当前位置: 仪器信息网 > 行业主题 > >

红外火焰检测器

仪器信息网红外火焰检测器专题为您提供2024年最新红外火焰检测器价格报价、厂家品牌的相关信息, 包括红外火焰检测器参数、型号等,不管是国产,还是进口品牌的红外火焰检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外火焰检测器相关的耗材配件、试剂标物,还有红外火焰检测器相关的最新资讯、资料,以及红外火焰检测器相关的解决方案。

红外火焰检测器相关的论坛

  • 火焰光度检测器( FPD)和脉冲火焰光度检测器( PFPD)的区别

    火焰光度检测器( FPD)和脉冲火焰光度检测器( PFPD)的区别测有机磷可以使用 : 火焰光度检测器( FPD)或脉冲火焰光度检测器( PFPD),我们单位只有使用过火焰光度检测器( FPD)检测有机磷,请问大家其与脉冲火焰光度检测器( PFPD)检测有机磷有什么区别?

  • 火焰光度检测器的工作原理是什么?

    火焰光度检测器(FPD)是一种对硫、磷化合物具有高选择性和高灵敏度的质量型检测器,因此也叫硫磷检测器。它主要包括燃烧系统和光学系统两大部分。燃烧系统与氢火焰离子化检测器一样,若在火焰上附加一个收集极,就成了氢火焰离子化检测器。光学系统包括石英窗口、滤光片和光电倍增管。火焰光度检测器工作原理是,当含有硫、磷的有机化合物进入富氢-空气火焰中燃烧时,将发射出不同波长的特征光,特征光通过石英板、滤光片投射到光电倍增管的阴极,产生光电流,经静电计放大后记录下来

  • 火焰光度检测器

    1.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]使用火焰光度检测器检测P、S时,保持富氢火焰的作用是什么啊?2.为什么在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中,火焰法的绝对灵敏度常比石墨炉法的低啊?

  • 【分享】氢火焰离子化检测器

    氢火焰离子化检测器氢火焰离子化检测器简介  简称氢焰检测器,又称火焰离子化检测器 (FID: flame ionization detector)   (1) 典型的质量型检测器;   (2) 对有机化合物具有很高的灵敏度;   (3) 无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;   (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;   (5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。   1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1µL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出

  • 氢火焰离子化检测器(FID)

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 氢火焰离子化检测器(FID

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 氢火焰离子化检测器(FID)(收集)

    [b]氢火焰离子化检测器[/b] 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10[sup]-12[/sup]~10[sup]-8[/sup]A)经过高阻(10[sup]6[/sup]~10[sup]11[/sup]Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10[sup]-14[/sup]~10[sup]-13[/sup]A),线性范围宽(10[sup]6[/sup]~10[sup]7[/sup]),死体积小(≤1µ L),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴 喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

  • 【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识 N. Reuter*, I. van der Meer, E. de Witte, L. Flipse, Technical Helpdesk Europe, Middelburg, The Netherlands 前言火焰离子化检测器是气相色谱的标准检测器,几乎可以检测所有的有机组分。所得到色谱图的峰面积与样品中该组分的含量成正比。FID的灵敏度极高,具有9个数量级的宽动态范围,它唯一的缺点是需要破坏样品组分。示意图http://ng1.17img.cn/bbsfiles/images/2010/12/201012231940_269431_1615838_3.jpg图1: FID示意图说明FID包含一个氢气/空气火焰和一个集电片,从GC色谱柱出来的流出物通过火焰,有机物分子在火焰中电离产生离子,这些离子被收集到极化的集电极上,产生电信号。集电极带负电荷,火焰喷口带正电荷。

  • 资料分享——清洗(FID)氢火焰检测器

    看了很多帖子,大家都希望能直观的了解清洗FID氢火焰离子化检测 器的全过程,特此上传——清洗(FID)氢火焰检测器视频,供大家学习 交流。也希望大家积极响应,分享交流。

  • DFPD火焰光度检测器的市场

    目前DFPD火焰光度检测器的市场大不大,主要测量痕量硫化物的,灵敏度比单火焰的FPD稍微低一些。灵敏度最高的还是PFPD,脉冲式火焰光度检测器,不清楚DFPD的市场行情,群里有大神对这个市场了解的吗?请指点一二,多谢。

  • 谈谈火焰监测器

    谈谈火焰监测器

    在原子吸收火焰分析方式中,大家比较关心的一个隐患就是火焰“回火”故障。当因某种原因造成助燃气流量突然中断供给或者减弱时,原本燃烧正常的火焰就会突然缩回到燃烧室(雾化室),产生很可怕的爆破声,甚至有可能将燃烧头或者雾化器炸开。这绝不是危言耸听,而是我亲身经历过的场景,那是在70年代在使用PE340型原吸火焰测试时,燃烧器发生回火爆炸,造成喷雾器前盖从燃烧室脱离,并从两个操作仪器的女孩子的面颊之间飞出,前些酿成人身伤害。为了杜绝这种“回火”隐患,目前许多仪器厂家均在仪器上设计有一种防回火的装置,这个装置的名称就是“火焰监测器”。这种装置的工作示意图见图-1所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_01_1602290_3.jpg图-1 火焰检测器工作示意图从图-1可以看出,这个装置的其实就是一个闭环的光→电控制电路。其工作原理如下:当燃烧头的火焰被点燃后就会产生一定波长的辐射光,而这个辐射光就会被火焰传感器(亦称为检测器)立刻检测到;通过识别控制器的鉴别放大作用,去控制通往燃烧头的乙炔气供给的电磁阀,使电磁阀保持导通供气。如果火焰突然熄灭或者缩回到燃烧室里时,火焰检测器就会检测不到火焰辐射信号于是识别控制器就会立刻控制乙炔电磁阀关闭,从而阻断了燃气的继续供给,保障了仪器和操作者的人身安全。这种防回火装置看起来并不复杂,但是最主要的一个技术指标就是要反应迅速;为此对于火焰传感器的灵敏度的要求的就比较高。在有些仪器上,这个传感器使用的是硅光电池。但是硅光电池的反应速度有时跟不上火焰熄灭的监测速度,也就是电路上所说的“滞后”现象。于是目前比较先进的仪器均使用了更为反应灵敏的紫外监测器,也称之为UV监测管。这种检测器见图-2 所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_02_1602290_3.jpg图-2 UV监测管目前配套的紫外火焰监测器已经有市售的产品售出了,网上可以卖到;例如浜松(HAMAMATSU)公司生产的C3704火焰监测器套件就是例子。这种套件外形见图-3所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_03_1602290_3.jpg图-3 火焰UV监测器外观http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_04_1602290_3.jpg图-4 火焰UV监测器电路板日立系列原子吸收仪器里面均都安装了这款火焰检测器配套装置。下面就是这款火焰监测器安装在仪器里面的实际位置图例:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_05_1602290_3.jpg图-5 日立180-80型原吸的火焰传感器的位置http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_06_1602290_3.jpg图-6 日立Z-2000型原吸的火焰传感器的位置后 记:据统计,仪器安装上了这款防回火的监测器后,从未发生过回火现象。可见火焰监测器在仪器里的“防患于未然”的作用是多麽重要啊!

  • 【资料】-火焰光度检测器(FPD)

    [b]火焰光度检测器[/b][i]节选自《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法》(第二版)作者:吴烈钧[/i]第一节 引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611082030_31777_1613333_3.gif[/img]

  • 【求助】氨气在氢火焰检测器上出峰么?

    请教: 氨气在氢火焰检测器上出峰么?如果FID不能检测,那么在谱土上它表现为一个不规则干扰信号还是对基线毫无影响? 样品中含有氨气,对检测器和柱子有什么影响?对热导检测器影响大么? 谢谢。

  • 【求助】氢火焰检测器点火方式

    北分产的老机型的SQ-204型氢火焰离子化检测器,原机点火是检测器部分有个电阻丝的点火线圈,用时间长了点火很费劲。问问还有什么好方法可代替现有的方式点火,或者怎么改进?

  • 【分享】锅炉离子式火焰检测器故障排除方法

    电离式火焰监测器主要用于燃气工业燃烧器、锅炉的火焰监测。检测性能可靠,可以排除积炭、布线分布电容的影响,只对火焰敏感,对高温无反应,具有强抗干扰性能。锅炉离子式火焰检测器故障排除方法:1.燃烧器火焰正常,并且检测中心电极能接触到火焰,而监测器判断无火。  A. 关断电源,测量检测端对地的绝缘电阻,如果电阻小于20 MΩ,则是检测电极高温陶瓷绝缘管积炭严重或检测线绝 缘破坏所致,如陶瓷管积炭严重,清理积炭即可,如检测线绝缘不良,需更换检测线。  B. 如果检测线对地电阻大于20 MΩ,可能由于导线吸潮使分布电容增大,请测量检测线对地电容,在电容不大于           0.1μF的情况下,请重新调节模块中央的匹配电位器。如果电容大于0.1μF,最好考虑缩短模块与探头的距离。  2.燃烧器灭火,而监测器显示有火。是由于模块中间的阻抗匹配电位器超调所致,请重新调试。

  • fid检测器火焰喷嘴的问题

    请教一下各位,氢火焰离子化检测器火焰喷嘴里面厂家配的是vespel压环,由于使用温度高,不能用了,换成石墨压环了,但是点着火后基流显示131.58,不下降,不知道哪儿出问题了。

  • 火焰光度检测器

    气相色谱仪火焰光度检测器使用时,应在气化室和柱温箱温度达到设定值后点火。(×)错在哪了?

  • 火焰光度检测器滤光片

    各位版友,有谁知道目前在售的气相色谱仪中有能同时安装P、S的滤光片、并且能同时检测硫磷火焰光度检测器吗?

  • FPD检测器的氢火焰问题

    大神们,FPD检测器中,在大Air流量为200ml/min,小Air流量为100ml/min,和H2流量为100ml/min时,产生的火焰会不会晃动?目前我使用时每天的标定拟合曲线都不一样,仪器稳定性不好,是不是火焰晃动导致产生的不稳定性?请懂的大神指点一下,谢谢。

  • 【原创】有关:在线氢火焰离子化检测器

    [size=4][font=楷体_GB2312]在氢火焰离子化检测器中有一种特殊的装置,即甲烷化转化器。对于气体样品中的微量CO、CO[sub]2[/sub],氢焰检测器需要利用甲烷化转化器来进行转化。其工作原理如下:通过加氢催化反应,将CO、CO[sub]2[/sub]转化成甲烷和水,再送往FID检测器,通过测量甲烷,间接计算出CO、CO[sub]2[/sub]含量。甲烷化转化器中使用镍催化剂,转化炉的温度一般为350-380摄氏度。镍催化剂必须密封保存,防止与空气接触,降低催化剂活性。[/font][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制