;2.4、暴露试样表面的中心部位50X50mm的范围内,于中心处辐照偏差不超过±2%;2.5、样品盒可放置最大100mm x 100mm x 50mm的样品;2.6、样品称量范围 0~3000g;精度:0.1g;2.7、点火系统带有安全切断装置的高压火花发生器,自动定位;2.8、德国ABB顺磁性氧气分析器,采用顺磁压力变化的方法来测量气体中的氧浓度。浓度范围0-25%,2.9、德国ABB非色散红外线CO和CO2分析器 CO:0~1%;CO2:0~10%;2.10、烟密度分析使用激光系统测量烟雾密度,系统由光电二极管、0.5mW氦氖激光器、主探测器和辅助探测器组成2.11、排气系统由风机、集烟罩、风机的进气与排气管道及孔板流量计等所组成。排烟风机流量0~50g/s可调,精度0.1g/s;2.12、环形取样器应装在距集烟罩685 mm处的进气管道内,取样器上应有12个小孔以均化气流组份;2.13、排气流量应通过测量风机上方350 mm处的锐缘孔板两侧的压差来确定,锐缘孔板的内径为57mm±1mm;2.14、气流的温度应由直径为1.6 mm封闭节点的恺装热电偶测量,热电偶应安装于测流孔板上方100 mm处;2.15、气体取样系统包括环形取样器、取样泵、过滤器、冷阱、废水排泄、水分过滤器和co2过滤器;2.16、德国ABB一体化预处理系统,包含M&C冷凝器: 0~5度,KNF隔膜泵,流量率:3 l/min,M&C转子流量计,带报警单元,湿度报警单元,蠕动泵可自动排除水分;2.17、选用卡登型箔式热流计,设计量程0^100k W/m' ,辐射接收靶的直径为12.5 mm,表面覆有耐久的无光泽黑色涂层。辐射接收靶为水冷式。热流计的准确度为士3% ,重复性为士0.5%,附带可追溯至NIST的校准报告一份。2.18、原厂配备便携式水冷却系统,当使用热流计时,用户无需外接自来水源和配备水管。2.19、断面也为方形的黄铜管作为标定燃烧器,用于测量C-系数数值。2.20、数据采集系统应能记录氧分析仪、孔板流量计、热电偶等仪器的输出。2.21、配备软件操作系统,测试结果包含:热释放速率、烟道气体流速、C系数、试样点燃时间和熄灭时间、总耗氧量、总发烟量、质量损失速率、热释放总量、有效燃烧热、二氧化碳生成量及一氧化碳生成量。 三、锥形量热仪软件说明:3.1、设置为对各个传感器校准模式,包括氧气分析仪、二氧化碳分析仪、一氧化碳分析仪、微压差传感器、烟密度测量系统、称重装置、质量流量控制的单点或双点校准,以获得最佳线性;3.2、C-系数校准,软件可自动设定C系数测量时的燃气流量,如1KW、3KW或5KW,电脑系统自动计算ISO 5660 C系数以及平均C系数,同时可保存记录;3.3、软件可自动生成C-系数日志,便于用户自行查看锥形量热仪历史状态,辨别自己系统的准确性及稳定性;3.4、系统可自行计算氧气分析仪、二氧化碳分析仪、一氧化碳分析仪的延迟时间,便于同步计算使用;3.5、状态检查界面,可一目了然的获取仪器的各个传感器部件的工作状态;3.6、可记录各个传感器的工作数值,包括微压差传感器、烟囱温度、氧气分析仪、二氧化碳分析仪、一氧化碳分析仪;3.7、报告模板为EXCELL格式,可显示图形及数值模式。 四、锥形量热仪的构造:锥形量热仪主要由燃烧室、载重台、氧分析仪、烟测量系统、通风装置及有关辅助设备等六部分组成。4.1、燃烧室:锥形加热器、10KV点火器、控制电路、挡风罩等构成了燃烧室。入射热流强度可根据不同的试验要求适当选择,样品放在燃烧平台上由点火器点燃,燃烧产物由通风系统排走。4.2、氧分析仪:氧分析仪是锥形量热仪的核心部分,它是一种高精度的气体分析仪,由氧分析仪可精确检验燃烧时通气管道中氧的的百分含量随时间的变化,进而由即时氧气浓度和氧耗原理测定出材料的燃烧放热情况。4.3、载重台:载重台是测定样品质量变化的装置,它可以准确记录样品在燃烧过程中的质量变化情况。燃烧时,样品放置于载重台的支架上。4.4、烟测量系统:在靠近燃烧室的通风管道中设有氦氖激光发射器、双电子束测量装置装置,以此可测定烟管道中烟的比消光面积(SEA) 。4.5、通风系统:通风系统是指样品燃烧后,将燃烧产物由燃烧室排出到大气中的装置。通风装置的通风性能要根据试验要求进行调节,气体流速应限制在一定范围之内,否则将影响试验结果。4.6、其它改进设备:根据不同需要,也可以添加其它分析装置,如进行燃烧产物成分分析时,可增加红外光谱分析装置 若测量样品中温度分布,须进行相应的热电偶或红外摄像装置改造。4.7、辅助设备: 辅助设备中含有微机处理器、热流计装置、除去CO2 及H2O(气) 的相应装置等。 五、锥形量热仪可获取的试验参数:由锥形量热仪获得的可燃材料在火灾中的燃烧参数有多种,包括释热速率(HRR) 、总释放热( THR) 、有效燃烧热(EHC) 、点燃时间( TTI) 、烟及毒性参数和质量变化参数(MLR) 等。5.1、热释放速率(Heat Relea seRate ,简称HRR)HRR 是指在预置的入射热流强度下,材料被点燃后,单位面积的热量释放速率,HRR是表征火灾强度的最重要性能参数,单位为kW/m2 HRR 的最大值为热释放速率峰值( Peak of HHR ,简称pkHRR) ,pkHRR 的大小表征了材料燃烧时的最大热释放程度。HRR 和pkHHR 越大,财材料的烧烧放热量越大,形成的火灾危害性就越大。5.2、总释放热(Total Heat Release ,简称THR)THR 是指在预置的入射热流强度下,材料从点燃到火焰熄灭为止所释放热量的总和单位为MJ /m2 。将HRR 与THR 结合起来,可以更好地评价材料的燃烧性和阻燃性,对火灾研究具有更为客观、全面的指导作用。5.3、质量损失速率(Mass Loss Rate ,简称MLR)MLR 是指燃烧样品在燃烧过程中质量随时间的变化率,它反应了材料在一定火强度下的热裂解、挥发及燃烧程度。5.4、烟生成速率( Smoke ProduceRate ,简称SPR)单位为m2/S ,即SPR=SEA/MLR式中SEA 为比消光面积,SEA表示挥发单位质量的材料所产生的烟,它不直接表示生烟量的大小,只是计算生烟量的一个转换因子SPR 被定义为比消光面积与质量损失速率之比。5.5、有效燃烧热( Effective HeatCombustion ,简称EHC)EHC 表示在某时刻t 时,所测得热释放速率与质量损失速率之比,它反应了挥发性气体在气相火焰中的燃烧程度,对分析阻燃机理很有帮助。5.6、点燃时间(Time to Ignition ,简称TTI)TTI 是评价材料耐火性能的一个重要参数(单位:S) ,它是指在预置的入射热流强度下,从材料表面受热到表面持续出现燃烧时所用的时间。TTI 可用来评估和比较材料的耐火性能。5.7、毒性测定材料燃烧时放出多种气体,其中含有CO,HCN,SO2 ,HCl ,H2S 等毒性气体,毒性气体对人体具有极大的危害作用,其成分及百分含量可通过锥形量热仪中的附加设备收集分析。 六、锥形量热仪符合的标准:ASTM E 1354 、ISO5660Parts 1 and 2 、BS 476 Part 15、GB/T16172等测试标准 七、锥形量热仪的 C-系数标定通常在测试前,需要获得合理并具有重现性的C系数数值。第一、前后两次C系数的标定,偏差小于5%,第二,C系数的数值位于0.035 至0.045中间,为有效,其中又以0.04 为最优。
    留言咨询
  • 等温滴定微量热仪 Nano ITC是专门为进行高灵敏分析纳摩尔级生物分子,提高实验室工作效率而设计。这些是通过结合高灵敏度的热量计、精确和稳定的温度控制和高效率的滴定来实现的。Nano ITC的高灵敏度测量池是采用99.999%的黄金或哈司特镍碳合金制成,以适应绝大多数化学试剂。圆锤形的设计不仅使清洗变得容易,而且也使溶液的搅拌更为有效。Nano ITC的绝热板封装在密闭真空室中,使得仪器不易受环境变化的影响,温度稳定性可达0.00005℃ at 25℃。独特的、可移动的抽取式注射器其末端包含一个桨状机械搅拌器,搅拌速度极容易调节,以适应样品的物理性质。纳瓦ITC的这种整体组装的搅拌装置能够保证样品快速充满、样品清理及精确的滴定。Nano ITC具备很多Affinity ITC的高性能技术特征。它是一款多功能的、高灵敏的、高性价比的等温滴定量热仪,在众多不同应用领域,都令其他竞争对手望尘莫及。特点:• 标准体积(1.0 mL)或小体积(190 μL)的量热池可供选择• 通过主动式固态加热及冷却系统,实现真正的恒温控制• 高精度注射滴定器实现精确的样品传送• 独特的拆卸式注射针管可实现快速且可靠的装载和清洗• 强大的仪器控制软件ITC Run和数据分析软件Nano Analyze为方法优化、模型拟合、批量分析、图形和数据输出提供了最全面的应用工具● ITC 多次滴加模式Nano ITC 可轻松地检测 微弱的热流现象,并且极短时间功率补偿池可确保 高的峰分辨率。● 单次滴加模式蛋白质-配体结合常数的确定对了解蛋白质结构和功能至关重要。使用 Nano ITC,可通过多次滴加或连续滴定对结合常数进行直接测量和定量。● 小体积的优点Nano ITC 小体积仅需极少的样品量,从而可以将完成一次滴定所需的时间缩减一半。Nano ITC 小体积可将灵敏度提高 2 倍,确保在样品减少 80% 的情况下该仪器仍能得到精确、可重复的结果。技术参数:*1.测量池体积:190 μL;*2.热量检测范围:0.05 μJ—3,000 μJ;3.基线稳定性:0.02 μW/hr;4.基线噪声:0.0014 μW;5.测试温度范围:2ºC~80ºC;6.响应时间:11 seconds;*7.最大搅拌速度:400 rpm;8.最佳搅拌速度:350 rpm;#9.最大滴定注射器容积: 250 μL;*10.最小注射量:0.01 μL;11.量测池材料:24K金;12.一次最多可对5个样品进行除气;13.控制软件具有直观的操作界面,实时监控,简单易用;14.数据分析软件可以提供了多种结合模型,分析软件应该与其他实验室通用数据分析软件有很好的兼容性;15.数据分析软件具备强大的批量自动数据分析功能;16.控制软件具备实验方法优化功能。关于微量热仪微量热法是一套测量化学反应或物理事件引起的焓和热容变化的技术。微量热法用于实时监测和分析化学、物理和生物过程,是一种可对分子键合事件和结构稳定性进行深入表征的强大技术。研究人员使用微量热法来优化反应和药品、化学品和电池中的材料兼容性。微量热仪是一种测量非常少量热量的仪器。TA Instruments 的等温滴定量热仪 (ITC)、差示扫描量热仪 (DSC)采用先进技术测量各种分子相互作用,可提供卓越的数据准确性。微量热仪的测量结果给出了热力学键合特征方面的信息,这些特征不仅揭示了键合事件的强度,而且还显示了反应的特异性或非特异性驱动力。TA Instruments 的微量热仪系列性能强大、稳定可靠、易于使用,能满足新药研发、研究生物分子相互作用、表征结构功能等方面要求最为严苛的多种应用的需求。Affinity ITC、Nano ITC 和 Nano DSC 提供了行业领先的稳定性和灵敏度,可用于评估结构稳定性曲线和反应分析。凭借我们多样化的仪器和附件系列,再加上无与伦比的全球支持,TA Instruments 的微量热仪肯定会超出您的预期,助力您的发现。斑马鱼(北京)科技有限公司,是TA仪器的授权经销商,负责产品的推广销售和技术支持。
    留言咨询
  • 差示扫描微量热仪 NANO DSCNANO DSC测量样品加热或冷却时吸收或释放的热量。传统的DSC仪器是为广泛的应用而设计,但是在生物样品的研究中往往缺少灵敏度。像蛋白质这样的大分子在特定的温度下通过去折叠对加热或冷却作出响应;生物聚合物固有的稳定性越高,其去折叠转化的温度变化中点就越高。这些过程往往伴随着微焦耳级热量的转换,Nano DSC的灵敏度是成功研究这些反应的关键。任何热量计都是建立在热流转换器的基础上。Nano DSC采用创新的双重毛细管设计,在能量补偿模式下运行。毛细管设计能够延迟蛋白质团聚,直到去折叠过程完成为止,从而使DSC测量具有无与伦比的灵敏度、准确性和精密度。事实上,Nano DSC可以直接获得竞争设计无法得到的数据。另外,由于测量池整个内壁极易用清洗溶液冲洗,所以毛细管测量池能够迅速彻底地洗净。Nano DSC采用固态热电元件来精密而准确地控制样品的温度。因为采用同样的元件进行加热和冷却,所以向上和向下的温度扫描均能得到相同的灵敏度。Nano DSC压力控制是通过内置的由电脑控制的精确线性致动器来驱动的高压活塞获得的。DSC实验中采取恒压是为了获得恒压热容(Cp)以及防止起泡或沸腾。在压力微扰实验中,可根据用户可选择的模式改变压力,从而获得压缩系数和热膨胀数据。● 用于 DSC 扫描的蛋白质Nano DSC 具有极高的灵敏度与数据重现性。使用Nano DSC需要少 2微克的蛋白质,并与100倍样品量下的实验具有很好的一致性。● 蛋白质稳定性Nano DSC 是精准测量蛋白质稳定性的理想之选。删除的热流基线重现性使其可在高度稀释的溶液中测量蛋白质的变性和偏摩尔热容。● 自动进样器的效率与重现性Nano DSC 自动进样器提供高样品通量。具有自动化无人操作样品处理的能力,是名副其实的自动化“无人操作”。高灵敏度和卓越的基线稳定性使得科学家可以在低蛋白质浓度下工作。自动清洗和漂洗循环消除了细胞污染的可能性。该数据表明,自动 Nano DSC 在不同浓度的样品上均实现的高灵敏度和卓越的重现性。技术参数:*1.温度范围:-10 ℃ 至 130 ℃;2.扫描速率:0.001 ℃ 至 2 ℃/分钟;*3.短期噪声:0.015 µWatts;4.基线重现性:0.028 µWatts;5.测量池体积 300 µL;6.测量池类型:固定式毛细管状;7.测量池材质:铂金;*8.压力扰动:内置达6个大气压;9.热量测种类:功率补偿式;*10. 除气系统:96孔板可直接放入除气系统进行整体除气;11.自动化装置:可选;12.样品容量:2 个标准板 x 96 孔 x 1000 µL/孔;13.样品盘温度控制范围:4 ℃ 至室温;14.清洗液通道:4个通道可供清洗样品/参比池使用;2个通道可供传送样品至样品池中。关于微量热仪微量热法是一套测量化学反应或物理事件引起的焓和热容变化的技术。微量热法用于实时监测和分析化学、物理和生物过程,是一种可对分子键合事件和结构稳定性进行深入表征的强大技术。研究人员使用微量热法来优化反应和药品、化学品和电池中的材料兼容性。微量热仪是一种测量非常少量热量的仪器。TA Instruments 的等温滴定量热仪 (ITC)、差示扫描量热仪 (DSC)采用先进技术测量各种分子相互作用,可提供卓越的数据准确性。微量热仪的测量结果给出了热力学键合特征方面的信息,这些特征不仅揭示了键合事件的强度,而且还显示了反应的特异性或非特异性驱动力。TA Instruments 的微量热仪系列性能强大、稳定可靠、易于使用,能满足新药研发、研究生物分子相互作用、表征结构功能等方面要求最为严苛的多种应用的需求。Affinity ITC、Nano ITC 和 Nano DSC 提供了行业领先的稳定性和灵敏度,可用于评估结构稳定性曲线和反应分析。凭借我们多样化的仪器和附件系列,再加上无与伦比的全球支持,TA Instruments 的微量热仪肯定会超出您的预期,助力您的发现。斑马鱼(北京)科技有限公司,是TA仪器的授权经销商,负责产品的推广销售和技术支持。
    留言咨询
  • 法国普锐斯-PRESIEVO400设备简介:大型立式砂轮切割机,适用于包括大面积和高硬度材料等各类样品的切割,并最大限度减小变形、损伤层深度。结构坚固,全自动操作,同时适合于实验室环境以及生产环境使用。 EVO400技术参数:1)电机电机功率:7.5千瓦,变频电机。 电源:380伏 / 三相 / 50 赫兹。 切割片材质:金刚石、立方氮化硼、氧化铝、碳化硅切割片尺寸:最大Φ400毫米。 EVO400功能特点:1.内置变频电机可满足不同载荷条件下的扭矩、转速、进刀速度补偿,以确保工作效率及切割质量;同时充分杜绝工作振动,强化设备保护。2.工作腔门电动开闭,最大限度减轻劳动强度。3.正面及侧面平台式设计,适应于大型工件的吊装。4. 3种工作方式,充分满足不同工作要求:A 辅助切割:通过操作手柄控制刀片向样品进刀。可通过预设最大进刀量以保护样品和刀片,使得快速和灵活切割成为可能。B 自动切割:设备自行按照预设刀片转速和进刀量进行切割。进刀量可根据马达载荷自行调整,以在误操作情况下充分保护设备。同时具有脉冲切割功能,进一步提高切割质量C 程序切割:设备按照预先储存在切割方法数据库中的参数,自动完成切割。数据库由授权人员密码保护,实现设备的分级管理和使用。5.转速可调,补偿刀片尺寸贻损时的线速度,充分满足各种样品形状、材料的切割要求,优化切割效率和质量。6.适用金刚石,立方氮化硼,砂轮等各种刀片类型,以针对不同材料对象。7.超大型液晶触摸屏,设置/保存/调用/修改所有参数;最多可储存100种切割参数,满足对制样结果一致性和可重现性的要求。多语种(包括中文)操作界面。8.智能切割功使设备在自动和程序工作方式下实时监控切割电机工况,当电机过载时,设备自动减半预设进刀量;当电机恢复正常工况后,设备再自动增加20%进刀量,并继续监控及自动调整。在充分保护样品和切割片的同时,保证工作效率。
    留言咨询
  • 上海贤德XD-52AA老款(原RE-52AA)旋转蒸发仪产品特点: RE-52型旋转蒸发器,主要金属件采用不锈钢,防锈铝合金,结构紧凑,外观精美,经久耐用,实用性强,密封系统采用氟胶+双重PTEF进口材料与玻璃转轴组合,不掉渣、耐磨延长了使用寿命温度范围为:室温-99℃。温度高于设定温度加热管自动停止加热。4 L水浴锅采用一次成型SUS304+特氟隆复合锅,清洁方便。技术参数:型 号:XD-52AA主 机:手 动.自动两用上下升降 0~150毫米,操作更方便蒸发能力:Max.21ml/min (H2O)设备真空度:内部真空可达10mbar转 速:数显转速,旋钮式无级调速 0~150转/分;加 热 锅:一次成型4L特氟隆复合锅φ22×11.5cm ,耐腐蚀,加热快,易清洗 配透明防护罩、保温、节能、防爆、防溅、防污染。温 度: 自动控温, 数字显示 水浴:室温~99度±1℃冷 却 器: 立式,顶抽式冷凝管(冷却面积0.142m²)冷却速度快。加 料 器: 阀门式加料管套接四氟乙烯管和挡水流圈密 封 圈: 采用聚四氟真空密封垫与玻璃导管紧密结合,不掉渣, 耐磨损,延长使用寿命 容量范围: 25~2000ml加热功率: 1kw 输入电压:220v/50Hz体积/重量: 外包尺寸(长×宽×高):56.5×48×54cm 22kg仪器尺寸: (长×宽×高)69×38×98cm出厂标配: S35球磨口收集瓶 500ml一个,24# 旋转(茄形)瓶250ml一个厂家服务承诺:§ 服务宗旨:快速、果断、准确、周到、彻底§ 服务目标:服务质量赢得用户满意§ 服务效率:保修期内或保修期外如设备出现故障,供方在接到通知后,维修人员在24小时内解决,72小时协商后到现场解决. 服务原则:产品保修期为壹年,在保修期内供方将免费维修和更换属质量原因造成的零部件损坏。
    留言咨询
  • 凯渥自动化科技(上海)有限公司为您提供rexroth力士乐电动缸。电动缸 EMC 的机械系统以久经考验的滚珠丝杠传动系统为基础,拥有不同的直径与导程组合。滚珠丝杠传动系统将电机扭矩地转化为线性运动。转化时,固定在丝杆传动系统螺母上的活塞杆缩回和伸出。丝杆传动系统螺母和活塞杆的导向都设计在缸体当中,可以防止扭转。可作为选项选择的终端开关能够防止电动缸在运行时受到损坏。在采用增量式编码器系统的情况下,可以提供基准开关。通过油脂润滑系统,电动缸 EMC 具有较长的保养周期,保养费用低。力士乐电动缸优点:的滚珠丝杠传动系统:可同时经济性完整的模块组件和很多的组合类型:在不同的应用中具有灵活度已安装和接通完毕的整套系统:设计和安装成本低智能型驱动系统:可自由编程并能实现复杂的运行曲线(在整个工作范围内对力、位置和速度进行自由编程)优化的润滑设计:连接集中润滑设备的可选接口可降低停机时间密封性能:选择选项“防护级 IP65”时,可有效防止尘垢和水从外部进入以及防止润滑剂从电动缸中漏出符合卫生标准的设计:选择选项 “IP65+R (resistent)”,对化学品和清洁剂具有较高的耐受性
    留言咨询
  • 力士乐导轨,力士乐滑块,力士乐导轨滑块,力士乐直线导轨,Rexroth导轨,Rexroth滑块,Rexroth导轨滑块Rexroth直线导轨凯渥自动化(上海)有限公司,大量滚珠导轨滚珠和滑块 现货;滑块有:滑块有:主要有R1651系列、R1652系列、R1653系列、R1665系列、R1622系列、R1623系列、R1661系列、R1662系列、R1631系列、R1632系列;导轨有:R1675系列、R1673系列、R1676系列、R1677系列。量大价优,现货供应。欢迎咨询! —BSCL产品系列包含六种尺寸规格,六种滑块类型,三个预紧等级和N,H,P三个精度等级。—该系列产品继承了力士乐滚珠导轨导向系统优异的互换性,独特的密封设计显著降低了导轨切割端面的加工要求,可满足极短时间内在全球范围供货—通过全新的结构设计和合理的材料使用,力士乐实现了更为***及面向应用的性价比。—此外,用于特殊环境条件的安装件正处于准备阶段。 直线导轨粗调我们采用拉钢丝法 ,在钢轨上置一滑块,滑块上安装一带有刻度的读数显微镜,显微镜的镜头对准一直径为0.3mm的钢丝,镜头垂直放置。在钢轨一端固定钢丝,另一端通过滑轮吊一重锤,然后调整钢丝两端,使显微镜在钢轨两端时钢丝与镜头上的刻线重合。公共场合里的动感座椅想必大家都不陌生,还有一些测试仪器等,这些都会应用到电动缸。电动缸的维成本也比较低,因为它只需要一些注脂润滑来定期的保养,不需要更换一些大的零部件?“要实现我国经济发展换挡但不失速,推动产业结构向中高端迈进,重点、难点和出路都在制造业。”工信部部长苗圩表示,中国从现在开始,要从制造业大国向制造业力士乐柱塞泵故障分析与维修的研究(一)柱塞泵是利用柱塞在泵的缸体内往复运动,使柱塞与泵壁间形成容积发生改变,反复吸入和排出液体增高其压力的泵,是液压系统的一个重要装置。
    留言咨询
  • 仪器简介:ZDHW-10E高精度微机量热仪主要由恒温式弹桶量热仪和微型计算机组成,可实现氧弹自动升降自动充氧,自动放气,并可以长时间连续做样,是一款可以进行对实验数据处理的多功能,自动化热量测试仪器;具有测量精度高、操作简便、使用可靠、外观精美等特点。性 能 特 点1、 氧弹自动升降、自动充氧、自动放气。2、 先进的制冷工艺,确保仪器内外桶温差符合国标要求。3、 不锈钢真空内桶,搅拌系统采用德国原装进口电机,精密感温探头,温度分辨率达到0.0001K;使整体集成电路更加稳定可靠。4、 可连续长时间工作。5、 测试速度快,测试周期≤8min(快速法);≤15min(国标GB/T213—2008)。6、 热容量稳定性:三个月内热容量变化≤0.2%,精密度<0.1%,温度分辨率0.0001K。7、 该仪器即使在严酷的环境中运行亦具有很好的性能和可靠度,且故障率低。8、 自动化程度高、自动利用内置定容器确定内桶水量;自动控制仪器内外桶水温温差;自动完成实验全过程;内外桶系统相互独立,互不影响,外桶控温稳定可靠。9、 采用先进的串口技术,搭配windonw操作系统,实现一机多控,相互间测试互不影响,软件运行稳定性高。10、 数据处理功能丰富,用户能方便查询历史实验数据、当天数据、平行样数据等。11、 可连接电子天平,实现自动输入试样重量。12、 氧弹采用耐热、耐腐蚀的镍铬合金钢制作,独特的搅拌方式,有效缩短测试时间,测试速度更快。13、 电源采用逆变及净化技术,仪器运行不受外界电压波动影响。14、 发热量测试的重复性和再现性优于国标GB/T213—2008的要求。技 术 参 数
    留言咨询
  • 里氏 热舒适度测试系统 ISO7730 R-Log 7730 热舒适度测试系统 用于热环境评价的环境监测系统,传感器按照ISO7726标准设计,具有多参数、多点位测试、可便携、主机实时显示数据等特点;强大的扩展功能,有70多种模块式传感器可选;配合功能强大的数据处理器和电脑处理软件,能够监测、记录、计算和显示室内外环境的各种数据,能自动生成报告,易于使用,适合多种环境的监测要求。 除了热舒适环境分析外,还能做: - 高温环境分析 - 低温环境分析 - 局部不舒适环境分析 - 动态热舒适分析 服装研究分析 - 可做动态模拟计算 - 可监测服装内外温湿度变化情况 系统扩展性强,可扩展: - 室内环境质量分析(IEQ) - 室内空气质量分析(IAQ) - 暖通空调监测(HVAC) - 建筑节能分析(U系数) 可测量参数包括: 黑球温度,干湿球温度,相对湿度、风速。其他的可用的环境参数可选 可计算参数包括: PMV-PPD(ISO 7730)预期平均热感觉系数,预期不满意度百分比 DR(ISO 7730)由于涡动气流引起的不满意度人的百分数 PD(ISO 7730)由于空气干燥引起的不满意人的百分数 TO 局部空气温度 Tr 平均辐射温度,Pa 水蒸气分压 TU 局部湍流强度 由非对称辐射引起的不满意人的百分数(可选) 热舒适度测试系统标准配置包括: 便携式无线主机、黑球温度传感器、机械通风干湿球温度传感器、热线风速传感器、电脑软件和其他连接附件包括支架、连接线等。 功能强大的热舒适分析软件 - 获ISO授权,参数已内置 - 可任意修改代谢率和服装隔热率,便于研究 - 可存储结果、可实时在线分析 - 可自动生成报告,包括数据和图表,内容自动填充入报告模板。内置热舒适报告模板,热损伤模板等,模板可修改 无线数据采集器 - 2 MB 内存 - 传感器自动识别 - 5通道 - mini-din型接口 - 1个RS232接口 - 1.2A锂电 无线黑球温度传感器 - 测量温度(?C) + n.1 Pt 100 collegata - 可编程类型: Min/Ave/Max/Stnd.Dev.,Ave,Inst. - 测量范围?C: -20...+60?C - 精确度(?C): ± 0,50?C (+5&hellip +45?C),± 1?C(+5+45?C) - 响应时间(?C): 30 s - 温度重复性精度:± 0.1?C 无线机械通风干湿球温度传感器 - 测量温度(?C)/相对湿度( RH%) - 可编程类型: Min/Ave/Max/Stnd.Dev.,Ave,Inst. - 测量范围?C: -20...+60?C - 测量范围RH%:0-100% - 精确度(?C): ± 0,50?C (+5&hellip +45?C),± 1?C(+5+45?C) - 精确度( RH%): ± 2% ( 10-90 RH%,25 ?C) - 响应时间(?C): 30 s - 响应时间(RH%): 8 s - RH 重复性精度:± 0.1% - 温度重复性精度:± 0.1?C 热线风速传感器 - 测量风速(m/s)/紊流( TU) - 测量范围Va:0.01-20 m/s - 测量范围TU:0-100% - 精确度(Va):0-0.5m/s: ± 5cm, 0.5-1.5 m/s: ± 10cm 1.5 m/s: 4% - 环境温度:-30+70 ?C) 电脑软件 - 获ISO授权,参数已内置 - 可任意修改代谢率和服装隔热率,便于研究 - 可存储结果、可实时在线分析 - 可自动生成报告,包括数据和图表,内容自动填充入报告模板。内置热舒适报告模板,热损伤模板等,模板可修改 其他可选传感器 - 净辐射传感器:测量辐射不对称性 - 地板及空气温度传感器:测量地板脚踝温度差 - 室内空气质量(IAQ) - 噪声 - 照度 - &hellip &hellip 更多传感器待询北京信测科技有限公司 意大利里氏(LSI-LASTEM)总代理商 Email: Tel:
    留言咨询
  • 锥形量热仪 生产商 400-860-5168转1567
    一、锥形量热仪简介: 锥形量热仪是美国国家标准与技术研究院,简称NIST,原美国国家标准局的V. Babrauskas等人于1982年研制的, 是基于耗氧原理的材料燃烧性能测试仪器,经过30多年的不断改进和完善,锥形量热仪已经成为研究材料燃烧性能最重要的试验仪器之一。锥形量热仪是以氧消耗原理为基础的,采用耗氧量原理测量材料的热释放速率。所谓耗氧量原理就是:材料燃烧时消耗每一单位的氧气所释放的热量基本是相同的。Hugget在1980年发表的文章指出建筑业和商业中普遍使用的大多数塑料和其他固体材料都遵循这个规律,并测出这个值为13.1MJ/kg± 5%。在实验中,将所有燃烧产生的烟气都收集起来并在排气管中经过充分混合后,精确的测出其质量流量和组分,同时将O2的浓度测出来,通过计算可得到燃烧过程中消耗的氧气质量,运用氧消耗原理,即可得到材料燃烧过程中的热释放速率,同时还能给出其它许多参数。目前,表征材料燃烧性能的试验方法较多,如氧指数法、UL94标准中的水平垂直燃烧法、垂直燃烧法及NBS 烟密度箱法等。它们多是传统的小型试验方法,试验操作环境与真实火灾相差较大,试验获得的数据也只能用于一定试验条件下材料间燃烧性能的相对比较,不能作为评价材料在真实火灾中行为的依据,锥形量热仪法由于具有参数测定值受外界因素影响小,与大型实验结果相关性好等优点被应用于很多领域的研究。 二、锥形量热仪标准技术参数:1、锥形量热仪采用分柜式设计方式,分析柜可移动,既可应用于锥形量热仪测试使用,也可连接大型热释放速率测试系统,符合ISO 5660、ASTM E1354、GB/T16172等现行国内外测试标准。2、集成测试机体和19英寸分析柜,内嵌PC型17英寸触摸屏电脑,用于整个控制和测试过程。3、锥形加热器额定功率5000W,热输出量0~100kW/m2,采用PID温度控制器控制,同时辐射锥可水平或垂直放置;4、暴露试样表面的中心部位50X50mm的范围内,于中心处辐照偏差不超过± 2%;5、样品盒可放置最大100mm x 100mm x 50mm的样品;6、样品称量范围 0~2000g;精度:0.1g;7、点火系统带有安全切断装置的高压火花发生器,自动定位;8、顺磁性氧气分析器,采用顺磁压力变化的方法来测量气体中的氧浓度。浓度范围0-25%,T901.5s,零点漂移: 0.5%/月,测量值偏移0.5%/月,线性误差 当前测量量程的1%;9、非色散红外线CO和CO2分析器 CO:0~1%;CO2:0~10%;10、烟密度分析使用激光系统测量烟雾密度,系统由光电二极管、0.5mW氦氖激光器、主图形检波器和辅助图形检波器组成11、排气系统由风机、集烟罩、风机的进气与排气管道及孔板流量计等所组成。排烟风机流量0~50g/s可调,精度0.1g/s;12、环形取样器应装在距集烟罩685 mm处的进气管道内,取样器上应有12个小孔以均化气流组份;13、排气流量应通过测量风机上方350 mm处的锐缘孔板两侧的压差来确定,锐缘孔板的内径为57mm± 1mm;14、气流的温度应由直径为1.6 mm封闭节点的恺装热电偶测量,热电偶应安装于测流孔板上方100 mm处;15、气体取样系统包括环形取样器、取样泵、过滤器、冷阱、废水排泄、水分过滤器和co2过滤器;16、冷阱: 0~5度,隔膜泵,流量率:26 l/min,真空度: 700 ㎜Hg,压力: 2.5bar;17、控温仪应能在0-1000℃的范围内自动调节、控制温度,设定分辨力及控温精度均为士2度,且应带有热电偶的自动冷端补偿器。18、应选用卡登型箔式热流计,设计量程0^100k W/m' ,辐射接收靶的直径为12.5 mm,表面覆有耐久的无光泽黑色涂层。辐射接收靶为水冷式。热流计的准确度为士3% ,重复性为士0.5%,附带可追溯至NIST的校准报告一份。19、原厂配备便携式水冷却系统,当使用热流计时,用户无需外接自来水源和配备水管。20、为了标定整个测试系统的响应,采用一个有方形开孔并且断面也为方形的黄铜管作为标定燃烧器,用于测量C-系数数值。21、数据采集系统应能记录氧分析仪、孔板流量计、热电偶等仪器的输出。22、配备软件操作系统,测试结果包含:热释放速率、烟道气体流速、C系数、试样点燃时间和熄灭时间、总耗氧量、总发烟量、质量损失速率、热释放总量、有效燃烧热、二氧化碳生成量及一氧化碳生成量。六、锥形量热仪软件说明:1、设置为对各个传感器校准模式,包括氧气分析仪、二氧化碳分析仪、一氧化碳分析仪、微压差传感器、烟密度测量系统、称重装置、质量流量控制的单点或双点校准,以获得最佳线性;2、C-系数校准,软件可自动设定C系数测量时的燃气流量,如1KW、3KW或5KW,电脑系统自动计算ISO 5660 C系数以及平均C系数,同时可保存记录;3、软件可自动生成C-系数日志,便于用户自行查看锥形量热仪历史状态,辨别自己系统的准确性及稳定性;4、系统可自行计算氧气分析仪、二氧化碳分析仪、一氧化碳分析仪的延迟时间,便于同步计算使用;5、状态检查界面,可一目了然的获取仪器的各个传感器部件的工作状态;6、可记录各个传感器的工作数值,包括微压差传感器、烟囱温度、氧气分析仪、二氧化碳分析仪、一氧化碳分析仪;7、报告模板为EXCELL格式,可显示图形及数值模式。 三、锥形量热仪的构造:锥形量热仪主要由燃烧室、载重台、氧分析仪、烟测量系统、通风装置及有关辅助设备等六部分组成。1.1、燃烧室:锥形加热器、10KV点火器、控制电路、挡风罩等构成了燃烧室。入射热流强度可根据不同的试验要求适当选择,样品放在燃烧平台上由点火器点燃,燃烧产物由通风系统排走。1.2、氧分析仪:氧分析仪是锥形量热仪的核心部分,它是一种高精度的气体分析仪,由氧分析仪可精确检验燃烧时通气管道中氧的的百分含量随时间的变化,进而由即时氧气浓度和氧耗原理测定出材料的燃烧放热情况。1.3、载重台:载重台是测定样品质量变化的装置,它可以准确记录样品在燃烧过程中的质量变化情况。燃烧时,样品放置于载重台的支架上。1.4、1.4  烟测量系统:在靠近燃烧室的通风管道中设有氦氖激光发射器、双电子束测量装置装置,以此可测定烟管道中烟的比消光面积(SEA) 。1.5、通风系统:通风系统是指样品燃烧后,将燃烧产物由燃烧室排出到大气中的装置。通风装置的通风性能要根据试验要求进行调节,气体流速应限制在一定范围之内,否则将影响试验结果。1.6、其它改进设备:根据不同需要,也可以添加其它分析装置,如进行燃烧产物成分分析时,可增加红外光谱分析装置 若测量样品中温度分布,须进行相应的热电偶或红外摄像装置改造。1.7、辅助设备: 辅助设备中含有微机处理器、热流计装置、除去CO2 及H2O(气) 的相应装置等。 四、锥形量热仪可获取的试验参数:由锥形量热仪获得的可燃材料在火灾中的燃烧参数有多种,包括释热速率(HRR) 、总释放热( THR) 、有效燃烧热(EHC) 、点燃时间( TTI) 、烟及毒性参数和质量变化参数(MLR) 等。1.1、热释放速率(Heat Relea seRate ,简称HRR)HRR 是指在预置的入射热流强度下,材料被点燃后,单位面积的热量释放速率,HRR是表征火灾强度的最重要性能参数,单位为kW/m2 HRR 的最大值为热释放速率峰值( Peak of HHR ,简称pkHRR) ,pkHRR 的大小表征了材料燃烧时的最大热释放程度。HRR 和pkHHR 越大,财材料的烧烧放热量越大,形成的火灾危害性就越大。1.2、总释放热(Total Heat Release ,简称THR)THR 是指在预置的入射热流强度下,材料从点燃到火焰熄灭为止所释放热量的总和单位为MJ /m2 。将HRR 与THR 结合起来,可以更好地评价材料的燃烧性和阻燃性,对火灾研究具有更为客观、全面的指导作用。1.3、质量损失速率(Mass Loss Rate ,简称MLR)MLR 是指燃烧样品在燃烧过程中质量随时间的变化率,它反应了材料在一定火强度下的热裂解、挥发及燃烧程度。1.4、烟生成速率( Smoke ProduceRate ,简称SPR)单位为m2/S ,即SPR=SEA/MLR式中SEA 为比消光面积,SEA表示挥发单位质量的材料所产生的烟,它不直接表示生烟量的大小,只是计算生烟量的一个转换因子SPR 被定义为比消光面积与质量损失速率之比。1.5、有效燃烧热( Effective HeatCombustion ,简称EHC)EHC 表示在某时刻t 时,所测得热释放速率与质量损失速率之比,它反应了挥发性气体在气相火焰中的燃烧程度,对分析阻燃机理很有帮助。1.6、点燃时间(Time to Ignition ,简称TTI)TTI 是评价材料耐火性能的一个重要参数(单位:S) ,它是指在预置的入射热流强度下,从材料表面受热到表面持续出现燃烧时所用的时间。TTI 可用来评估和比较材料的耐火性能。1.7、毒性测定材料燃烧时放出多种气体,其中含有CO,HCN,SO2 ,HCl ,H2S 等毒性气体,毒性气体对人体具有极大的危害作用,其成分及百分含量可通过锥形量热仪中的附加设备收集分析。 五、锥形量热仪符合的标准:ASTM E 1354 、ISO5660Parts 1 and 2 、BS 476 Part 15、GB/T16172等测试标准 七、锥形量热仪的 C-系数标定通常在测试前,需要获得合理并具有重现性的C系数数值。第一、前后两次C系数的标定,偏差小于5%,第二,C系数的数值位于0.035 至0.045中间,为有效,其中又以0.04 为最优。
    留言咨询
  • 等温滴定微量热仪 Affinity ITC和Affinity ITC Auto集高灵敏度、创新的技术和业界公认的可靠性和优异的重复性于一身。是专为更具挑战性的生命科学实验室所设计的,满足了对高灵敏度、高生产力和先进ITC技术的需求。Affinity ITC的先进工艺考量了所有测试关键因素,确保获得高质量的ITC数据。特点:• AccuShot 控制将滴定液导入恰当的位置,实现删除混合• FlexSpin 提供了创新的低速搅拌下实现有效混合和高灵敏度• 全自动化及用户可选择的系统清理程序,可消除不同实验间的交叉污染• 智能定位装置,实现精准可靠的注射• 通过主动式固态加热及冷却系统,实现真正的恒温控制• 可选择标准体积 (1.0 mL) 或小体积 (190 µL)的量热池• 行业公认的具备温控功能的96位液体处理自动进样系统。自动进样器可以在购买时配置,也可以在后续使用中添加• 强大的ITCRun 和 NanoAnalyze提供了 全面的方法优化、模型拟合、批量分析、绘图以及数据导出等功能TA仪器完善了用户的需求。Affinity ITC是一款测量分子间相互作用的强大工具。无论您是否有经验,TA仪器的ITC都能让您得到优异的ITC数据。● ITC AUTO 重现性Affinity ITC Auto 以出色的灵敏度和可靠性实现了删除的样品重现性。该图显示了十二组滴定结果,每两组滴定之间均对系统进行了全面清洁。为了便于显示,我们将数据点进行了偏移。● ITC AUTO清洗效率用户可通过 Affinity ITC Auto 仪器控制软件设定全系统清洁。五 (5) 个溶剂端口选项可确保全面清洁整个样品通道。在蛋白质-配体滴定前后进行缓冲液滴定,可确保 Affinity ITC Auto 实现优异的清洁效果。● AFFINITY ITC 滴定:Cu – BSA铜 (CU) 滴定到牛血清白蛋白 (BSA):使用 Affinity ITC 获得高质量数据的示例。只有 Affinity ITC 利用搅拌和进样技术实现了可用的首次进样,避免了滴定剂过渡扩散,并在两次进样之间快速返回基线。技术参数:1.功能用途:微量热法分析是一种基于测量样品生物分子与另一大分子、配体(结合研究)或基体(动力学研究)相互作用的吸热或放热速率的方法,主要应用于分子间的相互作用,可用于研究蛋白质组的相互作用,蛋白质与小分子之间的相互作用,小分子之间的相互作用等等,可以得到结合常数Ka, 结合位点数n,反应的焓变△H,熵变△S,自由能变化△G 等数据。2.一次实验可直接获得数据:KA/KD,ΔH, ΔS, n, 无需额外计算;*3.测量池体积:190 µL;*4.热量检测范围:0.05μJ——5,000μJ;5.基线稳定性: 0.02 μW/hr;6.基线噪声: 0.0014 μW;7.25ºC下温度稳定性:±0.00005ºC;8.测试温度范围:2ºC~80ºC;9.响应时间:11 seconds;*10.最大搅拌速度: 200 rpm;11.最佳搅拌速度:75 rpm;#12.最大滴定注射器容积: 250 µL;#13.最小注射量:0.01 µL;14.自动滴定注射器系统具有自动调节位置功能,避免因位置偏差损坏注射器针;15.滴定注射器具有自动清洗功能;16.自动进样器:温控功能的96孔板自动进样系统;#17.除气系统:17.1.温度可控:0 – 80 °C;17.2.搅拌速度:120 – 1500 rpm;17.3.除气自动倒计时:0 – 99 min;17.4.一次最多可对5个样品进行除气;18.样品池类型:固定式圆柱形;关于微量热仪微量热法是一套测量化学反应或物理事件引起的焓和热容变化的技术。微量热法用于实时监测和分析化学、物理和生物过程,是一种可对分子键合事件和结构稳定性进行深入表征的强大技术。研究人员使用微量热法来优化反应和药品、化学品和电池中的材料兼容性。微量热仪是一种测量非常少量热量的仪器。TA Instruments 的等温滴定量热仪 (ITC)、差示扫描量热仪 (DSC)采用先进技术测量各种分子相互作用,可提供卓越的数据准确性。微量热仪的测量结果给出了热力学键合特征方面的信息,这些特征不仅揭示了键合事件的强度,而且还显示了反应的特异性或非特异性驱动力。TA Instruments 的微量热仪系列性能强大、稳定可靠、易于使用,能满足新药研发、研究生物分子相互作用、表征结构功能等方面要求最为严苛的多种应用的需求。Affinity ITC、Nano ITC 和 Nano DSC 提供了行业领先的稳定性和灵敏度,可用于评估结构稳定性曲线和反应分析。凭借我们多样化的仪器和附件系列,再加上无与伦比的全球支持,TA Instruments 的微量热仪肯定会超出您的预期,助力您的发现。斑马鱼(北京)科技有限公司,是TA仪器的授权经销商,负责产品的推广销售和技术支持。
    留言咨询
  • 鹤壁市华诺电子科技有限公司是煤炭化验设备、煤质分析仪器、测硫仪、量热仪、氟氯测定仪、粘结指数测定仪、胶质层测定仪、煤炭灰分快速测定仪、煤质工业分析仪、焦炭化验设备等产品。鹤壁市华诺电子科技有限公司的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。  设备名称:ZDHW-9000C高精度微机全自动制冷量热仪 煤炭大卡测定仪 煤炭发热量检测仪  适用范围  微机全自动量热仪主要适用于电力、煤炭、造纸、石化、水泥、农牧、医药、科研、教学等行业或部门测定煤炭、垃圾、生物质燃料、石油、化工、食品、木材等固体或液体可燃物质的热值。  性能特点  1、自动标定量热仪热容量  2、输入硫、水分、氢等数据,即可换算并打印出弹筒发热量、高位发热量、低位发热量等数据  3、量热仪支持点火丝和棉线两种点火方式  4、可观察内筒是否缺水。  5、采用独创的冷却校正模型,保证了高、低热值试样测试结果的准确可靠。  6、不锈钢真空内筒, 大容量外筒水箱,有制冷单元,热容量稳定,适应长时间连续做样。  7、独有弹筒,抗压强,主期时间缩短。  8、先进的压缩机制冷工艺,完全不受环境温度变化的影响,确保仪器内外筒温差符合国标要求。  9、自动化程度高、自动利用内置定容器内桶水量,自动控制仪器内外桶水温温差,自动完成试验全过程。可与电子天平连接。  10、独有弹筒,抗压强,主期时间缩短。样品称重范围自动警示 实验室环境温度和湿度实时监控 超差的结果自动提示。  11、样品编码和重量信息自动传送 测试数据备份和上传 实验数据防篡改。  12、可实现登录权限管理,数据处理功能丰富,用户能方便查询历史试验数据、当天数据、平行样数据等。  13、该产品即使在严酷环境下运行亦具有很好的性能和可靠度。  14、结构紧凑,造型美观,安装、维护简便,故障率低。  15、发热量测试的重复性和再现性优于国标GB/T212-2003的要求。  16、采用WindowsXP操作系统,实现一机多控,相互间测试互不影响,软件运行稳定性高。  17、可连接电子天平,实现自动输入试样重量。  技术参数  使用环境:0-65℃  外水筒容量:约51L  内水筒容量:约2. 1L  测试方法:国标法  点火电压:20V  点火时间:程序控制  测温范围:0-40℃  精密度:≤0.1%  分辨率:0.0001K  温度分辨率:0.0001℃  热容量稳定性0.2%  电源电压:AC220±10% 50Hz  设备外形尺寸(长*宽*高):760 × 650 × 450鹤壁市华诺电子科技有限公司提供全套煤炭化验设备及配件供应方案,有什么问题可以在评论区以及私信留言告诉我们!
    留言咨询
  • 微反应量热仪 400-860-5168转3909
    产品名称:微型反应量热仪/微量热仪品牌:THT-ARC型号:uRC产地:英国仪器简介:uRC是在由THT美国公司制造的,其中有两个型号:化学高灵敏度级、生物灵敏度级。它都带有2ml的小瓶和电脑控制的注射器。使用了功率补偿技术,灵敏度高达uW 级以下,并具有卓越的基线稳定性。传统测试方法或大体积量热仪上能测量的样品中大约有90%都可以在μRC上完成-其测试速度更快,成本更低,并且没有安全问题。 uRC中集成了5种量热仪的功能分别为:反应量热仪、等温量热仪、扫描量热仪、滴定量热仪、安全量热仪。所以它是一台性价比极高,应用面极广的反应量热仪。技术参数:1、温度范围:–10C to 200C (不需浴环境) 2、使用2mlHPLC瓶,也可用适用高压的金属瓶 3、搅拌速率至400rpm 4、最小滴定量为1ul, 时间常数8秒,可测压力 *************THT拥有两款uRC*************** 1、化学灵敏度级:基线噪音为10uW,漂移接近50uW/小时,动态能量量程范围至170mW。 2、生物灵敏度级:基线噪音低于1个uW,漂移小于5微瓦/小时,动态能量量程至20毫瓦主要特点:THT公司的微型反应量热仪uRC是独特的热分析仪,作为量热仪它可以做下列用途: 1、反应量热 –过程研究开发和优化 2、滴定量热 –相容性研究 3、恒温量热–针对相容性,动力学和稳定性研究 4、等温步进量热–针对动力学,稳定性和比热研究 5、扫描量热 – 相当与大剂量的DSC 6、物性量热 – 测量比热,溶解热等 仪器的这些摸块特性,加上由于反应规模小,响应迅速,定量特征和多样性,使它可在很多领域得到都非常理想应用。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制