当前位置: 仪器信息网 > 行业主题 > >

粒子分散性分析仪

仪器信息网粒子分散性分析仪专题为您提供2024年最新粒子分散性分析仪价格报价、厂家品牌的相关信息, 包括粒子分散性分析仪参数、型号等,不管是国产,还是进口品牌的粒子分散性分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒子分散性分析仪相关的耗材配件、试剂标物,还有粒子分散性分析仪相关的最新资讯、资料,以及粒子分散性分析仪相关的解决方案。

粒子分散性分析仪相关的资讯

  • UCLA卢云峰课题组AFM:催化剥离制备高导电性、高分散性石墨烯及其在锂离子电池中的应用
    p style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-size: 16px "近日,/spana href="http://www.seas.ucla.edu/~lu/#home" target="_blank"span style="color: rgb(0, 112, 192) "strongspan style="text-indent: 2em font-size: 16px text-decoration: underline "美国加州大学洛杉矶分校(UCLA)卢云峰教授课题组/span/strong/span/aspan style="text-indent: 2em font-size: 16px "利用石墨插层原理,将具有催化活性的FeCl3插入边缘氧化石墨层间,再利用层间FeCl3催化循环分解H2O2鼓泡剥离得到大尺寸(~10 μm)、高导电性(926 S cm-1)及高分散性(~10 mg mL-1 水体系)石墨烯。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6a2c0a11-e50f-4bb5-819a-22c5e955b506.jpg" title="4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg" alt="4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg"//pp style="text-align: center "strongUCLA卢云峰教授团队/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "ispan style="font-size: 14px "石墨烯因其超高导电性、高比表面积及优良的机械性能而在能源存储领域有着广泛应用。液相剥离是实现石墨烯商业化最重要的制备方法之一。通过氧化剥离制得的石墨烯(或氧化石墨烯)虽然具有较好的水系分散性,但含氧官能团也大大降低了石墨烯的导电率。近年来尽管一直有文献报道采用液相剥离制备高品质石墨烯,但制备同时具有高导电性与高分散性的石墨烯仍然具有挑战性。这也部分限制了石墨烯应用于能源材料领域,尤其是需要同时满足高导电性及水系分散性的锂离子电池、超级电容器及太阳能电池等应用。/span/i/span/pp style="text-align: justify line-height: 1.5em text-indent: 0em "span style="text-indent: 2em font-size: 16px "作为应用实例,这种高导电性、高分散性石墨烯(HCDG)随后通过喷雾干燥与商业LiFePO4复合制备LiFePO4-HCDG正极。石墨烯导电网络被证明大幅度提高了该复合电极的循环稳定性、倍率性能及体积能量密度。这为液相剥离制备高导电性、高分散性石墨烯及开发高功率型锂离子电池提供了新思路。该文章发表在国际知名期刊 /spana href="https://nyxr-home.com/tag/advanced-functional-materials" target="_blank"span style="color: rgb(0, 112, 192) text-indent: 2em font-size: 16px text-decoration: underline "strongAdvanced Functional Materials(影响因子:16.836)/strong/span/aspan style="text-indent: 2em font-size: 16px "上。论文题目为“High-Conductivity–Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery”。莫润伟研究员为本文共同通讯作者;UCLA博士生陶然和博士生李凡为共同第一作者。/spanspan style="font-size: 14px text-indent: 2em "br//span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 16px background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) "strong【研究及表征】/strong/spanspan style="font-size: 14px background-color: rgb(255, 192, 0) "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "1 催化剥离制备高导电性、高分散性石墨烯的原理介绍/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/cc055388-4c77-46a2-b034-1721782b99b3.jpg" title="image001.png" alt="image001.png"//pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 14px "strong图1. 采用催化剥离制备高导电性、高分散性石墨烯过程示意图/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "为了制备高导电性、高分散性石墨烯,我们需要在石墨烯边缘引入含氧官能团提高其亲水性,同时还需保证中心区域的结构完整性。这里我们基于石墨插层原理,将具有催化活性的FeCl3插入边缘氧化石墨层间,再利用FeCl3催化分解H2O2鼓泡剥离制备得到石墨烯。与传统液相剥离法不同,这种方法先从边缘由Mn3+率先与H2O2反应打开层间入口,暴露出插入层间的FeCl3催化剂,再经过H2O2扩散至层间后与FeCl3反应,由外至内逐步剥离石墨烯片层。值得注意的是,无氧化剥离过程有效保证了片层中心的结构完整性,这使得石墨烯具有高导电性;而位于石墨烯边缘的含氧官能团提高了石墨烯水系分散性。此外,FeCl3的有效插层以及从外到内的逐步剥离使得石墨烯还具有少层及大尺寸的特性。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/07b405f0-a3a7-4fde-ace2-07553ef66241.jpg" title="image002.png" alt="image002.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图2. HCDG的物象表征。/strong(a)HCDG,FeCl3-边缘氧化石墨嵌层物,边缘氧化石墨以及石墨的XRD谱图。(b)HCDG及石墨的拉曼谱图。(c)HCDG的XPS能谱。(d-f)HCDG的TEM图像 (g)SEM图像及(h)AFM图像。(i)HCDG的尺寸分布。(j)HCDG的尺寸、导电性及水系分散性与已报道的其他石墨烯材料性能对比/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "2 利用喷雾干燥制备LiFePO4-高导电性、高分散性石墨烯 (LFP-HCDG) 正极及其电化学表征/span/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "这种高导电性、高分散性石墨烯在能源材料领域尤其是同时需要上述两种特性的应用中具有巨大的利用前景。为了论证这一观点,作者采用喷雾干燥法,将HCDG与纳米尺寸(~30nm)的商业LiFePO4复合,得到LFP-HCDG正极。大尺寸石墨烯相比与小尺寸石墨烯,能够构建更有效的电子传导网络。HCDG的高导电性提高了复合正极的电子传导速率,高分散性实现了水体系下与活性材料的有效复合。此外,喷雾干燥还有效增大了正极材料的振实密度,配合LFP-HCDG在高倍率下展现出的高容量,提高了电极的体积能量密度。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/66d7f5a1-8d15-4730-a49e-81c02e10c809.jpg" title="image003.png" alt="image003.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图3. LFP-HCDG的物象表征。/strong(a)LFP-HCDG正极复合材料中的电子传导分析及其与小尺寸石墨烯复合正极对比。(b-c)LFP-HCDG的SEM图像,(d-e)SEM-EDS图像,(f-h)TEM图像。(i)LFP-HCDG在空气气氛下的TGA曲线。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px "大尺寸、高导电性及高分散性石墨烯大大提高了LFP-HCDG复合正极的长程导电性及锂离子迁移速率。为了论证这一观点,对LFP-HCDG,LiFePO4-氧化石墨烯(LFP-GO)及商业LiFePO4进行了CV, EIS,循环性能,倍率性能及动力学特性等多项表征与测试。对比LFP-GO与商业LFP,LFP-HCDG展现了高可逆容量 (0.5 C 下159.9 mA h g-1)、高倍率性能(20 C下76.6 mAh g-1)及优良的循环稳定性 (1000循环容量保持率 89%)。同时,利用喷雾干燥的复合方法在商业LiFePO4中加入HCDG提高了电极体积能量密度 (0.5C下658.7以及20C下287.6 Wh L-1)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e6112f58-688d-4d90-aaa5-8a4dae008060.jpg" title="image004.png" alt="image004.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "strong图4. LFP-HCDG,LFP-GO及商业LFP的电化学性能及动力学分析/strong:(a)充放电曲线(b)循环伏安曲线(c)倍率性能(d)活性材料利用率(e)2C下的循环性能(f)EIS曲线(g)中位放电电压(h)在不同倍率下的体积能量密度。/span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) "strongspan style="color: rgb(255, 255, 255) font-size: 16px "【结论】/span/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px "作者开发了一种液相催化剥离方法制备高导电性(926 S cm-1),高分散性(10 mg mL-1 水体系)及大尺寸(10 μm)石墨烯。/span/strongspan style="font-size: 16px "这种方法解决了传统液相剥离方法中导电性与分散性难以兼得的问题,拓展了石墨烯在同时需要高导电性与高分散性的能源材料领域中的应用。作为应用实例,我们利用喷雾干燥法将高导电性、高分散性石墨烯与商业LiFePO4复合,并证明了石墨烯导电网络大幅度提高了该复合电极的循环稳定性(1000循环容量保持率 89%)、倍率性能 (20 C下76.6 mAh g-1) 及体积能量密度 (0.5C下658.7 Wh L-1以及20C下287.6 Wh L-1)。这为液相剥离制备高导电性、高分散性石墨烯及开发高功率型锂离子电池提供了新思路。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "iRan Tao, Fan Li, Xing Lu, Fang Liu, Jinhui Xu, Dejia Kong, Chen Zhang, Xinyi Tan, Shengxiang Ma, Wenyue Shi, Runwei Mo, Yunfeng Lu, High-Conductivity–Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery, strongAdv. Fucut. Mater/strong., 2020, DOI:10.1002/adfm.202007630/i/span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 16px font-family: arial, helvetica, sans-serif color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) "strong【作者介绍】/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6d415b73-1d31-4b66-8ba9-c4bd658be1af.jpg" title="cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg" alt="cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "卢云峰 (Yunfeng Lu)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",加州大学洛杉矶分校化学与生物分子工程系教授。博士就读于新墨西哥大学化学工程专业,师从C. Jeffrey Brinker。在2005 年同时获得总统科学家和工程师早期职业奖(Presidential Early Career Awards for Scientists and Engineers );美国能源部早期职业科学家和工程师奖 (Early Career Scientist and Engineer Awards, Department of Energy);美国化学会联合利华奖 (Unilever Award, American Chemical Society, Division of Colloid and Surface Chemistry)。研究方向:能源存储及转化 药物递送及纳米医学。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "https://samueli.ucla.edu/people/yunfeng-lu//span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "莫润伟(Runwei Mo)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",美国加州大学洛杉矶分校化学与生物分子工程系博士后。博士就读于哈尔滨工业大学。瞄准电荷高效储存与输运的结构调控科学问题,在电化学储能新材料设计以及制造新技术方面取得了系列创新性成果:第一作者/通讯作者身份发表 Nature Communications (3 篇), Advanced Materials, ACS Nano (2 篇), Advanced Functional Materials, Energy Storage Materials (3 篇) 等多篇国际知名期刊论文。研究方向:先进能源存储材料;厚电极关键制造技术。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "陶然(Ran Tao)/span/strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai ",2015年本科毕业于北京航空航天大学化学学院应用化学专业,2020年博士毕业于加州大学洛杉矶分校化学与生物分子工程系化学工程专业,博士期间获得奖学金(Graduate Division Fellowship)。目前在劳伦斯伯克利国家实验室从事博士后研究。研究方向:锂电池,纳米材料。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strongspan style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai "李凡(Fan Li)/span/strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px "span style="font-family: 楷体, 楷体_GB2312, SimKai ", 2015,2020年在加州大学洛杉矶分校化学与生物分子工程系分别获得化学工程学士,化学工程博士学位。博士期间获得奖学金(Graduate Division Fellowship)。研究方向:能源存储,纳米材料。/spanspan style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "(文源:能源学人)/span/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) "【相关阅读】/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px color: rgb(255, 255, 255) "/span/pp style="text-align: center "span style="text-decoration: underline "stronga href="https://www.instrument.com.cn/news/20190329/482648.shtml" target="_blank"穿越血脑屏障!UCLA卢云峰团队研发新型纳米胶囊(点击查看)/a/strong/span/pp style="text-align: center "span style="text-decoration: underline "更多相关资讯 扫码关注【3i生仪社】/span/pp style="text-align: center "span style="font-size: 16px font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 172px height: 172px " src="https://img1.17img.cn/17img/images/202012/uepic/488c5bea-e206-4467-9664-3a23ecde71d4.jpg" title="3i生仪社 二维码.jpg" alt="3i生仪社 二维码.jpg" width="172" height="172"//pp style="text-align: center "br//p
  • 全国化学标准化技术委员会发布《水处理剂分散性能测定方法 第1部分:分散高岭土法》 国家标准征求意见稿
    各位委员、各起草单位及相关单位:根据国家标准化管理委员会国标委发[2021]23号《国家标准化管理委员会关于下达2021年第二推荐性国家标准计划的通知》的要求,《水处理剂分散性能测定方法 第1部分:分散高岭土法》国家标准的征求意见稿及编制说明已完成。现将标准征求意见稿及相关附件发至网上公示,广泛征求意见。请各位认真审阅,如有修改意见请填写征求意见表(见附件3),签字盖章后于2023年6月25日前反馈至全国化学标准化技术委员会水处理剂分会秘书处。联系单位:中海油天津化工研究设计院有限公司联系人:白莹、李琳地址:天津市红桥区丁字沽三号路 85 号邮编: 300131电话:022-26689095E-mail:shuifh@163.com全国化学标准化技术委员会水处理剂分技术委员会2023年 4 月 28日附件:1:《水处理剂分散性能测定方法 第1部分:分散高岭土法》国家标准(征求意见稿).pdf2:《水处理剂分散性能测定方法 第1部分:分散高岭土法》国家标准编制说明(征求意见稿).pdf3:标准征求意见表.docx
  • 全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域
    全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域8月12-14日,纽迈科技携新产品“颗粒表面特性分析仪”参加“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”,正式进军颗粒科学与技术领域。颗粒表面特性分析仪适用于在非破坏的条件下连续监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性以及颗粒的比表面积。对于粉体(浆料,粉料)的分散性,稳定性,亲和性以及比表面积的分析测试快速有效准确的测量手段。 PQ001颗粒表面特性分析仪产品功能:1. 悬浮液体系颗粒比表面积2. 粒子分散性、稳定性3. 颗粒与介质之间亲和性4. 粉体质量控制、分散工艺研究试用范围如下:1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种;2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。应用领域:1)制陶术:湿式制程、加工工艺改善, 分散性的质控和研发2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管4)墨水:碳黑、颜料分散, 最适研磨条件, 表面亲和性及化学和物理状态5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的化学和物理状态6)制药:API湿润性、亲和性及吸水性的差异7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等.纽迈科技提供专业的颗粒应用解决方案,强大的研发生产能力,完善的售后服务能力,欢迎来电了解颗粒表面特性分析仪详细信息
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT (Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT (Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • LUM第11届分散体分析和材料测试国际会议(ICDAMT 2024)
    新闻发布颗粒表面特征及其理解三位候选人被提名2024年LUM青年科学家奖柏林,2024年4月15日:2024年6月10日和11日,LUM GmbH将在柏林主办第11届分散体分析和材料测试国际会议(ICDAMT 2024)。科学委员会主席兼LUM董事总经理Lerche教授博士:“自2014年以来,我们一直在宣传青年科学家奖(YSA),以表彰在颗粒和分散体表征以及材料测试领域的杰出科学成就,并根据规定的考核标准在会议上授予该奖项。来自德国、法国、印度、挪威和捷克等国家的年轻科学家响应号召,分分申请了该奖项。来自欧洲和印度的三名决赛选手最终被评委会提名。应邀请,他们将带着有趣的研究成果出席会议。完全独立于选择程序,颗粒表面特性及其表征的课题在所有指定的应用中都有令人振奋的发现,这是我们在自己的科学工作和与客户的合作中越来越多地遇到的趋势。”Amin Said Amin,德国杜伊斯堡-埃森大学能源与材料工艺颗粒科学与技术研究所(EMPI-PST),因其题为“开发系统选择探针液体的方法以确定炭黑材料的汉森溶解度参数”的工作而获得提名。当涉及到颗粒在液体中的分散时,Hansen溶解度参数(HSP或Hansen分散性参数,HDP)特别相关;它们表征了纳米颗粒的表面性质。HDP可以提供对电极、电解质和电化学系统的其他关键部件的开发和设计中的关键因素的理解。目前通过沉淀测定纳米颗粒HDP的方法是基于使用具有不同HSP的各种液体。这些实验耗时且部分对环境有害,并与潜在的健康风险有关。为了应对这一挑战,Amin和他的团队开发了一种两阶段策略,可以系统地选择更少的液体。分析多样本分散体系分析仪LUMiSizer用于这些研究。法国巴黎索邦大学勒芒分子与材料与软物质科学与工程研究所的Théo Merland成功提交了一份申请,描述了他在富勒烯水悬浮液方面的工作。巴克明斯特富勒烯(C60)因其高共轭性而成为一种有吸引力的分子,在(电光)和生物医学领域有着广泛的应用。在许多应用中,它的使用需要在水性介质中进行处理。然而,由于富勒烯是高度疏水的,它只能以ppm的水平分散在水中。Merland和他的团队开发了两种不同的方法将大量富勒烯分散在水中:Ouzo效应,富勒烯首先溶解在与水混溶的有机溶剂中;乳液蒸发,使用与水不混溶的溶剂。LUMiSizer用于测定纳米板,其中一些大于光散射方法的检测上限。此外,使用相同的装置表征富勒烯悬浮液的分离稳定性。班加罗尔纳米与软物质科学中心-Center for Nano and Soft Matter Sciences, Bengaluru的Priyabrata Sahoo和印度曼尼帕尔曼尼帕尔高等教育学院-Manipal Academy of Higher Education, Manipal, India以其在液相剥离中界面性质优于本体溶剂性质的科学成果入围决赛:总结了使用分散分析仪的实验研究。液相剥离(LPE)是获得二维(2D)材料(如石墨烯、氮化硼、MXene等)并在各种应用中利用其奇异特性的最成功技术之一。尽管LPE是一个简单且可扩展的过程,但剥离机制相当复杂,文献中尚未对此进行详细研究。Sahoo和他的团队的工作目标是了解溶质-溶剂界面在2D材料的LPE和分散稳定性中的作用。使用分散体分析仪(LUMiSizer)来了解在不同溶剂中获得的分散体的剥离效率和稳定性。您可在会议上与入围者获取联系;我们诚挚邀请您到柏林参加学士会议。会议注册:https://conference2024.lum-gmbh.com/2014-2024LUM 青年科学家奖获得者回顾:https://www.youtube.com/watch?v=4JFF1TZkY0M会议摘要: https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf会议课题:https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf新闻联系: LUM GmbH, Justus-von-Liebig-Str. 3, 12489 Berlin, Germany, support@lum-gmbh.de, www.lum-gmbh.com
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行  仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。新闻发布会现场  过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。  然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。  鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)  杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。MORPHO 3D动态三维彩色粒度粒形分析仪从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示  作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。美国康塔仪器公司中国区经理、首席代表杨正红  杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果  会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。  后记:  会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。  点击下载:杨正红-图像颗粒测试技术约稿全文编辑:刘玉兰
  • 天问一号火星能量粒子分析仪首个科学成果发布
    近日,天问一号火星能量粒子分析仪获得了首个科学成果,研究讨论了基于该载荷在地火转移轨道中观测到的一个太阳高能粒子事件。相关结果于7月26日发表在《天体物理学杂志快报》(The Astrophysical Journal Letters)上,并被美国天文学会(AAS)选为亮点工作,并进行了专题报道。这项研究由澳门科技大学、中国地质大学(北京)、中科院近代物理研究所、兰州空间技术物理研究所、中国科学技术大学、美国阿拉巴马大学亨茨维尔分校和中科院国家空间科学中心组成的团队合作完成。火星能量粒子分析仪是我国首个用于研究行星际和近火星空间辐射环境的载荷,由中科院近代物理所和兰州空间技术物理研究所联合研制,于2020年7月搭载在天问一号火星探测器上发射升空,正式开启了探测任务。2020年11月29日,火星能量粒子分析仪在地火转移轨道距太阳1.39个天文单位(AU)处,观测到第25个太阳活动周期的首个大范围太阳高能粒子事件。事件发生时,天问一号与地球近似处于同一磁力线上,这使得天问一号和地球附近航天器能够在相隔数千万公里的地方观测到来自相同源区的太阳高能粒子,为研究太阳高能粒子沿磁力线在行星际空间的传播提供了一个宝贵的机会。而理解太阳高能粒子的加速与传播机制一直是空间物理和空间天气研究的重要课题之一。据了解,一旦离开近地环境进入太空、失去地球磁场的保护,宇航员及航天器就必然暴露在强烈的高能粒子辐射之中。与通量长期稳定的银河宇宙线不同,太阳高能粒子事件的发生具有偶发性和不可预测性。该类事件爆发时产生的能量粒子通常起源于太阳耀斑爆发和日冕物质抛射驱动的激波加速过程,其通量可高于背景宇宙线达几个数量级,不仅会对行星际和近地空间辐射环境带来巨大影响,也对载人航天和深空探测等空间任务构成巨大威胁。通过对比分析2020年11月29日事件期间,火星能量粒子分析仪和地球附近航天器的质子通量观测数据,研究团队发现,天问一号和地球附近航天器关联的磁力线并没有连接到太阳表面的爆发源区和行星际激波,这意味着,高能粒子必须跨越磁力线才能到达天问一号和地球附近航天器。研究团队还发现,两个位置处观测到的质子能谱形状非常相似,均表现为双幂律谱,且它们的质子强度时间曲线在太阳高能粒子事件衰减阶段也有着相似的演化趋势,呈现出典型的蓄水池现象。研究团队认为,双幂律能谱很可能是在激波加速源区产生,而传播过程中的垂直扩散效应是解释该事件中蓄水池现象的关键因素。同时,这项研究还讨论了太阳高能粒子事件峰值强度的径向相关性和磁力线长度相关性等。据了解,此次太阳高能粒子事件中,火星能量粒子分析仪与近地航天器的观测数据具有非常好的一致性,这表明火星能量粒子分析仪仪器功能与性能均符合设计预期,仪器测得的数据质量可靠,为后续环火星探测数据的研究奠定了良好基础,有望帮助人们更好地了解火星辐射环境以及规划深空探测任务。事件爆发时天问一号(灰色点)、火星(红点)、地球(蓝点)以及其它卫星的相对位置。(图源/《天体物理学杂志快报》)
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg"//pp style="text-align: center text-indent: 0em "strongViewSizer 3000 多光源纳米颗粒追踪粒径分析仪/strong/pp style="text-align: justify text-indent: 2em "据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。/pp style="text-align: justify text-indent: 2em "据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer 3000具备如下三大优点:/pp style="text-align: justify text-indent: 2em "第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。/pp style="text-align: justify text-indent: 2em "第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。/pp style="text-align: justify text-indent: 2em "第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。/pp style="text-align: justify text-indent: 2em "ViewSizer 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。/pp style="text-align:center"a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title="640_300.jpg" alt="640_300.jpg"//a/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 110px " src="https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title="微信图片_20200330103948.png" alt="微信图片_20200330103948.png" width="75" height="110" border="0" vspace="0"/想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong免费报名渠道:span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "点击进入/span/spanstrong style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "首届“颗粒研究应用与检测分析”主题网络大会/a官网/span/strong,点击“我要参会”,报名即可。/p
  • 样品均质、乳化、分散的完美搭档 —WIGGENS分散杯
    均质乳化是机械作用所产生的剪切力,将分散相撕碎成微粒而分散在连续相中,形成乳(膏)状均相物。WIGGENS均质乳化机,乳化力强,分散性能好,粒度直径小于2μm,乳化强度随不同产品进行调节,效率高能耗低。 手持式均质机 高剪切均质机 数显台式均质机 样品的良好处理效果,除了需要使用高性能的均质乳化机之外,还要选择合适的分散杯。对于普通圆柱形的容器如烧杯,三角烧瓶等,分散时会形成旋涡,旋涡将导致分散杯周边的物料无法接触到分散头,这种物理现象大大降低了样品处理效果。为了达到理想的分散效果,只能选择消耗更多能量来延长分散时间,然而另外一个问题就又出现了,分散时间的加长让大量的空气随旋涡进入到了样品中。WIGGNES分散杯中对冲涡流解决办法 为解决以上问题,WIGGENS研发了GS 分散杯,在分散杯中的样品,均质过程中形成对冲涡流,样品取得良好的混合效果,避免了常规分散杯那样让样品形成定向流动,极大提高了分散效率,节省了时间和能源消耗。 GS分散杯和均质机的良好搭配,是样品处理更好,更快好帮手。物美价廉的分散杯的使用,会成倍的提高样品的处理效率并且得到更好的结果。 GS 分散杯材质有硼硅玻璃、不锈钢可选;规格可从几毫升到几升大小;可选择带盖或者不带盖、可选择是否带密封接头等。欢迎咨询WIGGENS和 WIGGENS区域经销商获取更多关于分散杯信息。
  • 郑州大学采购英国Signal 7200FM非分散红外CO2分析仪一套
    2016年8月19日,郑州大学在我公司采购英国Signal 7200FM非分散红外CO2分析仪一套。  英国Signal 7200FM非分散红外CO2分析仪同时采用窄带滤光片和气体过滤相关法两种非色散光谱分析技术结合,适合于气体不同的测量范围要求。过滤相关法能够测量低量程气体并有效避免交叉干扰,这种独特技术能消除弱吸收气体如CO和高吸收气体CO2交叉干扰。7200FM非分散红外CO2分析仪可在定购时单独设计测量气体种类和测量范围。热源发出的红外光被旋转过滤器过滤,使系列脉冲信号直接通过包含样本气体的单元,当过滤器轮旋转时固态检测器反映出信号变化并将信号放大输出以及显示。
  • 146万!天津大学环境学院激光粒子动态分析仪等采购项目
    项目编号:TDZC2022J0267项目名称:天津大学环境学院激光粒子动态分析仪、激光粒子处理器采购方式:竞争性磋商预算金额:146.5000000 万元(人民币)采购需求:激光粒子动态分析仪、激光粒子处理器:1套。本项目接受进口产品参与磋商,具体要求详见本项目用户需求书。本项目不接受联合体磋商并不得分包转包。合同履行期限:合同签订后180天内交货及完成安装调试并具备验收条件等。(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 美国西戈发布Xigo Area润湿比表面分析仪新品
    Xigo Area是基于NMR弛豫时间技术的润湿颗粒比表面的分析仪器,它所采用的原理是基于这样一种现象:即与颗粒表面结合的液体比自由或散装液体的弛豫时间要短得多。基于核磁共振(NMR)原理,对悬浮液状态下纳米和微米颗粒进行比表面分析测量弛豫时间T2和T1,整个过程从开始到结束只需5分钟。仪器功能:润湿比表面积;弛豫时间T1/T2;T1时间扫描可直接对中间体或配方原浓悬浮液样品进行直接地测量,对样品的分散性、浸润性或纳米颗粒的表面修饰,都是一种理想的表征手段。应用领域:陶瓷浆料、电子浆料、导电油墨、碳基油墨、铜-铂卤菁、银浆、燃料电池、催化剂、炭黑、碳纳米管、纳米石墨、石墨烯等材料及制药领域可进行连续流动测定或在线测定创新点: Acorn AreaTM 润湿颗粒比表面分析仪来自美国 Xigo 纳米工具公司革命性的设计,可以对悬浮液状态下纳米和微米颗粒进行比表面测量和分析。这项专利技术基于核磁共振(NMR)原理,同传统的气体吸附法比表面测量,具有多项独特的优势。 整个测量过程从开始到结束只需 5 分钟。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作。与传统方法测量原料不同, Xigo Area 可以直接对中间体或配方原浓悬浮液样品进行直接地测量,并且测量速度要快几个数量级,对样品的分散性、浸润性或纳米颗粒的表面修饰,都是一种理想的表征手段。Xigo Area润湿比表面分析仪
  • 210万!中国科学院水生生物研究所全自动烷基汞分析仪和粒子测定分析仪采购项目
    项目编号:OITC-G220321074项目名称:中国科学院水生生物研究所全自动烷基汞分析仪和粒子测定分析仪采购项目预算金额:210.0000000 万元(人民币)最高限价(如有):210.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元)1全自动烷基汞分析仪1是802粒子测定分析仪1是130投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 新能源汽车产销两旺,高端激光粒度分析仪持续爆发增长
    近日,中国汽车工业协会发布了2021年新能源汽车行业经济运行指标,前十个月累计生产新能源汽车256.6万辆,同比累计增长175.3%;累计销售新能源汽车254.2万辆,同比累计增长176.6% 。产、销数量均创历史新高,下面来看具体数据: (图片来源: 中国汽车工业协会网站) 从汽车种类来看,新能源乘用车是增长的主要来源,说明随着新能源汽车性能、价格的优化及充电设施的完善,新能源汽车得到了越来越多的老百姓的认可,从而促使新能源乘用车走进千家万户,产销出现跳跃式上涨。其中,纯电动乘用车产、销同比累计增长分别达到205.2%和201.0%, 插电式混合动力乘用车产、销同比累计增长分别达到124.6%和144.5%。回顾新能源汽车行业近三年波澜壮阔的发展历程,有助于新能源汽车行业的广大从业者更深刻地认识到央妈断奶的智慧与果敢:“扶优扶强”让一大批有技术、善管理、懂市场的企业脱颖而出,在退补、疫情、原材料价格上涨、芯片供应紧张、限电等多重困难夹击下,整个新能源汽车行业在短暂的调整后再次迎来了快速增长。原本2019年6月份开始的新能汽车补贴大幅退坡让新能源汽车行业首次出现负增长,2020年初爆发地新冠疫情叠加影响更让新能源汽车行业雪上加霜。据中国汽车工业协会公布数据显示,2020年第1季度国内新能源汽车产、销量同比下滑60.2%和56.4%。但仅仅半年之后,自2020年7月开始,新能源汽车产、销均超过上年同期,并一直持续爆发增长到今天的水平。图片来源: 中国汽车工业协会网站从新能源汽车行业整体来看,从今年3月份起,新能源汽车月度销量均超过了20万辆,从8月份开始月度销量均超过30万辆,即使剩下的11、12月份产销出现一定波动,新能源汽车全年产销突破300万辆也是大概率事件。新能源汽车的产、销两旺必然拉动动力电池快速增长,据高工锂电(GGII)统计,2021年前9个月,国内动力电池装机电量累计92GWh,同比累计上升169.1%,其中三元电池装车量累计47.1GWh,占总装车量51.2%,同比累计上升99.5%;LFP电池装车量累计44.8GWh,占总装车量48.7%,同比累计上升332%。同时,据高工锂电不完全统计,今年以来,国内动力及储能电池投扩产项目总投资超过5000亿元,粗略估算扩产规划超1.4TWh。随着磷酸铁锂电池的成功逆袭,在德方纳米、邦普、富临精工、湖北万润等磷酸铁锂专业生产厂家纷纷扩大产能的同时,还不断向磷酸铁锂原材料产业延伸;同时,万华化学、新洋丰、川金诺、川发龙蟒、川恒股份、龙佰集团、中核钛白、安纳达、司尔特、湖北宜化等一大批传统化工企业纷纷跨界强势涌入磷酸铁锂产业。据高工锂电统计数据显示,2021年前三季度中国磷酸铁锂正极材料出货量达到30.8万吨,同比增长302.6%,据不完全统计,前三季度国内合计新扩增磷酸铁锂材料超过250万吨。而这些正在或即将扩产的锂电及材料项目已经带来了强劲的激光粒度分析仪市场需求,并且有望持续爆发增长。电池材料的粒度分布是锂电行业的一项重要质控指标,它影响锂离子电池的能量密度、充放电性能、循环性能、安全性能以及生产工艺等,因此,电池材料及电芯生产企业普遍选用高效的激光粒度分析仪作为电池材料粒度分布检测工具。但什么样的激光粒度分析仪才能真正得到锂电行业市场的青睐呢?根据近几年锂电行业激光粒度分析仪购买需求的统计分析,高端激光粒度分析仪越来越得到行业的青睐。锂电行业经过近二十年的发展,行业资源逐步向头部企业倾斜,新增产能大多数来自宁德时代、比亚迪、国轩高科、力神、中航锂电、亿纬锂能等头部企业,这些新增产能在选择检测分析仪器往往参考原厂配置,甚至选择更高端配置,所以,高端激光粒度分析仪将在这些新增产能中获得更多市场机遇。而一款好的激光粒度分析仪不仅应该具有宽广的测试范围和良好的易操作性,还应保证测试结果具有良好的真实性、重现性和对细微的粒度差异具有足够的分辨能力。从欧美克仪器近几年的市场销售情况来看,大多电芯及材料企业选择了欧美克的Topsizer和TopsizerPlus两款高端仪器。这两款仪器不仅具有宽广的测试范围和全测试范围内高灵敏度,而且具有很高的自动化程度,大大降低了测试结果对人为因素的依赖程度。Topsizer激光粒度分析仪Topsizer Plus激光粒度分析仪在锂电行业,需要检测粒度分布电池材料包括正极材料、前驱体材料、负极材料、导电添加剂、隔膜材料、电解质等等,种类繁多,粒度分布范围比较宽,小到纳米级,大到毫米级,因此,理想的测试范围应当尽量覆盖所有电池材料的整个测试粒径分布范围。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管不规则颗粒的粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行基本可靠的评价,有利于对连续生产或同一规格的不同产品的质量一致性进行把控。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。具备高分辨能力的仪器才能准确识别测试样品及其各组分的细微粒径变化,对于电池材料中异常的少量大颗粒,及少量的离群细颗粒的准确测量和定量尤其重要。Topsizer对含有极少量细颗粒的负极材料样品的检测激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养等。如果仪器的易操作性不高,不同人员对同一样品测试得出不同的结果,那么,即使有良好的测试性能,也不能高效满足用户的测试需求。作为深耕新能源行业的粒度检测与控制技术专家,欧美克仪器秉承思百吉集团“赢之有道”的核心价值观,始终坚持为行业用户提供高效的粒度解决方案,不断满足行业创新发展需求,助力中国新能源高速发展! 参考文献【1】中国汽车工业协会,2021年10月汽车工业经济运行情况。【2】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用。【3】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用。【4】高工锂电,2021高工年会聚焦(14):动力电池产业2021“战局”。
  • 粒度分析仪 | 电池行业小助手
    电池材料粒径及其分布影响锂离子的扩散具有单分散粒径分布的颗粒因较高的比表面积而与电解质溶液产生较多的相互作用,从而决定了在短时间内的高能释放。大颗粒和小颗粒混合产生较高的堆积密度,从而允许生产较大的电极,有助于提高存储能力电导率和离子导电性差是锂氧化物阴极的主要缺点,炭黑和石墨等碳基产品有助于提高电导率,且涉及锂离子电池的电化学氧化还原过程。碳基产品通过填充活性材料颗粒之间的自由空间,从而提高电极导电性。作为添加剂的碳应与阴极材料形成均匀的混合物,以获得稳定的电极浆料,并形成均匀涂层。通过测量不同类型颗粒材料间的zeta电位选择静电相互作用最大的组合,最好粒子具有相反的表面电荷。湿法/干法—2合1设计40nm-0.25mmPSA激光粒度仪小巧,随时可以测量!• 干/湿法复合测试仪器 • 固态激光 坚固,耐用!• 光学部件固定在仪器金属基座上 • 无需频繁地重复校正 • 耐振动纳米粒度及Zeta电位分析仪0.3nm-10 µmLitesizer模式方法优势粒径及其分布动态光散射(DLS)3个测试角度Zeta 电位电泳光散射(ELS)信号处理专利 cmPALS 特有的Omega样品池分子量静态光散射(SLS)量程可至20 MDa透过率透光法用于连续监测测量过程中颗粒的沉降和聚集折光率焦点散射强度DLS 及 ELS中的关键参数 市场上仅有的配备该功能的仪器(专利)电动固体表面分析仪Surpass 32 分钟内即可测得结果 自动pH扫描和检测等电点的信息研究表面化学 记录液-固表面吸附动力学以研究表面相互作用 不同样品池用于不用形态的材料燃料电池的催化剂和膜图中是发生在阴极的反应:催化剂促进离子(H+)、电子和氧气(氧化剂)的反应,形成水或可能的其他产物的过程燃料电池应用相当广泛,具有工作温度低和启动时间短的优势。传导膜通常由碳载体、铂粒子、离子导电膜和粘合剂组成。碳载体作为电导体(允许电子通过),而铂粒子作为催化反应位点,离子膜为质子传导提供了途径。测试材料与方法铂碳(Pt/C)催化剂的颗粒大小影响催化剂与离子膜之间的相互作用、催化剂层的厚度、离子分布、氧的扩散,从而也影响最终电池的性能。zeta电位是影响粒子团聚行为的一个参数,通过zeta电位可以了解胶体分散体的稳定性。结果与讨论粒径——炭黑与铂炭催化剂图1. 炭黑和Pt/C催化剂的水动力直径(HDD)随pH的变化图1 显示了两种不同分散剂中碳和Pt/C催化剂流体力学平均直径(HDD)随pH的变化。在0.01 mol/L KCl和pH 5时,炭黑具有较高的团聚倾向(HDD 1μm)。Pt/C催化剂的团聚体尺寸在pH 3-7 (HDD≅ 0.3 μm)范围内保持不变,与水中碳的团聚体尺寸相当。图2. DLS法测定pH为3.5时炭黑和Pt/C催化剂样品的粒径分布Pt/C催化剂的粒径分布较窄,且两种分散剂内的粒径均较小,碳的粒径和多分散度指数(PDI)均显著增加。在Pt/C催化剂中,Pt涂层可降低或抑制pH依赖性碳团的形成。图3. 使用激光衍射法对炭黑和铂炭催化剂颗粒进行测量从体积分布来看,无催化剂炭黑的平均直径明显更高,形成更大的团块。由跨度值表示的粒径分布宽度在两个样品之间是可比较的。铂颗粒增加了碳载体的表面积,提高了反应速率,有利于催化活性。Zeta电位——炭黑与铂炭催化剂图4. 炭黑和Pt/C催化剂zeta电位随pH的变化样品的zeta电位的绝对值随pH的降低而减小,pH低于4时加速减小。尤其是对于炭黑,zeta电位的绝对值小表明颗粒间的排斥力较小,颗粒开始凝聚。虽然两个样本的zeta电位都有下降的趋势,Pt / C催化剂更负 (- 40 mV),与炭黑相比表明更高的稳定性和形成更小的团聚体的概率。图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化Zeta电位——离子膜图5. 参考膜和不同碳含量的涂层膜表面zeta电位随pH的变化图5显示了zeta电位随超过3的pH值的变化关系。IEP从参考膜的pH值1.5转移到较高的pH值3.5-4。zeta电位的变化表明涂层发生了变化。此外,两种覆膜的IEP表现出轻微的差异。对于含碳量较低的膜(灰色),IEP发生在稍低的pH值(3.5)。在该区域,通过查看pH值低于4的Litesizer 500数据,Pt/C催化剂的团聚体尺寸较小(HDD≅0.3 μm)。这表明,在该酸性区域进行涂层,最终涂层具有较好的均匀性。涂层的均匀性影响催化剂层的功能。图6.pH=4时,参考膜和不同碳含量的涂层膜zeta电位随时间的变化在第二次测量中,通过zeta电位随时间变化的测试,考察了pH为4时催化剂涂层在水中的稳定性。被涂膜的zeta电位向更小的负值偏移,证实了发生了涂层。在20分钟的平衡时间后,膜达到一个平台,这表明涂层的稳定性随着时间的推移。总结燃料电池中质子交换膜的效率与催化剂的粒径和稳定性密切相关。通过不同的pH值下对颗粒进行粒径及zeta电位研究可以找到合适的pH值,保证之后涂覆工艺的效果。通过Litesizer以及PSA的配合,充分了解了该催化剂中颗粒粒径的分布,并研究了小颗粒团聚之后的大小。通过Surpass 3测得的IEP位移和表面zeta电位值不仅提供了涂层的信息,而且还显示了碳含量对涂层的影响。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 网络研讨会 | 固-液胶体分散系的稳定性及其光学分析
    引言由于构成胶体的单糖或者氨基酸种类、各单元之间的排列方式、胶体聚合度、单糖或氨基酸的取代基团等各不相同,且不同胶体的溶解性、黏度、各种理化条件下的耐热性、形成胶冻的能力、对不同物质的兼容性等都存在着不同程度的差异。通过深入研究胶体结构和性质之间的关系,从而获得种类丰富、味道香美的各色食品。本次网络研讨会将介绍Formulaction Turbiscan系列对于固-液胶体分散系的稳定性及其光学分析的应用案例,帮助用户更好地了解在不同工艺和配方的条件下样品稳定及失稳机理。同时,也将为大家详细分享如何使用Turbiscan稳定性分析仪来提高在食品行业的研究,同时简化质量控制流程。讲座主题固-液胶体分散系的稳定性及其光学分析 胶体分散系的定义 固-液胶体分散系稳定及失稳机理 多重光散射的原理及应用案例主讲人王 鹏教授,博士生导师南京农业大学国家肉品质量安全控制工程技术研究中心团队成员,美国田纳西大学访问学者。长期从事食品分子组装及活性物质递送、食品物性形成与感知研究。在《Food Hydrocolloids》、《Food Chemistry》、《Langmuir》 等杂志发表SCI及EI文章65篇,授权专利12项,共同主编十三五规划教材《食品胶体学》。近5年主持胶体与界面相关的国家自然科学基金面上项目3项,“十四五”农村领域国家科技计划子课题1项。目前任中文核心期刊《肉类研究》编委,中国肉类协会禽(蛋)业分会专家委员会专家委员及科技标准化技术委员会委员、全国畜禽屠宰质量标准创新中心专家委员、中国老年学和老年医学学会营养食品分会委员、《Food Hydrocolloids》等10余本SCI期刊客座编辑或审稿人。扫码参加本次网络研讨会注:本次研讨会将通过腾讯课堂演讲,届时可通过微信小程序或移动/PC客户端在线观看。报名成功后请保存课堂链接,会议前10分钟可提前通过链接进入课堂!欢迎感兴趣的各位踊跃报名!联系热线:400-821-0778邮箱:ins.cn@dksh.comTURBISCAN系列稳定性分析仪(多重光散射仪)通过多重光散射的原理,具有同步双检测器,可以在无损的条件下快速分析样品的稳定性程度及其不稳定的机理。- 从工艺和配方角度分析样品的不稳定原因;- 辅助工艺确认以及配方的确定;- 分析运输环境以及存储条件对样品的稳定性的影响以及一致性评价和过程控制分析。
  • 美国康塔仪器公司粒度粒形分析仪培训讲座在中石化催化剂长岭分公司成功举行
    颗粒大小及其形貌是描述颗粒性质的两个主要参数,因此粒度和粒形是材料物性表征的重要组成部分。用于表征粒径及其分布的粒度仪正面临着新的发展机遇,因为仅能提供单一参数的激光粒度分析仪已经无法满足日新月异的工业科技对同样粒度的颗粒进行属性区分要求! 北京时间2014年3月6日,美国康塔仪器公司中国区杨正红总经理一行来到有着2500多年悠久历史的文化名城——岳阳,访问在国内外久负盛名的中国石化股份有限公司催化剂长岭分公司。 会议由中石化催化剂分公司科技发展部负责人主持,中国石化催化剂分公司下属各单位相关工作人员参加了会议。作为颗粒表征技术的专家,杨正红经理对粒度分析技术的历史发展脉络进行了梳理,对粒度和粒形报告进行了深入解读,对美国康塔仪器公司旗下图像粒度粒形领军企业欧奇奥(OCCHIO)品牌做了全面的介绍,提出了颗粒形貌分析技术发展趋势,并对催化剂等各种材料做出了全面的解决方案。 Occhio F 200S系列图像粒度分析仪( 湿法循环型 ) 采用同等仪器中最高水平的 1000 万像素的照相机, 拍摄分散在液体中的粉粒体的高分辨率照片,可拍摄到最小粒径为 200 nm 的颗粒, 从而得到粒度分布和粒形分布图,并能对颗粒进行计数 。 由于景深较深,在全摄影领域利用光学系统控制,粒子成像鲜明,可测量通常的光学方式粒度分布仪器测不到的粒子形状,对异物进行有效分析。利用独 自开发的颗粒形状和形态分析软件,可进行微观的颗粒形态分析,从而对粉粒体样品的特性进行评价。将粒子的各种形貌数值化后,可进行相互比较,除了一般的粒形参数表征外(如最大内径、最大长度、凹凸度、延伸度、圆形度等),欧奇奥还有独自开发的卫星化指数(Satelity)、赘生物指数(Outgrowth)和钝度(Bluntness) 等微观粒形参数表征。FC200S 高分辨粒度粒形分析仪 实验报告举例:四个催化剂样品粒形参数比较图,纵坐标从上而下依次为:实积度,钝度,赘生物指数,圆形度,圆度 长岭分公司作为OCCHIO图像粒度分析仪在湖南地区首位用户,美国康塔仪器公司技术支持经理王战于分析测试中心进行了OCCHIO FC200S+高分辨图像粒度粒形分析仪的安装培训,演示以及现场样品测试。与会代表饶有兴趣地亲自体验了图像粒度分析这项先进的粒度粒形表征技术,并针对现场的样品测试与王战工程师进行了深度的探讨,以实现最准确,最高效,最完美的图像粒度分析方法,并指导工艺过程。他们深切地体会到,欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品 。长岭分公司也是美国康塔仪器公司物理吸附忠实用户,从1998年的AUTOSORB 6B系列到后来的NOVA系列以及QUARDSORB系列,这些分析仪器已经在长岭分公司相继服役15年以上,担当着最重要的质检控制职能。杨正红经理次日还回访了各个分析实验室,与多位仪器操作人员进行了一对一的交流,现场解决了用户提出的各项技术疑问,让这一批物理吸附分析仪器发挥更出色的工作效率。 当天晚上,美国康塔仪器公司一行人员与长岭分公司工作人员欢聚一堂,把酒言欢。化验车间彭志华主任,刘海南和蒋邦开副主任相继举杯,美国康塔仪器公司武汉办负责人张梦杰先生代表公司发言:我们美国康塔仪器公司于2013年3月份于武汉成立了代表处,这标志着我们扎根于华中地区的决心,我们会一如既往做好售后服务工作,并积极举办各项技术交流专场会议,让我们再一次举杯,共谱“湘鄂情”!
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • WAGA-100大气水溶性离子在线分析仪
    大气颗粒物来源广泛,化学组分复杂,与痕量气态污染物如二氧化硫、氨等互相转化,造成大气复合污染的复杂状况。传统的大气颗粒物和气体组分多遵循采样-运输-实验室分析的流程,时间周期长,消耗人力物力较多。一些不稳定的物质在周期中容易挥发或者发生反应,导致检测结果不能准确地反映实时污染物组分浓度,造成测量误差。  因此,对颗粒物化学成分和痕量污染气体开展准确、实时、长期的监测、是治理大气颗粒物的先决基础。  聚光科技(杭州)股份有限公司(以下简称“聚光科技”)联合北京大学最新推出基于离子色谱法的WAGA-100大气颗粒物水溶性离子成分在线分析仪,可实现对大气中多种水溶性离子的自动准确测量。 WAGA-100大气水溶性离子在线分析仪可测气体组分NH3、HCl、HONO、HNO3和SO2可测颗粒物组分F-、Cl-、NO2-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等WAGA大气颗粒物水溶性离子成分在线分析仪原理图关键技术  1)湿式平行板溶蚀器技术  它的基本工作原理是:选择能吸收被测组分的吸收剂涂渍于溶蚀器内壁,或让吸收剂以一定流速流过溶蚀器内壁,利用气体和气溶胶扩散系数的差异,使气体分子扩散到管壁被吸收剂吸收,而气溶胶不受影响一直通过扩散管,从而有效地分离气态污染物和气溶胶。湿式平行板溶蚀器工作原理示意图  2)蒸汽喷射-撞击式采样技术  基于蒸汽喷射的气溶胶采样技术原理是气溶胶颗粒在水蒸气的作用下长大,经过一个水汽分离装置后,水溶性组分进入溶液并进一步分析。该技术解决了传统膜采样法时间周期长、颗粒物成分变化等问题,应用于组分在线监测,可以实时、准确的获知颗粒物化学成分信息。 基于蒸汽喷射的气溶胶收集技术示意图  3)微差压全自动液面探测技术  基于微压差的自动化液面探测技术可以连续自动的输出收集液容积,适用于无人值守的在线监测仪器,结构简单,灵敏度高。 微差压全自动液面探测技术示意图  4)针对自动在线分析的智能化软件系统  聚光科技WAGA-100大气水溶性离子在线监测系统将采样、分析、检测单元、数据处理单元等集成在分析仪内部;通过内置程序控制电磁阀的开关和设定流量,根据时序控制不同采样流程状态下泵的工作状态和频率,减少仪器使用及维护的工作量;通过定时循环自动触发下一流程,实现流程的循环和连续在线测量,减少人工维护,实现高度自动化控制。产品特点  痕量气体和颗粒物组分的自动监测  适用于大流量的平行板溶蚀器设计  高效颗粒物捕集装置  联合北京大学研制,经十余年研发和应用验证  全自动化控制,可长时间无人值守  数据自动分析和上传应用案例 2017.04.17 凌晨5:00WAGA仪器在现场捕捉到颗粒物较高的硝酸盐和硫酸盐含量 2008.10.20~2008.11.09基于该技术现场监测的PM2.5水溶性离子成分和气体浓度的变化趋势
  • 弗尔德莱驰粒度及粒形分析仪北京演示日活动
    成立于1915年的德国RETSCH(莱驰)公司是Scientific Division(科学仪器事业部门)的核心品牌之一,是全球最大的实验室固体样品前处理暨研磨粉碎筛分设备的生产厂家。中国分公司总部设在上海,在北京、广州等地设有办事处或技术中心。RETSCH TECHNOLOGY(莱驰科技)做为RETSCH的姊妹公司,专业致力于粒度及粒形分析仪器的研发和生产,1999年,德国莱驰科技研发出全世界第一台利用动态数字成像技术原理的粒度及粒形分析仪,十多年来,已经有超过600个客户在使用。基于ISO13322-2标准设计,Camsizer/Camsizer XT可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数或密度及比表面积测量,已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠。 干湿两用多功能粒径及粒形分析仪 Camsizer XT 莱驰不仅是样品粉碎研磨筛分的专家,在颗粒粒度及粒径分析也是独树一帜。特有的干湿两用多功能粒径及粒形分析仪Camsizer XT,专利的测量系统是基于动态数字成像原理,实时显示和精确分析颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。多种进样模块可让客户根据不同的应用和要求进行分析:X-JET压缩空气分散进样;X-FALL自动振动分散进样;X-FLOW湿法超声分散进样模块,其技术为全球领先。 为了让更多的客户了解动态数字成像技术,我们曾多次在上海、北京和广州举办客户演示日,在演示日期间,我们除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。3月18-19日,我们2014年首场客户演示日在弗尔德莱驰北京办事处举办。来自北京高校及科研院所的相关专家及老师,还有外地的客户远道而来参加了此次演示日活动,现场气氛热闹非凡。 亚太区粒度仪产品销售经理Joerg Westman先生详细为到场来宾演示了干湿两用多功能粒度及粒形分析仪Camsizer XT的操作和应用,使用X-jet模块演示煤粉、钼粉、高分子材料、原料药等粒径粒度测量,其快速清晰的显示和分析过程让来宾叹为观止。 除了粒度分析的仪器,弗尔德莱驰北京办事处区域经理叶上游先生简单介绍了2013年10月弗尔德集团收购德国著名的真空和可控气氛高温炉制造商GERO(盖罗),2014年1月将GERO(盖罗)并入同属弗尔德集团科学仪器事业部的CARBOLITE(卡博莱特)品牌下。两大品牌强强联手,产品范围包括烘箱、箱式炉、管式炉、工业炉,温度从20°C至3000°C。除此之外,还能提供工业定制炉解决方案,包括真空应用、可控气氛的应用如惰性气体或化学活性气体环境下的热处理和先进材料制备。丰富的产品种类和可靠的德国品质,远销全球80多个国家,弗尔德科学仪器事业部逐渐成为高温热处理领域的佼佼者! 关于GERO(盖罗)德国真空和可控气氛高温炉制造商GERO(盖罗)拥有超过30年的专业热处理经验。从标准产品到客户定制的系统解决方案。GERO(盖罗)基于广泛的标准工业炉,对复杂的热处理工艺提供完全定制解决方案,研发制造高达3000°C的高温炉,是真空、惰性气体或反应性气氛(如氢)的高温应用领域的专用炉领头羊,应用主要领域是高校和工业研究,以及产品的中小型生产。 关于CARBOLITE(卡博莱特)英国CARBOLITE(卡博莱特)公司创建于1938年,几十年来,一直致力于实验室箱式马弗炉、管式炉、灰分炉、工业定制马弗炉及其他箱体设备(高温烘箱、培养箱)的制造和研发,在全球享有很高的知名度,已经成为高温热处理设备领域中的佼佼者。广泛应用在航空航天,陶瓷,金属加工,矿山,医药,电子和材料研究等领域。除了标准产品,CARBOLITE(卡博莱特)还生产一系列特殊应用的马弗炉,例如无尘室的烘箱,旋转管式炉;煤炭和焦炭标准分析测试炉、铁矿石(球团矿)还原性测试炉、贵金属灰吹炉、沥青粘结剂分析用炉、有机氚碳氧化炉等。 敬请期待接下来在上海举办的粒度仪演示日,更多精彩活动,尽在弗尔德莱驰! 弗尔德莱驰(上海)贸易有限公司上海张江高科技园区毕升路299弄富海商务苑(一期)8栋邮编:201204电话:+86 21 33932950传真:+86 21 33932955邮箱:info@verder-group.cn 弗尔德莱驰北京办事处北京海淀区苏州街29号院18号楼维亚大厦608室邮编:100080电话:+86 10 82608745传真:+86 10 82608766 弗尔德莱驰广州办事处广州市天河区华庭路4号富力天河商务大厦905室邮编:510610电话:+86 20 85507317传真:+86 20 85507503
  • 现正接受分散乳化的中试试样! -德国Miccra中试型纳米分散乳化系统在广州准备就绪
    德国MICCRA 发往中国总代广州语特仪器科技有限公司(以下简称 “广州语特”)的中试型纳米分散乳化系统于5月底正式到位, 从6月开始正式接受中试级别样品测试,测试地点为广州,欢迎大家送样!! 该中试型纳米分散乳化系统, 是中试领域连续工作的顶级解决方案。包括: D-27水冷型不锈钢分散马达, DFK1.4分散工作腔, 从粗磨,精磨至超细精磨,各种尺寸的中试级定转子刀头, 5L不锈钢带夹夹套循环罐,配套不锈钢循环管道与碟阀HFU-27高频转换器。配套使用的有德国MCART的顶置搅拌器, 冷水机以及加热磁力搅拌器(需要时用)。该中试型纳米分散乳化系统的特点:1) 马达功率高达2700KW, 转速范围广,从3000-24000RPM;线速度也可高达46M/S以上;2) 为了防止在线循环工作时因高速而产生的过热, 马达采用了先进的不锈钢三相异步水冷马达, 可以连接冷水机,自行冷却降温;3) 精细的工作腔内可安装超细精磨头, 根据不同的样品种类来选择, 让样品真正精磨,甚至细至纳米级;4) 工作腔采用德国原装机械密封,独一无二的悬盒式密封结构,密封性能好,高压或真空状态均可使用,易于安装维护与清洁5) 低噪音, 只有63分贝左右上周已经用该系统给客户试样。 试样结果良好。 我们会陆续公布测试情况。 敬请关注!关于语特 和 英国Bibby / 德国Miccra / 德国MCART/ 德国LUM / 瑞士Gerber Instruments广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计/冰点仪,等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国Miccra, MCART,瑞士Gerber Instruments 在中国的总代 也代理德国CAT产品。l 英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器生产商, 旗下有5个子品牌:Stuart,Techne,Jenway,Electrothermal, PCRmax. 专注于样品前处理等通用实验室仪器(如:熔点仪, 搅拌器, 混匀器,摇床, 培养箱,干浴器/氮吹仪,水浴,菌落计数器, 纯水蒸馏器),分子生物学研究设备(基因扩增仪PCR,荧光定量PCR,杂交箱);分光光度计/超微量紫外等分析仪器,及平行反应工作站相关产品。 l 德国Miccra 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类组合高达上百种;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。l 瑞士Gerber Instruments 有超过120的历史,是专注于乳食品行业的典型代表。其产品冰点仪, 乳脂离心机, 食品专用PH计, 流出式粘度计等, 风靡欧洲及其它大陆国家。 l 德国MC.ART ,号称实验室小型“机器人”的提供者。其典型代表产品有:全自动分散乳化系统,自动抓取机器人,自动加液机器人,自动封装机器人,自动过滤机器人等实验室自动控制智能设备,以及实验室自动化的定制. 其补充产品有: 搅拌器, 循环水浴, 与德国科奇合作的防爆冰箱, 以及分液漏斗振荡器等.
  • 锂电行业专家深度剖析:十大成分分析仪器技术全攻略
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。5月28日全天,锂电成分分析技术主题专场,12位锂电科研与仪器技术专家将分别为大家介绍色谱、质谱、原子光谱、拉曼光谱、核磁共振、分子光谱、元素分析、电子顺磁共振技术、电化学仪器技术、X射线荧光光谱、ICP-OES和ICP-MS等主流成分分析技术在锂电产业中的最新应用与进展。一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.co m .cn/webinar/meetings/ldc2024/ 四、 锂电成分分析技术专场(注:以最终日程为准)05月28日 锂电成分分析技术专场报告时间报告题目报告嘉宾09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静安科慧生 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师五、 嘉宾简介及报告摘要(按分享顺序)陈瑛娜 德国耶拿分析仪器有限公司 应用工程师【简介】毕业于浙江海洋大学,食品工程硕士,发表SCI文章2篇,中文期刊6篇,发明专利10项。长期专注金属与总有机碳等分析技术的方法开发与技术支持工作,主要负责光谱类及总有机碳仪器实验方法优化和新行业新领域的应用拓展工作,有丰富的应用研发经验。【摘要】锂电池分析中经常存在痕量杂质元素测试时光谱干扰严重、主含量和杂质元素需采用不同仪器测试、基体复杂、维护频率高等问题,给分析人员带来很大的挑战,德国耶拿0.003nm超高分辨率使常见的光谱干扰问题迎刃而解;双向观测+Plus功能,高低浓度元素一次进样即可完成;耐盐性高达85g/L的multi N/C 总有机碳分析仪,使原料品质控制更得心应手。梁少霞 珀金埃尔默企业管理(上海)有限公司 高级技术支持【简介】毕业于中山大学化学与工程学院,现任珀金埃尔默原子光谱高级技术支持,有多年原子光谱(AAS/ICP-OES/ICP-MS)应用开发经验,熟悉锂电池材料中元素定量的分析难点及应用解决方案。【摘要】结合锂电池材料前处理的要点,讲解电感耦合等离子体质谱仪(ICP-MS)测定锂电池正极材料、原材料、磁性异物、负极材料、常用有机溶剂和电解液元素以及颗粒异物的难点和注意事项,为锂电池材料中元素分析提供充足的解决方案。代琳心 HORIBA(中国) 拉曼应用工程师【简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱、X射线荧光分析以及激光粒度分析等多项技术是研究锂电池相关材料结构性质的重要内容。本报告将介绍HORIBA技术,在锂电池研发、质控中不同材料成分分析的相关应用案例以及解决方案。方勇 布鲁克(北京)科技有限公司 EPR应用工程师【简介】方勇博士毕业于南京大学化学化工学院,博士期间主要从事具有新颖结构及性质的(元素)有机双自由基物种的合成及表征,并负责课题组内一台布鲁克 EMXplus 电子顺磁共振波谱仪的常规测试、简单维护及谱图解析。2020年年底博士毕业以后,随即加入布鲁克担任EPR应用工程师一职,目前主要致力于向具有不同行业基础和学术背景的顺磁用户推广EPR的多方面应用,同时针对用户各异的研究需求协助提出基于顺磁共振的高效解决方案,助力于他们的研究工作和生产活动。【摘要】对于工作状态下的锂离子电池而言,锂化-脱锂过程中金属锂的微结构改变,富锂金属氧化物正极材料本身的结构缺陷或过渡金属离子的变价、涉及自由基中间体的寄生化学反应等,都适于利用EPR技术来进行表征及机理推定,以助于电池的性能评估和优化,本次报告将援引一些相关的研究实例来展示EPR技术在锂离子电池研究领域的应用。任萍萍 布鲁克(北京)科技有限公司 核磁共振应用专员【简介】任萍萍,博士,布鲁克核磁共振应用专员。毕业于中国科学院武汉磁共振中心,在核磁共振和分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。【摘要】核磁共振与生俱来的定性定量属性,使得它成为锂离子电池分析的强大工具,可应用于快速的卤水定量检测、电解液降解产物和机理研究、锂离子扩散速率测量、电极浆料的分散性和相稳定性分析,常用的分析核包括1H、7Li、19F、31P、11B、23Na等。此外,原位固体检测探头可实时观测锂电池中的电化学过程,还可研究枝晶和死锂的形成机制。刘晓静 安科慧生 应用工程师【简介】毕业于天津大学化学专业硕士学位,现就职北京安科慧生科技有限公司应用市场部经理。精通元素分析方法开发、XRF与基本参数法理论研究、数值分析 参与国家、行业等标准制订5项;国内外核心期刊发表论文7篇。【摘要】单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量董盼盼西南交通大学 特聘副研究员【简介】董盼盼,西南交通大学前沿科学研究院特聘副研究员,博士及博后在美国Washington State University完成,主要从事先进功能复合材料在储能领域的基础与应用研究,具体包括:高比能锂金属电池电极与电解液、复合固态电解质、金属有机框架准固态电解质等方向。迄今为止,在Adv. Mater.(1), Energy Stor. Mater.(2), Nano Energy(1)等国际知名期刊发表论文20余篇,美国专利申请1项,PCT国际专利申请1项,中国授权专利2项,主持中央高校基本科研业务费科技创新项目。现为中国化学会会员,受邀担任Adv. Mater., ACS Nano等国际知名SCI期刊审稿人。文桦 钢研纳克检测技术股份有限公司 产品经理【简介】目前为钢研纳克ICP-OES产品经理,一直从事光谱质谱的元素分析的应用和市场开发工作,擅长多种化学成分分析技术,在材料和环境等领域的ICP-OES和ICP-MS应用研究上有丰富的经验。贺静芳 赛默飞世尔科技(中国)有限公司 高级应用工程师【简介】赛默飞世尔科技(中国)有限公司原子光谱团队高级应用工程师,2013年加入赛默飞,负责AA/ICPOES/ICPMS仪器及应用研究,具有十多年锂电池行业各类样品原子光谱仪器分析经验。【摘要】新能源行业近年来迎来爆发式增长,新能源材料的原材料、研发、生产、以及环保排放都离不开元素分析。本次报告将围绕使用赛默飞ICPOES/ICPMS技术以及IC-ICPMS联用技术对新能源材料进行主成分和杂质元素分析,以及元素形态分析,旨在为新能源行业提供最有力的分析工具。尹红军 安捷伦科技(中国)有限公司 AE - 应用工程师【简介】尹红军,硕士研究生,毕业于成都理工大学应用化学专业。安捷伦公司资深应用工程师,负责电感耦合等离子体质谱仪ICP-MS,电感耦合等离子体发射光谱仪ICP-OES,原子吸收光谱仪AAS的方法开发和技术支持。十五年的原子光谱应用支持工作,擅长石化、环境、锂电池、材料行业样品的样品测试和仪器的方法开发研究。【摘要】针对锂电材料无机元素检测的难点,例如主含量元素、碱金属、电解液和未知样品元素分析等难点,安捷伦将会提供完善的应对方法与解决方案,助力客户在锂电材料元素分析中实现高效快速的分析。李新颖 上海仪电科学仪器股份有限公司 产品应用【简介】李新颖,博士,任上海仪电科学仪器股份有限公司技术支持,多年的分析实验室经验,熟悉实验室各类设备操作、检测标准和相关应用,致力于实验室设备的技术支持和应用方法开发。【摘要】根据锂电行业上下游不同的测量需求,报告包括电池原料分析,正极材料分析,负极材料分析,电解液分析。刘建红 岛津企业管理(中国)有限公司 应用工程师【简介】岛津公司分析中心应用工程师,2007年加入岛津企业管理(中国)有限公司,长期从事EDX应用支持工作,在EDX应用于珠宝分析中积累了丰富的使用经验。【摘要】磷酸铁锂电池和三元电池仍为当前动力电池的主流,电池材料中的组成元素是电池的基本构成要素,是研发和生产过程的控制指标之一。X射线荧光光谱仪具有前处理简单、分析速度快、分析过程无损、运行成本低、分析结果准确度高、稳定性好的优点。本报告介绍了岛津EDX在磷酸铁锂、三元正极材料中主次元素含量分析的案例。六、 会议联系1. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn2. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 西格玛奥德里奇提供农药多残留分析的QuEchERS方法专用分散SPE产品
    在全球,每年大约有超过2,000种食品样品要进行农药残留分析。并且分析的质量必须符合特定的要求,而且力求快速、简便、易操作、低成本、溶剂使用少、低污染、对环境友好、少的实验器具及空间的需要等。近40年来,大量的分析方法不断涌现及更新。然而。这些方法很难同时对绝大多数农药达到较高质量的分析方法。2003年,QuEchERS(Quick, Easy, Cheap, Effective, Rugged and Safe)方法在美国诞生,以一种快速、简便、价格低廉的分析方法实现高质量的农药多残留分析。随后的研究进一步证实有超过200中农药残留可用于该法,其中包括含脂肪的介质体系。 不同于传统的SPE小柱净化方法,在此方法中,使用分散SPE,,净化是非常方便的。通过将水溶性提取液(如:乙腈)与分散的SPE填料(如:Supelclean PSA, Envi-carb 和Discovery DSC-18)、高含量的盐(如:氯化钠和硫酸镁)和缓冲试剂(如:柠檬酸盐)相混合,然后经振动和离心,得到的上清液就可直接用于色谱分析,或仅需较小的进一步处理就可直接上样。Sigma-Aldrich/Supelco公司,现在可以提供一系列含有预先精确称量的盐和SPE填料的离心管,来支持目前最常使用的QuEchERS分散SPE方法。55227-U 分散SPE (dSPE) 柠檬酸提取管, pk of 50 55234-U 分散SPE (dSPE) MgSO4 提取管, pk of 50 55228-U 分散SPE (dSPE) PSA SPE 净化管, pk of 50 55229-U 分散SPE (dSPE) PSA/C18 SPE净化管, pk of 50 55230-U 分散SPE (dSPE) PSA/ENVI-Carb SPE 净化管, pk of 50 55233-U 分散SPE (dSPE) PSA/ENVI-Carb SPE 净化管, pk of 50 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • JENSPRIMA杰普在线流动电流分析仪应用于自来水厂 | 自动控制絮凝剂的投加
    流动电流分析仪在自来水厂的应用:自来水厂中流动电流分析仪的应用有重要意义,精准在线监测更有力确保供水系统正常运行和安全性。提高供水系统的效率和可靠性。避免供水过程中出现中断或隐患或原水及供水水质问题的发生。在线监测仪器旨在为水处理用户提供更有效的工具,杰普仪器Flumsys系列在线流动电流分析仪在优化和控制絮凝剂和聚合物的用量表现非凡!通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果!杰普仪器Flumsys 10SC及Flumsys 10TC-SP两款在线流动电流分析仪,作为高精度、高可靠性的自动化投加控制设备,受到国内外用户选择,并广泛应用于自来水厂,污水处理厂,污泥脱水,反渗透制程,及其他需要投加絮凝剂工艺等需水质监测场景! 浅谈絮凝剂投加控制“难”絮凝剂投加量难以控制,絮凝剂的性质和特点会对投加量的控制造成一定的困难,同样水质的特性也是决定投加量的重要因素之一。不同类型絮凝剂在不同水质条件下可能表现出不同的效果,因此为达到理想的效果需要根据具体情况进行调整。水处理过程中的水质变化也会影响絮凝剂的投加量。操作人员经验和技术水平也会产生直接影响。如缺乏经验或技术不敦练可能会导致投加误差,水处理设备的性能和运行状态与翼凝剂投加量也紧密相关。如设备存在故障或不稳定运行状态可能导致絮凝剂投加量的波动。因此,絮凝剂投加量难以控制是由多种因袁共同作用所致。为了解决这个问题,需要综合考虑水质、操作人员技术水平和设备状态等因素,才能进行合理的调整控制投加。 水中悬浮物浓度、溶解物质的种类和浓度,以及pH值等都会影响絮凝剂的投加量。水处理工艺不同、处理过程中的温度、搅拌速度和沉淀时间等操作条件也会对投加量产生影响。及不同场景下水处理目标的要求也是影响投加量的重要因素。根据水质的不同,对于不同的水处理目标,投加量也会有所不同。单纯人工操作在需要综合考虑各种因素来确定最合适的投加量是远远不够的,重持着科技之心不断创新,杰普仪器致力于为用户提供更县实用性的解决方案,助力企业精准测量和高效生产! Flumsys 10TC-SP 在线流动电流分析仪 :● 同时显示实际SC值和相对SC值 ● 同时监控pH值(可选),实时了解絮凝效果 ● 自动清洗功能 ● PID控制功能 ● SC 4-20mA和PID 4-20mA输出 ● 2路高/低报警输出 ● RS485 Modbus RTU通讯 ● 4.3寸彩色触摸屏,操作简单方便 ● 密码保护,防止未经授权的操作 ● 数据记录功能,支持U盘到导出(Excel) ● 具有自动控制/手动控制两种模式 ● 传感器分体式设计,便于现场安装 ● 选配预处理系统,极大降低维护量 Flumsys 10SC 在线流动电流分析仪 ● 自动控制絮凝剂的投加 ● 节省絮凝剂费用 ● 使出水水质达标 ● 运营和维护成本低 ● 实时监控pH值 ● 耐用、可靠且易于控制的加药系统 水温pH值的“影响力”水温是影响絮凝剂投加效果的因素之一。不同水温会对絮凝剂的溶解速度、分散性以及化学反应产生影响。较高的水温可以加快絮凝剂的溶解速度,提高其活性而加快絮凝过程。过高的水温也可能导致絮凝剂降解或失活。较低的水温则会降低絮凝剂的活性延缓絮凝过程。因此使用絮凝剂时需要根据具体的水温情况进行调整投加达到最佳的絮凝效果。在水处理过程中pH值也是决定絮凝剂效果的关键因素之一。pH值是指溶液的酸碱性程度,会直接影响到絮凝剂的溶解性、稳定性和活性,关注水体的pH值进行相应的调整确才保絮凝剂能够发挥最佳效果。 innoCon 6800P 控制器&innoSens pH/ORP传感器 innoCon 6800P控制器 ● 宽电源输入,防干扰设计 ● 大屏幕背光液晶显示测量值、温度和继电器状态 ● 中/英文菜单,操作简便 ● 密码保护,防止未经授权的操作 ● 全新的校准步骤提示,可以帮助减少操作错误 ● 2 x 可编程Hi/Lo继电器输出 ● 可编程的自动清洗继电器输出 ● 2 x 隔离式4-20mA输出 ● RS485 Modbus RTU通讯 innoSens 125T传感器 ● Ag/AgCl参比系统可选Gel和Polymer电解液电极寿命长 ● 可选开放式隔膜和PTFE隔膜,抗污能力强 ● 工作温度-5-100℃,高温电极可达135℃,可选PT1000温度探头 测量范围:0-14pH 工作温度:-5-100℃ 最大工作压力:6bar 电极材质:Glass 电解液:Polymer 浊度悬浮物的“影响力”水质浊度及悬浮物对絮凝剂投加有着重要的影响。在水质浊度较高的情况下,絮凝剂投加的效果可能会受到一定程度的限制。因为水质浊度高意味着水中悬浮物和颗粒物的含量较多,这些颗粒物会与絮凝剂发生相互作用,降低絮凝剂的有效性。因此,在处理高浊度水源时,可能需要增加絮凝剂的投加量或者采用更强效的絮凝剂,以确保水质的净化效果。如水质浊度较低的情况,絮凝剂的投加效果通常会更好。因为水中悬浮物和颗粒物的含量较少,絮凝剂可以更充分地与这些颗粒物结合,形成较大的沉淀物,从而更容易被过滤或沉淀。此时,投加适量的絮凝剂可以有效地提高水质的澄清度。水质浊度对絮凝剂投加的影响是非常重要的。根据水质浊度的不同,合理调整絮凝剂的投加量和选择适合的絮凝剂类型,可以提高水处理过程中的效率和水质的净化效果。水中悬浮物颗粒对絮凝剂投加有一定影响。在水处理过程中,悬浮物颗粒的存在会影响絮凝剂的投加效果。颗粒会与絮凝剂发生相互作用,可能会降低絮凝剂的效能,影响水质的净化效果。 innoCon 6800T-1高量程在线浊度分析仪 innoCon 6800T-1控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens810T传感器innoSens810T高量程浊度传感器采用90°光散射原理,符合ENISO 7027标准。当光通过溶液时,一部分被吸收和散射,另一部分透过溶液,这样可以通过测量水中颗粒的散射光的强度来测量水样的浊度/悬浮物,最大可测4000NTU。innoCon 6800T-5 低量程在线浊度分析仪innoCon 6800T-5控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens 850T传感器 innoSens 850T低量程浊度传感器可测量超低量程浊度,内有消泡结构和防结露功能,保证稳定、高精度测量。使用LED光源,十年内无需更换,广泛用于自来水出水口、工程排水出水口等各类干净水质的浊度在线监测。 外部水利条件的“影响力”外部水利条件对自来水厂絮凝剂投加产生影响。这些条件包括水源的水质、水位的变化以及水流速度的波动,季节降雨等。在水质方面,如果水源中含有较高的悬浮物或有机物质,自来水厂可能需要增加絮凝剂的投加量以确保水质的净化效果。此外,水位的变化也会影响絮凝剂的投加,因为水位的上升或下降会改变水流的速度和压力,从而影响絮凝剂的混合和分散效果。另外,水流速度的波动也会对絮凝剂的投加产生影响,因为较高的水流速度可能会导致絮凝剂无法充分混合,而较低的水流速度则可能导致絮凝剂无法均匀分散在水中。因此,自来水厂需要根据外部水利条件的变化,灵活调整絮凝剂的投加量和投加,Streaming Current Detector(流动电流仪)简称SCD,通过流动电流原理检测水中离子和胶体的电荷(类似Zeta电位),常用于水处理过程中絮凝剂的精确投加,能更好的确保水质的稳定和净化效果的达到。
  • 德国RETSCH(莱驰)粒度及粒形分析仪上海讲座圆满结束
    2012年6月26日德国RETSCH(莱驰)在上海浦东假日酒店成功举办粒度及粒形分析仪上海讲座。讲座当天大雨倾盆,依然挡不住来宾热情的脚步,来自高校、质检中心、研究院的老师将会议室坐的满满当当。 德国RETSCH中国区经理董亮先生主讲&ldquo 最新粒度粒形分析技术&rdquo 及&ldquo 常用理化分析的取制样设备&rdquo ,RETSCH德国的海外销售经理约克· 韦斯特曼先生也特意从德国赶来支持这次讲座。 莱驰不仅是样品粉碎研磨筛分的专家,在颗粒粒度及粒径分析也是独树一帜。特有的干湿两用多功能粒径及形态分析仪Camsizer XT,它专利的测量系统是基于动态数字成像原理,实时显示和精确分析颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。多种进样模块可让客户根据不同的应用和要求进行分析:X-JET压缩空气分散进样;X-FALL自动振动分散进样;X-FLOW湿法超声分散进样模块,其技术为全球领先。 讲座现场,约克· 韦斯特曼先生详细为来宾演示了干湿两用多功能粒度及粒形分析仪Camsizer XT的操作和应用,使用X-jet模块演示蔗糖和玻璃珠的粒径粒度测量,其快速清晰的显示和分析过程让来宾叹为观止。 除了粒度分析的仪器,莱驰还展示了研磨粉碎的明星产品,包括用于食品样品粉碎的刀式研磨仪GM200、实验室多面手冷冻混合球磨仪MM400、RoHS推荐的旋转式研磨仪ZM200,以及振荡筛分仪AS200和气流筛AS200jet。 最后的抽奖活动将讲座带入高潮! 德国莱驰&mdash &mdash 心驰现在,撼动未&ldquo 莱&rdquo !
  • 离心机也能是分析型研究工具?快看贝克曼新品!
    贝克曼库尔特将于2016年Analytica展会推出新一代分析超速离心机。  贝克曼库尔特将于今年的Analytica展会上推出全新Optima分析超速离心机(Optima AUC)。此款新一代分析超速离心机配备多项增强功能。  全新 Optima AUC是一种快速、精准、操作简便的分析型研究工具。38.1cm(15英寸)的触摸显示器使操作简单化而且提高了工作效率。另外,现代、直观的软件使运行操控简单化,且数据输出既可本地操作又可远程操作。  光学系统配置在转子腔之外,使得其易于清洗,而且降低了重力对光学系统的影响。  根据产品经理Chad Schwartz博士介绍:全新Optima AUC使分析超速离心机可以应用于精确分子量的溶液状态蛋白质和颗粒分析、关联系统热力学、病毒和纳米颗粒负载特性以及其他新兴前沿应用领域。  尽管分析型超速离心技术是一种公认的蛋白识别技术,但研究者还是发现了其在一系列其他粒子识别中的应用价值,包括多肽、聚合物、金属纳米颗粒、脂质体以及其他非生物材料。Optima AUC允许分子自由的、不受约束的浮动,以便研究者描述它们的自然状态。  Schwartz博士还说,研究者一直在打破科学研究的边界,对仪器精确度和重复性的需求也更高,新型分析超速离心技术是与我们的客户合作的成功结果。这一最新成果也兑现了贝克曼库尔特致力于创新和满足用户研究需求的承诺。  这一强大的技术可以测定分子量、大小、性状和多分散性,还可以测定粒子在自然的、无矩阵环境下的相互作用。  Schwartz 介绍到:“AUC快速的数据采集以及可复制的、精确的波长选择使得其可应用于之前从未触及的全新领域。而且波长监测系统使得研究者可以在同一个实验中简单的研究一个复杂的系统。”  美国得克萨斯大学健康科学中心Borries Demeler博士列出了如下主要技术革新特点:  全新Rayleigh干扰系统为更精确的测量带来更高的分辨率、数据密度以及结果可信度。  先进的紫外-可见吸收光学系统提供可复制的波长选择,快速径向扫描可减少时间畸变和提高远紫外区检测灵敏度。  关于这些技术革新的重要性,Borries Demeler博士强调:“这些先进的功能使得革命性的全新多波长实验第一次成为可能,这是一种全新的实验设计方案,可通过频谱分解利用复杂混合物的多个生色团。”  配合使用高性能UltraScan软件,可快速分析大型多波长数据集,根据大小、形状和独特的光谱特点将粒子分为三个部分。这则进一步加强了这项分析技术的强大功能,从而帮助研究人员分析复杂混合物的溶液特性。  Optima AUC优化了温度控制,增加了数据存储空间、波长准确度和重复性,为研究者提供清洁、可再生数据。另外,仪器的模块性设计考虑到了全新检测系统的发展,为单独检测能力带来可能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制