当前位置: 仪器信息网 > 行业主题 > >

连续变倍立体显微镜

仪器信息网连续变倍立体显微镜专题为您提供2024年最新连续变倍立体显微镜价格报价、厂家品牌的相关信息, 包括连续变倍立体显微镜参数、型号等,不管是国产,还是进口品牌的连续变倍立体显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合连续变倍立体显微镜相关的耗材配件、试剂标物,还有连续变倍立体显微镜相关的最新资讯、资料,以及连续变倍立体显微镜相关的解决方案。

连续变倍立体显微镜相关的论坛

  • 立体显微镜的问题!!急、急急!

    有一台高倍的立体显微镜(进口的),在150x的情况下观察,视野里明显的看到有一些类似纤维的东西在游动(没有放置任何样品),甚至还有像气泡的圈圈在移动,请问是显微镜本事质量问题还是该类型的设计问题呢?(厂家说是设计问题)

  • 研究院不可缺少工具——体视显微镜

    显微镜,现在是仪器仪表相关产品中的一个大类,同行业仪器仪表供应商的数目也在增加。如果对他细分,可以分为很多小分类。 体视显微镜又称“实体显微镜”“立体显微镜”或称“操作和解剖显微镜”,是一种具有正像立体感地目视仪器,被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成像后的两光束被两组中间物镜——变焦镜分开,并成一体视角再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为“连续变倍体视显微镜”(Zoom—stereo microscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄像,冷光源等等。 体视显微镜在观察方便具有许多优势,能够低成本实现多人同步预览,并有效减少眼睛疲劳。同时具有录像、测量等功能,能够把观察到的图片保存下来进行传阅。这些优势决定了体视显微镜将拥有广泛的用途。 体视显微镜应用涉及到多个学科、行业等领域,主要应用于动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等领域,进行科学研究。同时在工业中也有着应用,如在纺织工业中进行原料及棉毛织物的检验,在电子工业中进行晶体管点焊、检查等操作工具。 体视显微镜还可以用于对多种材料表面现象如裂缝构成,气孔形状腐蚀情况等进行检查,对精密零件的检查安装等。目前体视显微镜也被用于精密刻度的质量检查,以及文书纸币的真假判辨等领域。

  • 【分享】体视显微镜的用途

    体视显微镜是一种具有立体感觉的显微镜。 (体视显微镜又称:立体显微镜,实体显微镜,解剖镜)主要用途如下:1. 作为动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等的研究和解剖工具。2. 作纺织工业中原料及棉毛织物的检验。3. 在电子工业中,作晶体等装配工具。4. 对各种材料的裂缝构成,气孔形状腐蚀情况等表面现象的检查。5. 在制造小型精密零件时作机床典工具的装置、对工作过程的观察、精密零件的检查和作为装配工作的工具。6. 以透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查。7. 对文书纸币的真假判断。

  • 【转帖】解剖显微镜

    解剖显微镜(dissecting microscope)  又被称为实体显微镜或立体显微镜,是为了不同的工作需求所设计的显微镜。  特点及应用:  解剖显微镜能形成正立像,立体感强。常常用在一些固体样本的表面观察,或是解剖、钟表制作和小电路板检查等工作上。

  • LEICA显微镜-思贝舒专业销售LEICA显微镜

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。本文转自:***

  • 体视显微镜的用途

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E7%AB%8B%E4%BD%93%E6%98%BE%E5%BE%AE%E9%95%9C%E5%8F%8A%E5%AE%8F%E8%A7%82%E6%98%BE%E5%BE%AE%E9%95%9C]体视显微镜[/url]又称“实体显微镜”或“解剖镜”,是一种具有正像空间立体感的目视显微镜,主要有以下几种类型:单目体视显微镜,双目体视显微镜,连续变倍体视显微镜, 视频体视显微镜等。其应用也相当广泛:1、动物学、植物学、组织学、矿物学、考古学、地质学和皮肤病学等领域的研究;2、用于纺织工业中原料及棉毛织物的检验;3、用于电子工业中晶体管点焊、检查等操作工具;4、在材料分析领域中,用于裂缝构成,气孔形状腐蚀情况等表面现象的检查。

  • 业余爱好者!我该如何选购显微镜呢?

    [b]看自己的需求和预算[/b]目前市场上的显微镜主要有国产和进口之分,一般来讲价格差距再几倍到十几倍不等。如何选购显微镜,你没有说明自己工作者还是学生这点用重要,主要是根据您[b]现有的预算[/b]来决定是购买国产或是进口,低中高端不同的显微镜价格在几千元到数万元不等。[align=center][img=,700,]http://www.gdkjfw.com/images/image/53831530585657.jpg[/img][/align][b]选择显微镜前提要是有钱,玩的要求高点的话,就买奥林巴斯(OLYMPUS)、徕卡(Leica))、蔡司(Zeiss)、尼康(NIKON),通常是5000-50000左右吧!这都是老牌。[/b]要是纯爱好,又不想花太多钱的,就买学生型的,但是网上的显微镜种类形式各异,很难做出选择。[align=center][img=,690,]http://www.gdkjfw.com/images/image/14651530585657.jpg[/img][/align][b]学生型显微镜主要有两种:生物显微镜和体视显微镜[/b]1、生物显微镜倍数一般:40X,100X,400X,1000X最高配置可以到2000倍(20X目镜和100X物镜)入门显微镜没有必要1000倍和2000倍这么高倍。400倍已经够用,目镜用10X的,物镜就用4X/10X/40X。倍数达到1000倍时,要用100X物镜时需要香柏油的,而且还要清洗,对样品的制备要求很高,也没有必要用。[b]兴趣培养,买电光源或反光镜型的都可以。[/b]稍微大点的学生,初中生买显微镜最好购买单筒型带反光镜的,一般初中学校教学用的都是这种,如果买高端或是其它类型的,很多部件和结构都不一样,对不上教科书,容易让初学者混淆。单筒生物显微镜,最好是配置上一个移动尺,方便样品移动。[b]星明光学单筒生物显微镜[/b]推荐配置:目镜10X,物镜4X/10X/40X,带移动尺,反光镜,五孔光栏。这种配置适合小学生和初中生用。[b]要是就玩下的,直接用可以买电光源形式的,插电的话视野还是方便[/b]2、体视显微镜(立体显微镜、解剖镜、实体显微镜)有定倍和连续变倍两种。倍数一般是10X-50X左右。体视显微镜没有做教学使用。体视显微镜倍数小,立体感强,初学者兴趣培养很合适,样品不需要制备,拿到标本直径放在显微镜下观察。如蚊子、盐、味精、皮肤、头发等等,可以让初学者了解更多的显微世界。3、显微镜图像拍照显微镜成的图像都可以通过电子目镜或显微镜CCD呈现到电脑上面。但是图像清晰度会有损耗。1)好一些的可以买显微镜专用相机接电脑,带软件可以拍照、录像等;2)电子目镜一般效果不太好,而且不带软件,只有显像和拍照功能;[b]3)也可以直接用手机对着目镜拍图片。[/b]

  • 【分享】新型显微镜能拍摄多彩色立体细胞结构影像

    【分享】新型显微镜能拍摄多彩色立体细胞结构影像

    [img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806161533_93273_1622715_3.jpg[/img]用三维结构照明显微镜拍下的细胞核影像[flash]http://www.youtube.com/v/Xib7yoZKspk&hl=en[/flash] 据美国《连线》杂志报道,一种新型的显微镜能够展示高清晰度、多色彩的三维画面,它比以前用的传统显微镜能揭示出更多的细节。此技术能区别细胞内彩色立体的组成结构,捕捉多色彩的三维立体细胞的画面,甚至能够给细胞不同的成份标记上不同的颜色。即使它们只相隔100纳米远,也能分别得清楚。这是一个前所未有的壮举。这一新的发展使得分子细胞生物学有了令人感兴趣的新视角。此研究成果发表在6月6日出版的《科学》杂志上。 德国慕尼黑路德维格-马克西米利安大学(Ludwig Maximilians University)完整蛋白质科学研究中心的赫恩里其劳恩哈德说:“我们为你先前没有看到和研究过的全新结构领域开启了大门。” 光学显微镜具有衍射局限性,其清晰度通常不足大约一半的可见光光波长度,约200纳米。如果二个物体靠近的距离小于这一数字,它们就无法将它们彼此识别出来。而使用更短波长的电子显微镜能看到更加细微的物体,但只限于黑白图像,且只能观察既薄又小的样本。如今,劳恩哈德小组研发的这种新型的显微镜――三维结构照明显微镜(3D-SIM)却打破了这些限制,可以给最细微的样本结构拍下亮丽的立体图像。 三维结构照明显微镜的原理是通过提取这些细微样本制造的干涉图,在电脑的帮助下重建其图像,即使在样本形状不能直接显现的情况下,此显微镜也能提取其形状有关的信息。劳恩哈德解释说,这就像你扫描一张打印照片时所出现的情况,你的眼睛不能分辨出此照片上非常细小的彩色点,但扫描仪能做到,但让你失望的是你看到了扫描图像上布满波纹和阴影。然而,这些干涉图确实包含有价值的信息,“在数学和电脑的帮助下,我们能利用这个来重建其图像。” 确实,劳恩哈德小组利用它在大约100纳米的分辨率下来观看到了哺乳动物老鼠的细胞,制造了高清晰度的图像,呈现出3种不同荧光颜色,而且DNA、细胞核膜和膜孔都分别加有标签。 此技术可以更加细致地研究染色体和其它细胞组成部件是如何在细胞空间里分布的,甚至还能区别DNA片段中哪些是活跃基因哪些是非活跃基因,这对研究衰老和疾病很有帮助。(尼特)

  • 尼康SMZ1000体视显微镜特点参数

    尼康SMZ1000体视显微镜是最先进的立体显微镜,采用了先进的光学和符合人体工程学功能强大的组合。 高NA目标和尼康独有的照明系统,尼康SMZ1000体视显微镜可以处理一些同样先进的成像技术复合仪器用户早已享受。体视显微镜主要特点 • 采用高视点目镜 高视点型目镜,具有极其广泛的视野。 • 镜筒的倾斜度 标准双目镜筒倾斜20度,让您观察样本,而无需向前倾。 • 缩放旋钮 缩放旋钮的功能clickstops,无需改变放大倍率的同时,以消除你的眼睛从目镜。 • 高功率光学 强大的10倍变焦比率产生尖锐的粘性和显示的图像最佳的对比度最低耀斑,出外围。 应用 • 细胞生物学活 • 再生研究 • 胚胎/ IVF • 毛观察 • 法医学 • 古生物学 • 塑料制造业 • 金属制造 • 汽车Mnufacturing • 医疗器械 • 光电 • 微电子 • 微机电系统 • 裂缝和故障分析 • 石棉 • 冶金 • 面料/纺织 • 复合材料 • 生物学 10:1的缩放比例 SMZ1000功能一个大10倍变焦比率,从0.8倍至8倍。 这使您可以从4X到480X的总放大倍率,取决于目镜和客观使用相结合。 缩放旋钮的功能clickstops,无需改变放大倍率的同时,以消除你的眼睛从目镜。 高[/f

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 1.双目体视显微镜 双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。

  • 【原创】裂隙灯显微镜的技术参数

    【原创】裂隙灯显微镜的技术参数

    [em09511]裂隙灯显微镜是眼科最常用的主要仪器。用于对眼部组织进行全面细致的检查。技术参数:显微镜类型:双目交角式立体显微镜显微镜总放大率:        1×物镜   1.6×物镜10×目镜   10×      16×16×目镜   16×      25.6×裂隙宽度:0~9mm,连续可调裂隙高度:1~9mm,连续可调光斑直径:¢9、¢8、¢5、¢3、¢2、¢0.2(mm)滤色片:隔热片、减光片、无赤片、钴兰片裂隙旋转角度:0~180°裂隙前倾角度:5°、10°、15°、20°四档照明灯泡:12V50W卤钨灯泡输入电压:交流110V/60Hz 220V/50Hz输入功率:80VA固视灯:红色发光二极管联系电话:010-63008128 13269828857 南小姐 QQ:632200478 MSN:yankenx@hotmail.com Email:yankenx@126.com http://www.optical8.cn裂隙灯 检眼镜 检影镜 电动升降台 眼科设备[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910261452_178028_1811473_3.jpg[/img]

  • 【讨论】国产显微镜图像传输的都是模拟信号吗?

    公司买的金相显微镜和立体显微镜是上海光学的,可是通过数码相机和摄像头传输到电脑的图像很模糊,经询问厂家才知道图像信号传输到电脑的是模拟信号,而且目前国内都是一样的。有没有大侠知道是不是真的?怎么才能得到数字传输信号呢?

  • 显微镜的主要分类、功能及应用领域

    -随着人类的发展,显微镜的种类也越来越多,可观察的范围也越来越广,我们对光学显微镜的分类作一个了解。 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。

  • 视频显微镜

    珠宝视频显微镜是通过视频显微镜技术、先进的光电转换技术、成熟的电视成像技术完美结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通双眼观察到通过显示屏成像来再现,实现了人视觉到仪器视觉的转变和定性检查到定量检查的转变,克服了人为检查的不确认性,极大的提高了工作效率。珠宝视频显微镜的主要特点和用途:视频显微镜使用范围相当广泛,用它观察物体时能产生正立的三维空间图像,立体感强,成像清晰和宽阔,具有较长的工作距离,对同一物体可实现连续放大倍率观看,并可直接在现实器上观察实物图像,本仪器可作教学示范,宝石鉴定,钻石腰围编码查看以及钻石切工的八箭八心观察等使用。由于本显微镜具有很高的分辨率以及较大的观察范围,因此在钻石腰围GIA编码的观察中,效果非常显著。

  • 光学显微镜的分类

    以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【讨论】光学显微镜的分类

    [font=宋体][size=3][b]光学显微镜有多种分类方法:[/b][/size][/font][font=宋体][size=3] 按使用目镜的数目可分为双目和单目显微镜;[/size][/font][font=宋体][size=3] 按图像是否有立体感可分为立体视觉和非立体视觉显微镜;[/size][/font][font=宋体][size=3] 按观察对像可分为生物和金相显微镜等;[/size][/font][font=宋体][size=3] 按光学原理可分为偏光、相衬和微差干涉对比显微镜等;[/size][/font][font=宋体][size=3] 按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;[/size][/font][font=宋体][size=3] 按接收器类型可分为目视、数码(摄像)显微镜等。[/size][/font][font=宋体][size=3] 常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。[/size][/font][size=3][b][font=Times New Roman]1[/font][font=宋体].双目体视显微镜[/font][font=Times New Roman] [/font][/b][/size][size=3][font=宋体] 双目体视显微镜又称[/font][font=Times New Roman]"[/font][font=宋体]实体显微镜[/font][font=Times New Roman]"[/font][font=宋体]或[/font][font=Times New Roman]"[/font][font=宋体]解剖镜[/font][font=Times New Roman]"[/font][font=宋体],是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角[/font][font=Times New Roman]--[/font][font=宋体]体视角(一般为[/font][font=Times New Roman]12[/font][font=宋体]度[/font][font=Times New Roman]--15[/font][font=宋体]度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。[/font][/size][size=3][font=宋体] 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜[/font][font=Times New Roman]----[/font][font=宋体]变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为[/font][font=Times New Roman]"[/font][font=宋体]连续变倍体视显微镜[/font][font=Times New Roman]"[/font][font=宋体]([/font][font=Times New Roman]Zoom-stereomicroscope[/font][font=宋体])。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。[/font][font=Times New Roman] [/font][/size][size=3][b][font=Times New Roman]2[/font][font=宋体].金相显微镜[/font][font=Times New Roman] [/font][/b][/size][font=宋体][size=3] 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。[/size][/font]

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.[b]双目体视显微镜[/b]双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.[b]金相显微镜[/b]金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.[b]偏光显微镜[/b](Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.[b]荧光显微镜[/b]荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.[b]相衬显微镜[/b](Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.[b]微分干涉对比显微镜[/b](DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.[b]倒置显微镜[/b](Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.[b]数码显微镜[/b]数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 带您走进LEICA显微镜的世界

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。http://www.gzspecial.com/uploadfile/images/MZ6(1).jpghttp://www.gzspecial.com/uploadfile/images/S8(1).jpg一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。

  • 【资料】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。 武汉仪器仪表-吴欣民 027-62411040,027-82429843 E-mail:zpzgwd@126.com http://zpzgwd.blog.bokee.net

  • 【转帖】扫描电子显微镜的应用

    新设备简介扫描电子显微镜的应用扫描电子显微镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器.它可以进行如下基本分析:(1)三维形貌的观察和分析;(2)在观察形貌的同时,进行微区的成分分析。①观察纳米材料,所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0.1-100nm范围内,在保持表面洁净的条件下加压成型而得到的固体材料。纳米材料具有许多与晶体、非晶态不同的、独特的物理化学性质。纳米材料有着广阔的发展前景,将成为未来材料研究的重点方向。扫描电子显微镜的一个重要特点就是具有很高的分辨率。现已广泛用于观察纳米材料。②进口材料断口的分析:扫描电子显微镜的另一个重要特点是景深大,图象富立体感。扫描电子显微镜的焦深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图象景深大,故所得扫描电子象富有立体感,具有三维形态,能够提供比其他显微镜多得多的信息,这个特点对使用者很有价值。扫描电子显微镜所显示饿断口形貌从深层次,高景深的角度呈现材料断裂的本质,在教学、科研和生产中,有不可替代的作用,在材料断裂原因的分析、事故原因的分析已经工艺合理性的判定等方面是一个强有力的手段。③直接观察大试样的原始表面,它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。④观察厚试样,其在观察厚试样时,能得到高的分辨率和最真实的形貌。扫描电子显微的分辨率介于光学显微镜和透射电子显微镜之间,但在对厚块试样的观察进行比较时,因为在透射电子显微镜中还要采用复膜方法,而复膜的分辨率通常只能达到10nm,且观察的不是试样本身。因此,用扫描电子显微镜观察厚块试样更有利,更能得到真实的试样表面资料。⑤观察试样的各个区域的细节。试样在样品室中可动的范围非常大,其他方式显微镜的工作距离通常只有2-3cm,故实际上只许可试样在两度空间内运动,但在扫描电子显微镜中则不同。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。⑥在大视场、低放大倍数下观察样品,用扫描电子显微镜观察试样的视场大。在扫描电子显微镜中,能同时观察试样的视场范围F由下式来确定:F=L/M式中 F——视场范围;M——观察时的放大倍数;L——显象管的荧光屏尺寸。 若扫描电镜采用30cm(12英寸)的显象管,放大倍数15倍时,其视场范围可达20mm,大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。⑦进行从高倍到低倍的连续观察,放大倍数的可变范围很宽,且不用经常对焦。扫描电子显微镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行事故分析特别方便。⑧观察生物试样。因电子照射而发生试样的损伤和污染程度很小。同其他方式的电子显微镜比较,因为观察时所用的电子探针电流小(一般约为10-10 -10-12A)电子探针的束斑尺寸小(通常是5nm到几十纳米),电子探针的能量也比较小(加速电压可以小到2kV)。而且不是固定一点照射试样,而是以光栅状扫描方式照射试样。因此,由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。⑨进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断烈等动态的变化过程。⑩从试样表面形貌获得多方面资料,在扫描电子显微镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。因而使得扫描电子显微镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3μm。由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。现在扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、钠米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79549]扫描电子显微镜的应用[/url]

  • 【原创】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制