当前位置: 仪器信息网 > 行业主题 > >

红外法误差分析

仪器信息网红外法误差分析专题为您提供2024年最新红外法误差分析价格报价、厂家品牌的相关信息, 包括红外法误差分析参数、型号等,不管是国产,还是进口品牌的红外法误差分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外法误差分析相关的耗材配件、试剂标物,还有红外法误差分析相关的最新资讯、资料,以及红外法误差分析相关的解决方案。

红外法误差分析相关的论坛

  • 【原创】样品处理过程可能对红外分析仪器造成的测量误差

    红外线气体分析仪的样品处理系统承担着除尘、除水和温度、压力、流量调节等任务,处理后应使样品满足仪器长期稳定运行要求。除应保证送入分析仪的样品温度、压力、流量恒定和无尘外,特别应注意的是样品的除水问题。当样气中含水量较大时,主要危害有以下几点:1、样气中存在的水分会吸收红外辐射,从而给测量造成干扰;2、当水分冷凝在晶片上时,会产生较大的测量误差;3、水分存在会增强样气中腐蚀性组分的腐蚀作用;4、样气除水后可能造成样气的组成发生变化。高含水的气样温度降至室温,过饱和的水析出后,各组分的浓度均会发生变化。若气样中有一些易溶于水的组分,这些组分被水部分溶解,会使各组分的浓度变化更大。 工艺要求检测的浓度指标一般是不含水分的“干气”中的含量,而经预处理后的气样中水分不可能完全除掉,仍将占有一定的比例。随着预处理运行状况的变化,环境温度、压力的变化,气样中的水含量亦随之变化。一些极性极强的组分如CO2、SO2、NO等,随着水温、气样压力及水气接触时间长短的不同而有不同的溶解度。 经过预处理后,气样的组成及各组分的浓度变化是十分复杂的,由此造成的示值偏离对微量组分检测尤为严重。但这种偏离并不都是附加误差,其中一部分往往反映了浓度变化的真实情况,对此,应通过样品组成分析及预处理运行条件测试等,从系统误差角度加以消除。而对预处理运行状态变化引起的附加误差则需创造条件,使之降至最低。 为了降低样气汗水的危害,在样气进入仪器之前,应先通过冷却器降温除水(最好降至5摄氏度以下),降低其露点,然后伴热保温,使其温度升高之40摄氏度左右,送入分析器进行分析,由于红外分析器恒温在50至60摄氏度下工作,远高于样气的露点温度,样气中的水分就不会冷凝析出了。

  • 近红外分析误差?

    查看相关的近红外国标,大多提及几个指标?1.重复性,再现性2.sep sec值3.预测值与湿法化学值的偏差。偏差在标准中指的是残差的平均。在具体的分析软件中看到这个样情况?蛋白指标 预测值与湿法化学值的绝对差-0.3 偏差为0.3020.23 偏差为0.345这个怎么来的,请高手解读一下。在判定一个样品具体一个项目的时候如何评价?

  • 【原创大赛】FOSS在线近红外Profoss误差分析

    使用ProFoss过程中,也许会碰到ProFoss误差较大,跟化验室的结果对不上。而且似乎也不能简单通过调截距来改善,因为截距不稳定,有时差这些,有时差那些。今天调了一个截距,明天系统误差又变化,结果又不好了。有的时候,ProFoss结果跟化验室结果不一样,不知该相信哪一个?还经常有人问, ProFoss准确度能达到多少?比如水分误差能不能小于±0.1%?蛋白误差能不能小于±0.3%?这样的问题,困扰着很多人,影响我们愉快的使用ProFoss。所以在此分享一下我对这些问题的看法,希望对ProFoss使用有帮助,开始之前,先举个例子吧:小明是一家公司的ProFoss技术员,这天他们生产豆粕,假设蛋白真实值是43%。假设ProFoss检测结果100%准确,也是43%。(这些假设小明都不知道)。为了验证一下ProFoss误差,小明到线上取样化验,化验结果是42.7%。跟ProFoss结果比,实验室低了0.3%,为了让ProFoss跟实验室一致,小明就把ProFoss结果下调了0.3%。然后ProFoss结果变成了42.7%。然后小明又取了一个样品,还是相同的样品,真实值还是43%(小明不知道),这次实验室化验结果是43.3%,跟ProFoss结果对比,实验室高了0.6%。小明心想:调了截距后误差怎么变大了呢?于是又根据这次结果把ProFoss往上调了0.6%。ProFoss结果变成了43.3%。为了验证这次有没有调好,他又取了个样品,豆粕还是相同的豆粕(小明不知道),化验结果,这次是42.5%。这次,ProFoss结果高了0.8%!误差怎么越调越大呢?!小明疑惑了!ProFoss不好用吧?!100%准确的ProFoss最终被算出有0.8的误差,为什么?小明忽视了什么问题呢?答案是:重复性,即精确度。这个例子,是我们假设ProFoss本身误差为0,没有取样误差等因素的影响情况下,我们得到的误差,真实情况下,还要考虑ProFoss的本身误差,取样误差等的影响,所以我们得到的误差可能会更大,但这个误差是不真实的,真实误差其实并没有这么大!从这个例子我们得到的最重要的信息是:要想准确衡量ProFoss的误差,实验室本身的重复性,即精确性非常重要。相同的样品我们要保证能得到相同的结果!下面我们就来分析一下影响“ProFoss误差”的一些重要因素:1、取样误差取样误差是指,取样取到的样品跟ProFoss检测到的样品不一致造成的误差。比如ProFoss检测到的样品是A,而取到的样品是B,用B的化验结果去跟A的结果对比,当然会有误差。当检测的产品不均匀时,最容易出现取样误差。最常见的,用巴西豆生产43规格的豆粕时,就很容易有取样误差。这也是有人反映巴西43粕误差较大的原因。那怎么检验有没有存在取样误差呢?最简单的方法就是,短时间内连续取至少5个样品做常规化验,然后对比这几个样品各指标,比如水分、蛋白的差异情况。差异越大,波动越大,说明越容易存在取样误差。此外,我们可以通过计算这几个样品的标准偏差、极差来评价取样误差具体有多大。2、样品制备误差样品制备误差是指对样品进行前处理的过程中带来的误差。最常见的样品制备误差,可以由分样不均匀,或者混合不均匀造成,导致实际化验的样品不能代表这份样品的真实结果。所以不均匀的样品,容易出现样品制备误差。最常见的例子,还是43规格的巴西豆粕,非常容易出现样品制备误差。评价样品制备误差的简单方法是,将样品按日常处理方法,分成至少5份进行化验,然后比较这几个样品的化验结果。差异越大,波动越大,样品制备误差越大。可以通过计算这几个样品的标准差、极差来评价样品制备误差的具体大小。3、化验误差化验误差是指化验过程中造成的误差。化验误差受化验方法,设备,试剂,人员熟练程度等因素的影响。评价化验误差可以用化验精确度跟化验准确度来衡量。对校正ProFoss来讲,化验的精确度比准确度更加重要,且重要的多!评价化验误差(主要指精确度)的方法是:相同的样品重复化验5-10次,或者更多次数。比较各指标的差异,波动情况,差异越大,则化验误差越大,精确度越差。可以用标准偏差、极差来衡量精确度的具体水平。最好的方法是让平时实际操作的不同人员,在不同时间,按照平时的方法,分别做重复检测,然后做综合的标准偏差、极差。这样最能接近实际情况下实验室的真实的精确度情况。4、ProFoss本身误差ProFoss误差是指ProFoss本身的误差,这才是ProFoss的真实误差。它主要由ProFoss硬件条件,ProFoss使用的定标方程决定。目前ProFoss硬件能够达到0.02nm的精确度,所以硬件方面带来的误差很小。所以ProFoss本身误差主要是指定标方程的误差。定标方程的好坏,由做定标方程的标准样品的质量决定。需要注意的是:前面提到的三种误差,即取样误差、样品制备误差、化验室误差此时还决定了做定标方程时,使用的标准样品的质量,最终影响了定标方程的质量。因此,想用好ProFoss,有一个精确度足够好的化验室很重要。综上所述,我们最终计算得到的误差实际上是:取样误差+样品制备误差+化验误差+ProFoss本身误差的一个综合误差。即使ProFoss误差本身很小,如果这些误差过大,我们也会得到一个很大的误差。有的时候这几个误差互相抵消,我们就能得到很小的误差,有的时候这几个误差互相叠加,我们就得到很大的误差。但是无论抵消还是叠加情况下的误差,都不是真实的误差。从一定意义上讲,真正的ProFoss误差应该是扣除了这些误差的影响时的误差,即与真实值的误差。而如果你不明白这个道理,那么当你得到一个较大误差时,你很可能就会像小明那样得出一个结论:ProFoss不好用!同样的ProFoss,有人用的好,有的不理想,非常大一部分就是因为这个原因。那么存在这么多影响因素,是不是ProFoss根本就没法用好呢?其实,这些误差跟ProFoss没有任何关系,是一直存在的,只不过之前没有对比,我们没有发现罢了,而当我们有了ProFoss,跟化验室结果对比时,才发现了这个问题。所以有时实验室结果也并不是非常可靠的!比如还是小明这个例子。同样是43蛋白的豆粕,有时化验结果是42.5,有时是43.3。这样的结果报给生产控制人员,就会误导他们一会调高蛋白,一会调低蛋白。最终导致产品波动过大,不合格率增加。在这方面,实验室就不如ProFoss可靠了!因为ProFoss结果只受它本身误差的影响。跟其他刚刚进入应用领域的设备一样,目前人们对ProFoss的使用有误区,不熟练。这是很正常的。随着我们不断使用,以及对在线近红外使用的不断探索,对在线近红外这门技术的使用肯定会越来越纯熟,在线近红外带给我们的帮助也会越来越多。

  • 【资料】近红外光谱法在药物分析中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析中的应用冯艳春 胡昌勤(中国药品生物制品检定所 北京 100050) 近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量根据NIR光谱的获得方式,通常有透射(Transmittance)和漫反射(DiffuseReflectance)两种[2]。透射测定法的定量关系遵从Lambert-Beer定律,主要适用于液体样品,其正常的工作波长范围是850~1050nm[3]。浙江大学的史月华等人用该原理,在93%~97.4%的浓度范围内利用维生素E在6061~5246cm-1处的近红外吸收峰面积积分值和其浓度关系建立回归方程,对已知浓度的样品进行预测,误差及相对误差均在0.79%~0.9%内[4,5]。漫反射测定法是对固体样品进行近红外测定常用的方法。当光源垂直于样品的表面,有一部分漫反射光会向各个方向散射,将检测器放在与垂直光成45o角的位置测定散射光强的方法称为漫反射法。漫反射光强度A与反射率R的关系为 式中,R1为反射光强,R0为完全不吸收的表面反射光强。国内已有人先后用漫反射技术测定了精氨酸阿司匹林[6] 、安乃近[7] 、芦丁和维生素E[8] 等的含量,并且用反射光谱法对磺胺噻唑[9]进行质量评价。 以透射和漫反射为测试基础,为适应不同物质在不同状态时直接测定其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],90年代以来光纤技术在NIR中得到了广泛应用。光纤不仅可方便的传输光谱信号,各式各样的光纤探头还极大地方便了NIR进行各类快速在线分析。2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物分析中的应用2.1应用范围[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析领域中的应用范围相当广泛,它不仅适用于药物的多种不同状态如原料[10]、完整的片剂、胶囊与液体等制剂[11],还可用于不同类

  • 实验误差能不能影响到近红外模型的预测准确度?

    在近红外运用过程中,有一个常常被人提起的说法,就是“近红外光谱分析法的测定结果不如参考方法的准确”。这已经基本成为大家在应用近红外时的常识了。但真想真如此吗? 我们知道,近红外模型的数据来源是通过传统方法得到的近红外分析方法作为间接的分析方法,在人们认识上,其准确度必然低于直接分析法(也就是定标方法)。但褚小立博士做过一个实验,结论指出,在精度相对较差的情况下,近红外光谱预测出的数据更接近于真值(具体情况请参见附件文献其理论依据是,通过大量样本的光谱分析和化学计量学统计处理,已经将结果回归到正常范围。 在你心中,在你的认识里,近红外的预测结果与实验结果谁的误差大些? 近红外能不能冲破“近红外光谱分析法的测定结果不如参考方法的准确”的魔咒,成为国标制定的新的方向,甚至是在一些工作中成为强制执行的质控标准?

  • 红外透射法分析中,散射、反射和折射对红外的影响

    红外分析中,散射、反射和折射都会对样品的分析结果产生影响,给谱的解析和定量带来困难和误差,而消除这些因素对测量结果的影响就要在制样阶段做很多的工作,大家讨论一下如何通过制样来消除这三方面的影响吧。

  • 油品近红外光谱分析的主要误差来源?

    [font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])取样及样品保存过程。油品取样过程要注意样品是否均匀,不均匀的样品会造成性质测定和光谱测定的样品有差别,导致模型建立或预测的误差。因此需要按照相关标准方法取样,不当的保存方式会导致轻质组分挥发,使得馏程、闪点等与轻质组分相关的性质测定结果不准确。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])校正过程。校正过程中误差主要来源于校正样品空间分布畸形,校正样品参考值有较大的误差,以及校正参数选择不适当等,可以通过模型验证的方式来考察校正误差。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])光谱测量过程。光谱测量过程引入的误差在炼厂比较常见,主要为气泡,颗粒的影响,样品池污染等,采用自动进样、多次测量比较的方式可以在较大程度上减少光谱测量过程产生的误差。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]4[/font][font=宋体])仪器性能。仪器长期使用,更换部件,更换仪器,都会使得模型不再适用,需要采用质量监控样品保证仪器的长期稳定性,更换部件或仪器后,需要重新进行模型验证。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]5[/font][font=宋体])模型适用性。模型适用性是比较常见的误差来源,需要确定适合的界外样品检测方法,保证数据是由模型内插分析而得。[/font][/font]

  • 【原创】亲情奉送:近红外光谱法在药物分析中的应用

    近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量 根据NIR光谱的获得方式,通常有透射(Transmittance)和漫反射(Diffuse Reflectance)两种[2]。 透射测定法的定量关系遵从Lambert-Beer定律,主要适用于液体样品,其正常的工作波长范围是850~1050nm[3]。浙江大学的史月华等人用该原理,在93%~97.4%的浓度范围内利用维生素E在6061~5246cm-1处的近红外吸收峰面积积分值和其浓度关系建立回归方程,对已知浓度的样品进行预测,误差及相对误差均在0.79%~0.9%内[4,5]。 漫反射测定法是对固体样品进行近红外测定常用的方法。当光源垂直于样品的表面,有一部分漫反射光会向各个方向散射,将检测器放在与垂直光成45o角的位置测定散射光强的方法称为漫反射法。国内已有人先后用漫反射技术测定了精氨酸阿司匹林[6] 、安乃近[7] 、芦丁和维生素E[8] 等的含量,并且用反射光谱法对磺胺噻唑[9]进行质量评价。 以透射和漫反射为测试基础,为适应不同物质在不同状态时直接测定其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],90年代以来光纤技术在NIR中得到了广泛应用。光纤不仅可方便的传输光谱信号,各式各样的光纤探头还极大地方便了NIR进行各类快速在线分析。2、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物分析中的应用2.1应用范围 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析领域中的应用范围相当广泛,它不仅适用于药物的多种不同状态如原料[10]、完整的片剂、胶囊与液体等制剂[11],还可用于不同类型的药品,如蛋白质[12]、中草药[13]、抗生素[14] 等药物的分析。NIR更适用于对原料药纯度、包装材料等的分析与检测以及生产工艺的监控[15,16] ;利用不同的光纤探头可实现生产工艺的在线连续分析监控[17,18,19,20,21] 。2.2定性、定量分析 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术不是通过观察供试品谱图特征或测量供试品谱图参数直接进行定性或定量分析,而是首先通过测定样品校正集的光谱、组成或性质数据(组成或性质数据需通过其它认可的标准方法测定),采用合适的化学计量学方法建立校正模型,再通过建立的校正模型与未知样品进行比较,实现定性或定量分析。2.2.1定性分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]谱带较宽,特征性不强,因此很少像其它光谱(如紫外光谱和红外光谱)那样用于化合物基团的识别及结构的鉴定。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的定性分析一般是用于确定分析样品在已知样品集中的位置[22]。常用的方法包括:(1)判别分析法:判别分析是经典的定性识别方法,其基本思路是相同样品在不同波长下具有相近的光谱吸收,这种光谱间的比较可以是原始光谱,也可以是经过处理的光谱。(2)主成分分析(Principal Component Analysis PCA)法:利用PCA方法将多波长下的光谱数据压缩到有限的几个因子空间内,再通过样品在各因子空间的得分确定其归属类别,但PCA对样本与校正集间的确切位置缺乏定量的解释。任玉林等采用此方法研究了去痛片[23]的近红外漫反射光谱,总结出对标化后的数据进行主成分分析可减小颗粒大小的变化所产生的散射影响,并且用第二主成分得分对第一主成分作图可以将合格样品与不合格样品区分开来。其缺点是当真药与劣药的含量相当接近时此法容易分错[24]。(3)马氏距离(Mahalanobis Distance MD)法:该方法的核心是通过多波长下的光谱距离定量描述出测量样本离校正集样本的位置,因而在光谱匹配异常点检测和模型外推方面都很有用。但应用该方法时,波长位置的选择非常重要,波长点过少,光谱得不到合理的描述;波长点过多,计算量大,为此,徐广通提出将PCA与马氏距离相结合解决模型的适用性判断,可以充分利用PCA对大量光谱数据进行降维处理,也较好地解决了马氏距离计算时波长点的选择问题,避免了大量光谱数据直接进行马氏距离计算出现的共线性或计算量大等问题,且克服了采用PCA自身进行判断界限不易量化的问题[25]。2.2.2定量分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量时一般不需对样品进行预处理,但测定的光谱可能受到各种干扰因素的影响。利用单一波长下获得的光谱数据很难获得准确的定量分析结果。NIR光谱结构复杂,谱图重叠较多,所以在进行定量分析时,一般采用多波长下获得的数据并进行一定的数据处理才能获得准确可靠的分析结果。常用方法如下:(1)主成分回归(Principal Component Regression,PCR):原理与PCA相同。吉林大学的任玉林等在此方面进行了深入研究[26]。PCR在解释光谱数据时起着重要作用,从主成分权重图中能够确定主成分与哪个组份有关,但确切而全面地解释每个主成分代表什么迄今仍是最难解决的问题。(2)偏最小二乘法(Partial Least Square PLS):该法是一种全光谱分析方法,充分利用多个波长下的有用信息,无需刻意的选择波长,并能滤去原始数据噪音,提高信噪比,解决交互影响的非线性问题,很合适在NIR中使用[27]。实验证明,PLS法同近红外漫反射光谱法结合,直接分析固态粉末药品磺胺甲基异唑[28]、安体舒通[29]、安乃近[30]、磺胺脒[31]是可行的,同其它方法相比具有速度快、简便、且不破坏样品的优点。(3)人工神经网络法(Artificial Neural Networks ANN):近年来兴起的ANN法研究,根据样品各组分的光谱数据建立人工神经网络模型,预测未知样品并讨论影响网络的各参数。采用ANN法对阿司匹林[32]、扑热息痛[33]、美的康[34]等药物定量分析的结果表明,ANN法的最大优点是其抗干扰、抗噪音及强大的非线性转换能力,对于某些特殊情况ANN会得到更小的校正误差和预测误差,并且它的预示结果要稍优于PLS(t检验无显著差异)。这可能是由于ANN法具有更强的非线性处理能力所致。 此外还有多元线性回归(Multiple Linear Regression MLR)、拓扑(Topology TP)等方法也在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中得到应用。3、问题与展望 尽管N I R在药物分析领域显现出勃勃生机,但目前它还存在一定的弱点。首先,它是一种间接的相对分析技术,通过收集大量具有代表性的标准样品,通过严格细致的化学分析测出必要的数据,再通过计算机建立数学模型,预测未知样品的结果。而模型的建立需耗用大量的人力、物力和财力;其次,由于NIR谱区为分子倍频与合频的振动光谱,信号弱,谱峰重叠严重,所以目前还仅能用于常量分析,被测定组分的量一般应大于样品重量的0.1%;此外,在进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析时,应考虑样品的特征、分析实验的设计及数据处理等多方面的问题,才能取得正确的分析结果,建立可靠的校正模型是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成功的关键,而合理的实验设计和恰当的分析模型则是建立校正模型的关键[35]。 NIR光谱分析的最大特点是操作简便、快速,可不破坏样品进行原位、在线测量;测量信号又可以远距离传输和分析;特别是与计算机技术和光导纤维技术相结合,采用NIR透射、散射、漫反射光谱学检测方法,可以不使用化学试剂,不必进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。这些特点正逐渐被制药界所认识,并显示出极大潜力,在制药工作和质量控制分析中具有广阔的应用前景。此外,NIR用于生产过程中的含量与水分分析也表现出独特的魅力[36]。目前NIR已成为AOAC(Association of Official Analytical Chemists)一种标准分析方法应用于药品检测中[37]。仪器生产商和药物分析专家的合作开发已使FDA、欧洲和加拿大药物管理局正式研究用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术取代繁琐费时的常规分析方法的可行性,部分测试项目已被FDA批准为标准方法。USP(United States Pharmacopia第25版)最近已在附录中增补近红外分析方法[38]。 国内,在SDA(State Drug Administration)的支持下,我所正在探索药品监督检验执法过程中采用NIR进行快速鉴别及定量分析的可行性。结合全国抽验工作, 对NIR模型的准确性及模型传递的误差进行系统评价,这项工作的开展对打击假劣药品具有重要意义。

  • 【原创大赛】近红外光谱检测技术在粗饲料行业应用及误差解读

    【原创大赛】近红外光谱检测技术在粗饲料行业应用及误差解读

    多年来一直从事于实验室分析工作,接触较多的是食品营养、食品安全和药品的检测,随着检测技术的不断进步,一些新型的检测方法逐渐被大众接受,近红外分析技术便是其一,近红外检测技术应用范围非常广泛,基本上含H基团都会产生近红外光谱,不严格的说,只要是有机指标都可以用近红外检测技术分析,目前,近红外光谱仪在精饲料行业、烟草行业、制药行业、石油化工行业等已被广泛使用。背景: 近年来我国对奶业的大力支持,并使中国奶产业整体素质不断提升,无论大规模的养殖企业还是普通养殖农户逐渐的认识到科学养殖技术的重要性。采用科学的精准饲养、进行精细化喂养管理是提高奶牛单产量的一个非常重要的关键。为了能够精准配比TMR日粮,各种原料营养成分的含量检测尤为重要。大部分粗饲料(包括牧草、青贮等)企业或养殖户与精饲料(颗粒料)生产企业还有很大不同,他们没有精饲料的规模化流水生产线控制,也没有规模化的分析实验室支持,大部分仅凭个人经验或者抽检送至第三方检测中心,而对于养殖农户来说送检更是一种“奢侈”,因为检测成本太高。在这种检测环境下,使用近红外检测技术可以有效的降低检测成本,并且检测周期短,数据回馈时间大大缩减。但是,近红外的检测误差一直被很多人质疑,接下来,对检测误差进行解读,包括样品误差、湿化学检测方法误差和近红外检测方法误差。一、牧草行业近红外检测应用: 1、某宁夏草业隶属于农垦集团,苜蓿基地建植三万四千多亩,年产苜蓿3万余吨。主要应用于: 1)田间管理检测 鲜草检测和干草检测 2)入库检测 收购时检测,按质定价 3)仓储中检测 仓储过程中定期检测http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605534_2558626_3.jpg田间采样http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605536_2558626_3.jpg样品风干http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605535_2558626_3.jpg海能&Unity近红外光谱仪2、某养殖农场,全场建有标准化奶牛养殖小区5个,存栏奶牛3000头,年产鲜奶2万吨。主要用于: 1) 原料入库检测 对原料检测,通过数据判定原料各项指标是否合格 2) 养殖管理检测 喂养过程中的原料检测,通过检测数据调整日粮配方http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605537_2558626_3.png仓储时采样http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605538_2558626_3.png喂养时采样3、某大型饲料企业,一直从事紫花苜蓿种植、加工生产销售。紫花苜蓿种植面积12000余亩。并带动周边广大农户种植紫花苜蓿3万余亩。其主要应用于: 1)田间管理及收购 田间鲜样检测,配置仪器检测车用于田间采购检测。 2)精饲料检测及生产控制 生产加工中对原料和成品快速检测,通过检测数据指导生产线。http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605539_2558626_3.jpg苜蓿草检测http://ng1.17img.cn/bbsfiles/images/2016/08/201608191647_605540_2558626_3.jpg近红外检测结果二、误差分析: 对于误差,肯定要确定一个参比,与什么值进行对比,最理想的是与真值对比,真值是客观存在的,但真值是未知的,所以往往就把湿化学方法检测值作为参比值。1、样品误差其主要分为采样误差和样品制备误差。在粗饲料中一些牧草非常不均匀,造成样品分析误差比较大。例如苜蓿草的茎叶比不同,蛋白质含量差异就非常大;全株玉米青贮发酵池的从底层到上层,NDF含量差异可达20%。在评价苜蓿和玉米青贮的质量时,样品用湿化学方法和近红外方法测定,因为取得样品本身差异就大,最后的结果差异必然很大。所以采样技术在干草或其他牧草质量评估时是一个非常重要的部分。样品制备的也很重要,比如一个苜蓿草样本有300g,使用湿化学方法和近红外方法分别测定,湿化学方法测定使用样品量约为0.5g,近红外测定使用样品量为150g,由于样品预处理时不够均匀,其测定结果有差异也是必然的。为了降低样品制备误差,不同的样本需要找到合适的样品处理方法,比如烘干、磨粉和过筛等。2、湿化学方法检测误差在检测过程中,同一个样品,采用相同检测方法和流程,多次检测的结果总是不一致,这是因为在检测过程中引入了不同的误差,比如,称量误差、仪器误差、操作误差、方法误差等。有些误差是可以消除的,比如通过检测器材的校正,人员操作质量的提升、溶液的精准配比等;还有一些误差是客观存在的,比如环境温度的影响、湿度的影响等。3、近红外方法检测误差 其误差来源主要来自两个方面,仪器硬件误差和模型误差。影响仪器误差的因素有波长准确性,光谱重复性,还有其他影响仪器稳定性的因素。模型误差的因素比较多,样品数量、样品覆盖范围、样品预处理、参比值(实验室湿化学方法测定值)等等。1).仪器误差海能&Unity SpectraStar 系列的近红外光谱仪一体式工作站,全密封设计,仪器内部与外界环境无任何接触,抗外界干扰能力强。每台仪器都与NIST近红外标准直接进行校准,有效的保证了波长准确性和光谱重复性。所以仪器的误差可以忽略不计。2).模型误差 近红外是一种二级检测方法,其检测基础是需要建立一个较完整的样品数据库。其样品的数量取决于样品组分的复杂程度,一个典型的PLS(偏最小二乘法)模型,最初推荐100个样品建立,随着时间的推移,逐渐的收集更多的样本,在过程中会大部分不同变化的样本被收集进来,一些天然的样本模型或需要更多的样品数量。需要更广泛的样品覆盖范围,近红外预测过程就是去背景化,例如检测大豆中的蛋白质含量,光谱中蛋白质吸收属于有效信息,其他的光谱吸收都属于背景信息,因此模型需要收集不同而广泛的背景,才能在检测大豆蛋白质时有效的扣除背景信息,准确的得出蛋白质含量。近红外的参比值即湿化学法测定值是建立模型的必备条件之一,参比值的准确性直接影响近红外预测准确性。采用多次重复测样,取有效平均值,是提高参比值准确度的有效方法之一。 综上所述,增加样品数量、扩大样品覆盖范围、提高参比值准确度等可以提高近红外预测准确度,有效降低模型误差。三、讨论:在实际的粗饲料检测中无论使用湿化学方法还是近红外检测方法,其误差来源最大还是样品误差,需要建立和设计出科学的采样方法,并通过不同的采样方法论证该方法的可行性;样品制备时同样建立和设计出科学的该样品处理方法,并论证其可行性。正确的解读湿化学方法测定值和近红外预测值。在粗饲料检测中,两个值那种更可靠,更接近真值,要谨慎判断。1.湿化学方法测定值的误差包括样品误差、操作误差、称量误差、方法误差、器材误差和环境影响等,所以它也不是真值。2.在检测时,由于样本不均匀,近红外检测样本与湿化学方法检测样本不一致,是导致两种检测值差异的原因之一。3.几十吨或上百吨的牧草中,取得一个样本后,最终用于检测的样品量只有1g左右,并不能充分具有代表性,评估该牧草质量时,指标的含量值应是一个区间,而非一个固定值,比如一批牧草的NDF检测值是38%,那么这批牧草的NDF含量应为38%±X。近红外值也应同样正确看待。

  • 【转帖】减少气相色谱法在白酒定量分析中的误差

    无论是毛细管色谱还是填充柱色谱,只要涉及到定量计算就改期存在着一定的误差,怎样才能把误差减少到最低限度以及正确评价定量误差?因此,讨论[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的定量分析中减少误差的方法十分必要。下面根据内标法定量谈谈实践体会。 一、 取样的代表性 现在大多数产品是中低度酒,由于酒中组分物化特性的影响,致使酒中许多微量成分将分布于不同层次或界面,因此应从酒库取样到色谱室分析的全过程应考虑取混匀后的酒样,如果不注意取样的方式方法,将会给定量工作造成误差。 二、 定量响应因子的准确性 在实际定量工作中,往往引入相对响应因子进行计算,而定量响应因子的准确与否,直接关系到分析结果的可靠程度。若需求得有效的f值,原则上以组份含量相当为依据:一方面,将待测纯组份与纯标准物配成一定比例的混合试样;另一方面以标准样品、混标,专著文献f值等为实际应用f值,必要时可做部分组份的回收实验加以验证后方可使用。 三、 注射器针外壁的清洁 对毛细管柱头进样来说,在进样的过程中沉积在壁上的物质在高温汽化下瞬间发生转移,从而造成定量分析结果的某些偏差,所以在分析不同种类型酒时应严格注意注射器针外壁的清洁。将注射器针浸入溶剂方可达到有效的清洁,也可定期进行清洗。 四、 进样技术的影响 定量分析的精密度与准确度依赖于进样的重复性和操作技术。针对不同规格毛细管柱及特殊的进样方式(柱上进样、分流/不分流进样),对插针的快慢、位置、深度和操作人员的熟练程度以及刻度读数的准确度都有一定的要求,对于大口径柱止进倦毛细管柱,进入柱子的样品量有很好的重现性。对于中口径、细口径分流/不分流进样毛细管柱,当分析的样品组份浓度范围较宽、沸点范围也宽时易产生分流失真,浓度低和沸点高的组份样品回收率低,精密度也差。总之,任何一种进样方法都不能适应所有类型的样品分析,这需要色谱工作者在实际工作中加以选择优化。 五、 硅胶垫的使用周期 硅胶垫的使用频率一般以进样次数作比较,当硅胶垫使用15至20次以上时,应注意及时更换。如果使用国产仪器配套使用的填充柱,应同时擦净内衬管,否则易造成漏气使基线呈台阶、峰型、出现异常等,影响分析结果的可靠性。 六、 进样量的大小 白酒色谱定量使用的内标法,虽然进样量的大小对计算结果无明显影响,但对现行使用的毛细管柱色谱却影响很大。首先,进样量的大小直接影响着分离与定性;第二,进样量的大小直接影响着出峰保留值的变化,造成部分峰保留时间的错位现象,从而影响定量结果,尤其对工作量大、样品较多更不适宜,对于普通填充柱色谱进样量的大、小影响不是太大,但进样量不当也会造成合峰出现,对于毛细管柱来说,这里所谈的进样量与分流比类同。 七、 标样的定期校正 为确保检测数据的可靠性,应定期进行仪器间的相互校正及标样的校验等,从而进一步了解整个色谱系统的运行情况。 八、 怎样正确评价定量误差 1、 单位的一致性 对于填充柱色谱定量的单位通常以mg/100ml,而毛细管色谱定量的单位以mg/100ml计,所以在做分析比较以及评价误差的同时,应考虑单位的一致性。 2、 含量的一致性 无论是标准样品还是色谱纯标样,求f值(响应因子值)时的样品含量与日常分析中酒样含量同样也存在着是否一致的问题。众所周知:含量搞低有不同的误差范围,含量高组份相对的百分误差偏低,含量低组份相对百分误差较高,所以在含量之间的不协调或含量相差悬殊,易造成分析误差的某些偏见,不能对分析结果的误差进行正确的评价。

  • 【有奖讨论】你的近红外预测值与标准方法分析数据可比吗?

    哈哈,本版主从火星回来啦~~~~http://simg.instrument.com.cn/bbs/images/brow/em09502.gif有奖讨论,参与有奖:你的近红外预测值与标准方法分析数据可比吗?你是怎么评价你的近红外预测值是否满足应用需求呢?是通过与标准方法分析数据比较吗?是完全依赖模型的预测偏差吗?标准方法的分析精度是ASTM标准提供的,还是多次实验计算的标准偏差呢?近红外预测值满足标准方法误差要求吗?近红外预测值大于标准方法误差要求,又如何判断数据是否可以接受呢?大家有什么关于近红外数据方面的心得和疑惑,都一起来讨论讨论吧!http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 红外气体分析仪的一些基本结构组成

    7.1.2.1 光源 光源的作用是产生两束能量相等而又稳定的平行红外光束,光源多由镍锗丝制成。辐射区的光源有两种,一种是单光源,一种是双光源。单光源只有一个发光元件,经两个反光镜构成一组能量相同的平行光束进人参比室和测量室。而双光源结构则是参比室和测量室各用一个光源。与单光源相比,双光源因热丝放光不尽相同而产生误差。 7.1.2.2 切光片 切光片在电机带动下对光源发出的光辐射信号做周期性切割,将连续信号调制成一定频率(一颇为2-25Hz)的交变信号(一放为脉冲信号),以避免检测信号发生时间漂移。 7.1.2.3 滤光部分 吸收或滤去可被干扰气体吸收的红外线.去除干扰气体对测量的影响。滤光系统通常有两种,一种是充以干扰气体的滤光室,另一种是干涉滤光片。其中干涉滤光片能使红外分析仪根据需要更换干涉滤光片,以满足检测不同气体的需要.提高仪器的通用性。 7.1.2.4 测量室和参比室 测量室和参比室的两端用透光性能良好的caF2晶片密封。参比室内封人不吸收红外辐射的惰性气体,测量室则连续通入被测气体。测量室的长短与被测组分浓度有关,根据比尔定律,气体浓度低,测量信号小,采用的测量室较长,一般测量室的长度为0.3—200 mm。在测量腐蚀性气体时,一般采用镀膜气室。比如:防爆型超声波液位计 7.1.2.5 检测室 检测室(检测器)的作用是用来接收从红外光源辐射出的红外线,并转化成电器信号。大多数红外线分析器都采用电容微音器式检测器。检测器的两个接收室分别无有待测气体和惰性气体的混合物。两个接收气室间用薄金属膜片隔开;因此,当样品室发生了吸收作用时,到达接收室试样光束比另一接收气室的参比光束弱,于是检测器参比接收室中的气压大于样品接收室的气压。而金属隔膜和一个固定电极构成了一个扳动电容的两个极板。此电容器的电容变化与试样室内吸收红外线的程度有关。故测量出此电容量的变化.即可确定出样品中待测气体的成分。 7.1.2.6 微机系统微机系统的任务是将红外探测器的输出信号进行放大变成统一的直流电流信号,并对信号进行分析处理,将分析结果显示出来,同时根据需要输出浓度极值和故障状态报警信号:对信号处理包括:干扰误差的抑制,温漂抑制,线性误差修正,零点、满度和中点校准,量程转换、量纲转换、通道转换、自检和定时自动校准等。 返回——仪器仪表网

  • 【资料】减少气相色谱法在白酒定量分析中误差的方法

    减少[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法在白酒定量分析中误差的方法[b]下载资料网址: http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=zjzxwwl2a[/b]无论是毛细管色谱还是填充柱色谱,只要涉及到定量计算就改期存在着一定的误差,怎样才能把误差减少到最低限度以及正确评价定量误差?因此,讨论[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的定量分析中减少误差的方法十分必要。下面根据内标法定量谈谈实践体会。 一、 取样的代表性 现在大多数产品是中低度酒,由于酒中组分物化特性的影响,致使酒中许多微量成分将分布于不同层次或界面,因此应从酒库取样到色谱室分析的全过程应考虑取混匀后的酒样,如果不注意取样的方式方法,将会给定量工作造成误差。 二、 定量响应因子的准确性 在实际定量工作中,往往引入相对响应因子进行计算,而定量响应因子的准确与否,直接关系到分析结果的可靠程度。若需求得有效的f值,原则上以组份含量相当为依据:一方面,将待测纯组份与纯标准物配成一定比例的混合试样;另一方面以标准样品、混标,专著文献f值等为实际应用f值,必要时可做部分组份的回收实验加以验证后方可使用。 三、 注射器针外壁的清洁 对毛细管柱头进样来说,在进样的过程中沉积在壁上的物质在高温汽化下瞬间发生转移,从而造成定量分析结果的某些偏差,所以在分析不同种类型酒时应严格注意注射器针外壁的清洁。将注射器针浸入溶剂方可达到有效的清洁,也可定期进行清洗。 四、 进样技术的影响 定量分析的精密度与准确度依赖于进样的重复性和操作技术。针对不同规格毛细管柱及特殊的进样方式(柱上进样、分流/不分流进样),对插针的快慢、位置、深度和操作人员的熟练程度以及刻度读数的准确度都有一定的要求,对于大口径柱止进倦毛细管柱,进入柱子的样品量有很好的重现性。对于中口径、细口径分流/不分流进样毛细管柱,当分析的样品组份浓度范围较宽、沸点范围也宽时易产生分流失真,浓度低和沸点高的组份样品回收率低,精密度也差。总之,任何一种进样方法都不能适应所有类型的样品分析,这需要色谱工作者在实际工作中加以选择优化。

  • 【分享】------红外光谱分析的优缺点

    红外光谱分析的优缺点优点1 应用范围广。红外光谱分析能测得所有有机化合物,而且还可以用于研究某些无机物。因此在定性、定量及结构分析方面都有广泛的应用。2 特征性强。每个官能团都有几种振动形式,产生的红外光谱比较复杂,特征性强。除了及个别情况外,有机化合物都有其独特的红外光谱,因此红外光谱具有极好的鉴别意义。3 提供的信息多。红外光谱能提供较多的结构信息,如化合物含有的官能团、化合物的类别、化合物的立体结构、取代基的位置及数目等。4 不受样品物态的限制。红外光谱分析可以测定气体、液体及固体,不受样品物态的限制,扩大了分析范围。5 不破坏样品。红外光谱分析时样品不被破坏。缺点1 不适合分析含水样品,因为水中的羟基峰对测定有干扰;2 定量分析时误差大,灵敏度低,故很少用于定量分析;3 在图谱解析方面主要靠经验。

  • 光源是如何影响原子发射光谱分析的误差的?

    原子发射光谱分析的误差,主要来源是光源,因此在选择光源是应尽量满足以下要求:1) 高灵敏度,随着样品中浓度微小变化,其检出的信号有较大的变化;2) 低检出限,能对微量和痕量成份进行检测;3) 良好的稳定性,试样能稳定地蒸发、原子化和激发,分析结果具有较高的精密度;4) 谱线强度与背景强度之比大(信噪比大);5) 分析速度快;6) 结构简单,容易操作,安全;7) 自吸收效应小,校准曲线的线性范围宽。 原子发射光谱仪的类型,目前常用的光源有以下两种:一类是经典光源(电弧及火花),另一类是等离子体及辉光放电光源,其中以电感耦合等离子体光源(ICP)居多,在不同的领域中得到广泛的应用。

  • 【资料】红外吸收光谱分析法

    红外吸收光谱分析法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=177408]红外吸收光谱分析法.rar[/url]

  • 【分享】近红外光谱分析数据的前处理

    【分享】近红外光谱分析数据的前处理

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须借助于各种相应的数学模型,分析的关键是建立预测效果优秀的数学模型。数学模型预测样品的效果决定于建模所用数据,以及(用算法)对建模数据中信息的充分提取。NIR分析大致有一半的误差来自于建模数据。因此优化建模数据在NIR分析中具有特殊的意义。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要从样品复杂的光谱中提取有关的信息,这些信息包括两部分:样品光谱中关于待测量的定性或定量信息,以及与待测量信息重叠在一起的、确定的、因此是可以通过模型加以校正的背景信息;由于分析过程必须把背景的信息加以校正后才能提取待测量的信息,因此待测量信息和能确定的背景信息这两部分信息合在一起都是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要的有效信息。另外,每个光谱数据除了包含有效信息以外还包含测量误差等不确定的、难以校正的、干扰测定的无效信息或称干扰信息,分析过程根据这两部分有效信息通过数学处理消除干扰信息,才能完成分析。  建模过程应用的光谱数据越多,得到的有效信息就可能越多,预测误差减少、预测准确度也得以提高。这就使模型在不同时间与空间的稳定性得以提高;另一方面,建模过程中每引入一个光谱数据的同时会带来影响提取有效信息的干扰信息,使模型的预测误差增加、测定准确度下降。组成建模数据的两个部分:建模样品光谱的数目与每个光谱包含的数据点(谱区的前处理都应符合“少而精”,且有一个最佳值,即有效信息率最高点。优化建模数据的目标就是确定或接近该最佳点,使数学模型的预测效果达到或接近最佳值。优秀的软件应能辅助确定数学模型的最佳参数。  建模数据也就是建立数学模型所用校正样品集。校正样品集包括直接用于建立模型的建模样品集与检验模型的检验样品集。现代NIR分析包括一系列优化校正样品集光谱的技术,包括建模集与检验集的分割,优化校正样品集总体的样品组成以及优化各样品的光谱两个方面,如对建模样品集光谱的各种前处理方法,优化选择用于建立数学模型的谱区以及优化选择各种NIR定量分析算法的最佳参数等等多种多样的处理技术,由上节可知这些前处理技术的本质都是压缩和恢复,目标都是提高建模数据的有效信息率。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析建模数据的各种前处理技术,以及这些技术针对解决的问题见下图。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806161740_93295_1604460_3.jpg[/img]

  • 关于AAS分析结果的误差问题

    最近测了一批含有锶的水样。给出结果时,需要给定分析结果的误差(R+-u)。其中的u是怎么计算的?不考虑称量误差和体积误差的基础上,误差主要来自仪器本身。每个样品测量三个吸光度值。三个吸光度值的相对标准偏差可以看做分析误差么?还是这个相对标准偏差还要经过误差传递公式计算才可以看做分析结果的误差?

  • 高频红外碳硫分析仪

    高频红外碳硫分析仪

    http://ng1.17img.cn/bbsfiles/images/2012/03/201203070844_352905_2462002_3.jpg主要技术指标:◆ 测量范围:碳 0.0001%-10.0000%(可扩至99.9999%) 硫 0.0001%-2.0000%(可扩至99.9999%)◆ 分析误差:碳符合ISO9556标准 硫符合ISO4935标准 ◆ 分析时间:25-60秒可调 (一般在35秒左右)◆ 电子天平:称量范围:0-120克--------------------------------------------------------------------------------主要特点:◆ 采用低噪声、高灵敏度、高稳定性的红外探测器; ◆ 整机模块化设计,提高了仪器的可靠性;◆ WINDOWS全中文操作界面,操作简便,易于掌握;◆ 动态显示分析过程中的各项数据和碳硫释放曲线; ◆ 进口电磁阀,提高气路系统可靠性;◆ 测量线性范围宽,并可扩展; ◆ 节约电力和材料消耗,高速准确; ◆ 电子天平自动联机,可不定量称样。

  • 直读光谱仪分类及误差分析

    直读光谱仪又叫原子发射光谱仪,应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。随着CCD技术的不断发展,直读光谱仪开始朝小型化、全谱型方向发展。小型化仪器功耗小,占用空间小且易于维护;全谱直读光谱仪能够获得全波段范围内的光谱,满足多基体分析要求,谱线选择灵活,可以有效扣除光谱干扰,分析更准确,而多道直读光谱仪只能检测有限数量的光谱,很难做到这一点。直读光谱仪分类1.根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪2..根据光栅所处的环境不同,可分为真空型和非真空型直读光谱仪,其中非真空型直读光谱仪又可分为空气型直读光谱仪和充惰性气体型直读光谱仪(可以测定真空紫外元素);2.根据仪器的结构不同,又可分为多道直读光谱仪和全谱直读光谱仪,其中前者多采用光电倍增管作为检测器,后者多采用阵列检测器。4.根据色散组件的分光原理,光谱仪器可分为棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.直读光谱仪器的误差来源分析1.系统误差也叫可测误差,一般包括仪器的本身波动;样品的给定值和实际值存在一定的偏差(标准样品的元素定值方法可能和实际检测方法不一致,这样检测结果会有方法上的差异;同一种方法的检测结果也存在一定的波动);待测样品和系列标样之间存在成分的差异,可能导致在蒸发、解离过程中的误差,如背景强度的差别和基体蒸发的差异等。 2.偶然误差是一种无规律性的误差,如试样不均匀;检测时周围的温湿度、电源电压等的变化;样品本身的成分差异等。3.过失误差是指分析人员工作中的操作失误所得到的结果,可以避免。如制样不精确,样品前处理不符合要求,控样和待测试样存在制样偏差,选择了错误的分析程序等。

  • 红外光谱法的特点和应用

    红外光谱法的特点和应用1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格这样才便于与纯化合物的标准光谱或商业光谱进行对照多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析;②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理;③试样浓度和厚度要适当使最强吸收透光度在5~20%之间3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具。①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性。使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。然后由化学分类索引查找标准光谱对照核实。③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。④鉴定细菌,研究细胞和其它活组织的结构4.定量分析红外光谱有许多谱带可供选择,更有利于排除干扰。对于混合物,如果分别测定其特征谱带的吸收,甚至可以不经分离就可进行分别定量。红外吸收光谱定量时吸光度的测定常用基线法。假定背景的吸收在试样吸收峰两侧不变(或透光度呈线性变化),就可用画出的基线来表示该吸收峰不存在时的背景吸收线,于是图中T0与T之比的对数就是吸光度☆一般均用校正曲线法或者与对照品比较定量,不用吸光系数法因为红外分光光度计测定时需用较宽狭缝,ε不能测准☆红外光谱定量分析灵敏度较低、误差较大红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103吸收池厚度小、单色器狭缝宽度大,测量误差也较大☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法。 天津港东整理[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606272217_20667_1614961_3.gif[/img]

  • 【原创】液相色谱定量分析的误差来源与消除

    [color=#00008B][B]该帖为楼主自己整理,帖中所有楼主撰写的内容未经授权不得转载,否则属侵权违法行为![/B][/color]看到很多版友发帖求助讨论准确性的问题,我特意整理了一个关于定量分析误差问题的帖子,希望对大家有所帮助。高效液相色谱定量分析过程可分为样品的前处理、标准品的配制、进样、色谱分离、检测及数据处理等七个步骤。[B]一 误差的主要来源[/B]随着现在市场销售仪器自动化程度的提高,进样、色谱分离、检测及数据处理等实验环节对实验结果产生的误差越来越小,尤其在高效液相色谱定量分析中,实验结果的误差可能主要来源于样品的前处理及标准品的配制。[B]1、样品的前处理 [/B]样品的萃取率是样品前处理时存在的主要问题。当固-液萃取(含柱分离的前处理方法),液-液萃取时,存在萃取率不高且不稳定的问题。尤其在除去蛋白质时,存在变性蛋白质会吸附一些被测组分,导致萃取率降低的情况。通常,萃取率是通过在式样中添加被测成分在萃取的方法评价的。也就是说,被测成分的增加量和液相色谱中的峰面增大成比例关系,通过这种方法可以确定溶液中被测成分的变化趋势。 如果存在萃取率不稳定的问题,就有必要改变萃取的方法,要预先添加内标,然后萃取。这种情况采用的内标,必须与被测物质的化学结构类似,萃取的萃取率才可能相近。如果回收率不但接近100%而且较为稳定,可以证明这种前处理方法较为可靠。在分析中如果能充分考虑以上误差产生的各种原因,才有可能得到精确的分析结果。 [B]2、标准品的配制[/B]本帖中讨论的问题带有普遍性,影响高效液相色谱分析结果准确性的因素较多,仅在标准溶液的配置过程中,可以分为标准物质的称量,溶液的配制和溶液的储存三个环节。 作为标准溶液使用的标准物质其纯度要求很高,应避免使用纯度不符合要求的试剂,作为标准溶液使用的标准物质具有不可替代性,现在市场有销售的HPLC专用的溶剂及各种标准试剂可供实验选择;其次选择与样品浓度要求相适应的天平,应该尽可能使用高精度的天平,这样才能把由于天平使用带来的称量操作误差降至最低。[B]二 消除误差的方法[/B] 要提高分析结果的准确度,必须考虑在分析过程中可能产生的各种误差,采取有效措施,将这些误差减到最小。[B]1、选择合适的分析方法[/B] 各种分析方法的准确度是不同的。化学分析法对高含量组分的测定能获得准确和较满意的结果,相对误差一般在千分之几。而对低含量组分的测定,化学分析法就达不到这个要求。仪器分析法虽然误差较大,但是由于灵敏度高,可以测出低含量组分。在选择分析方法时,一定要根据组分含量及对准确度的要求,在可能条件下选最佳分析方法。[B]2、增加平行测定的次数[/B] 如前所述增加测定次数可以减少随机误差。在一般分析工作中,测定次数为2—4次。如果没有意外误差发生,基本上可以得到比较准确的分析结果。[B]3、消除测定中的系统误差[/B] 消除测定中系统误差可采取以下措施:其一是做空白实验,即在不加试样的情况下,按试样分析规程在同样操作条件下进行的分析。所得结果的数值称为空白值。然后从试样结果中扣除空白值就得到比较可靠的分析结果。其二是注意仪器校正,具有准确体积的和质量的仪器,如滴定管、移液管、容量瓶和分析天平,都应进行校正,以消除仪器不准所引起的系统误差。因为这些测量数据都是参加分析结果计算的。其三是作对照试验,对照试验就是用同样的分析方法在同样的条件下,用标样代替试样进行的平行测定。将对照试验的测定结果与标样的已知含量相比,其比值称为校正系数。 校正系数=标准试样组分的标准含量/标准试样测定的含量 被测试样的组分含量=测得含量×校正系数 综上所述,在分析过程中检查有无系统误差存在,作对照试验是最有效的办法。通过对照试验可以校正测试结果,消除系统误差。[B]4、样品定量分析过程中的误差[/B]样品处理要尽量减少操作者的技术问题带来的误差,样品的稀释次数、稀释工具都是误差的祸根,应尽量减少稀释次数,稀释工具用高准确度的。样品中的干扰组分会直接影响分析的准确度,而且有些组分会损坏柱子。纯化样品的过程尽量少用蒸发至干的步骤(在色谱分析中这一步又是不可少的),正确操作固相柱萃取、纯化小柱使用的步骤,注意提高每一步的回收率,使用内标法也是一个能准确定量的方法。 在手动进样中进样体积至少是样品定量环管体积的3倍,色谱分离程序要使色谱峰的分离度大于1.5,控制流动相、流量、温度等的平稳。流动相的污染都会抬高基线或减少信噪比,分辨率下降,试验条件的变化,如柱退化、不好的流动相等都能引起保留时间变化,引起一个峰或更多的峰不能被鉴别。正确设定仪器参数,选用合理的数据处理参数,用峰面积计算结果比峰高更精确。[B]三 结论 [/B]以上的分析的是我们能尽量控制的误差,还有一些不是操作者所能控制的误差,如被测定组分易分解、组分的含量高低、介质效应等。我们把能控制的误差减小到最低,那你的结果准确度将更高。

  • 【分享】误差来源及提高分析结果准确度的方法

    一、误差来源1.过失误差过失误差也称粗差。这类误差明显的歪曲测定结果,是由测定过程中犯了不应有的错误造成的。例如,标准溶液超过保存期,浓度或价态已经发生变化而仍在使用;器皿不清洁;不严格按照分析步骤或不准确地按分析方法进行操作;弄错试剂或吸管;试剂加入过量或不足;操作过程当中试样受到大量损失或污染;仪器出现异常未被发现;读数、记录及计算错误等,都会产生误差。过失误差无一定的规律可循,这些误差基本上是可以避免的。消除过失误差的关键,在于分析人员必须养成专心、认真、细致的良好工作习惯,不断提高理论和操作技术水平。2.系统误差 系统误差又称可测误差或恒定误差,往往是由不可避免的因素造成的。在分析测定工作中系统误差产生的原因主要有:方法误差、仪器误差、人员误差、环境误差、试剂误差等。(1) 方法误差方法误差又称理论误差,是由测定方法本身造成的误差,或是由于测定所依据的原理本身不完善而导致的误差。例如,在重量分析中,由于沉淀的溶解,共沉淀现象,灼烧时沉淀分解或挥发等;在滴定分析中,反应进行不完全或有副反应,干扰离子的影响,使得滴定终点与理论等当点不能完全符合,如此等等原因都会引起测定的系统误差。(2) 仪器误差仪器误差也称工具误差,是测定所用仪器不完善造成的。分析中所用的仪器主要指基准仪器(天平、玻璃量具)和测定仪器(如分光光度计等)。由于天平是分析测定中的最基本的基准仪器,应由计量部门定期进行检校。市售的玻璃量具(容量瓶、移液管、滴定管、比色管等),其真实容量并非全部都与其标称的容量相符,对一些要求较高的分析工作,要根据容许误差范围,对所用的仪器进行容量检定。 分析所用的测定仪器,要按说明书进行调教。在使用过程中应随时进行检查,以免发生异常而造成测定误差。(3) 人员误差由于测定人员的分辨力,反应速度的差异和固有习惯引起的误差称人员误差。这类误差往往因人而异,因而可以采取让不同人员进行分析,以平均值报告分析结果的方法予以限制。(4) 环境误差这是由于测定环境所带来的误差。例如室温、湿度不是所要求的标准条件,测定时仪器所振动和电磁场、电网电压、电源频率等变化的影响,室内照明影响滴定终点的判断等。在实验中如发现环境条件对测定结果有影响时,应重新进行测定。(5) 随机误差 随机误差在以往的分析测定文献中称为“偶然误差”,但“偶然误差”这一名词经常给人以误会,以为“偶然误差”是偶然产生的误差。其实,偶然误差并不是偶然产生的,而是必然产生的,只是各种误差的出现有着确定的概率罢了,因此建议不要用偶然误差一词,而用随机误差这个名词。随机误差的定义是:在实际相同的条件下,对同一量进行多次测定时,单次测定值与平均值之间的差异的绝对值和符号无法预计的误差。这种误差是由测定过程中各种随机因素的共同影响造成的。在一次测定中,随机误差的大小及其正负是无法预计的,没有任何规律性。在多次测定中,随机误差的出现具有统计规律性,即:随机误差有大有小,时正时负;绝对值小的误差比绝对值大的误差出现的次数多;在一定的条件下得到的有限个测定值中,其误差的绝对值不会超过一定的界限;在测定的次数足够多时,绝对值相近的正误差与负误差出现的次数大致相等,此时正负误差相互抵消,随机误差的绝对值趋向于零。分析工作者在用平均值报告分析结果时,正是运用了这一概率定律,在排除了系统误差的情况下,用增加测定次数的办法,使平均值成为与真实值较吻合的估计值。

  • 误差来源及提高分析结果准确度的方法

    一、误差来源1.过失误差过失误差也称粗差。这类误差明显的歪曲测定结果,是由测定过程中犯了不应有的错误造成的。例如,标准溶液超过保存期,浓度或价态已经发生变化而仍在使用;器皿不清洁;不严格按照分析步骤或不准确地按分析方法进行操作;弄错试剂或吸管;试剂加入过量或不足;操作过程当中试样受到大量损失或污染;仪器出现异常未被发现;读数、记录及计算错误等,都会产生误差。过失误差无一定的规律可循,这些误差基本上是可以避免的。消除过失误差的关键,在于分析人员必须养成专心、认真、细致的良好工作习惯,不断提高理论和操作技术水平。2.系统误差 系统误差又称可测误差或恒定误差,往往是由不可避免的因素造成的。在分析测定工作中系统误差产生的原因主要有:方法误差、仪器误差、人员误差、环境误差、试剂误差等。(1) 方法误差方法误差又称理论误差,是由测定方法本身造成的误差,或是由于测定所依据的原理本身不完善而导致的误差。例如,在重量分析中,由于沉淀的溶解,共沉淀现象,灼烧时沉淀分解或挥发等;在滴定分析中,反应进行不完全或有副反应,干扰离子的影响,使得滴定终点与理论等当点不能完全符合,如此等等原因都会引起测定的系统误差。

  • 近红外光谱分析方法预测馏程是否准确?

    [font=宋体]馏程是炼化生产过程物料的重要参数指标,馏程测定是炼厂化验室最繁重的工作任务之一。采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术可以测定馏程,替代传统分析方法,减轻化验室工作压力。从应用实践来看,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术测定初馏点和终馏点误差较大,主要是由于决定初馏点和终馏点的组分在样品中的含量很低,而且与样品的本底接近,比较难以确定它们的数学关系。[/font]

  • 如何降低分析化学实验的系统误差和随机误差

    误差指的是化学实验中测得值与真实值之间的差值。定量分析中的误差,按性质和来源可分为系统误差,随机误差和过失误差。由某些固定的原因产生的分析误差叫系统误差,其显著特点是朝一个方向偏离。造成系统误差的原因可能是试剂不纯,仪器不准,分析方法不妥,操作技术较差。由某些难以控制的偶然因素造成的误差叫随机误差或偶然误差。实验环境温度,湿度和气压的波动,仪器性能的微小变化都会产生随机误差。分析化学中,误差有两种:系统误差和随机误差。系统误差包括方法误差,仪器和试剂误差,操作误差。随机误差就比较多了,比如环境引起的误差,移液时的误差,读数的误差,滴定终点判定误差等等。测量误差包括系统误差和随机误差两类不同性质的误差。系统误差是指“在重复性条件下,对同一被测量进行无限次测量所得结果的平均值与被测量真值之差”。它是在重复测量中保持恒定不变或可按预见方式变化的测量误差的分量。由于只能进行有限次数的重复测量,真值也只能是用约定真值代替,因此可能确定的系统误差也只是估计值。系统误差的来源可以是已知或未知的,那么怎样发现系统误差呢? 1、在规定的测量条件下多次测量同一个被测对量,从所得测量结果与计量标准所复现的量值之差可以发现并得到恒定的系统误差的估计值。2、在测量条件改变时,例如随时间、温度等街道条件改变时按某一确定的规律变化,可能是线性的或非线性地增长可减小,就可以发现测量结果中存在的可变的系统误差。通常消除或减小系统误差的方法有以下几种:(1)采用修正的方法:对系统误差的已知部分,用对测量结果进行修正的方法来减小系统误差。修正系统误差的方法包括在测量结果上加修正值;对测量结果乘修正因子;画修正曲线;以及制定修正值表等。例如:测量结果为20℃,用计量标准测量的结果是20.1℃,则已知系统误差的估计值为-0.1℃,也就是说修正值是+0.1℃,已修正测量结果等于未修正测量结果加修正值。即已修正测量结果为20℃+0.1℃=20.1℃。(2)在实验过程中尽可能减少或消除一切产生系统误差的因素。例如在使用仪器时,应该对中的未能对中,应该调整到水平、垂直或平行理想状态的未能调好等等,都会带来系统误差,操作者要仔细调整,以便减小误差等。(3)选择适当的测量方法,使系统误差抵消而不致带入测量结果中。例如:对恒定系统误差消除法,可采用异号法,即改变测量中的某些条件,例如测量方向、电压极性等,使两种条件下的测量结果中的误差符号相反,取其平均值以消除系统误差。交换法,即将测量中的某些条件适当交换,例如被测物的位置相互交换,设法使两次测量中的误差源对测量结果的作用相反,从而抵消了系统误差。替代法,即保持测量条件不变,用一已知量值的标准器替代被测件再作测量,使指示仪器的指示不变或指零,这时被测量等于已知的标准量,达到消除系统误差的目的。对可变的系统误差的消除,合理地设计测量程序可以消除测量系统的线性漂移或周期性变化引入的系统误差。随机误差随机误差是“测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果平均值之差”。事实上,多次测量时的条件不可能绝对地完全相同,多种因素的起伏变化或微小差异综合在一起,共同影响而致使每个测得值的误差以不可预定的方式变化。所以随机误差可能确定的只是其估计值,因为测量只能进行有限次数,就单个随机误差而言,它没有确定的规律性;但就整体而言,却服从一定的统计规律。随机误差一般是由影响量的随机时空变化引起的,它们导致重复测量中数据的分散性。测量结果的重复性就是由于所有影响测量结果的影响量不能完全保持恒定而引起的。随机误差的统计规律性,主要可归纳为对称性、有界性和单峰性。对称性是指绝对值相等而符号相反的误差,出现的次数大致相等地。即测得值是以它们的算术平均值为中心而对称分布的。由于所有误差代数和趋近于零,故随机误差又具有抵偿性。有界性是指测得值误差的绝对值不会超过一不定期的界限,也即不会出现绝对值很大的误差。单峰性是指绝对值小的误差比绝对值大的误差数目多,也就是测得值是以它们的算术平均值为中心而相对集中地分布。随机误差是在重复测量中按不可预见的方式变化的测量误差的分量。随机误差的大小程度反映于测量值的分散性,即测量重复性。测量重复性是用实验标准偏差表征的,当用多次测量的算术平均值作为测量结果时,测量结果的实验标准偏差是测量值实验标准偏差的1/ 倍(n为测量次数),因此,当重复性较差时增加测量次数,可以减小测量的随机误差。但随测量次数的进一步增加,算术平均值的实验标准偏差减小的程度减弱,相反会增加人力、时间和仪器的磨损等问题,所以一般取 3~20次为宜。 测量误差包括了系统误差与随机误差,从概念上存在以下公式:测量误差 = 系统误差 + 随机误差。通常情况下测量误差、系统误差和随机误差都是理想的概念性术语,一般不能通过测量得到它们的准确值。除以上两大类误差以外,还有因操作事故引起的“过失误差”,如读错刻度,溶液溅出,加错试剂等。这是可能出现一个很大的“误差值”,在计算算数平均值时,此种数值应与弃去。实际工作中,应根据需要的准确度选择测量手段(仪器与方法),如果需要较高的准确度,又无适宜的仪器设备,则可用提高样品用量的方法来达到。仪表测量的5种误差详解1、使用误差又称为操作误差,是指在使用仪器过程中,因安装、调节、布置、使用不当而引起的误差。比如:按规定应垂直放置的仪表却水平放置,仪器接地不良,因测试引线太长而造成损耗或未考虑阻抗匹配,未按操作规程在没有预热、调节、校正后就迸行测量等,都会产生使用误差。2、仪器、仪表误差由仪器、仪表本身及其附件所引入,出于仪器的电气或机械性能不完善所产生的误差。比如:电桥中的标准电阻、示波器的探极线等都含有误差。仪器、仪表的零位偏移,刻度不准确,以及非线性等引起的误差均属于仪器误差。3、方法误差是指由于使用的测量方法不完善、理论依据不严密、对某些经典测量方法做了不适当的修改简化所产生的误差,即凡是在测量结果的表达式中没有得到反映的因素,而实际上这些因素又起作用时所引起的误差,我们又称为理论误差。比如:用普通万用表测量电路中高阻值电阻两端的电压时,由于万用表电压挡内阻不高而形成分流,就会引起测量误差。4、人身误差由于人的感觉器官和运动器官的限制所造成的误差。对于某些需借助于人眼、人耳来判断结果的测量,以及需进行人工调节等的测量工作,均会引入人身误差。比如:读错刻度、念错读数等。5、影响误差又称为环境误差,是指由于受到温度、湿度、气压、电磁场、机械振动、声音、光、放射性等影响所造成的附加误差。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制