当前位置: 仪器信息网 > 行业主题 > >

红外分析检测器

仪器信息网红外分析检测器专题为您提供2024年最新红外分析检测器价格报价、厂家品牌的相关信息, 包括红外分析检测器参数、型号等,不管是国产,还是进口品牌的红外分析检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外分析检测器相关的耗材配件、试剂标物,还有红外分析检测器相关的最新资讯、资料,以及红外分析检测器相关的解决方案。

红外分析检测器相关的资讯

  • 抛却传统检测器,ELSD充分简化HPLC药物分析!
    在药品质控、研究、临床应用及生产中,药物的质量分析评估是尤为重要的一步。 HPLC 法是常用的分析方法之一。HPLC分析检测仪器仪器特点光学检测器鉴于有些药物缺少适宜的光化学结构,因此不能用常用的光学检测器如紫外、荧光等检测;红外检测器灵敏度较低,不适用于梯度洗脱时应用;质谱检测器价格过高,又限制了它的应用;蒸发光散射检测器( ELSD )价格适中,功能相对全面,是较为理想的选择。ELSD应用领域ELSD能分析任何挥发性低于流动相化合物。因此,ELSD可被应用在以下领域:碳水化合物 / 药物 / 脂类 / 甘油三脂 / 未衍生的脂肪酸和氨基酸 / 聚合物 / 表面活化剂 / 营养滋补品 / 组合分子库… … ELSD优势1通用性2响应因子只与物性有关3与梯度洗脱相容… … 因而,ELSD被广泛应用于药物的分析测定中。尤其是利用结构相似、含量已知的物质作对照标定新的药品基准,是药物分析的一大发展。案例分享 案例主要介绍了Waters2424ELSD 在中药材中皂苷类成分检测中所展示的优越性。2424蒸发光散射( ELS )检测器色谱条件色谱柱:ODS 5um(4.6mm*200mm);流动相:甲醇:水=50:50;柱温:30°C;流速:1.0ml/min 。Waters2424蒸发光检测器(ELSD)的增益为100;喷雾器加热级别为90%;气体压力为20psi;漂移管温度为80°C。RESULT外标法 使用外标法绘制标准曲线,获得5~ 500mg/L的宽线性范围。三个浓度(10、50和200 mg/L)准品的保留时间和峰面积的RSD(n=5)分别在0.04~0.11 %和0.69~7.14 %之间,仪器精密度良好。2424蒸发光散射检测器结构紧凑,在雾化阶段和蒸发阶段均可控制温度,保低扩散性能以获得可靠 HPLC / ELSD 结果。每次运行时用户能够获得更多的峰信息以及 LC 的可靠性和重现性结果。2424蒸发光散射检测器可以作为 Breeze 系统的一部分在 Breeze 或者 Empower 或软件的直接控制下使用,或者作为独立的 ELS 单元使用。随着医药工业的发展及竞争加剧,对药物成分、代谢产生、降解物与杂质的定性、定量提出了更高的要求。在符合标准要求的前提下,Waters2424蒸发光散射检测器(ELSD)能够使复杂的药物分析变得简单化,并提供更灵敏、更稳定、更可靠的数据结果,为药物分析保驾护航。参考文献:[1] 黄永焯,王宁生,HPLC_ELSD在天然药物分析中的应用,广州中医药大学临床药理研究所;[2] 田洁,蒸发光散射检测器简化了药物HPLC分析的应用;[3] 刘超,蒸发光散射法与紫外法用于中药材中皂苷类及糖类成分检测的比较研究,山东中医药大学。
  • 新型质谱检测器同时分析6种有机酸
    众所周知,有机酸是影响食品味道和口感的重要成分,经此在研发、质控等部门需要对有机酸进行分析。除食品领域外,制药、化工、环境分析、生物工程等诸多领域均需要对有机酸进行分析。在下面,我们将跟大家介绍6种有机酸的分析实例,使用的是HILIC亲水色谱柱和日立最新推出的质谱检测器Chromaster5610进行分析。 图为.LC-MSD分析6种有机酸的结果图 更多关于此应用例的介绍,请参考链接:http://www.instrument.com.cn/netshow/SH102446/s542614.htm关于日立新型质谱检测器Chromaster5610,请参考链接:http://www.instrument.com.cn/netshow/SH102446/C223442.htm 关于日立高新技术公司:日立高新技术公司于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 上海精科气相色谱光离子化检测器通过评定
    上海精密科学仪器有限公司自主研发的GC126━PID 气相色谱仪光离子化检测器,于2011年7月通过了上海市计量院的型式评定。该产品具有自主知识产权,获国家专利局发明专利授权,研发论文已刊登在《分析化学》杂志上,目前装备在公司生产的GC126气相色谱仪上。  精科公司由“质谱开发团队”开发的GC126━PID 气相色谱仪光离子化检测对苯类、含羰基类化合物等有较高的选择性与分析灵敏度 灵敏度比FID高50-100倍,可与毛细管连接,克服了传统填充柱易流失、柱效低等弊端。具有线性范围宽、可检测环境中0.5ppb-500ppm的苯系物等。其主要性能指标达到了国际同类检测器的标准。该产品配套使用相应的仪器,一可以监测大气中苯、甲苯、乙苯、二甲苯、苯乙烯、甲醛和乙醛 二可以监测汽车尾气(一氧化氮) 三可以检测食品中有机溶剂的残留(6号溶剂)和对食品进行保鲜度分析(硫醇、硫醚、硫化氢等) 四可以检测航空航天推进剂生产中产生的有毒气体(苯、苯乙烯、丙酮、肼等)。  该产品如与FID、质谱、 红外检测器等实行联用,可获取更多的信息,它无辐射,无需氢气、助燃气体,可用高纯氮气或空气作载气,无需复杂的化学前处理(如热解析等),安全可靠,有直接进样分析的优点。科技人员在调试气相色谱仪光离子化检测器精巧的小型的气相色谱仪光离子化检测器
  • 东曹携新型光散射检测器亮相BCEIA2019,助力生物大分子分析研究
    2019年10月23日-26日, 第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。今年展会上,东曹(上海)生物科技有限公司携四款新品亮相,分别是:高性能亲和色谱柱TSKgel FcR-IIIA-NPR、超高效液相色谱分析柱TSKgel UP-SW2000、第八代高速凝胶渗透色谱仪8420GPC,以及即将于全球上市的多角度光散射检测器LenS3四款新品。其中,FcR-IIIA-NPR色谱柱专为抗体药物糖链结构的分析和活性测定而开发,而8420GPC凝胶渗透色谱仪可以进一步减少易受温度变化影响的溶剂的基线波动,从而获得更稳定的基线信号。东曹展台凝胶渗透色谱仪GPC和新型多角度光散射检测器 在今年的JASIS2019上,东曹也首次展出公司研制的多角度光散射检测器LenS3。LenS3采用独有的光学专利光路设计与计算方法,解决了其他同类产品无法检测低分子物质的绝对分子量和回转半径这一难点,可用于测量合成聚合物、蛋白质、多糖等生物大分子的绝对分子量和分子尺寸。 东曹(上海)生物科技有限公司董事、副总经理潘明祥接受了中国分析测试协会联合仪器信息网的采访。对于东曹为何选择进入光散射检测器这一细分市场,潘明祥解释说:“仪器方面东曹拥有GPC、离子色谱,我们的客户更集中于企业的品质管理部门,检测器相对而言比较单一。许多来自高校、科研院所的科研工作者向我们提出需求,能否提供更多的检测器产品。几年间经过与合作伙伴的联合攻关,东曹多角度光散射检测器终于正式推出,除了传统的熔融性高分子分析业务外,我们更关注生物大分子市场,相信LenS3在上述市场将大有可为。”点击视频查看更多详情:https://www.instrument.com.cn/news/20191101/515998.shtml
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 沃特世推出ACQUITY RDa飞行时间质谱检测器,提升小分子分析便捷度与可靠性
    采用SmartMS技术,操作便捷且符合法规要求,有效助力常规分析实现精确质量测定沃特世公司(纽约证券交易所代码:WAT)隆重推出采用SmartMS技术的ACQUITY RDa检测器,为沃特世飞行时间(Tof)质谱(MS)系列再添一款智能化新品。这款精确质量数检测器专为制药、学术研究、食品和法医学应用中的小分子分析而打造,可以迅速部署并投入使用,助力分析人员在多种应用中更快做出明智决策。图.Waters ACQUITY RDa质谱检测器沃特世公司全球产品高级副总裁Ian King博士表示:“ACQUITY RDa检测器质量精度高、设置自动化、且工作流程简单,是为帮助实验室轻松完成日益复杂的小分子分析项目专门打造的高性能质谱仪。其易于掌握的用户界面让质谱仪操作变得不再复杂,分析科学家不必担心仪器运行情况,可更高效地专注于检测器给出的高质量、可重现的结果。”简化设置和操作,加速可靠决策 ACQUITY RDa检测器从仪器设置到结果生成的各个环节都以易用性为目标进行设计,拥有直观的系统健康状态检查功能并采用以结果为导向的专用工作流程。得益于SmartMS技术,用户在常规应用中可使用稳定可靠的工作流程来更准确地鉴定分析物,得到更可靠的评估结果。与此同时,RDa检测器搭载简便的一键式启动功能,可有效减少培训需求、缩短停机时间,确保得到一致、可重现的结果。 “沃特世RDa检测器有望帮助制药行业攻克目前尚无理想解决方案的监管和生产难题。” Pharmaphysic总监Marc Foulon表示道。Pharmaphysic是一家致力于为化妆品、化工和制药行业提供分析服务的分析方法开发实验室。 对小分子分析产生积极影响ACQUITY RDa检测器针对那些尤为注重质量、合规性和数据完整性的小分子应用进行了优化,包括杂质分析、强制降解研究、脂质筛选、天然产物分析、食品总污染物分析、查获药物和管制药物分析,以及常规的精确质量数测定。 为提升适用性并加速结果生成,ACQUITY RDa检测器搭载了waters_connect,这款开放式软件平台拥有多项新功能、新特性,可同时提供不同的系统验证选项,有助于RDa为实验室带来更大价值。waters_connect可对数据采集、处理和报告过程进行全面审计追踪,确保分析过程严格合规并保证高标准的数据完整性。ACQUITY RDa检测器具备一系列稳定的功能,且操作简单、设计小巧,以精简的工作流程实现高性能的精确质量数测定。 沃特世现已面向全球供应ACQUITY RDa检测器。 其他参考资料 阅读产品手册:《ACQUITY RDa检测器:应用SmartMS技术进行质量数测定》 阅读应用纪要: 《将沃特世ACQUITY RDa检测器作为简单易行的解决方案用于强制降解研究中的常规精确质量数测定》 《ACQUITY RDa在常规食品分析中的应用 - 检测蜂蜜中的异常物质》 《使用ACQUITY RDa检测器筛查查获药物》 访问沃特世网站了解更多有关ACQUITY RDa检测器的信息。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 沃特世推出新一代高效经济、低能耗的ACQUITY QDa II质谱检测器,拓展化学分析新视界
    新闻摘要: ACQUITYTM QDaTM II质谱检测器利用质谱分析的特异性,可提高LC-UV分离的效率、耐用性和生产率,有助于提升常规化合物鉴定的可信度,并可利用 EmpowerTM色谱数据系统实现完整的可追溯性。 质量范围增加了20%i,为研发中的大分子和新型药物提供更广泛的分析支持。 与其他品牌同类产品相比,其能耗和热量输出可降低多达70%ii,因此,该质谱检测器荣获My Green Lab颁发的ACT(Accountability, Consistency, and Transparency)标签认证。 美国马萨诸塞州米尔福德 - 2024年5月8日 - 沃特世公司(纽约证券交易所代码:WAT)宣布推出ACQUITY QDa II质谱检测器,这是沃特世广受市场好评的精简紧凑型质谱检测器的升级版,可为色谱分离提供更为精准的质谱数据。该新一代质谱检测器可提供稳定性高、性价比出众、能耗低的解决方案,助力科学家分析更多种类的化合物。它改善并扩充了沃特世ACQUITY Premier液相色谱(LC)分离产品组合,为制药、食品、化学和材料领域的大小分子分析提供了更加灵活的选择。 图1.稳定性高、性价比出众、低能耗的新一代Waters ACQUITY QDa II质谱检测器。 沃特世公司研发及先进检测副总裁James Hallam表示: " 自2013年我们基于Empower色谱数据系统推出第一代ACQUITY QDa质谱检测器以来,这套系统已成为帮助色谱工作者加快步伐,为产品开发和杂质分析寻找更高质量方法的关键工具。在ACQUITY QDa II质谱检测器的设计过程中,我们扩展了新系统的功能,以应对包括单克隆抗体和胰高血糖素样肽1(GLP-1)激动剂在内的新分子实体的发展。 " ACQUITY QDa II质谱检测器的设计理念可以使其无缝集成到现行实验室工作流程中,并具有与LC检测器相似的用户体验和外形规格。它提升了20%的质量范围,是一款设计简洁小巧的LC-MS仪器,能无缝集成到受严格监管的实验室环境中,确保分析的合规性。 Polpharma(波兰最大的制药企业)的分析和API专家Mariusz Kurowski表示: " 我们需要确保结果没有任何时间上的延迟,因为即使短暂的分析时间差都可能导致成品无法及时放行以满足患者群体的需求。质谱技术虽然复杂,但ACQUITY QDa质谱检测器的操作便捷性让人印象深刻。我们相信,这台仪器可以助力未来。 " ACQUITY QDa II质谱检测器不仅能让科学家们在更接近目标点的位置部署质谱检测,还能提高可重复性,同时其能耗和热量输出相较于同类产品可降低多达70%。凭借效率和能耗方面的改进,ACQUITY QDa II质谱检测器赢得了独立非营利组织My Green Lab颁发的ACT标签。这一奖项主要是为了表彰那些满足甚至超过环保实验室可持续性要求的实验室设备。 ACQUITY QDa II质谱检测器专为在Waters Empower色谱数据系统(CDS)软件上进行合规部署而设计,实现了质谱测量与色谱方法的便捷整合,即使非质谱领域的分析科学家也能轻松使用。这款仪器现已面向全球市场开放订购。 其他参考资料 详细了解沃特世新一代ACQUITY QDa II质谱检测器 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是居于全球前列的分析仪器和软件供应商,作为色谱、质谱和热分析创新技术先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。沃特世公司在35个国家和地区直接运营,下设14个生产基地,拥有约7,900名员工,旗下产品销往100多个国家和地区。 关于沃特世中国 自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州设立实验中心和培训中心。 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世致力于通过攻克关键难题释放科学潜力,始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。 凭借出众的人才与全球布局,沃特世与合作伙伴一起,在世界各地的实验室中,为增进人类健康福祉提供科学见解,助力让世界变得更美好。 i 与上一代QDa质谱检测器(1250 m/z)相比,QDa II的质量范围增加了20%,扩展至1500 m/z,覆盖的化合物更多(根据沃特世新产品性能文档)。 ii 根据QDa II与其他品牌同类产品功耗和BTU输出的公开数据进行比较。
  • Omnitor系列蒸发光散射检测器 首次登陆慕尼黑分析生化展
    小体积高性能的ELSD蒸发光检测器 登陆慕尼黑分析生化展 三为科学Omnitor系列低温型蒸发光检测器ELSD检测器首次登陆第九届慕尼黑上海分析生化展。2018年10月31日在上海新国际博览中心慕尼黑上海分析生化展上,Omnitor系列蒸发光散射检测器解开其神秘的面纱。全新的ELSD9000低温型蒸发光散射检测器重磅上市!通过独创的卧式结构和光散射光路设计,先进的自动化功能、友好的用户界面和多平台控制,ELSD9000蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。研发团队对仪器内部温度场进行合理设计,使仪器结构紧凑合理,达到宽26 cm高19 cm深46 cm的尺寸,同时色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能。第九届慕尼黑上海分析生化展作为亚洲重要的分析、生化技术、诊断和实验室技术风向标盛会,今年展会共吸引来自26个国家和地区的950家行业先锋企业倾情献演,展出面积达46,000平方米,更有100余场干货满满的专业报告及技术研讨会如火如荼上演。 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 Omnitor 蒸发光散射检测器技术特点:结构紧凑:采用全新的光路设计,体积紧凑(26 cm*19 cm*46 cm),可以与液相色谱系统层叠使用检测性能优异:基线噪声低至0.01 mV,漂移小,精密度高快速降温:有助于在不同检测方法间的快速切换喷嘴加热:有助于提升雾化效果,特别是检测油性样品的时候线性增益调节:增益线性调节,有助于用户精细化的调整输出色谱峰的高度雾化管调节: 雾化角度自由调节,可以满足不同样品的检测需求系统自动检测:16项仪器日常自检,多重安全设计,避免流动相进入检测室,减少仪器维修,延长使用寿命方法管理:方法管理多达10组(每组25个参数),结构化菜单,简化用户的操作监控报警:温度,压力,流量的实时监控,并对异常情况进行声音和灯光报警控制采集软件:专用多平台控制软件,Clarity 动态链接库,平台支持与任何HPLC色谱系统联用多种通讯模式:RS-232, RS-485, USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能:多种方式启动待机模式—检测器低功耗状态审计追踪:色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能 会议同期我们还展出制备色谱,蛋白分离纯化系统,高压平流泵、温控型高压计量泵、防爆高压输液泵。我们相信客户的满意,市场的认可,业界的肯定,是我们不断前行的动力。感谢客户们一直以来的大力支持,产品销售不是结束,我们的销售从客户收到我们的产品开始,尽善尽美、精细入微,用我们的产品品质和服务质量让新的销售从客户开始延伸。 再次感谢您的关注和选择,2020年慕尼黑分析生化展会我们再相见!
  • “最黑”材料制成高精度激光功率检测器
    据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。  这种新型检测器几乎不会反射可见光。在波长从400纳米的深紫,到4微米的近红外线波段,反射少于0.1%,在4微米—14微米的红外光谱中,反射少于1%。这和伦斯勒理工学院2008年报告的超黑材料相似。2009年一个日本团队也有类似研究。  正是受到伦斯勒理工学院的研究论文《世界最黑人造材料》的启发,国家标准技术研究院的科研人员对精细碳纳米管进行了较为稀疏的排列,把它作为一种热检测器的涂层,制成了用于测量激光功率的设备。碳纳米管是热的良导体,提供了一种理想的热量检测器涂层。虽然镍磷合金在某些波段能反射更少的光,但不能导热。  纽约石溪大学的合作研究人员在一种热电材料钽酸锂上,生长出了碳纳米管涂层,涂层吸收激光转换成热量,温度上升产生了电流,通过测量电流大小能确定激光的功率。涂层越黑,光吸收的效果越好,测量结果就越精确。其独特之处在于,纳米管是生长在热电材料上,而其它研究中是生长在硅材料上。  国家标准技术研究院用过各种各样的材料来做检测器涂层,包括扁平状的单壁纳米管。最新的涂层是一种竖直的森林状多壁纳米管,每根细管直径小于10纳米,长约160微米,深管有助于吸收随机散射光和任何方向的反射光。  由于技术上要求检测器能测量的反射光谱更加广泛,国家标准技术研究院用了5种不同的方法花了数百小时来测量越来越弱的反射光,结果精确度都能达到要求。研究人员计划将设备的刻度运行范围扩展到50微米甚至100微米波长,这或许可为太赫兹射线功率测量提供一种标准。
  • 盘点那些年我们用过的检测器(二) ——细说示差检测器
    液相色谱检测器种类较多,如何选择合适的检测器?以及为什么这样选择?之前的推文中我们陆续盘点了UV、DAD、ELSD等检测器,今天再跟大家聊一聊示差检测器。盘点那些年我们用过的液相检测器(一)一、RI 示差折光检测器原理简介关注我们RID是一种偏转式或者斯涅尔式折射率检测器。斯涅尔定律指出,平行光束沿着一个大于零的入射角通过一个将两种具有不同折射率的介质分开的电介质界面时,其折射率将与两种介质的折射率差幅成函数关系。二、示差检测器结构关注我们示差折光检测器结构示意图1、钨灯 2、聚光透镜 3、狭缝 4、准直镜 5、狭缝 6、检测池 7、反光镜 8、零位玻璃 9、光敏接收元件低功率、长寿命的钨灯发射出的光线经过准直透镜和狭缝后,通过参比池(参照池)和样品池(样本池),经平面镜反射回来后,再次通过光学单元,最后通过透镜聚焦到一对光传感二极管上(光传感器)。在测试期间,参比池和样品池中充满流动相。参比池随后与流路隔开,流动相仅流过样品池。如果两个池中介质的折射率没有差异,光线在通过它们时将不会发生折射。1 光束2 样本池3 参照池4 光轴(NsNr)5 光轴(Ns=Nr)6(4)和(5)在光传感器处的间距7 光传感器Ns:样本池中流动相的折射率Nr:参照池中流动相的折射率光线照射到一对光电二极管上,其中每个光电二极管都将给出一个电信号。随后这些信号会被放大,从而测得两个信号之间的差异。如果是零折射,这些信号之间的差异应该为零伏。借助一个电控机械联动装置,用户可以通过光路中的折射透镜来优化光电二极管的零偏转输出。还可以通过额外电路轻松地将信号输出校正为电子零点。1 光传感器A2 光传感器B3 光束当流动相的折射率发生变化时,通过样品池和参比池之间界面的光将被折射,从而使一个光电二极管上的光强增大,另一个电二极管上的光强减小。这种差异产生具有振幅和极性的信号,此信号被放大后,可以驱动图表记录仪。三、应用举例关注我们示差折光检测器是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器,她的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。应用一:麦芽糖、果糖、葡萄糖、异麦芽糖、麦芽三糖色谱条件色谱柱:月旭Xtimate NH2(4.6×300,5μm)。流动相:乙腈:水=75:25;检测器:RID;柱温:30℃;流速:1.0mL/min;进样量:50μL。色谱图应用二:磷酸果糖二钠、蔗糖、葡萄糖、果糖色谱条件色谱柱:月旭Xtimate sugar-Ca(7.8×300mm,8μm)。流动相:纯水;检测器:RID;温度:柱温75℃,检测器40℃;流速:0.2mL/min;进样量:10μL。色谱图四、示差检测器维护关注我们要想获得良好的实验结果,使用RID的三大法宝:第一、脱气;第二、平衡好流动相;第三、保持恒温恒压。在实际工作中我们会遇到很多典型的问题,接下来我们一起来分析一下这些问题如何破。五、使用注意事项关注我们1、正确放置溶剂瓶和废液瓶。要把溶剂瓶放在比示差监测器和溶剂泵还要高的位置,检测器出口留足够长的废液管通到下方的废液瓶,这样可以使样品池有一定背压,有利于检测信号的稳定。2、循环使用流动相。建议循环使用流动相。在没有进行分析时,打开循环阀,让流动相进行循环,这样泵就可以连续运行不必停止,一直到进行下一个分析。这样操作不仅可以节省流动相,而且检测器可以连续稳定的运行,随时进行样品分析。3、示差折光检测器不能用做梯度洗脱。由于介质的改变和压力的波动都会影响基线的稳定性,所以使用示差折光检测器时不能进行梯度洗脱。4、保证检测器的温度恒定。光学系统和流动相的温度对基线的稳定性影响很大。示差折光检测器可在比室温高5℃到55℃的范围内控温。建议将温度设为比室温高5℃,并确保柱温箱的温度与检测器保持一致。温度不宜过高,因为介质的折光指数随温度升高而降低,温度过高会使灵敏度降低。5、不可让流通池承受过大的压力。示差折光检测器流通池的反压约为1000psi,如果还要在系统里连接其他检测器。即示差折光检测器在流路系统里必须放在最后,以防压力增大时损坏流通池。6、某些溶剂随长时间存放而改变会造成基线的漂移。例如乙腈/水的混合物中乙腈的含量会降低,四氢呋喃会变成过氧化物,在吸湿性有机溶剂中的水量会增加,而保存在参比流通池中的溶剂如四氢呋喃会产生气体。因此,流动相最好做到临用现配或在有效期内使用。对于含有有机溶剂的流动相一般有效期3天,对于不含有机溶剂的流动相如纯盐或者纯水则根据室温情况,可临用现配或是配置好4℃冷藏,取用前先放置至室温。7、避免流动相和特定的色谱柱反应。某些流动相和特定的色谱柱反应,会产生长时间的噪声,例如乙腈/水流动相和氨丙基键合固定相在一起会出现这一现象。要判断长时间的噪声是否是由流动相/色谱柱的反应而产生,应该使用限流毛细管代替色谱柱,考查示差折光检测器的性能。
  • 请定期检查仪器噪声水平,需要时清洗检测器
    基线噪声高会对分析有影响吗?基线噪声在多少算高?基线噪声高不高,要和装机时做比较。例如您看到FID的基线噪声有50pA,如果从装机开始一直就这么高,那么就和载气纯度或者没有装捕集阱有关了。如果之前是只有十几pA的,现在变成50pA了,那么就是色谱故障啦。基线噪声太高会影响什么?基线噪声过高会影响灵敏度,因为灵敏度往往用信噪比(S/N)来直接或者间接的表征,噪声作为分母,分母越大自然信噪比越低,检测灵敏度就会跟着降低,甚至满足不了方法的检出限。基线噪声升高一定是检测器引起的吗?检测器污染会导致基线噪声升高,但是并不代表基线噪声升高一定是检测器的问题!载气和捕集阱如果捕集阱饱和,或者载气纯度不够,都会导致基线噪声升高色谱柱如果色谱柱污染,也会导致基线噪声升高如果色谱柱接口处有泄漏,TCD和ECD检测器基线会升高色谱柱安装不正确,伸入检测器过长也会有相同的问题隔垫进样口中的隔垫,隔垫流失严重的话也会会导致基线噪声升高如何排查基线噪声是由检测器引起的?隔离法:将色谱柱从检测器端取下来,然后用一个死堵将检测器入口堵上,然后等待半小时之后观察输出值。此时输出值只由检测器贡献半小时等待中...如果半小时后输出值明显下降了,那么就不是检测器的问题。如果输出值没有明显变化,那么就是检测器的问题。做出这个判断之后,我们也就不需要着急把色谱柱接回检测器,保持现状,直接执行检测器热清洗的步骤就可以了如何对检测器进行热清洗一般我们都会建议大家先做热清洗,实际上就是通过升高温度,使得一些高沸点物质挥发之后从检测器排出。什么算正常值呢?就是和您之前的数据相比,例如仪器状态良好的情况下,FID的基线噪声可以达到20pA以下,那么就以20pA为正常值。或者是,以满足灵敏度要求为准,例如ECD,ECD使用时间长了以后,本身因为放射源衰变的原因,基线噪声就是会逐渐提高,无法恢复到原来的状态,那么就以目标物的分析满足最低检出限的要求为标准来要求噪声水平就可以了还需要注意的是,FPD的最高温度只能到250度如果高温烘烤几个小时还是效果不明显的话,可能就得拆开清洗了是不是所有的检测器都可以拆开清洗?ECD和TCD是绝对不能拆开清洗的FPD不建议拆开清洗FID和NPD是可以拆开清洗的,但是NPD在拆卸的时候,一定!一定!一定!要注意不要损坏铷珠
  • 岛津应用:基于荧光检测器RF-20AXS的高灵敏度抗体药物糖链分析
    抗体药物中的糖链对抗原性、生物活性、高级结构的稳定性均有很大的影响,因此直接关系到药品的安全性和有效性。由于培养工艺条件的变化会导致抗体药物中的糖链分布不均匀,所以在生产阶段对糖链的管理非常重要。现阶段虽然在日本药典中并未收录糖链的测定方法等内容,但在相关领域有关于介绍测定方法的需求。 本文为您介绍使用超快速液相色谱仪“Nexera X2”和高灵敏度荧光检测器“RF-20AXS” 对抗体药物中的糖链进行分析的方法。该测定方法使用了Core-Shell 型快速分析液相色谱柱“AerisTMPEPTIDE XB-C18”。 因为该色谱柱用于分离分子量较小的肽或进行肽图分析,所以可有效分离抗体药物中所含的糖链与杂质。 岛津荧光检测器RF-20Axs RF-20Axs是带温控功能的分光荧光检测器,采用新光学系统,实现了领先世界水平的高灵敏度。通过附加流通池的温控功能,大幅提升了峰响应对环境温度变化的稳定性。采用帕尔贴元件温控荧光检测器的流通池,可以将流入流通池中的样品的温度保持恒定。伴随温度变化发生荧光强度变化的化合物也可以进行稳定的定量分析。  了解详情 请点击“使用荧光检测器RF-20AXS 对抗体药物进行高灵敏度糖链分析” 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 日立高新液相DAD检测器实现样品主成分和微量成分的同时高灵敏度分析
    以日本的制药行业为例,当提交含有新有效成分药品的申请时,如果原料药及制剂中原料药的杂质超出1日剂量 (作为原料药) 的0.03%~0.05%,必须提供报告。另外,在环境领域,以高灵敏度测定微量残留物质的要求正日益增长。检测器的性能成为满足这一分析要求的重要因素。日立高新Chromaster高效液相色谱仪 5430DAD检测器可实现与UV检测器同样的低噪音和低漂移,可进行高灵敏度测定。 在此,使用对羟基苯甲酸酯类作为模型样品,介绍高浓度成分和微量成分的同时分析。同时对对羟基苯甲酸丙酯 (600 mg/L) 和对羟基苯甲酸乙酯 (0.03 mg/L)进行了测定。介绍使用5430DAD检测器测定占主成分0.005%的微量成分的检出测定模型。 详细情况,请点击《使用高灵敏度5430DAD检测器进行主要成分和微量成分的同时分析》:http://www.instrument.com.cn/netshow/SH102446/down_212878.htm关于日立高新技术公司:日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • TOSOH LenS3光散射检测器荣获“2019分析科学家创新奖”
    2019年12月,《The Analytical Scientist》杂志(分析科学家)揭晓了一年一度的“最佳创新奖(The Innovation Award)”获奖名单。共有15款创新仪器产品榜上有名。其中,东曹生命科学的LenS3多角度光散射检测器荣获了该奖项。 下面我们来详细了解一下此款获奖仪器。1创新点可直接测量进样量低至2ng的溶液中大分子的分子量和尺寸2上市时间此款仪器于2019年9月率先在美国上市。接下来将在中国开始正式销售。3产品优势LenS3光散射检测器是基于瑞利散射的原理来测定溶液中大分子的分子量和尺寸。那么它与目前主流的多角度光散射(MALS)检测器有何不同?LenS3采用了一种革命性创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量。通过“倾倒”入射光并将“杂散光”的影响降到最低。该检测器采用了以零折射生物惰性PEEK材料为主的光学“流路”,样品在流经该流路时一分为二,延长了流路,使入射光与目标分子的相互作用更加充分,并显著增强了光散射强度。这样使得MALS检测器可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。4潜在影响MALS通常与HPLC尺寸排阻色谱结合使用,以鉴定和定量单克隆抗体和其他治疗性蛋白质和肽的聚集水平。LenS3可以在样品上样量非常小的情况下进行重复检测和定量聚集水平,从而使科学家能够扩展物种检测水平,并使用更少的样品进行更多的信息分析。另外,如果将检测限降低到2nm以下,科学家可以可靠地通过回转半径来更好地了解溶液中大分子的构象。聚合物科学家可以利用LenS3来表征分子链的分支并获得整个分子量分布的数据,并且回转半径和水合半径的结合可以提供蛋白质和抗体的形状因子。
  • 【PNP】聚合物纳米药物载体使用多检测器SEC分析的应用案例
    纳米药物载体热点应用#本文由马尔文帕纳科GPC应用专家冯慧庆供稿#2022 PNP聚合物纳米药物载体纳米药物载体可实现靶向药物治疗。靶向给药治疗是指供助载体、配体或抗体将药物通过局部给药或全身血液循环而选择性地定位于靶组织、靶器官、靶细胞或细胞内结构的给药系统。在特定的导向机制作用下,纳米药物载体输送药物到特定靶点,发挥治疗作用,可达到药剂用量少、毒副作用低、药效持续、生物利用度高、长时间保持靶目标的有效药物浓度的效果。常见的纳米药物运载体系在药学研究中,正确定位小分子药物的给药位置和控制药物释放曲线是一个关键的挑战。通过小分子药物与聚合物纳米载体偶联起来,在很大程度上实现细胞内精准靶向给药,在实际应用过程中有较好的效果。该方法既可用于控制药物释放曲线,又可用于控制药物释放位置,以最大限度地减少可能的副作用。阿霉素(Doxorubicin)阿霉素(Dox)是一种高效抗肿瘤抗生素,对肺癌、急慢性白血病等多种恶性肿瘤都有很强的细胞毒性,其机制是:通过将自身插入细胞的DNA碱基对中,破坏DNA的双螺旋结构,阻断DNA复制和RNA转录。通常是通过血液循环导入肿瘤细胞实现其抗肿瘤功能。聚谷氨酸(PG)是一种以氨基酸谷氨酸为基础的具有生物相容性的聚合物。试验结果表明Dox和PG的偶联,可以实现靶向给药,提高药物在靶体内的聚集度,延长体内循环时间,降低毒副作用。在本文中我们展示了马尔文帕纳科OMNISEC多检测器SEC如何对PG、Dox 和两个PG-Dox 偶联样品进行表征。这种先进的分析技术可用于研究药物加载效率和药物加载后发生的聚合物结构变化。研究方法 PG和PG-Dox偶联物溶解在在pH7.4的PBS缓冲液中,通过OMINISEC进行样品的分离和检测。OMNISEC是一个多检测器SEC系统,包括示差检测器(RI)、紫外检测器(UV)、光散射检测器(LS)和粘度检测器(IV)。流动相为PBS pH 7.4,含30%(v/v)甲醇水溶液;采用马尔文A6000M和A3000色谱柱分离。OMNISEC多检测器SEC检测结果与讨论 测试PG样品和两个PG-Dox偶联物样品色谱图如图1所示,PG的数值结果见表1。PG样品分离显示一个单峰,测得其平均分子量(MW)约为13KDa。再看两个偶联样品,都分离出和PG具有相似保留体积的多峰。较早洗脱的光散射色谱图(绿色,12-14mL)表明存在一些大的聚集体。而且,这些峰包含明显的紫外吸收信号,表明Dox的存在成功地偶联到聚合物上。图1 PG(A)、PG-Dox 1(B)和PG-Dox 2(C)多检测器色谱图表1 PG测试结果在图2 A中可以看到,在不同进样量下检测游离Dox的UV色谱图,可以看到游离的Dox从柱上洗脱得很晚,实际上已经在整个柱体积之后。这清楚地表明了Dox与色谱柱发生了显著的相互作用,延迟了Dox的洗脱。但从图2 B所示浓度响应曲线可以看出,尽管存在相互作用,回收率仍然接近100%。该校准曲线用来测量存在于PG-Dox样品中的Dox的量。图2 A:不同进样量Dox在UV(490nm)色谱图;B:Dox浓度校准曲线如果我们确定36mL处的峰为游离Dox,这样PG-Dox样品中的相同位置峰也能确定为游离Dox。如图3所示,可以清楚地确定偶联样品含有PG-Dox偶联物和游离Dox。图3 UV色谱图显示偶联样品含有PG-Dox偶联物和游离Dox使用图2 B中的浓度校准曲线,可以计算偶联样品中存在的Dox量。如表2所示,两种PG-Dox偶联物都含有游离的Dox。在一次注射体积中,PG-Dox 1的偶联物中含有大约11μg的Dox,而PG-Dox 2的偶联物中含有大约39μg的Dox。然后,可以计算出样品中注入的总Dox质量和Dox浓度。然后,可以根据溶解物质的质量计算出近似的总样品浓度。这样就可以计算每个PG-Dox偶联物中Dox的近似负载量。由此可以近似地看出,样品2的偶联物中含有的Dox是样品1的三倍。表2 计算两个偶联样品中Dox的负载量我们可以对PG-Dox偶联物进一步表征(其中dn/dc假设分析),计算偶联聚合物的近似分子量、特性粘度和结构数据,如表3所示。表3 PG-Dox偶联物测试结果Mark-Houwink(M-H图)显示了特性粘度作为分子量的函数,是分子间结构差异的直观表示。在溶液中密度较高的聚合物在M-H图上看起来较低,用来研究结构变化,如支化、偶联等结构变化。图4显示了3个样本的M-H图。首先,这两个PG-Dox偶联物M-H曲线显著低于单独的PG。这是我们预料中的,因为药物分子的偶联将增加聚合物在溶液中的表观密度,并且具有更大Dox负载量的样品将进一步向下移动。PG-Dox 1和PG-Dox 2之间的斜率不同,说明Dox负载量可能不是随分子量均匀分布的。图 4 Mark-Houwink曲线图叠加显示PG和PG-Dox偶联物结论 本文展示了如何将多检测器SEC用于高分子聚合物偶联小分子药物传递表征分析的方法。在相同的测试条件下,对原聚合物、游离药物(Dox)和两种偶联产物进行了表征。药物的紫外吸光度使得可以测量负载水平和评估两种偶联物的偶联水平。通过假设分析,偶联分子量和结构也可以测量并相互比较。 小分子药物的输送在实际应用中面临许多挑战,与较大的聚合物偶联是提高药物定位和载药量的一种策略,但要获得可靠和可重复的结果,需要先进的表征方法。通过使用OMNISEC这样的多检测器系统进行分析,研究人员可以更好地表征和研究,从而控制附着在聚合物纳米输送载体上的药物量以及产品的分子量和结构,以实现最佳的药物输送效率。
  • 四川大学202.00万元采购红外光谱仪,流式细胞仪,吹扫捕集,色谱检测器,液体闪烁谱仪,ATP,浓缩...
    基本信息 关键内容: 红外光谱仪,流式细胞仪,吹扫捕集,色谱检测器,液体闪烁谱仪,ATP,浓缩仪,氮吹仪 开标时间: 2022-05-16 11:00 采购金额: 202.00万元 采购单位: 四川大学 采购联系人: 吴老师 采购联系方式: 立即查看 招标代理机构: 四川乾新招投标代理有限公司 代理联系人: 郭巧樾 代理联系方式: 立即查看 详细信息 四川大学红外光谱仪等招标公告 四川省-成都市 状态:公告 更新时间: 2022-04-25 招标文件: 附件1 招标单位:四川大学 正在招标 招标产品:红外光谱仪,细胞成像系统,液体闪烁仪,ATP荧光检测仪,吹扫捕集浓缩仪 招标编号:CDSCQXZB-2022-0108S 四川大学红外光谱仪等招标公告 2022-04-25 16:00:58 【四川大学红外光谱仪等招标公告】,招标编码为【CDSCQXZB-2022-0108S】,招标项目内容包括【红外光谱仪、液体闪烁仪、活细胞工作站、荧光检测器、全自动水固一体吹扫捕集仪】,投标截止到【2022-05-16 11:00】,欢迎合格的供应商前来投标 项目编号:CDSCQXZB-2022-0108S 项目名称:四川大学应用化学专业实验室提升计划采购项目 一、采购需求: 序号 标的名称 数量 1 红外光谱仪 2 2 液体闪烁仪 1 3 活细胞工作站 1 4 荧光检测器 1 5 全自动水固一体吹扫捕集仪器 1 预算金额:202万元,允许进口。 合同履行期限:1.国产产品:政府采购合同签订生效后120天内完成交货、安装调试,并达到验收标准 2.进口产品:政府采购合同签订生效后120天内完成交货、安装调试,并达到验收标准。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:投标人提供的产品为进口产品时,须提供投标产品制造厂商或其授权的总代理针对本项目的授权书(具有授权权限的总代理商对投标产品的授权,需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示产品制造厂家对投标产品授权链条的完整性)。 三、获取招标文件 时间:2022年04月26日 至 2022年05月05日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:四川乾新招投标代理有限公司(http://www.qxztb.cn) 方式:1.在本项目招标文件获取时间期限内,在采购代理机构指定网站(http://www.qxztb.cn)购买,具体购买流程详见该网站的“标书在线购买流程”。 2.报名咨询电话:028-61375575、62600820、62630990转601或602。 售价:¥200.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年05月16日 11点00分(北京时间) 开标时间:2022年05月16日 11点00分(北京时间) 地点:成都市高新区吉庆三路333号蜀都中心二期一号楼一单元401号本项目开标室。 五、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学 地址:四川省成都市一环路南一段24号 联系方式:吴老师 028-85412290 2.采购代理机构信息 名 称:四川乾新招投标代理有限公司 地 址:成都市高新区吉庆三路333号蜀都中心二期一号楼一单元401号 联系方式:郭巧樾 028-84638556、84882960转664 3.项目联系方式 项目联系人:郭巧樾 电 话:028-84638556、84882960转664 欲了解更多资讯,查看官方招标公告 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:红外光谱仪,流式细胞仪,吹扫捕集,色谱检测器,液体闪烁谱仪,ATP,浓缩仪,氮吹仪 开标时间:2022-05-16 11:00 预算金额:202.00万元 采购单位:四川大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:四川乾新招投标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 四川大学红外光谱仪等招标公告 四川省-成都市 状态:公告 更新时间: 2022-04-25 招标文件: 附件1 招标单位:四川大学 正在招标 招标产品:红外光谱仪,细胞成像系统,液体闪烁仪,ATP荧光检测仪,吹扫捕集浓缩仪 招标编号:CDSCQXZB-2022-0108S 四川大学红外光谱仪等招标公告 2022-04-25 16:00:58 【四川大学红外光谱仪等招标公告】,招标编码为【CDSCQXZB-2022-0108S】,招标项目内容包括【红外光谱仪、液体闪烁仪、活细胞工作站、荧光检测器、全自动水固一体吹扫捕集仪】,投标截止到【2022-05-16 11:00】,欢迎合格的供应商前来投标 项目编号:CDSCQXZB-2022-0108S 项目名称:四川大学应用化学专业实验室提升计划采购项目 一、采购需求: 序号 标的名称 数量 1 红外光谱仪 2 2 液体闪烁仪 1 3 活细胞工作站 1 4 荧光检测器 1 5 全自动水固一体吹扫捕集仪器 1 预算金额:202万元,允许进口。 合同履行期限:1.国产产品:政府采购合同签订生效后120天内完成交货、安装调试,并达到验收标准 2.进口产品:政府采购合同签订生效后120天内完成交货、安装调试,并达到验收标准。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:投标人提供的产品为进口产品时,须提供投标产品制造厂商或其授权的总代理针对本项目的授权书(具有授权权限的总代理商对投标产品的授权,需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示产品制造厂家对投标产品授权链条的完整性)。 三、获取招标文件 时间:2022年04月26日 至 2022年05月05日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:四川乾新招投标代理有限公司(http://www.qxztb.cn) 方式:1.在本项目招标文件获取时间期限内,在采购代理机构指定网站(http://www.qxztb.cn)购买,具体购买流程详见该网站的“标书在线购买流程”。 2.报名咨询电话:028-61375575、62600820、62630990转601或602。 售价:¥200.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年05月16日 11点00分(北京时间) 开标时间:2022年05月16日 11点00分(北京时间) 地点:成都市高新区吉庆三路333号蜀都中心二期一号楼一单元401号本项目开标室。 五、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学 地址:四川省成都市一环路南一段24号 联系方式:吴老师 028-85412290 2.采购代理机构信息 名 称:四川乾新招投标代理有限公司 地 址:成都市高新区吉庆三路333号蜀都中心二期一号楼一单元401号 联系方式:郭巧樾 028-84638556、84882960转664 3.项目联系方式 项目联系人:郭巧樾 电 话:028-84638556、84882960转664 欲了解更多资讯,查看官方招标公告
  • 使用日立高新HPLC-DAD检测器分析PM2.5相关16种多环芳烃物质
    随着空气质量的恶化,阴霾天气出现增多,危害加重。中国不少地区把阴霾天气并入雾一起作为灾害性天气预警预报,统称为“雾霾天气”。其中,可吸入颗粒物是加重雾霾天气污染的罪魁祸首,它们与雾气结合在一起,让天空瞬间变得灰蒙蒙的。颗粒物的英文缩写为PM,北京监测的是PM2.5,也就是直径小于2.5微米的污染物颗粒。这种颗粒本身既是一种污染物,又是重金属、多环芳烃等有毒物质的载体。此次跟大家介绍的是使用日立高新HPLC-DAD检测器分析16种多环芳烃物质的应用。详细情况请点击《使用日立HPLC-DAD检测器分析16种多环芳烃物质》:http://www.instrument.com.cn/show/manager/paper/modifypaper.asp?id=233378关于日立高新技术公司:日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 沃特世推出全新RADIAN ASAP直接分析型质谱检测器,助力实验室轻松获取质谱数据
    只需基本的专业知识和简单的样品前处理即可迅速完成样品分析,提升操作效率与竞争优势沃特世公司(纽约证券交易所代码:WAT)近日隆重推出RADIAN ASAP系统。这款直接分析型电离质谱检测器专为非质谱应用专家而设计,只需简单制备样品,即可快速、准确地分析各种固体和液体。RADIAN ASAP系统不仅设计紧凑、质量可靠、操作快速简便,同时还具备强大的实时数据可视化软件功能,有助于制药、法医学、食品分析、化学品和材料,以及学术研究等众多领域的分析实验室提升竞争优势,迎合各种应用需求。 Waters RADIAN ASAP直接分析型质谱检测器沃特世公司质谱产品管理高级总监Gary Harland表示:“随着实验室之间的竞争加剧,如何在获取高质量结果的同时缩短样品周转时间变得尤为关键。如今,想要从激烈的竞争中脱颖而出,像直接分析型质谱这样功能全面、操作简单、分析速度快且性能可靠的技术是实验室必不可少的。RADIAN ASAP系统成功克服了过去引进质谱技术时难以解决的诸多困难,可以无缝部署到现有的实验室环境中,即便只接受过有限LC-MS操作培训的人员也可以快速获取准确结果。”突破重重障碍,实现快速高效的质谱分析Waters RADIAN ASAP系统将久经验证且稳定可靠的单四极杆质谱技术与专用的大气压固相分析探头(ASAP)离子源相结合,样品上样后数秒内即可出结果。气态分析物分子在N2等离子体中电离,然后被导入仪器,根据其质荷比进行分离。用户不再需要预先进行色谱分离,在1分钟之内就能获得实时样品分类和质量评估结果,从而有效地节省了过去耗费在样品制备上的时间和资源。英国特丁顿Eurofins Forensic Services的药物分析专家Ryan Francis与沃特世和LGC合作评估了RADIAN ASAP的系统性能。Ryan介绍说:“通过建立RADIAN ASAP的β模型,我们发现这是一款功能强大的物质分类鉴定和筛查的工具。它的出现充分证明了像沃特世这样追求技术创新的企业与科学界深度合作,必将不断突破极限,研发出适用且可靠的技术。”RADIAN ASAP系统可兼容多种沃特世软件解决方案,包括OpenLynx、MassLynx、IonLynx和LiveID。值得一提的是,在推出RADIAN ASAP系统的同时,沃特世还发布了新版本的LiveID软件 — LiveID 2.0。新版LiveID软件延续了样品分类和真伪鉴别所用的建模功能,具有直观、现代化的用户界面,能给出简单易懂的结果。此外,该软件又新增了实时谱库匹配功能,通过匹配样品谱图与存储在软件谱库中的参比谱图来鉴定样品化合物。 广泛的应用领域RADIAN ASAP系统的自动化设置功能、精简的工作流程和操作方式、低培训需求等特点,能帮助实验室在不牺牲分析性能的情况下,充分满足日益增长的分析需求。该系统尤其适用于以下领域:• 制药:轻松获取质谱数据,实时评估反应进程和鉴定纯化组分;• 法医学:通过比对已知化合物库,快速、可靠地鉴定违禁药物; • 食品和饮料:供应商和监管机构可用于检验产品真伪和安全性、判断产品是否掺假或变质,从而帮助提升食品行业诚信度;• 化学品和材料:通过例如材料放行检测或配方性能检测,简化质量控制和产品开发流程; • 学术研究:为学术研究实验室提供稳定可靠的教学和方法开发解决方案。RADIAN ASAP系统由沃特世(新加坡)研发,目前已面向全球供货。如需深入了解直接电离质谱分析技术在法医学领域的应用价值,敬请观看SelectScience网络研讨会:使用直接电离质谱技术进行实时法医学药物分析(可点播观看)。其他参考资料• 访问沃特世网站获取更多有关RADIAN ASAP系统的信息;• 阅读《美国质谱学会杂志》文章,了解更多有关RADIAN ASAP系统的信息。
  • 乐氏科技便携式傅里叶红外气体分析仪在应急监测方面的应用
    近年来,突发环境事件时有发生,在发生污染事故,造成环境污染的紧急情况下,事故发生单位和政府必须快速采取措施、锁定污染物,因此,及时开展应急监测工作是必不可少的。 根据《突发环境事件应急监测技术规范》等有关要求,发生污染事故时,需要对厂界、辐射区域范围内大气敏感点进行多方位气体监测。监测点位的设置需要根据事故现场环境及严重程度来判断,实行多点位监测。在监测过程中根据外部环境的变化及时调整采样点位。 综上所述,《突发环境事件应急监测技术规范》对污染事故应急监测提出很高的要求,由于污染事故具有突发性、不确定性、扩散速度快以及后果的不可控性等特点,为了最大程度地控制事态扩大、减轻污染危害,对事故发生初始阶段的应急监测尤为重要,同时,对应急监测设备也提出了极大的挑战。1应急监测设备必备的性能便携性:事故发生现场地点具有多样性,如:山林火灾的监测、化工厂爆炸、工业泄露、加油站爆炸、恐怖袭击的生化毒气等等,应急人员需要在短时间内携带设备前往事故现场,并在现场进行移动、穿插,这对设备的便携性提出严格要求。功能性:事故类型不同,产生的有毒、有害气体种类及气体组分是不同的,这对分析仪监测气体组分的数量、精准度以及应对复杂场景提出严苛要求。快速性:在有限的时间快速了解事故发生现场气体种类及大致含量是制止事态扩大和减轻污染危害的重要条件,这对分析仪的检测速度、分析周期提出更高要求。 乐氏科技的便携式傅里叶红外气体分析仪能够完全满足上述条件。仪器搭配了PLS偏最小二乘法作为化学计量方法,采用先进的光谱预处理方法,使得仪表在复杂的环境空气中适用性更强,测量结果更准确、更科学。是突发性环境污染事故应急监测的好帮手。2工作原理 采用傅里叶变换红外光谱技术(FTIR Spectrometer)进行气体分析。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和精细定量分析。 图1 光谱信息产生机理 图2 光谱信息产生机理3产品特点测量精度高,优于标定的±2%;光谱范围宽; 高分辨率分析模式; 定性、定量种类丰富,定性可达5578种 ;分析周期短、可连续在线监测; 抗光谱干扰能力强;预热时间短。4应用案例 2022年9月,乐氏科技在某疾控防疫中心实验室现场试验,对用户提前配制好的混合有机溶剂进行现场分析(配制的样品组分包含:苯系物、三氯乙烯、二乙醇、甲酸),以检验便携式傅里叶红外气体分析仪在分析VOCs性能方面的表现。图3 实验室测试现场通过一个周期的测试,结果显示:傅里叶红外气体分析仪能够非常快速、准确地检测出实验混合物中的气体组分,并进行定量分析。图4 仪器采集的原始样品谱图样品原始谱图中包含有丰富的VOCs组分特征谱带,说明仪器红外响应非常灵敏。图5 样品原始谱图与三氯乙烯标准谱图比对两者特征谱带出现的位置及形状相似度极高,因此仪器准确地分析出了混合样品中的三氯乙烯样品。图6 样品原始谱图与苯标准谱图比对样品原始谱图与苯标准谱图在2800cm-1—3200cm-1内比对,两者特征谱带出现的位置及形状相似度极高,因此仪器精准分析出了混合样品中的苯。 通过上述多组对比,很好地证明乐氏科技便携式傅里叶红外气体分析仪在VOCs分析方面具有很高的红外灵敏度和响应,非常适合在环境空气应急检测或职业卫生检测行业的应用。
  • 喜讯:2000千多台FLIR热成像检测器将在德国汉堡安装使用
    喜讯:2000千多台FLIR热成像检测器将在德国汉堡安装使用德国汉堡是2021年智能交通世界大会(ITS World Congress)的主办城市,为此全城都在进行着积极的准备工作。最近汉堡市宣布将在路口交通信号灯和路灯上安装2000多台菲力尔红外热成像检测器,这些检测器用于采集实时的交通数据。依托红外技术,采集车辆和行人数据在德国交通部的支持下,汉堡市成为智能交通和物流方案的示范城市和实验田,并且在为承办ITS行业全球盛会而做着各项准备工作。这些新安装的红外热成像检测器将覆盖整个城市,安装后将改善城市的交通控制并有利于长期规划。作为交通量自动记录项目的一部分,这些新装的设备将在420个路口采集机动车数据。此外,在40根路灯杆上安装的菲力尔红外热成像检测器将用于采集自行车数据,这是“汉堡Radverkehrsz?hlnetz”项目 (汉堡自行车流量统计网)的一部分。所有这些数据都可以在汉堡交通数据平台上查看。这两个项目都是德国联邦议会智能交通战略计划的一部分,并且从德国联邦交通与数字基础设施部的“清新空气”紧急项目中获得1240万欧元(约1400万美金)的资助。收集数据同时注重隐私采用的热成像技术仅采集监控地点的车流量、车型等数据,不会采集如人脸或车牌等私人信息。在2019年底前,居民、政府部门、企业、研究或学术机构都可以在LGV (Landesbetriebs Geoinformation und Vermessung)城市数据平台上获取这些数据。 作为交通量自动记录项目的一部分,420个路口中的85个已经在每个路口安装了2-8台红外热成像检测器。城市规划者可以利用这些丰富的数据来预测交通、仿真未来发展、协调道路施工和控制实时交通。警察总队、交通门户、导航系统供应商和app开发者都可以获取这些数据。红外热成像检测器助力ITS世界大会汉堡市自行车流量统计网将记录自行车专用道和其他重要路口的自行车数据。在这40个点位的红外热成像检测器可以为用户提供一份“全景图”,首批检测器已于近期安装。机动车和自行车监控系统仅仅是汉堡议会60个ITS战略项目中的两项,这些都是在为2021年10月份的智能交通世界大会蓄力。Christian Pfromm,汉堡市首席数字官说:“这些准确实时的交通数据会使得交通控制系统更准确。此外还有利于改善道路管理和协调道路施工。对我们的环境和当地居民都是有益的。红外热成像技术帮助我们实现技术需求的同时又保护个人隐私。人民对我们来说是所有数字化工作的中心。”
  • 大连化物所关亚风、耿旭辉团队研制出高灵敏近红外激光诱导荧光检测器用于甲状旁腺探测
    近日,中科院大连化物所微型分析仪器研究组(105组)耿旭辉研究员、关亚风研究员团队与大连医科大学附属第二医院田晓峰教授、张宁副教授团队,大连海事大学理学院王桂秋教授团队合作,在高灵敏近红外激光诱导荧光检测器(LIF)研制及其在甲状旁腺探测中的应用方面取得新进展。  甲状旁腺(PG)主要调控人体钙磷平衡,大小约为3至8mm,术中辨认非常困难。因此,PG在颈部手术中有误切或漏切的风险。目前,术中PG辨识主要依靠外科医生经验结合病理诊断。近年来,研究表明近红外自荧光探测技术可无创、准确地辨识PG,具有较高的特异性和灵敏度。然而,目前临床应用的探测仪因体积较大、自荧光发光机制不明等原因并未得到广泛应用。  本工作中,合作团队研制了高灵敏近红外光纤式LIF并应用于PG探测。该团队设计了20°夹角光纤探头,减少了探测“盲区”和反射光的收集,相比于共线式集束探头,灵敏度提高了53.4%,短期波动和长期漂移分别降低了61.1%和58.3%;在发射光路中增设二向色镜模块,基线和噪音分别降低了96.7%和92.1%,信噪比提高约9倍。该LIF对CF790染料的检测下限为5.1×10-14mol/L,比已报道的光纤式LIF低数百倍;将研制的LIF原理样机应用于离体病变的PG样本探测,准确率高于文献报道平均水平。目前,合作团队已研制出手持式PG探测器,未来将应用于术中原位PG探测辨别。本研究对推动光纤式LIF技术的发展和PG探测辨别具有重要意义。  耿旭辉、关亚风团队长期从事高灵敏小型LIF及应用研究,采用小型、廉价的激光二极管替代激光器为光源、自主研制的硅基弱光探测器替代进口光电倍增管(PMT)探测荧光,研制出紧凑式共聚焦LIF,对荧光素检测下限为3×10-12M,功耗和开机平衡时间优于进口仪器(Talanta,2018);用高亮度、长斯托克位移荧光探针标记的抗体进行免疫荧光标记,首次定量分析了单个白血病细胞中的active caspase3蛋白,检测下限为7个分子(91pL检测体积内)(Analytical Chemistry,2019);设计了球面二向色反光镜,将检测池放置在球心而非常规的反光镜的焦点上,对荧光素钠检测下限为1.5×10-13M或8.9个荧光素钠分子(98 pL检测体积内)(Analytical Chemistry,2020)。  研究成果以“A Highly Sensitive Optical Fiber Based Near-infrared Laser Induced Fluorescence Detector (LIF) for Parathyroid Gland Detection”为题,发表在《传感器和执行器B-化学》(Sensors and Actuators B: Chemical)上。该工作的第一作者是我所105组联合培养硕士研究生段逸。以上工作得到了辽宁省“兴辽英才计划”青年拔尖人才、中国科学院青年创新促进会、国家自然科学基金等项目的资助。(文/段逸 图/王传亮)  文章链接:https://doi.org/10.1016/j.snb.2022.131879
  • Miconex 2011之“在线仪器分析检测技术”
    仪器信息网讯 2011年8月30日,由中国仪器仪表学会主办的“第22届多国仪器仪表学术会议暨展览会(Miconex 2011)”在北京中国国际展览中心隆重开幕。本届Miconex有500余家国内外公司参展,近万个品种的仪器仪表新型产品集中展出。  Miconex展会同期还组织召开了主题为“科学仪器服务民生”的大型学术会议,其中“在线仪器分析检测技术”分会场邀请了浙江大学金钦汉教授、国家海洋中心哈谦先生、天津大学赵友全教授、西安交通大学汤晓君书记及上海悦特精密科学仪器有限公司总经理俞嘉德博士作了精彩报告,30余位业内人士到场听取了报告。会议现场浙江大学金钦汉教授报告题目:过程分析控制技术的新发展—微型模块化在线采样和分析技术  金钦汉教授在报告中分别列举了几种应用于气相色谱(GC)、液相色谱(LC)、核磁共振(NMR)以及表面等离子共振仪(SPR)的微型采样装置,并指出,NeSSI(新型取样装置)可应用在石化、化工、炼油等行业的分析测量过程中,可以包括原料或最终产品的质控、环境的安全与保护、能耗的降低或过程的控制。  最后,金钦汉教授提出了两点建议:(1)能否在我国也组织一个类似于NeSSI的通用微型模块化在线分析控制平台,把有中国特色的“样品取样处理系统”等有自主知识产权的技术集成进去;(2)与美国相应的学术机构(会议)建立直接联系,加强国际学术和技术交流,加快提升我国在线分析控制技术。国家海洋中心哈谦先生报告题目:水下营养盐现场自动分析技术的研究  哈谦先生介绍到,目前营养盐的测量方法主要包括分光光度法、荧光法、紫外光谱吸收法及离子选择电极法,其中分光光度法可适用于海水、淡水中五种营养盐的测量,因此更为其他方法更为适用。  此外,国家海洋中心还研发了一款集化学分析、光学测量、机械设计和微机控制等技术于一体的海洋现场测量仪器,可安装到海洋浮标、岸边码头和监测船等多种试验平台,亦可用于陆地上的湖泊、河流和水库淡水中营养盐的监测,可在现场无人值守情况下,自动完成对五种营养盐的同时测量。天津大学赵友全教授报告题目:基于光学法的水中油在线分析仪器研究  赵友全教授在报告中首先提到了美国墨西哥湾原油泄漏、大连石化多次起火、陕西渭南柴油泄漏等恶性事件,指出油污染对环境生态破坏严重,具有不可预见的未来影响,且当前技术手段难以及时跟进的现状与启示。  目前,用于水中油的检测方法包括重量法、色谱法、光声色谱法、紫外吸收法、紫外荧光法、光散射法及红外法等,对此赵友全教授指出,基于光学法的监测技术是一种实时在线技术,可应用于船舶(舱底水)、码头、河流、管道泄漏、锅炉循环水、工业冷却水等石油类污染物的检测监测过程中,无需试剂,无二次污染;一次即可校正,操作简单、维护量少;分析速度快、有多种安装、通信方式。西安交通大学汤晓君副教授报告题目:油气探井傅里叶变换红外光谱气测录井仪  汤晓君副教授说到,气测录井是油气探井结果研判的重要手段,目前常用的油气探井气测录井仪是气相色谱仪。近年来,探井技术发展很快,探井速度获得了很大提升,气相色谱仪分析速度慢,不能放在井口录井,录井结果有平滑性和滞后性,且维护麻烦,已成为探井发展的障碍。  据此,刘君华教授、汤晓君副教授等人采用红外光谱分析技术,自2004年研制至今,历时7年,创建了一种全新的油气探井气测录井仪——YQJK井口远程测定仪,分析速度快、维护简单,尤值一提的是该仪器在保证动态特性的同时,还能保证分析结果的准确性。据悉,目前国内外还有采用光谱分析技术构建同类仪器的相关报道。上海悦特精密科学仪器有限公司总经理俞嘉德博士报告题目:最好液相色谱“紫外检测器”的要点及国内独创的“脉冲安培检测器”色谱应用创新点  俞嘉德博士介绍到,上海悦特精密科学仪器有限公司现拥有四个专利技术产品:紫外可见分光自动增益检测器、荧光双分光检测器及紫外可见-荧光双检测器、液相和离子色谱—脉冲安培检测仪、气相和液相色谱检测超灵敏仪。  其中,紫外可见分光自动增益检测器采用了自动增益等多种专利技术,克服了因波长变化导致灵敏度,噪音和漂移变坏的问题,还克服了计算机无法解决灵敏度,噪音,和漂移的问题 液相和离子色谱—脉冲安培检测仪采用世界独创的自动消除噪音和降低漂移的双重专利技术,仪器稳定,灵敏度,信噪比和性价比极高,可一机可以替代多种仪器分析,能替代紫外检测,荧光检测,电化学检测,示差折光检测,电导检测和生化检测等。
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音0.01 mV(企业标准),优于《JJG1512-2015液相色谱仪型式评价大纲》要求的<1mV。 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 这些年,被药典推“宠”的检测器—CAD
    导读8月23日,国家药典委员会公布了2020年版《中国药典》四部通则增修订内容。随着2020年版《中国药典》颁布的临近,飞飞带您一起来回顾下这些年各国药典的变化。 美国药典(usp)药物:琥珀酸美托洛尔,常用于治疗高血压、冠心病和心律失常特点:弱紫外吸收和无紫外吸收杂质检测方法:将原先推荐的uv检测器,更改为使用电雾式检测器cad进行杂质含量测定 图1 美国药典论坛中针对琥珀酸美托洛尔的推荐方法(点击查看大图) 美国药典(usp)药物:脱氧胆酸的含量和杂质检测。挑战:脱氧胆酸“升级”成药品后,需要更为严格的检测手段。检测方法:由滴定法更新为cad检测方法。 图2 美国药典中针对脱氧胆酸含量测定方法更新为cad检测法(点击查看大图) 欧洲药典(ep)和美国药典(usp)药物:钆布醇,颅脑共振成像的造影剂检测方法:两部药典均发布了用电雾式检测器(cad)测定的方法 图3 欧洲药典中针对钆布醇的检测方法(点击查看大图) 电雾式检测器cad是什么?为什么美国药典(usp)和欧洲药典(ep)先后开始采用cad作为推荐检测方法? 图4 电雾式检测器 cad 电雾式检测器(cad)属于新型通用型检测器,灵敏度高,重现性好。基于雾化检测器的原理,洗脱液雾化后形成颗粒,经过蒸发管干燥后与带电氮气碰撞,使得分析物颗粒表面带正电荷,最后通过静电计测量分析物颗粒表面的电荷量,使得色谱峰面积(分析物颗粒的质量)与表面所带电荷量相关,最终成为确定物质浓度的依据。 图5 电雾式检测器cad的工作原理示意图(点击查看大图) 电雾式检测器基于独特的雾化原理,突破了其他检测器设计上的局限,达到通用性目的,为难挥发化合物提供一致响应性!同时,cad检测器具有较高的灵敏度和低检测极限,轻松检测到纳克数量级的化合物,并且与液相色谱分离系统联用,兼顾重现性与稳定性,从而为大部分非挥发性和半挥发性有机物进行准确的定量或半定量分析。 图6 cad的定量原理 与传统检测器相比,cad有何过人之处? cadvsuv与常见的uv检测器相比,cad的响应不受化合物紫外吸收基团的影响,可以检测uv无法检测到的弱紫外吸收化合物,半挥发和难挥发的化合物都能在cad上具有较好的响应。 cadvselsd与蒸发光散射检测器(elsd)相比,cad具有更高的检测灵敏度、更好的日内和日间重复性和更宽的线性范围。而很多elsd无法检测到的杂质,在cad上具有较好的响应。 另一方面,难挥发性化合物的cad响应与分析物的理化性质无关,在进入cad的流动相组成不变的情况下,进样量相同的不同化合物具有相同的cad响应。换言之,cad可用已知化合物的线性曲线定量未知化合物。此外,cad做化合物纯度分析所得数据更接近样品的真实组成。 cad特点●灵敏度高,如在分析葡萄糖、蔗糖和乳糖时,能检测到0.5ng的柱上样量;●应用广泛,能分析小分子、大分子化合物,如氨基酸、蛋白、聚合物等;●更高的响应一致性。如对24种化合物在相同色谱条件下分别直接进样1μg(不接色谱柱),其响应的峰面积的rsd值仅为10.7%;●动态检测范围宽,达3-4个数量级;●操作简单,维护简便,工作流速0.01-2.00 ml/min,兼容micro-lc和uhplc。 2004年10月,电雾式检测器一经推出,就相继获得仪器行业的最高荣誉:2005年pittcon“撰稿人”银奖、及被称为“发明领域的诺贝尔奖”的r&d100 奖。cad在药物、蛋白、磷酯类、类固醇类、低聚糖类、表面活性剂类、碳水化合物、聚合物、对离子和多肽类的分析等多领域展现出无可替代的优势。每年都会有大量的药物分析的检测方法,选择或者更改为cad检测。 详述cad检测器原理与技术应用的专著《charged aerosol detection for liquid chromatography and related separation techniques(用于液相色谱和相关分离技术的电雾式检测器)》也已于近期出版,为使用者提供了全面详尽的技术指南。 每年越来越多的cad检测方法被美国药典和欧洲药典的收录,反映出各大药典对于新新型检测技术保持积极的态度,对我们国内的cad用户是一个极大的鼓舞。我们也希望能与用户一同携手,积极响应《中国制造2025》的号召,为撰写更多cad相关方法与中国标准提供蓝本,加速转中国药典与国标数字化和标准化,早日实现制造强国的中国梦。 我的成功离不开你讲故事-赢大礼活动规则:从即日起,投稿“我与赛默飞hplc不得不说的故事”,一经核实即可获赠折叠背包或lamy墨水笔一个。稿件要求200-600字,包含实验室赛默飞hplc照片。 快快扫描二维码来投稿吧
  • 气相色谱检测器选择指南
    p style="line-height: 1.5em " strong气相色谱检测器/strong(Gas chromatographic detector)是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。经过检测器将各组分的成分及浓度转化为电信号并经由放大器放大,最终由记录仪或微处理机得到色谱图,就可以对被测试的组分进行定性和定量的分析了。气相色谱检测器相当于气相色谱的“眼睛”,选择合适的检测器对于应用气相色谱检测目标物质至关重要,仪器信息网编辑对气相色谱检测器相关的分类、性能指标以及常用检测器进行了整理,方便大家在选择检测器时进行参考。/pp style="line-height: 1.5em text-align: center "strong style="text-align: center "span style="font-size: 20px color: rgb(31, 73, 125) "检测器分类/span/strong/pp style="line-height: 1.5em "  气相色谱检测器种类繁多,有多种分类:/pp style="line-height: 1.5em "  1、根据对被检测样品的响应范围可以被分为:/pp style="line-height: 1.5em "  strong通用型检测器:/strong对绝大多数检测无知均有响应,如:TCD、PID /pp style="line-height: 1.5em " strong 选择型检测器:/strong对某一类物质有响应,对其他物质的无响应或很小,如:FPD。/pp style="line-height: 1.5em "  2、根据检测器的检测方式不同可以分为:/pp style="line-height: 1.5em "  strong浓度型检测器:/strong测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如TCD、PID /pp style="line-height: 1.5em "  strong质量型检测器:/strong测量载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的质量成正比。如FID、FPD。/pp style="line-height: 1.5em "  3、根据信号记录方式不同进行分类/pp style="line-height: 1.5em " strong 微分型检测器:/strong微分型检测器的响应与流出组分的浓度或质量成正比,绘出的色谱峰是一系列的峰。/pp style="line-height: 1.5em "  strong积分型检测器:/strong测量各组分积累的总和,响应值与组分的总质量成正比,色谱图为台阶形曲线,阶高代表组分的总量。/pp style="line-height: 1.5em "  4、根据样品是否被破坏可以分为:/pp style="line-height: 1.5em "  strong破坏性检测器:/strong组分在检测过程中,其分子形式被破坏,例如:FID、NPD、FPD /pp style="line-height: 1.5em "  strong非破坏性检测器/strong:组分在检测过程中,保持其分子结构,例如:TCD、PID、ECD。span style="text-align: center " /span/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) text-align: center "span style="font-size: 20px "性能指标/span/strong/pp style="line-height: 1.5em "  气相色谱检测器一般需满足以下要求:通用性强,能检测多种化合物或选择性强,只对特定类别化合物或含有特殊基团的化合物有特别高的灵敏度。响应值与组分浓度间线性范围宽,即可做常量分析,又可做微量、痕量分析。稳定性好,色谱操作条件波动造成的影响小,表现为噪声低、漂移小。检测器体积小、响应时间快。/pp style="line-height: 1.5em "  根据以上要求,气相色谱检测器的主要性能指标有以下几个方面:/pp style="line-height: 1.5em "  strong1. 灵敏度/strong/pp style="line-height: 1.5em "  灵敏度是单位样品量(或浓度)通过检测器时所产生的相应(信号)值的大小,灵敏度高意味着对同样的样品量其检测器输出的响应值高,同一个检测器对不同组分,灵敏度是不同的,浓度型检测器与质量型检测器灵敏度的表示方法与计算方法亦各不相同。/pp style="line-height: 1.5em "  strong2. 检出限/strong/pp style="line-height: 1.5em "  检出限为检测器的最小检测量,最小检测量是要使待测组分所产生的信号恰好能在色谱图上与噪声鉴别开来时,所需引入到色谱柱的最小物质量或最小浓度。因此,最小检测量与检测器的性能、柱效率和操作条件有关。如果峰形窄,样品浓度越集中,最小检测量就越小。/pp style="line-height: 1.5em "  strong3. 线性范围/strong/pp style="line-height: 1.5em "  定量分析时要求检测器的输出信号与进样量之间呈线性关系,检测器的线性范围为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。比值越大,表示线性范围越宽,越有利于准确定量。不同类型检测器的线性范围差别也很大。如氢焰检测器的线性范围可达107,热导检测器则在104左右。由于线性范围很宽,在绘制检测器线性范围图时一般采用双对数坐标纸。/pp style="line-height: 1.5em "  strong4. 噪音和漂移/strong/pp style="line-height: 1.5em "  噪声就是零电位(又称基流)的波动,反映在色谱图上就是由于各种原因引起的基线波动,称基线噪声。噪声分为短期噪声和长期噪声两类,有时候短期噪声会重叠在长期噪音上。仪器的温度波动,电源电压波动,载气流速的变化等,都可能产生噪音。基线随时间单方向的缓慢变化,称基线漂移。/pp style="line-height: 1.5em "  strong5. 响应时间/strong/pp style="line-height: 1.5em "  检测器的响应时间是指进入检测器的一个给定组分的输出信号达到其真值的90%时所需的时间。检测器的响应时间如果不够快,则色谱峰会失真,影响定量分析的准确性。但是,绝大多数检测器的响应时间不是一个限制因素,而系统的响应,特别是记录仪的局限性却是限制因素 。/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) font-size: 20px text-align: center "常用检测器/strong/pp style="line-height: 1.5em " 在日常应用中,主要会用到的气相色谱检测器主要有FID、ECD、TCD、FPD、NPD、MSD等,针对这些检测器,梳理一下它们的优缺点和应用范围。/pp style="text-align: center line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 20px "常见气相色谱检测器汇总/span/strong/span/pp style="line-height: 1.5em "strongspan style="font-size: 20px color: rgb(79, 97, 40) "/span/strong/ptable style="border-collapse:collapse " data-sort="sortDisabled"tbodytr class="firstRow"td style="border: 1px solid windowtext word-break: break-all " valign="middle" rowspan="1" colspan="2" align="center"p style="line-height: 1.5em "检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "工作原理/p/tdtd style="border: 1px solid windowtext " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "应用范围/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "中文名称/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "英文缩写/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰离子化检测器br//p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FID/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "有机化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电子俘获检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "ECD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "化学电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电负性化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "TCD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导系数差异/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "所有化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰光度检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "分子发射/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "磷、硫化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮磷检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "NPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热表面电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮、磷化合物/p/td/tr/tbody/tablep style="line-height: 1.5em "span style="font-size: 18px color: rgb(31, 73, 125) "strongFID——火焰离子化检测器/strong/spanbr/  FID是多用途的破坏性质量型通用检测器,灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。F其主要原理为,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/e368385d-2632-45d8-9d34-f6dcefd84528.jpg" title="201506242255_551533_2984502_3.jpg"//pp style="text-align: left line-height: 1.5em "  span style="color: rgb(0, 0, 0) "火焰离子化检测对电离势低于Hsub2/sub的有机物产生响应,而对无机物、永久气体和水基本上无响应,所以strong火焰离子化检测器只能分析有机物/strong(含碳化合物),不适于分析惰性气体、空气、水、CO、COsub2/sub、CSsub2/sub、NO、SOsub2/sub及Hsub2/subS等。/span/pp style="text-align: left line-height: 1.5em "span style="color: rgb(0, 0, 0) " FID特别适合于strong有机化合物的常量到微量分析/strong,是目前环保领域中,空气和水中痕量有机化合物检测的最好手段。抗污染能力强,检测器寿命长,日常维护保养量也少,一般讲FID检测限操作在大于1× 10sup-10/supg/s时,操作条件无须特别注意均能正常工作,也不会对检测器本身造成致命的损失。由于FID响应有一定的规律性,在复杂的混合物多组分的定量分析时,特别对于一般的常规分析,可以不用纯化合物校正,简化了操作,提高了工作效率。/span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "ECD——电子捕获检测器/span/strong/span/pp style="line-height: 1.5em "  span style="color: rgb(0, 0, 0) "电子捕获检测器是一种高选择性检测器,在分析痕量电负性有机化合物上有很好的应用。它仅对strong那些能俘获电子的化合物/strong,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是strong线性范围较小/strong,通常仅102-104。/span/pp style="text-align: center line-height: 1.5em " img src="http://img1.17img.cn/17img/images/201807/noimg/4dcdf2d1-8cb9-4e96-b3f9-a09ced241d86.jpg" title="2015062422302130_01_2984502_3.jpg" style="text-align: center "//pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " ECD是浓度型选择性检测器,对电负性的组分能给出极显著的响应信号。用于分析卤素化合物、一些金属螯合物和甾族化合物。其主要原理为检测室内的放射源放出β-射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成基流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。/pp style="line-height: 1.5em "  由于ECD在常用的几种检测器中灵敏度最高,再加上ECD结构、供电方式和所有操作条件都对ECD主要性能产生影响。可以说,ECD选用在所有常用检测器中也是比较困难的,遇到使用中问题也最多。br//pp style="line-height: 1.5em "  选择性:从选择性看,ECD特别适合于环境监测和生物样品的复杂多组分和多干扰物分析,但有些干扰物和待定性定量分析的组分有着近似的灵敏度(几乎无选择性),特别做痕量分析时,还应对样品进行必要的预处理,或改善柱分离以防止出现定性错误。/pp style="line-height: 1.5em "  灵敏度:ECD分析对电负性样品具有较高的灵敏度,如四氯化碳最小检测量可达到1× 10sup-15/supg。/pp style="line-height: 1.5em "  线性范围:传统的认为ECD线性范围较窄,但由于ECD的不断完善,线性范围已优于104,可基本满足分析的需求。同时,针对高浓度样品,可以通过稀释样品后再使用ECD进行分析。/pp style="line-height: 1.5em "  操作性:ECD几乎对所有操作条件敏感,其对干扰物和目标物都具有高灵敏度的特性使得ECD的操作难度较大,有很小浓度的敏感物就可能造成对分析的干扰。/pp style="line-height: 1.5em "  因此,在使用ECD进行样品分析时,应当了解被分析样品的特点和待定性定量的组分的物理性质,确定选用ECD是否分析合适。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "TCD——热导检测器/span/strong/span/pp style="line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) " 热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。其基于不同组分与载气有不同的热导率的原理而工作。热导检测器的热敏元件为热丝,如镀金钨丝、铂金丝等。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),热丝传向池壁的热量也发生变化,致使热丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出,记录该信号从而得到色谱峰。/span/pp style="text-align: center line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) "img src="http://img1.17img.cn/17img/images/201807/noimg/9cfa17ce-9f01-4263-b262-27853bbe7e3f.jpg" title="2015062422242303_01_2984502_3.jpg"//span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " TCD通用性强,性能稳定,线性范围最大,定量精度高,操作维修简单,廉价易于推广普及,strong适合常量和半微量分析/strong,特别适合strong永久气体/strong或组分少且比较纯净的样品分析。/pp style="line-height: 1.5em "  对于环境监测和食品农药残留等样品进行痕量分析,TCD适用性不强,其主要原因有:检测限大(常规 10-6g/mL) 样品选择性差,即对非检测组分抗干扰能力差 虽然可在高灵敏度下运行,但易被污染,基线稳定性变差。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "FPD——火焰光度检测器/span/strong/span/pp style="line-height: 1.5em " FPD为质量型选择性检测器,主要用于测定含硫、磷化合物。使用中通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。其主要原理为组分在富氢火焰中燃烧时组分不同程度地变为碎片或分子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱,其中394nm和526nm分别为含硫和含磷化合物的特征波长。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/76c52176-d151-497d-be84-393c102e715c.jpg" title="2015062422290693_01_2984502_3.jpg"//pp style="line-height: 1.5em " FPD是一种高灵敏度、高选择性的检测器,对含P和S特别敏感,主要用于strong含P和S的有机化合物和气体硫化物中P和S的微量和痕量分析/strong,如有机磷农药、水质污染中的硫醇、天然气中含硫化物的气体等。/pp style="line-height: 1.5em "  FPD火焰是富氢焰,空气的供量只够与70%的氢燃烧反应,所以火焰温度较低以便生成激发态的P、S化合物碎片。FPD基线稳定,噪声也比较小,信噪比高。氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对P的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大,继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的氮气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应。无论S还是P的测定,都有各自最佳的氮气和空气的比值,并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。/pp style="line-height: 1.5em "strongspan style="font-size: 18px color: rgb(31, 73, 125) "NPD——氮磷检测器/span/strongbr//pp style="line-height: 1.5em "  span style="font-family: 宋体, SimSun font-size: 16px "NPD是一种质量型检测器。/spanspan style="font-family: 宋体, SimSun "NPD工作原理是将一种涂有碱金属盐如Na/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "、Rb/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当氮、磷化合物先在气相边界层中热化学分解,产生电负性的基团。试样蒸气和氢气流通过碱金属盐表面时,该电负性基团再与气相的铷原子(Rb)进行化学电离反应,生成Rb+和负离子,负离子在收集极释放出一个电子,并与氢原子反应,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。/span/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/4fe5acfc-2693-4772-8c2a-8d5c225f7ac7.jpg" title="2015062422312688_01_2984502_3.jpg"//pp style="line-height: 1.5em " NPD结构简单,成本较低,灵敏度、选择性和线性范围均较好,对含N和P的化合物选择性好、灵敏度高,适合做样品中strong含N和P的微量和痕量分析/strong。NPD灵敏度大小和化合物的分子结构有关,如检测含N化合物时,对易分解成氰基(CN)的灵敏度最高,其它结构尤其是硝酸酯和酰胺类响应小。/pp style="line-height: 1.5em "  NPD铷珠的寿命不是无限的,在一般使用条件下,寿命可保证2年以上。但在操作中,铷珠的退化速度不是均匀的,通常使用初期退化快,后期退化慢。实验表明:前50 h灵敏度可能下降20%,而后1300h,每经过250 h,灵敏度下降20%左右。这也就是为什么新的铷珠开始使用前,为获得高稳定性,必须对其进行老化处理的原因,当做半定量,且灵敏度要求不高时,老化时间不宜太长。/pp style="line-height: 1.5em "  NPD的检测器控温和控温精度、气体的流量稳定性、待分析组分分子结构等因素,均对铷珠最佳工作状态有影响,即很难保证性能恒定不变。为保证选择性和灵敏度不变,根据情况需不定时的调整NPD各条件参数。/pp style="line-height: 1.5em "br//pp style="line-height: 1.5em " 气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于最佳状态。br/ 建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。br/通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。br/ 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。/pp style="line-height: 1.5em "br//ppbr//p
  • 【热点应用】高级多检测器GPC测量低分子量样品
    高级多检测器GPC测量低分子量样品凝胶渗透色谱(GPC)是测量天然和合成聚合物分子量和分子量分布的常见工具。先进的光散射检测器,越来越多地被用来克服传统GPC测量的局限性,准确提供绝对分子量以及分子尺寸。由于样品的光散射(Rθ)灵敏度会受到聚合物的分子量Mw、浓度(C)和折光指数增量(dn/dc)的影响,所以对于低分子量聚合物而言,准确测定分子量对大多数GPC/SEC系统来说是一个挑战。例如,PLGA等药物递送聚合物的dn/dc通常很低,而环氧树脂、多元醇等分子量可能极低。马尔文帕纳科最新GPC系统OMNISEC可用于克服测量低分子量聚合物测定的困难,这要归功于光散射和示差检测器灵敏度的提高。借助OMNISEC光散射灵敏度,您可以:以更高的准确度测量较低分子量的样品。可以较低样品浓度测量珍贵样品。以更高的准确度和灵敏度测量具有低dn/dc的样品。对环氧树脂、多元醇和PLGA样品的分析清楚地表明,先进的检测技术现在可以轻松地应用于低分子量等聚合物的表征。 环氧树脂双酚A用于生产双酚A二缩水甘油醚等环氧树脂,是一种低分子量样品,我们可以用OMNISEC在正常浓度下成功测量。在图1中,对浓度为3 mg/ml的双酚A(分子量为228 g/mol)进行分析,显示出示差RI检测器和光散射检测器LS都具有良好信噪比的信号响应。(图1)图1:双酚A(分子量228 g/mol)在THF中运行的多检测器色谱图(RI和RALS检测器)。样品浓度为3 mg/ml。用OMNISEC系统分析分子量为340g/mol的双酚A二缩水甘油醚,得到的色谱图(图2)显示了清晰的峰和良好的信号响应,尽管聚合物的分子量很低。图2:双酚A二缩水甘油醚(分子量340g/mol)在四氢呋喃中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为5 mg/ml。多元醇多元醇是具有多个羟基官能团的材料,通常用作合成其他聚合物(如聚氨酯)的反应物,或在食品工业中使用多元醇作为糖的替代品。了解这些材料的分子量分布对于监测它们在不同应用环境中使用是至关重要的。本文采用聚乙二醇(PEO)和聚丙二醇(PPG)为例进行分析。图3显示了极低分子量PEO的OMNISEC色谱图和结果。在RALS探测器中观察到良好的信噪比,使得对聚合物的全面表征成为可能。图3:多检测器SEC色谱图(RI、RALS和粘度计检测器)。分子量为196g/mo的聚乙二醇。样品浓度为3.9 mg/ml。在图4和表1中,您可以看到PPG的分析,它在THF具有非常低的dn/dc(0.045ml/g)。所有的检测器都有很好的响应,并且多次注射之间有很好的重复性。图4:聚丙二醇在THF中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为6 mg/ml。表1:三个聚丙二醇样品重复注射的分子量数据。样品浓度为6 mg/ml。聚乳酸-羟基乙酸 PLGA聚乳酸-羟基乙酸(PLGA)是一种生物相容性和生物可降解性聚合物,最常用于药物输送和组织工程应用。在药物输送应用中,PLGA用于配制药物和蛋白质在体内的受控输送装置。这些PLGA设备的工作方式是,当PLGA在体内降解时,它会释放与之相关的药物分子。PLGA给药装置的物理性能可以通过控制药物浓度、PLGA分子量以及组成PLGA的聚乳酸和乙醇酸的比例来调节。然而,由于PLGA在THF中的dn/dc非常低,约为0.05ml/g,因此SEC对PLGA的表征历来是非常困难的。如图5所示,使用OMNISEC系统在THF中按SEC分析PLGA 50:50后,每个检测器均可获得良好的信号响应和完整的样品表征。图5:PLGA 50:50多检测器SEC色谱图(RI、RALS、LALS和粘度检测器)。样品浓度为3.028 mg/ml。结论:与传统GPC相比,OMNISEC系统具有高灵敏度,因此可以在正常浓度下测量低dn\dc和低分子量样品,如环氧树脂、多元醇和PLGA,并具有极好的重复性。
  • 您真的选对适用于您样品的检测器了吗?
    您知道样品中存在多种化合物,同时也知道您的色谱运行条件已经最优化。但是您有想过检测方式是否正确吗?您确定能在馏分中找到所有对您来说很重要的东西吗? 今天,“小步”同学来给您介绍 UV、ELSD、MS、RI 和荧光这五种不同的检测器,讨论它们的优缺点,并就每种检测器最适合的化合物检测类型提供建议。之前我们已经介绍过关于检测器的文章(点击这里),主要集中 UV 检测、蒸发光散射检测器 (ELSD) 或 UV 和 ELSD 结合使用的优点和局限性上。如果您看过我们之前的文章,在这里我想唤起您回忆的同时,也向您介绍液相色谱中其他三种常用的检测方法。接下来,让我们从最熟悉的检测方法开始。1UV 检测器这是制备色谱中最常用的检测器。它的检测方法具有选择性,因为它只能用于检测紫外范围(200 至 400 nm)或可见范围(400 至 800 nm)的具有一定吸收的物质。您可以使用紫外检测器成功观察到具有生色团或助色团的样品分离情况,例如:芳香环两个共轭双键与具有一对电子的原子相邻的双键羰基溴、碘或硫紫外检测器通过测量穿过溶液的紫外光束强度的变化来进行判断,并将化学信号转换成为电信号呈现于软件中。光的吸收强度与光束通过溶液的浓度有关。这种关系可以通过朗伯-比尔定律描述:其中:E = 吸光强度ε = 吸光系数 [表示物质浓度为 1mol/L,液层厚度为 1cm 时溶液的吸光度]c = 溶液浓度 [mol/L]d = 光束通过溶液的路径长度 [cm]您使用的每种溶剂都有其特有的紫外吸收截止波长。在低于此值的波长处,溶剂本身会吸收所有光。使用紫外检测器时,您应该选择避开溶剂紫外吸收波长。否则,物质和溶剂的信号会重叠,导致馏分分析不正确。如果您不知道化合物的吸收光谱,我建议您同时使用多个波长,甚至使用二极管阵列检测器 (DAD),它可以记录整个紫外光谱。生成的图表将为用户提供更多信息:总结一下紫外检测器,其有独特的优缺点:优点在于紫外检测器易于使用、可靠、相对便宜、与溶剂梯度兼容、对样品无破坏性且相对灵敏和特异性。缺点则是对于无发色基团的化合物难以检测,并且受到溶剂UV截止波长的限制,尤其是在低 UV 波长下。2ELS 检测器蒸发光散射检测器通过检测被蒸发干燥的样品颗粒散射的光量来工作。该过程包括三个步骤:雾化、蒸发和检测。首先,雾化器将空气或氮气气流与色谱柱或滤芯流出物相结合,以产生微小液滴的气溶胶。其次,液滴进入漂移管,在此过程中,流动相蒸发并留下目标化合物的颗粒。最后,光线照射到离开漂移管的干燥颗粒上。光被散射,产生的光子被光电二极管检测到。描述 ELSD 受粒度控制方程:A = amb其中:A = 峰面积m = 溶质质量a 和 b 是常数,取决于多种因素,例如目标物质的粒径、浓度和类型、气体流速、流动相流速和漂移管的温度。如果您想纯化没有发色团的化合物,ELS 检测方法是理想的选择。没错,正是紫外检测器无法轻易检测到的化合物。这些类型的化合物包括碳水化合物、脂质、脂肪和聚合物等。ELS 检测器的方式不受流动相变化和梯度基线偏移的干扰。并且其检测灵敏度与化合物的理化性质无关,只受化合物绝对量的影响。由于 ELSD 是一种质量检测器,高信号强度表明有大量化合物正在洗脱。由于检测器是半定量的,因此您可以获得一些有价值的信息,比如样品中不同化合物的占比。ELSD 几乎可以检测所有化合物,除了高挥发性分析物,例如酒中的乙醇。通常,目标化合物或添加的改性剂的挥发性必须低于流动相。除此之外,ELSD也属于破坏性检测器,提供相应化合物信号的同时,也将破坏您的样品,因此您应该尽量减少样本进样量。流动相的沸点越低,溶剂越容易蒸发。像 DMF、甲苯或水等高沸点流动相则需要在高温下蒸发。然而,这种方法存在破坏目标化合物的风险。或者,溶剂可以雾化成极小的液滴,使其即使在室温下也可以蒸发。3质谱检测器(MS)质谱仪作为色谱检测器,可以根据每个化合物基于其独特的质谱表征来进行分析。LC-MS 通常具有以下工作流程。首先,分子化合物从色谱柱随洗脱液进入质谱检测器当中被离子源(APCI,ESI 等)转化成为带电或电离状态。之后进入到质量分析器(Q,TOF 或 QqQ,Q-TOF 等)当中进行分析,在这里通过调整电场强度或根据飞行时间不同,可以获得母离子或离子碎片的质荷比信息,最后将它们输出到接收器当中,在那里它们被识别并转换为数字信号输出。MS 检测方法的优点包括良好的灵敏度、选择性和获得结构信息的可能性。而缺点则是购买价格高且设备需要频繁维护。“小步”同学认为,MS 检测器固然非常好,但是在制备色谱领域,或者拥挤和繁忙的合成实验室中很难拥有较高的占有量。4示差折光检测器(RI)示差折光检测器检测原理是由介质在流经测量池时引起的光的折射变化而进行检测的。这种检测方法是非选择性的,因为它可以检测流过测量池的所有物质。RI 检测器根据以下公式进行测量:其中:Δn = 折射率之差nG = 溶解样品的折射率nL = 纯溶剂的折射率ni = 样品的折射率c = 样品浓度RI 检测器的优点包括:检测器的通用性良好的线性动态范围 - ~ 4个数量级易于操作 RI 检测器的缺点包括:不能使用梯度溶剂洗脱灵敏度低对温度和压力波动非常敏5荧光检测器当具有特定官能团的化合物被较短波长的能量激发时,它们会发出较高波长的辐射或荧光。荧光强度受激发波长和发射波长影响,从而能够选择性地检测某些特定成分。大约 15% 的化合物具有天然荧光。含有羰基的脂肪族和脂环族化合物及高度共轭双键的化合物都具有天然荧光。除此之外,具有共轭 π 电子的芳香族化合物可以发出最强的荧光活性。荧光检测器的优点包括:高灵敏度:荧光检测器的灵敏度是紫外检测器的 10 ~1000 倍高选择性通常对流量和温度变化不敏感荧光检测器的缺点包括:有限的线性度没有多少化合物是天然荧光的衍生方法复杂复杂的检测器使用:必须牢牢掌握化学和仪器变量 一些化学物质,如氧气,可以淬灭荧光,所以必须严格脱气好啦!以上就是对于液相色谱当中常用的五种检测器的简单介绍,相信通过这篇文章,您也大概了解到哪种检测器最适合应用于您的待测样品。今天和大家分享的就到这里,我是“小步”同学,我们下期再见!
  • 通微蒸发光散射检测器十周年活动火热来袭
    2007年,上海通微分析技术有限公司(以下简称通微)研发的UM3000蒸发光散射检测器问市,彻底打破进口蒸发光产品的垄断地位。作为国家“十五”科技攻关重大项目,UM3000在各个技术环节都不输于进口设备,稳定的性能和极高的性价比使她迅速站稳国内蒸发光市场地位。 当然,通微的研发脚步没有就此停歇,糅合美国通微(通微美国总部)带来的先进技术,通微将每个环节继续精心打磨,贴合不同客户的需要,定制多款蒸发光散射检测器。通微蒸发光散射检测器系列产品在国内市场占有率稳居第一,2015年底新推出的UM5800凭借小巧的外形、应势的全触屏设计、更高的性能吸引众多客户的关注。 为了庆祝UM系列蒸发光散射检测器在中国市场的迅猛态势,更为了解广大用户的仪器使用情况,完善仪器品质,提高服务质量,通微启动了系列ELSD用户体验有奖征文暨UM3000以旧换新活动,诚邀您的参与!
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 日立新型质谱检测器在大连化物所安装使用
    2015年09月02日,日立高新技术公司高效液相色谱仪Chromaster-新型质谱检测器Chromaster5610联用仪在大连化学物理研究所顺利安装使用。 中国科学院大连化学物理研究所创建于1949年3月,是一个应用研究与基础研究并重、具有较强技术开发实力、承担国家和企业重大项目为主的化学化工研究所。 此次,我们在合作研究单位大连化学物理研究所安装的日立高效液相色谱仪Chromaster-新型质谱检测器Chromaster5610联用仪,希望能够帮助用户更轻松地获得更好的分析结果。安装培训中日立高新技术工程师介绍了日立新型质谱检测器的优势特点,以及如何帮助用户解决分析中的一些实际问题。用户表示此仪器对他们的工作帮助很大,对其实用性表示了极大的认可。 日立新型质谱检测器Chromaster56101) 不需要排气管道 因为最大限度地控制了从质谱检测器的排放废弃体积,所以不需要排气管道。(*测量有毒物质等时,还需要排气管道。)2) 紧凑的设计,实现了和LC同等的安装面积可以安装在常规的实验台上。3) 降低N2的使用量通过减少引进离子源的溶剂量,N2最大使用量3ml/min,大大降低成本。(也可使用N2发生器或N2高压罐) 关于日立新型质谱检测器Chromaster5610,请参考链接:http://www.instrument.com.cn/netshow/SH102446/C223442.htm 关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制