当前位置: 仪器信息网 > 行业主题 > >

红外法操作方法

仪器信息网红外法操作方法专题为您提供2024年最新红外法操作方法价格报价、厂家品牌的相关信息, 包括红外法操作方法参数、型号等,不管是国产,还是进口品牌的红外法操作方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外法操作方法相关的耗材配件、试剂标物,还有红外法操作方法相关的最新资讯、资料,以及红外法操作方法相关的解决方案。

红外法操作方法相关的资讯

  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】
    点击了解更多→酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】 酶联免疫分析仪(ELISA)是一种广泛应用于生物医学领域的免疫分析技术,主要用于检测和定量生物样品中的抗原、抗体或蛋白质等生物分子。在基础科学研究中,酶联免疫分析仪可以用于研究生物分子的性质、功能和相互作用。例如,通过检测抗体与抗原的结合能力,可以研究抗体的特异性、亲和力和抗原的构象变化等。此外,酶联免疫分析还可以用于研究细胞因子的表达和功能、免疫应答机制以及药物对细胞的影响等。 酶联免疫分析仪被广泛应用于临床诊断和疾病监测中。例如,可以检测和定量血清、尿液、脑脊液等生物样品中的肿瘤标志物、病毒抗体、药物代谢产物等生物分子。通过酶联免疫分析,医生可以根据检测结果对患者进行诊断和制定治疗方案。此外,酶联免疫分析还可以用于评估患者的免疫状态、病情进展和预后等。 酶联免疫分析仪可以用于食品安全和环境监测中。例如,可以检测食品中的细菌、病毒、农药残留等有害物质。通过酶联免疫分析,可以对食品进行快速、准确的检测和分析,保障食品安全。此外,酶联免疫分析还可以用于环境监测中,检测水体、土壤、空气等环境样品中的有害物质,评估环境污染程度。
  • CS-810彩谱色差仪:应用背景与操作方法简介
    色差仪是现代工业和科学研究中常用的工具,用于精确测量和分析物体的颜色差异。随着科技的进步,色差仪在各个领域的应用越来越广泛,如印刷、纺织、涂料、塑料、食品、化妆品等行业。颜色不仅是产品的外观特征,还直接影响到产品的质量和市场接受度。因此,准确测量和控制颜色成为了保证产品一致性和质量的重要环节。色差仪的工作原理色差仪的核心原理是利用光谱分析技术,通过测量光源经过样品后被反射或透射的光谱成分,计算出样品的颜色参数。常见的颜色参数包括Lab值,其中L表示亮度,a表示红绿值,b表示黄蓝值。Lab值能够客观、准确地反映颜色信息,因此被广泛应用于颜色测量和色差评定。使用背景在生产过程中,色差仪的作用不可忽视。例如,在纺织行业,色差仪被用来检测染料的均匀性和布料的颜色一致性;在涂料行业,它帮助监控涂层的颜色,确保批次之间的一致性;在食品行业,色差仪可以用来检测食品的颜色,以判断其新鲜度和加工质量。此外,色差仪还广泛应用于化妆品行业,用于确保产品颜色符合设计要求,提升产品的市场竞争力。CS-810彩谱色差仪概述CS-810彩谱色差仪是一款高性能分光仪,专门设计用于测量液体透过率、吸光度、浓度和色度等参数。该仪器采用D/0测量结构,集成了全波段光源、单光栅光路分光系统以及ETC实时校准技术。其分辨率高达0.0001,透射率的标准偏差在0.08%以内,色度值ΔE*ab为0.015,确保了测量结果的高度精确性和一致性。使用前准备工作为了确保测量的准确性,使用色差仪前需进行以下准备工作:清洁测量表面:确保测量表面没有灰尘、污垢或其他杂质,以保证测量的准确性。预热仪器:打开色差仪,等待仪器预热一段时间,使其达到最佳工作状态。准备标准色板:标准色板用于校准和对比,确保测量结果的准确性和一致性。操作方法放置色差仪:将色差仪放在平整、明亮的白色表面上,确保测量头和样品垂直。启动仪器:打开电源,启动测量软件。校准仪器:将标准参考板放在色差仪的测量头下面,按“参考”按钮进行校准。测量样品:校准完成后,将待测样品放在测量头下面,与参考板进行比较。进行测量:按下“测量”按钮,色差仪将输出样品的Lab值,包括L(亮度)、a(红绿值)和b(黄蓝值)。记录和分析结果:记录测量结果,并根据行业标准或客户需求对结果进行分析和解释。通过严格按照上述操作步骤,使用CS-810彩谱色差仪可以获得高精度的测量结果,为液体透过率、吸光度、浓度和色度的分析提供可靠的数据支持。在不断发展的各个行业中,色差仪的应用将继续推动生产工艺的进步和产品质量的提升。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多色差仪相关的产品,Welcome to consult~咨询有惊喜哦!
  • 用TOC分析仪进行海水TOC分析的最佳操作方法
    简介海水中的总溶解性固体含量较高,而且氯化物会消耗氧化剂,因此对海水样品(氯化物含量为3.5-5%)进行总有机碳TOC分析时就会面临很大挑战。在传统的湿化学系统上运行分析时,由于氯化物干扰,海水样品显示极低的TOC回收率。相比之下,燃烧系统在分析海水样品时显示较高的TOC回收率,但燃烧系统的维护周期短,运行成本高,信号有漂移,且需要进行频繁的重新校准。Sievers InnovOx实验室TOC分析仪采用专利的超临界水氧化(SCWO,Super Critical Water Oxidation)技术,能消除氯化物干扰,在提供一流分析性能的同时减少了昂贵且费时的分析仪维护工作,从而成为对海水样品进行TOC分析的理想设备。本文概述了如何正确设置和配置Sievers InnovOx实验室分析仪,在分析海水样品时发挥最佳性能。操作模式 建议用“不可吹除有机碳(NPOC,Non-Purgeable Organic Carbon)”模式来代替TOC模式进行海水分析,除非还需要测量可吹扫或挥发性的有机物。在大多数海水样品中,可吹扫或挥发性有机物的含量极小,因此NPOC约等于TOC。在NPOC模式下,测量结果并非是由2项单独的测量数据计算而来【TOC=总碳(TC)–无机碳(IC)】,因此NPOC模式运行得更快、测量得更准确。用NPOC模式代替TOC模式是行业中常见的做法,是几乎所有市面上出售的TOC分析仪的标准操作模式。只有当样品中含有挥发性化合物或者需要测量IC浓度时,才采用TOC模式。测量范围和校准海水样品中的TOC浓度较低,通常小于1 ppm。理论上来说,Sievers InnovOx实验室分析仪可以在最小测量范围(0-100 ppm)内运行海水样品,但由于海水样品的基质复杂,在最小测量范围内运行海水样品时可能会产生较大的测量偏差。因此,建议在0-1000 ppm范围内运行海水样品。Sievers InnovOx实验室分析仪的内部设置能够在不降低测量的准确性和精确性的前提下,对0-1000 ppm范围基质效应的补偿优于对0-100 ppm范围基质效应的补偿,因此最佳操作是采用0-1000 ppm范围。当采用0-1000 ppm范围分析低浓度样品时,无需将分析仪校准到测量范围的最高点。校准点只需覆盖样品的预期TOC浓度范围即可。例如,如果样品的最高预期结果是1 ppm左右,可以将校准的最高点设为5 ppm。校准前,必须彻底冲洗分析仪。请运行高质量的去离子(DI)水(最好是18MΩ-cm的去离子水),直到达到0.45 µg或更低的稳定碳质量响应为止(见下图)。在冲洗过程中,只需注意峰值窗口中的碳质量响应,可以忽略实际NPOC结果。可能需要几个小时的连续测量才能达到此目的,具体时间取决于仪器状况和之前分析过的样品。酸剂:海水样品中含有大量的钙和镁,因此建议对所有海水分析使用3N HCl。盐酸产生的氯化物不会干扰样品中的化合物。如果用6M H3PO4,则会产生不溶性磷酸钙和磷酸镁,堵塞甚至损坏反应器。对于海水分析,建议采用“添加5%酸剂”这一默认值。氧化剂:请用30%(质量浓度)过硫酸钠作为氧化剂。请勿使用Sievers M系列TOC分析仪配置的15%(质量浓度)过硫酸铵氧化剂,因为超临界条件下,铵会消耗掉一部分添加的氧化剂,被氧化形成硝酸盐,从而降低总氧化剂的氧化强度。对于海水分析,建议添加25%的氧化剂。尽管0-1000 ppm或更大范围的默认氧化剂设置通常为15%,但这个比例对海水分析来说不够。在加热阶段,海水中的一部分氯化物在达到超临界状态之前就被氧化,从而降低了总氧化剂的氧化强度。如果氧化剂配量不足,或者使用过期的或失效的氧化剂,就会导致反应器管破裂,特别是对2020年之前生产的配备老式钛反应器管的Sievers InnovOx实验室分析仪来说,情况更严重。新款的Sievers InnovOx实验室分析仪采用钽反应器管,可以降低管子破裂的风险,但氧化剂配量不足仍不利于回收有机物。吹扫时间:海水中有大量的无机碳(IC),而0.8分钟的默认喷除时间不足以去除大部分无机碳。海水样品中的无机碳浓度比TOC浓度高数倍,未被去除的无机碳会严重影响NPOC测量结果。建议将无机碳喷除时间延长到2.0分钟。较长的喷除时间不仅能彻底去除无机碳,还能将样品和试剂混合得更均匀。但在校准时,只需分析KHP或蔗糖标准品即可,因此可以保留0.8分钟的默认喷除时间。冲洗:为了最大程度清除样品残留,并防止气/液界面结晶,建议在每次样品分析之后,用去离子水冲洗分析仪。冲洗分析仪的最方便的做法是,对去离子水样品运行无机碳测量。只需运行1次重复测量即可。在工作日结束后,应彻底冲洗分析仪,清除系统中的残留样品。请用装有去离子水的40 mL样品瓶运行以下冲洗任务:载气供应:大多数Sievers InnovOx实验室分析仪都配备内置的气泵和空气过滤器,能够提供不含CO2的载气。此配置能够在整个测量范围内获得准确结果。如需测量低浓度TOC(即在分析仪的定量限附近进行测量),建议将分析仪连接到高规格的氮气供气源。取样:对于海水分析,建议使用外部吸管或带冲洗站选件的Sievers InnovOx自动进样器,以实现最佳取样效果。请勿使用样品瓶端口,因为样品瓶端口难以被清洗干净,残留的样品会腐蚀设备。如要用HCl来预酸化样品瓶中的海水样品,建议用塑料部件来替换不锈钢材质的取样口和自动进样器管接头(见下图)。需要以下更换件:注意:上述部件不在标配的附件包中,请另行购买。★分析仪位置和废液处理★在海水分析过程中,废液容器和分析仪内都会有微量的卤素气体。为了防止卤素危害人体健康,建议将分析仪、试剂、废液容器放在通风橱中进行操作。如果没有通风橱,请将分析仪放在通风良好的工作台上,将废液容器放在台下的地板上。为了帮助通风,建议在分析海水样品时卸下分析仪流体组件的盖子。为了防止废液容器中产生卤素气体,请在开始分析之前,向废液容器中投放大量的固体氢氧化钠或氢氧化钾,以中和未反应的样品和试剂,避免产生卤素气体。请勿使用碳酸氢盐或碳酸盐来中和废液容器中的液体,以免产生CO2气体,或将产生的卤素气体扩散到周围环境中。请确保在工作日结束时清空废液容器,在第二天开始分析之前重新投放中和剂。★海水分析的方法摘要★以下是用Sievers InnovOx实验室TOC分析仪进行海水分析时的建议的分析方法设置。◆ ◆ ◆联系我们,了解更多!
  • 用实验室TOC分析仪进行盐水TOC分析的最佳操作方法
    简介 盐水中的总溶解性固体含量较高,而且氯化物能够消耗氧化剂,因此对盐水样品(氯化物含量为3.5%-30%)进行总有机碳(TOC)分析会面临很大挑战。在传统的湿化学系统上运行分析时,由于氯化物的干扰,盐水样品显示较低的TOC回收率。相比之下,燃烧系统在分析盐水样品时显示较高的TOC回收率,但燃烧系统的维护周期短,运行成本高,信号有漂移,且需要进行频繁的重新校准。Sievers InnovOx实验室TOC分析仪采用专利的超临界水氧化(SCWO,Super Critical Water Oxidation)技术,能够消除氯化物的干扰,在提供一流分析性能的同时减少了昂贵且费时的分析仪维护工作,从而成为对盐水样品进行TOC分析的理想设备。本文介绍了如何正确设置和配置Sievers InnovOx实验室分析仪,以便在分析盐水样品时发挥最佳性能。操作模式建议用“不可吹除有机碳(NPOC,Non-Purgeable Organic Carbon)”模式来代替TOC模式进行盐水分析,除非还需要测量可吹扫或挥发性的有机物。在大多数盐水样品中,可吹扫或挥发性有机物的含量极小,因此NPOC约等于TOC。在NPOC模式下,测量结果并非是由2项单独的测量数据计算而来【TOC=总碳(TC)–无机碳(IC)】,因此NPOC模式运行得更快、测量得更准确。用NPOC模式代替TOC模式是行业中常见的做法,是几乎所有市面上出售的TOC分析仪的标准操作模式。只有当样品中含有挥发性化合物或者需要测量IC浓度时,才采用TOC模式。测量范围和校准盐水样品的TOC浓度较低,通常小于10 ppm。理论上来说,Sievers InnovOx实验室分析仪可以在最小测量范围(0-100 ppm)内运行盐水样品,但由于盐水样品的基质复杂,在最小测量范围内运行盐水样品时可能会产生较大的测量偏差。因此,建议在更大范围内运行盐水样品,例如0-1000 ppm或0-5000 ppm。Sievers InnovOx实验室分析仪的内部设置能够在不降低测量的准确性和精确性的前提下,对0-5000 ppm范围基质效应的补偿优于对0-1000 ppm范围基质效应的补偿,因此最佳操作是采用0-5000 ppm范围。当采用0-1000 ppm或0-5000 ppm范围分析低浓度样品时,无需将分析仪校准到测量范围的最高点。校准点只需覆盖样品的预期TOC浓度范围即可。例如,如果样品的最高预期结果是5 ppm左右,可以将校准的最高点设为10 ppm。校准前,必须彻底冲洗分析仪。请运行高质量的去离子(DI)水(最好是18 MΩ-cm的去离子水),直到达到0.45 µg或更低的稳定碳质量响应为止(见下图)。在冲洗过程中,只需注意峰值窗口中的碳质量响应,可以忽略实际NPOC结果。可能需要几个小时的连续测量才能达到此目的,具体时间取决于仪器状况和之前分析过的样品。酸剂根据要分析的样品的硬度(即钙和镁的浓度)来选择酸剂。如果CaCO3浓度低于100 ppm,建议用6M H3PO4。如果CaCO3浓度高于100 ppm,应当用3N HCl,以免在分析仪内形成沉淀。对于盐水分析,建议采用“添加5%酸剂”这一默认值。氧化剂请用30%(质量浓度)过硫酸钠作为氧化剂。请勿使用Sievers M系列TOC分析仪配置的15%(质量浓度)过硫酸铵氧化剂,因为超临界条件下,铵会消耗掉一部分添加的氧化剂,被氧化形成硝酸盐,从而降低总氧化剂的氧化强度。对于盐水分析,建议添加30%的氧化剂。尽管0-1000 ppm或更大范围的默认氧化剂设置通常为15%,但这个比例对盐水分析来说不够。在加热阶段,盐水中的一部分氯化物在达到超临界状态之前就被氧化,从而降低了总氧化剂的氧化强度。如果氧化剂配量不足,或者使用过期的或失效的氧化剂,就会导致反应器管破裂,特别是对2020年之前生产的配备老式钛反应器管的Sievers InnovOx实验室分析仪来说,情况更严重。新款的Sievers InnovOx实验室分析仪采用钽反应器管,可以降低管子破裂的风险,但氧化剂配量不足仍不利于回收有机物。吹扫时间盐水中有大量的无机碳(IC),而0.8分钟的默认喷除时间不足以去除大部分无机碳。盐水样品中的无机碳浓度比TOC浓度高数倍,未被去除的无机碳会严重影响NPOC测量结果。建议将无机碳喷除时间延长到2.0分钟。较长的喷除时间不仅能彻底去除无机碳,还能将样品和试剂混合得更均匀。但在校准时,只需分析KHP或蔗糖标准品即可,因此可以保留0.8分钟的默认喷除时间。冲洗为了最大程度清除样品残留,并防止气/液界面结晶,建议在每次样品分析之后,用去离子水冲洗分析仪。冲洗分析仪的最方便的做法是,对去离子水样品运行无机碳测量。只需运行1次重复测量即可。在工作日结束后,应彻底冲洗分析仪,清除系统中的残留样品。请用装有去离子水的40 mL样品瓶运行以下冲洗任务: 载气供应大多数Sievers InnovOx实验室分析仪都配备内置的气泵和空气过滤器,能够提供不含CO2的载气。此配置能够在整个测量范围内获得准确结果。如需测量低浓度TOC(即在分析仪的定量限附近进行测量),建议将分析仪连接到高规格的氮气供气源。取样对于盐水分析,建议使用外部吸管或带冲洗站选件的Sievers InnovOx自动进样器,以实现最佳取样效果。请勿使用样品瓶端口,因为样品瓶端口难以被清洗干净,残留的样品会腐蚀设备。如要用HCl来预酸化样品瓶中的盐水样品,建议用塑料部件来替换不锈钢材质的样品端口和自动进样器管接头(见下图)。需要以下更换件:注意:上述部件不在标配的附件包中,请另行购买。分析仪位置和废液处理在盐水分析过程中,废液容器和分析仪内都会有微量的卤素气体。为了防止卤素危害人体健康,建议将分析仪、试剂、废液容器放在通风橱中进行操作。如果没有通风橱,请将分析仪放在通风良好的工作台上,将废液容器放在台下的地板上。为了帮助通风,建议在分析盐水样品时卸下分析仪流体组件的盖子。为了防止废液容器中产生卤素气体,请在开始分析之前,向废液容器中投放大量的固体氢氧化钠或氢氧化钾,以中和未反应的样品和试剂,避免产生卤素气体。请勿使用碳酸氢盐或碳酸盐来中和废液容器中的液体,以免产生CO2气体,或将产生的卤素气体扩散到周围环境中。请确保在工作日结束时清空废液容器,在第二天开始分析之前重新投放中和剂。盐水分析的方法摘要以下是用Sievers InnovOx实验室TOC分析仪进行盐水分析时的建议的分析方法设置。◆ ◆ ◆联系我们,了解更多!
  • 南京麒麟(碳硫分析仪器的操作方法和日常维护)
    碳硫分析仪是普遍适用于实验室的分析仪器设备,经我公司改进后生产的系列碳硫分析仪具有操作方便、准确度高的优点。而且对企业中的操作人员技术要求也相对放宽,一般只要具备高中文化并给我公司的专业培训后,都可以很快的掌握其操作原理及日常维护原理。现做简单说明如下: (1)打开氧气阀,打开电弧燃烧电源、前氧、后控,调节氧气,压力在0.02—0.04MPa。 (2)清理电弧炉里的灰尘,旋下除尘器,用毛刷清理里面的灰尘。 (3)打开所有电源开关,按住“对零”按钮,D3亮,至量气筒溶液高度不变化时,调C(碳)调零旋钮,使C读数为零。 (4)按一下“准备”按钮,此时D1、D3、D5亮,使量气筒内注满液体,此时,D1和D3灭。滴定管中注满液体,D5灭。调整S调零旋钮,使S读数为零。 (5)在坩锅内依次加入硅钼粉(约0.3g),称好的样品(1g),锡粒(为0.3g),合上坩锅。 (6)打开“前氧”“后控”,调节流量计控制在80L/h左右。 (7)按一下“分析”按钮,电弧炉引弧,D2亮量气筒液体下降,下降到底部后,量气筒里气体压到贮气瓶中,二氧化碳被吸收,最后量气筒气体下降到粗细接口处时关“前氧”,降到底部后,D4灭,在D4灭火之前,分别调节碳、硫校准电位器,使表头数据分析别与标样中碳、硫含量相同,最后关“后控”,打印出结果。 定标工作完成,此后,校准旋钮不能再动,否则应按以上步骤重新定标。 (8)样品材料测试:按上述步骤(3)~(6) 操作,再按一下“分析”按钮,仪器开始工作,待分析程序结束后,即:D4灯灭后,读取表头数据,即为材料中碳、硫的百分含量。 注:定标前先烧3—5个废样,调节硫杯颜色为浅蓝色。定标应在D4(吸收灯)灭之前调好,打印出的数据与标样数据相同,否则应再做标样,重新定标。
  • 上海计量院一检测方法获上海市职工先进操作法优秀成果奖
    近日,由上海市总工会、市科委、市经信委等单位联合评选的2021年度上海市职工合理化建议和先进操作法优秀成果获奖名单公布。上海计量院在线通用所提出的“绝缘电力工具数字化智能化高效安全的检测方法”获2021年度上海市职工先进操作法优秀成果奖,并受邀参加2023上海职工科技节开幕式。   “绝缘电力工具数字化智能化高效安全的检测方法”主要研究内容为针对不同规格的绝缘电力工具检测设备,采用模块化设计,统一设备对接端口,自动规划设备对接方式,以便于设备的安装和拆卸,结合5G通信技术及物联网技术,自动对被测样品进行识别和参数设置,达到检测过程全自动控制,并自动监测和记录测得的实验数据,最终实现绝缘电力工具检测设备的全生命周期管理。该项目主动对接核电、电网等建设项目的绝缘安全检测需求,积极推动绝缘安全检测领域科技成果融入超高压智能电网行业发展,提升相关领域技术能级。   此外,上海计量院申报的“核酸提取仪计量校准操作方法”、“臭氧多相量值溯源的体系建立与应用”、“气溶胶光度计校准装置研发及校准规范制定”、“网联出租汽车计价器检定规程”等4个项目同时荣获了2021年度上海市职工先进操作法创新奖。
  • 南京麒麟红外碳硫仪现场调试获得客户好评
    南京麒麟红外碳硫仪现场调试获得客户好评2021年10月份,南京麒麟技术工程师从摩腾科技有限公司调试培训圆满结束,该公司引进的是一套高频红外碳硫仪检测设备。用来检测耐磨材料中的多种元素含量,成品精度要求更高。针对这一系列高标准,工程师在调式现场与客户讲解了操作方法,进行了技术交流,现场检测设备检测准确度和精密度得到客户认可。该公司主要是耐磨新材料的研发、耐磨材料零部件生产制造加工等。广泛应用于风电、火电、水电、铁路、航空、船舶、医疗、纺机、线缆、钢厂、消防、冶金、矿山、工程机械、橡胶等多个行业领域,产品远销全球多个国家和地区。高频红外碳硫仪配合高频感应燃烧炉能快速、准确地测定铁合金、不锈钢、碳钢、合金钢、铸铁、球铁、有色金属、稀土金属、水泥、矿石、焦炭、煤,铁矿及其它材料中碳、硫两元素的含量。具有测量范围宽、抗干扰能力强、功能齐全、操作简单、分析结果快速准确等特点。南京麒麟科学仪器集团有限公司检测中心2021.11.08
  • 飞翔赛思红外测油仪在郑州市环监站顺利验收
    2019年11月13日,由北京飞翔赛思科技有限公司生产的Flyscience2000的红外测油仪和 OLCQQ-射流萃取器,顺利通过了郑州市环境保护监测中心站验收。郑州市环境保护监测中心站验收组老师一致认为飞翔赛思的红外测油仪和射流萃取器,完全满足行业新标准HJ 637-2018 《水质 石油类和动植物油类的测定 红外分光光度法》,同时仪器具有很好的稳定性并且软硬件操作简单,短时间内就能熟悉掌握操作方法。 当天,飞翔赛思应用工程师现场拆开仪器的包装,和郑州市环监站的老师一起确认了仪器的外观没有任何问题后,开始仪器的安装、校准、调试、并对仪器的使用仪器的老师进行了专业、详细的操作培训。验收组的老师对飞翔赛思的红外测油仪的性能及现场工程师的安装培训服务给予了高度的评价。北京飞翔赛思科技有限公司将始终以用户为中心,加大研发力度,不断优化仪器性能,推出更多的测油解决方案,为中国环境质量持续改善做出应有的贡献。飞翔赛思的测油仪广泛应适用于环保局各级环境监测站、市政排水监测站、水利水文监测站、铁路环境监测站、石油石化焦化钢铁等企业废水检测、自来水水务公司、农畜牧渔业水质检测、餐饮业油烟检测、土壤固废矿物油检测、第三方环境检测公司等众多领域。
  • 陈平与近红外:六年近红外之路------从一台近红外到多台近红外的成长
    六年近红外之路------从一台近红外到多台近红外的成长  近红外在饲料行业的应用,应该说在国外已经有很长的历史了,所以外资企业的近红外应用较早,并且是以规模化的应用模式快速复制和扩张。而国内饲料近红外的大规模应用,大部分是最近十年间的事情。我很有幸当年毕业后正好碰见这个时期,把自己的职业生涯和集团近红外应用和推广联系在了一起,作为近红外项目负责人组建了目前的近红外定标项目中心,经历见证了近红外在我们集团的应用发展过程。  我于2010年毕业于四川农业大学动物营养研究所动物营养专业,作为学校的优势专业,不缺工作岗位,同学们除了继续深造,大部分选择配方师或饲料研发岗位从事技术工作,唯独我是例外。当时对实验室情有独钟,第一个工作项目是用ELISA方法进行霉菌毒素检测分析,并且在集团开展培训推广该技术。因为读书期间有一年半细胞生物学实验的基础,这个检测简直是小菜一碟,工作之余可以兼职看看近红外。这台近红外比我早一年到实验室,此时已经有常规的成品和大宗原料模型,用于和总部最近的全价料工厂的检验。用肖雪博士的“要不试试近红外?”的想法,联系到自己的日常检测工作,我立马就想用它建立一个玉米的黄曲霉毒素和呕吐毒素的预测模型!虽然对近红外操作都还是一头雾水,可是说干就干,看着软件说明书,请教了一下同事操作方法,还查阅到了相关的所有文献,只有老外发表过类似的文章,有可行性,这在国内检测都还是空白呢!要是建成了可以节约多少检测成本呢,感觉读书时候的钻研劲儿又上来了,把波长间隔设到4cm-1,样品取3次平均,还想把颗粒和粉碎模型一起做,检测,粉碎,扫描,100多个样品,天天从早干到晚,然后数据分析,光谱处理,波段选择,参照老外,也自己用软件优化,结果------不了了之。现在看来,有些笑话,也感叹那时候真的很年轻。近红外说起来很简单,因为有商业配套软件,简单到我们可以把计算过程当成是黑匣子,目标就是建立一个模型,R2要接近1,RMSECV要最小。中间却缺少了很多环节,对数据的综合解读能力也基本处于外行状态。殊不知,近红外技术是一门多学科技术,涉及到到知识面太广了,光谱学,化学计量学,统计学,还有所要检测项目相关的行业知识。我喜欢把近红外工作比喻为下棋,因为一招错可能会导致全盘皆输,一旦一个环节错了,最终出来的数据都可能会不尽人意。很多人对近红外都能说出十之八九,可是往往那不足的一二就成了水桶原理的短板,所以即使很多人都可以给我们的工作提供专业的建议,没关系,一一接受,但是去伪存真,扩充知识面,在建模之初做好打算比后期补救的意义会大很多。  半年过去,检测工作没再继续,之前从事近红外管理的同事辞职了,我开始接手专职近红外工作。我也开始脚踏实地地把应用重心转到常量分析上,对提高模型的稳健性做了大量优化工作,在此过程中对软件操作维护已经非常熟悉了。鉴于第一台近红外在公司的“良好”应用(至少替代了很多手工分析,节约了大量的人力物力),技术总监决定在集团大规模推广近红外了。当我产假休完已经2011年底,新来的5台近红外很快摆在了我面前,等待验收调试。报警,斜率,截距,样品,数据,这些词天天在我的头脑里打转,下班都挥之不去。因为我们选择的其中一款仪器在全球都大概算是首发了,应用经验都有些缺乏,可能还有些信心太足。我们就当是第一个吃螃蟹的公司,调试了近两个月,还是没有达到我们先前使用的单台近红外的预期结果,但是抵不住分公司的压力,还是把仪器下发到各个分公司,反馈回来的情况是------其中一个品管经理给我们总监投诉花几十万买回来一个废物。那一刻真的很崩溃。如果说前期单台近红外自己还能简单地玩一玩,现在是真心HOLD不住了。庆幸的是领导并没有批评我,还组建了四人的近红外项目组团队协助我进行湿化学分析,这是对我工作最大的鼓励和支持。厂家技术团队尽可能给予了我技术支持。虽然顶着压力,当时还是想,我就不信近红外做不出来,颇有“不撞南墙不回头”的气势。也正是因为碰到的问题太多,促进我去学习更多的知识和进行更多的反复论证,这些问题就像是滋养我快速成长的雨露一样,带动了我很多的思考。大概过了半年时间,一直以来的坚守终于有了回报,雨过天晴,问题逐渐解决一些了,网络化应用的优点也逐渐显现出来,为我节约了大量的时间和精力。现在管理的二十多台近红外,除了安装的时候亲自下分公司验收培训,再也没有太多的机会能下分公司了。现在的近红外已经成为我们分公司缺一不可的工具。  去年,褚小立博士把我们近红外工作者们都拉入微信群,让我第一次有机会见识到了如此多的不同的专业背景专家,并且参加第六届近红外光谱学年会见到了真人,听着他们的故事,执着和坚守是大家共同的特点,作为一个近红外迷,不是近红外专业出身,但是能够成为其中一分子被接纳,竟然毫无违和感,我很感谢这个群体对一个非学术界晚辈后生的包容。回顾这六年来的近红外工作,感慨万千,我也一直在探索论证中成长,真正无怨无悔。  华西希望四川特驱投资有限集团研发技术中心 陈平 2016.5.14
  • 质量检测中心用户选用能谱科技iCAN9傅立叶红外光谱仪
    山东某质量检测中心通过对多家红外光谱仪生产厂商产品的细数对比仔慎重挑选,天津能谱科技以一流的服务,优质的产品,赢得了该检测中心的青睐,正式达成合作关系 。2017年12月1日,山东某质量检测中心订购一批红外光谱检测套装经过各项检测项目,各项参数均符合客户订购需求,顺利完成备货。本月19日,在能谱科技各部门的紧密配合下,该批设备顺利送往山东青岛,能谱科技工程部张工随货同行,协助现场验收及培训工作。此次合同包含的设备和红外附件比较多,包括iCAN9 傅立叶红外光谱仪、 Lab Press 15T 粉末压片机、 HF-2 压片模具、高纯KBr光谱纯、 红外液体池-固定密封液体池、密封式气体池、红外烤箱、红外光谱谱图数据分析系统、等红外光谱检测分析仪器。上午9点,该批仪器顺利达到客户公司,由于此次设备种类比较多,产品涵盖范围也比较广,因此,此次验收的第一项工作就是对仪器进行交接,交接内容包括确定产品数量、型号规格、主机附件。经过检查之后,到场设备清单与订购设备清单一致,无错发、漏发现象。iCAN9傅立叶变换红外光谱仪属于精密仪器,为避免长途运输对设备造成影响,天津能谱在包装方面有着严格的要求,因此,虽然经过长途运输,仪器外观并没有受影响。随后,张工为客户进行详细的产品说明及操作演示,并且现场记录试验结果。各项结果与标准技术参数一致,设备性能稳定、符合要求。除了对调试设备的性能进行再次质检,操作方法培训也是此次验收工作的一项要点。为了让客户更加清楚的了解设备,张工结合ican9傅立叶红外光谱仪的使用说明书、操作视频以及现场试验全方面、多角度的对该批设备进行培训,确保每一个参与培训的技术员都可以独立操作设备,完成各项试验。验收项目结束后,客户对本次验收情况非常满意,并提出下一批红外光谱分析仪器的采购意向,欲与能谱科技建立长期合作关系,这对天津能谱而言,也是一次莫大的肯定与鼓舞。
  • 近红外光谱法鉴别珍珠粉将成国标方法
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中采用了分子光谱方法的标准有3项,分别是:《珍珠粉鉴别方法--近红外光谱法》、《纳米技术 单壁碳纳米管的紫外 可见 近红外吸收光谱法表征》、《拉曼光谱法表征石墨烯层数》。  《珍珠粉鉴别方法--近红外光谱法》  目前,我国还没有颁布珍珠粉的检测标准,市场上珍珠粉产品鱼龙混杂,低价的贝壳粉常常被不良商户以珍珠粉名义出售,严重危害了消费者利益。 本标准将利用近红外技术结合数学模型对珍珠粉进行定性、定量检测,方法简单、快速、可靠。建立微米/纳米级珍珠粉精确检测方法,为市场监管提供有效的、可操作的方法。  《纳米技术 单壁碳纳米管的紫外 可见 近红外吸收光谱法表征》  碳纳米管在复合材料、储氢、电子器件、传感器和探头、电子发射、电池和电容器等方面表现出优异的性能,而决定这些性能的主要是碳纳米管的直径、纯度和金属性等。但采用单一方法对碳纳米管进行表征时,往往由于离心条件、制样过程和所使用的计算和处理方法的不同,而导致表征结果之间存在很大的差异,从而阻碍了碳纳米管的研究和广泛应用。紫外/可见/近红外吸收光谱法是一种简便、快速的检测方法,通过对测试结果的计算分析,能够获得单壁碳纳米管的直径、纯度和金属性等有价值的信息。因此制定本标准以规范单壁纳米管的光谱表征方法。  《拉曼光谱法表征石墨烯层数》  石墨烯是纳米材料领域重点研发的功能材料热点之一。它具有优异的导电导热性能,数十倍于钢铁的强度和极好的透光性等性能,可以广泛应用于触摸屏、太阳能电池和复合材料等领域。目前工业界中把层数小于10层的石墨片层都约定俗成地统称为石墨烯。  根据有关披露信息显示,我国已有多家公司正在积极开展石墨烯材料的研制工作,部分公司已进入了中试阶段。中国宝安集团、江南石墨烯研究院以及中科院系统各研究所等企业与机构都在积极探索石墨烯的量产和应用开发研究。  在石墨烯的制备、研究和技术交流中,石墨烯物理特性的精确表征技术和方法是关注的重点之一,其中石墨烯层数的测定更是表征石墨烯材料的首要核心指标。目前,可用于检测石墨烯层数的方法很多,但各种方法基于的原理和表征值不尽相同,造成了某些情况下测量结果不具有可比性。因此制定本国家标准,可为石墨烯材料的质量检验以及技术交流提供的科学、统一、广泛的技术交流平台。
  • 2019年9月北京飞翔赛思为哈尔滨工业大学安装全自动红外测油仪
    2019年9月北京飞翔赛思科技有限公司为哈尔滨工业大学水资源与水环境国家重点实验室,安装全自动红外测油仪Flyscience3000(水中油分浓度分析仪),现场测试结果完全满足新行业标准HJ 637-2018 《水质 石油类和动植物油类的测定 红外分光光度法》。飞翔赛思应用工程师现场拆开仪器的包装,和用户老师一起确认了仪器的外观没有任何问题后,开始仪器的安装、校准、调试、并对仪器的使用仪器的老师进行了专业、详细的操作培训。全自动测油仪是一款功能强大、自动化程度高的油份浓度测定仪,仪器由3个部分组成:自动进样系统、样品转移分离系统和测油部分,将添加萃取剂、样品萃取、样品转移、油水分离、测量、清洗和排废过程集成于一体,全程无需人工操作,而且废液、废气的收集全过程密闭运行,减少接触有毒试剂,有效提高样品前处理效率,减少有毒试剂对人员的伤害,并将分析工作者从繁琐的样品处理工作中解放出来。全自动红外测油仪Flyscience3000具有智能化,自动化的特点,而且不同于市场上同类产品,Flyscience3000更加安全可靠,能够实现废气自动吸附,废液分离收集,减少实验老师接触有毒试剂;全程自动化运行,测量范围宽泛,实现浓度超标自动稀释;智能化设计,检测结果稳定无需制作标准曲线;用户界面友好,用户在短时间内就能熟悉掌握操作方法。此次安装调试工作圆满完成,验收老师对全自动红外测油仪Flyscience3000的性能及现场应用技术人员的安装培训服务给予了高度的评价。北京飞翔赛思科技有限公司将始终以用户为中心,加大研发力度,不断优化仪器性能,推出更多的测油解决方案,为中国环境质量持续改善做出应有的贡献。全自动红外测油仪以它的特点近两年很快占领了市场,全自动已经是个发展趋势。全自动测油仪广泛应适用于环保局各级环境监测站、市政排水监测站、水利水文监测站、铁路环境监测站、石油石化焦化钢铁等企业废水检测、自来水水务公司、农畜牧渔业水质检测、餐饮业油烟检测、土壤固废矿物油检测、第三方环境检测公司等众多领域。
  • 中国药典近红外分光光度法指导原则将修订 或转化为方法通则
    日前,国家药典委员会发布2023年度国家药品标准提高课题拟立项目录公示文件。根据通知,本次标准提高工作,共有159个药品品种标准、80个通用技术要求标准列入项目课题。其中,“近红外光谱法的修订”课题由中国食品药品检定研究院牵头,中国医学科学院药物研究所、江苏省食品药品监督检验研究院参与,执行周期为12个月。内容显示,该课题研究内容包括以下几个方面:1. 根据国际上仪器标准、仪器的发展,修订现有指导原则中关于近红外仪器种类及校验的内容,评估其转化为方法通则的可行性。2. 增订近红外光谱法在药品生产和质控上应用的关键技术要求,建立近红外光谱技术在具体药品CMC(化学成分生产和控制)上应用的技术细则和指导原则。3. 结合ICHQ13中实施近红外光谱法开展过程监控的指南,探索近红外光谱法作为过程分析技术的应用,增强近红外光谱法在制药领域的先进性和可操作性。
  • 海克斯康测量机实用操作技巧在线研讨会正在进行中
    随着三坐标测量机软件技术的发展和广泛应用,三坐标测量机操作技巧的研究引起越来越多量友的关注。在《测量机实用操作技巧》系列讲座中,有着30多年三坐标应用经验的邢建忠老师结合其多年来对测量机应用理论和实际操作的研究,着重从三坐标操作方法上为大家介绍箱体类高精密检测应用中的一些理念和技巧。具体内容涉及测头校验、零件找正、特征元素测量、形位公差评价及柴油机零部件检测等全方位的测量技巧 该讲座《测量机实用操作技巧(二)》将重点介绍特征元素的测量技巧。敬请关注!  会议时间:2010-7-8  会议地址:http://www.hexagonmetrology.com.cn/channel/index-s.aspx
  • 全自动红外测油仪Flyscience3000成功落户辽宁营口某检测中心
    为了更加高效完成水中油检测任务,辽宁营口某检测中心购置北京飞翔赛思自主研发设计生产的全自动红外测油仪Flyscience3000,于1月21日顺利完成安装调试验收,体现仪器完美的精密度,现场测试结果完全满足新行业标准HJ 637-2018 《水质 石油类和动植物油类的测定 红外分光光度法》。 在用户检查仪器外观确认完整无损后,飞翔赛思应用工程师开始了安装工作,安装完成后开始调试,并在调试检测过程中,同时向实验室老师做了详细的解说。全自动测油仪是一款功能强大、自动化程度高的油份浓度测定仪,仪器由3个部分组成:自动进样系统、样品转移分离系统和测油部分,将添加萃取剂、样品萃取、样品转移、油水分离、测量、清洗和排废过程集成于一体,全程无需人工操作,而且废液、废气的收集全过程密闭运行,最大限度的减少接触有毒试剂,有效提高样品前处理效率,减少有毒试剂对人员的伤害,并将分析工作者从繁琐的样品处理工作中解放出来。 全自动红外测油仪Flyscience3000具有智能化,自动化的特点,而且不同于市场上同类产品,Flyscience3000更加安全可靠,能够实现废气自动吸附,废液分离收集,极大限度减少实验老师接触有毒试剂;全程自动化运行,测量范围宽泛,实现浓度超标自动稀释;智能化设计,检测结果稳定无需制作标准曲线;用户界面友好,用户在短时间内就能熟悉掌握操作方法. 此次安装调试工作圆满完成,验收老师对全自动红外测油仪Flyscience3000的优质性能及现场应用技术人员的安装培训服务给予了高度的评价。北京飞翔赛思科技有限公司将始终以用户为中心,加大研发力度,不断优化仪器性能,推出更多的测油解决方案,为中国环境质量持续改善做出应有的贡献。 全自动测油仪广泛应适用于环保局各级环境监测站、市政排水监测站、水利水文监测站、铁路环境监测站、石油石化焦化钢铁等企业废水检测、自来水水务公司、农畜牧渔业水质检测、餐饮业油烟检测、土壤固废矿物油检测、第三方环境检测公司等众多领域。
  • FLIR红外热像仪,助力高校提升学生工程实践能力
    随着教学理念的不断提升,各大高校越来越注重对于学生理论知识实践性应用的培养,特别是在工程应用方面,对于各种工程器材的熟悉和应用非常重要。为此,美国FLIR公司与高校实验室合作,使得学生能够通过FLIR红外热像仪进行光电实验,助力高校提升了学生的工程实践能力。一直以来,受限于实验器材的高昂成本,物理学院和光电学院对于光电技术研发和应用领域后备人才的培养有所力不从心,特别是对于红外热像仪的应用,更是缺乏实操经验,本科的教学计划中只有实践理论的学习,却没有相关内容的教学实验和实践环节,所以亟需完善红外热像领域人才培养体系中的实验教学部分。为了改变以上现状,北京理工大学光电学院光电创新教育实验基地针对光电信息工程专业本科四年级毕业实习课程进行了改革提升,在原有非成像光电测温系统的校内实习内容基础上,增加“光电成像测温系统”的实践教学内容,建成以“非接触式光电测量”为核心内容的实践教学内容体系,推出了“理论知识+专业实践”的教学体系,弥补了学生“光学不练”的教学缺憾,,有力的提高了本科教学体系对于工程实践能力的培养水平。最新提出的实践教学内容体系主要分为三个环节,分别是:红外热像仪的概述和FLIR C2 Education kits操作方法;研究测量距离和被测物体辐射率对测温结果影响;应用黑体模拟器的红外热像仪传递函数实验与研究。一、入门学习:如何使用红外热像仪首先,学生使用红外热像仪拍摄单片机电路板上电时的红外图像,实验场景如图1所示,然后将拍摄的图像导入到FLIR红外图像分析软件FLIR Tools+中。图1. 使用红外热像仪拍摄单片机系统电路板图2. 单片机系统电路板工作时的红外图像如图2所示可以清晰看到电路板最热区域Ar1为电路板的散热片,将该区域最热点温度记录下来。二、初步应用:验证测量距离和辐射率对测温结果的影响1、如何正确的调整测量距离测量温度?首先将平行线红外目标板接上电源,选取一块便于观察的区域,使用FLIR热像仪在距平行线目标板大约30cm、50cm、100cm的地方分别采集红外图像。 图3. 表面平行分布四条电热丝的平行线红外目标板 图4. 使用红外热像仪拍摄目标板图5. 平行线红外目标板的红外图像然后将不同距离下拍摄的红外图像导入到FLIR Tools+ 软件中(如图5),测量同一区域Ar1内最高温度点的温度。并且将温度和拍摄距离一一对应填入下面表1。通过热电偶接触式测温测得Ar1区域内最热点温度在38℃左右,通过对比可知红外热像仪在距离30cm时,测量的温度最接近真实温度。距离(CM)温度(℃)10034.65036.13038.2表1. 不同距离下的温度值在对比过程中,学生们可以清晰的看到红外热像仪中间有一个圆形测温点,只有当被测目标覆盖测温点大小(大约7 个像素)时,测量温度才是准确的。当被测目标不能覆盖测温圆环时需要拉近测量距离或者更换像素更高的红外热像仪,如果更远距离就需要借助长焦镜头来提高测量距离。如图6所示圆环所覆盖区域包含了被测对象和背景,那么31.8℃的测量温度是不准确的,正确的做法是图(b)所示。 图6. 借助红外热像仪中心圈来判断距离远近的图示(其中(a)为错误示范,(b)为正确示范)2、如何通过FLIR红外热像仪测试辐射率对测温结果的影响如图7向贴有黑色电工胶带和铝箔胶带金属杯中倒入适量的热水,保证水位超过了胶带最上沿。将红外热像仪的辐射率调为0.95,记录此时三种材料的测量温度。以温度最高的材料为基准,改变辐射率,使另外两种材料的测量温度等于基准材料,记录此时另外两种材料的辐射率。图7. 使用FLIR C2 拍摄外表面贴有电工胶带和铝箔纸的热水杯下图8是所示是电工胶带、铝箔纸、金属水杯在同一画面下的红外图像。图8. 贴有黑色电工胶带和铝箔胶带金属热水杯的红外图像调整辐射率可以得到不同温度(见表2):被测物体\设置不同辐射率辐射率0.95辐射率0.54辐射率0.25电工胶带sp155.2℃76.5℃123.5℃铝箔SP342℃55.2℃87.1℃不锈钢水壶SP2 32.6℃37.6℃55.2℃表2. 不同辐射率下各材料的温度值表格通过对比分析结果,学生们可以清楚的了解到辐射率对于测温结果的影响:被测物体辐射率影响测温准确度,非金属辐射率大于金属辐射率,高辐射率的非金属更接近真实温度。三、深入应用:对传递函数进行研究 图9. 使用FLIR C2 拍摄黑体模拟器内部的刀口红外图像图 图 10. 黑体模拟器刀口俯视图如图9接通黑体模拟器电源,盖上其上方的圆孔。将热电偶插入到黑体模拟器内部测温,当热电偶测温表上显示的温度稳定时,也就是黑体辐射处于稳定状态时,将FLIR C2红外热像仪镜头贴近黑体模拟器开孔,采集此时的图像。图10是黑体模拟器刀口俯视图,刀口结构是在铝板的右侧贴有黑纸。如图11是刀口的红外图像。图11. FLIR C2 拍摄的刀口红外图像在FLIR Tools+软件中改变辐射率数值,使得所测材料显示的温度与数字温度计上相同,记录此时的辐射率,分别测得铝和黑纸的辐射率。然后在FLIR Tools+软件中导出带有全辐射温度信息的CSV文件,即可将每个像素点的温度值导出。将图像的温度原始数据导入至MATLAB中,编程绘制出MTF曲线。如下图12、13、14所示分别是刀口边缘扩散函数、线扩散函数和调制函数MTF曲线。图12. 灰度曲线 图13. 点扩散函数图14. MTF曲线 FLIR红外热像仪走进学校实验室,从根本上解决了学校目前“光学不练”教学尴尬问题,通过“理论知识+专业实践”的教学体系,三个环节由简入繁,层层递进,不仅有效地提高了学生动手实操的能力,也为培养光电技术人才做出了应有的贡献。
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
  • 经济适用的FLIR Exx系列高级红外热像仪:操作简单、性能优越!
    红外热像仪作为一项先进的技术广泛应用在电力、工业、安防、研发等领域选择红外热像仪时除了要考虑机器的良好性能价格方面也不能忽视今天小菲就来给大家介绍一款经济适用的高性能手持式红外热像仪FLIR Exx系列FLIR Exx红外热像仪视频详细解析FLIR Exx系列高级红外热像仪,主要针对电气、机械和建筑应用领域,它们能够帮助您发现热点、检测建筑缺陷的早期征兆、排查电气系统和机械系统故障以及在造成严重损坏前预防问题。为了满足菲粉们的各项需求,FLIR Exx系列不断增加新成员,以及对以往产品进行升级,今天一起来了解下它的新情况!性能优越,满足各行业需求FLIR Exx系列高级红外热像仪目前FLIR Exx系列高级红外热像仪包括E54/E76/E86/E96/E98,FLIR Exx系列各个型号的分辨率都得到了很大的提升,其中E96/E98拥有640x480的分辨率和八倍数码变焦,是先进的Exx系列热像仪。FLIR E98/E96/E86可以帮助专业人员安全地在高达1500℃的超高温环境下(包括钢铁厂、窑炉等恶劣工业环境)诊断电气故障或定位隐患,而且不需要停机哦~像素越高,图片越清晰,检测结果越准确FLIR E98/E96/E86/E76还配备UltraMax 高清图像增强技术,集成一键式水平和跨度区域调节功能,拥有更高的对比度,可以查看更多图像细节。此外,可互换的AutoCal™ 智能自标定镜头可完全覆盖近距离和远距离目标,内置的激光测距仪可以确保清晰对焦,满足精确测温的要求。预防性维护,满足各行业需求FLIR Exx系列高级红外热像仪对于需要状态监控的工厂,借助耐用型手持式FLIR Exx系列热像仪定时巡检,能够帮助工厂提前发现异常过热设备,提前诊断问题、开展维修,防止设备发生故障,避免意外停机。对于危险的电气设备,使用高分辨率的FLIR Exx系列手持式红外热像仪,可以保证工作人员即使在安全距离范围内对电力设备进行全面的检查,也能清晰定位故障点,避免其引起火灾或爆炸。对于需要大面积扫描的建筑物检测,FLIR Exx系列热像仪提供优异的灵敏度和性能,能检测到细微的温差,其还采用4英寸的大触摸屏,尺寸比原先增大了30%,较宽的视场角能瞄准更宽广的视野。因此,用户可快速地发现隔热空隙、屋顶泄漏、暖通空调缺陷等问题,提高解决问题的效率。线路巡检规划,合理安排时间FLIR Exx系列高级红外热像仪FLIR Exx系列高级红外热像仪,将FLIR巡检选项(FLIR Inspection Route)功能设为标准配置。FLIR巡检选项功能是专为需要定期检测大量目标物体的热像师设计,比如当电力工程师们需要对户外电气设备、室内设备、电缆线架、配电母线等进行大型巡检时,可以通过FLIR Route Creator编写巡检规划方案,然后下载到FLIR Exx系列热像仪中,这样就可以按需规划好每天的巡检计划,优化巡检路线,让巡检工作更有序地进行。FLIR巡检选项功能对检测目标不限数量,可提高用户的检测效率,后续还可以成批分类管理检查结果,提升组织效率,简化报告流程,极大简化了热像工程师们后续的工作流程!对于专业人士而言一款好用的红外热像仪意味着更出色的分辨率的测量效果以及更简单明了的报告操作系统那么经济实惠、性能强悍的FLIR Exx系列红外热像仪
  • 天美HitachiF-7000/4600操作技术培训通知
    尊敬的用户: 承蒙您使用日立F-7000/4600荧光分光光度计,非常感谢! 天美公司将于2009年10月15日-16日在杭州市浙江大学华家池校区举行“日立F-7000/4600荧光分光光度计”操作技术培训班,由荧光产品技术专家现场讲解。在此天美公司诚挚邀请您的出席。具体安排如下: 培训班内容: 一. 分子荧光的原理和发展现状; 二. 荧光新技术和JY荧光产品介绍; 三. F-7000/4600荧光分光光度计的结构特点; 四. 仪器软件程序的匹配和仪器参数的最佳化; 五. 荧光光谱在不同领域中的应用技术; 六. 仪器的维护保养: 1. 软件程序的正确使用; 2. 仪器的日常维护和保养 3. 常规部件,附件的更换和操作方法 4. 各种常见故障的判断和排除方法 七. 实际上机操作,样品测试。 培训班安排: 培训班将于2009年10月15日到16日在杭州市浙江大学华家池校区科学楼一楼报告厅举行。参加培训人员食宿费、交通费自理。会务组将根据具体报名情况通知报到地点。 为了更好的组织这次会议,请您收到通知后于10月12日前将回执报名表邮寄/传真/电邮至天美公司。如您能将您对这次学习班的具体要求告诉我们将是对我们工作的最大支持和帮助。在此一并感谢! 名额有限,报满即止。 联络地址: 天美科技有限公司上海办事处 地 址:上海市漕溪路190号华林大楼9层(200235) 电 话:(021)64870138 传 真:(021)64870142 联系人:刘贵霞 电 邮:liuguixia@techcomp.cn天美公司中国贸易总公司总部 地 址:北京鼓楼西大街41号天美公司(100009) 电 话:(010)64010651 传 真:(010)64060202 联系人:覃冰 电 邮:qinbing@techcomp.cn
  • 业内首台一键式操作高智能研究级红外光谱仪问世-赛默飞
    赛默飞Nicolet iS50傅立叶变换红外平台集多重技术于一体,流畅的工作流设计赋予其无以伦比的操作简易性中国上海,2012年5月16日 – 全球科学服务领域的领导者赛默飞世尔科技(以下简称“赛默飞”),近日宣布推出业内首台一键式操作智能研究级红外光谱仪——赛默飞Nicolet iS50红外光谱仪。传承业内备受推崇的Magna,Nexus和Nicolet 6700红外光谱仪的技术优势,赛默飞Nicolet iS50着眼于以应用为导向的专业分析能力,为采样附件和采样集成提供了真正一体化的实验平台,帮助用户通过极为简易的操作,解决各种挑战性分析课题。Nicolet iS50红外光谱仪特点之一在于使用灵活,基本配置可以升级到全自动全光谱范围(远红外到可见)的系统。操作者可以一键式启动ATR,拉曼和近红外模块,无需手动切换各系统部件。同时,Nicolet iS50研究级红外光谱仪也是学术科研实验室的最佳选择。其多重采样方式与对应的分析技术相配合,充分保证了数据的准确性,并极大地提高了复杂化合物解析分析实验室的工作效率。Nicolet iS50专注于提高分析的速度和质量,避免了诸如更换附件等人为操作带来的误差。无论主样品仓内放置的是什么附件,内置式金刚石ATR均可在数秒内得到高质量的谱图。创新性的主样品仓拉曼模块蕴含先进的所见即所得采样技术,且没有荧光干扰。Nicolet iS50独特的积分球和光纤一体化模块,方便对所有性状的常量样品采集得到近红外谱图。 配合自动分束器切换装置,操作者可以通过一键式操作得到三种数据——ATR、拉曼和近红外的结果。这项独特的简化设计使iS50在世界各分析实验室表现卓越,帮助各领域的科学家们解决一个又一个分析难题,从药物配方到聚合物的研发,从物证鉴定到文物修复。不仅所用时间更短,而且得到更多更准确的信息。 “当今科技的飞速发展,势必要求科学家比以往更具效率、掌握更多技能”,Simon Nunn博士,赛默飞世尔科技分子光谱全球市场总监介绍道。“Nicolet iS50性能卓越,同时拥有无以伦比的灵智内心。配备上相应的模块,iS50的功能则空前强大,可以对几乎所有样品得到庞大的有效信息。而所有这些,只需要科学家们的指尖轻轻一触即可实现。”Nicolet iS50可用GC-IR或TGA-IR来分析复杂的混合物材料。全新的Omnic Mercury软件自动分离并鉴定GC柱或TGA出来的气体成分。这项技术尤其适用于TGA,因为TGA在同一时间会出各个组分。这项技术能分辨出塑料橡胶配方的细微差别,尽管材料的表观性能和质量可能差别不大。 “强大的Omnic软件包能把谱图翻译成组分信息,避免了主观性光谱解析。这些都给予了科学工作者更直观的结果,所花的时间比以往任何时候都少。”Nunn先生补充到。Nicolet iS50R,拥有所有科学研究者所需要的功能,定位在高端应用,例如VCD,PM-IRRAS和时间分辨实验等等。Nicolet iS50标准内置NIST可溯源标准,自动系统性能验证保证提供时刻提供高质量和稳定的数据。预知更多详情,请登陆www.thermoscientific.com/iS50. 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 国技仪器助力济南市槐荫区疾控中心开展职业卫生监测仪器操作现场培训
    为提升辖区工作场所职业病危害因素监测水平,加强职业病防治能力建设,近日,槐荫区疾控中心开展职业卫生监测仪器操作现场培训。区疾控消毒监测与病媒生物防制部部长胡玉华,成员牛莹莹、肖家喜、马心彤及实习生一同参加了培训。本次培训特邀深圳国技仪器有限公司高级工程师曾明森主讲,培训内容涵盖了职业卫生监测的各个方面。主要针对个体空气采样器、定点空气采样器及噪声检测等常用仪器,重点围绕仪器的原理、安装校准、操作方法、参数读取、仪器维护、质量控制和注意事项等方面进行了讲解。培训现场,参训人员结合仪器实际使用中遇到的难点问题与工程师进一步探讨,形成积极互动的课堂氛围,深化了培训效果。通过此次培训,参训人员对职业卫生监测的认识进一步加深,同时,仪器操作能力和现场监测能力也得到了显著提升,为下一步职业卫生相关监测工作的开展奠定了坚实基础。文章来源:济南市槐荫区卫生健康局
  • 微生物检测说到烂的无菌操作--细节说的明明白白的
    无菌室的工作要尽可能减少交流。不允许在无菌室内谈笑。要尽可能减少在无菌室内走动。沉降菌技术必须按照规定的时间进行使用。工作人员进入无菌室工作之前必须做好前期准备工作。要按照规定穿戴经过特殊处理的服装、并对身体做好清洁、避免对检测品造成污染。在检测样品的提取过程中,工作人员要尽可能远离检测物品。避免检测物品受到细菌污染。检测样品提取之后要进行科学的保存,避免受到污染。提取过程要尽可能加快速度,不能将检测样品在空气中闲置太长的时间避免空气中的细菌对检测样品造成污染。检测样品的提取过程必须严格遵守无菌操作的程序。打开储存样品的时候,要使用浓度为75%的酒精对存在检测样品的器皿瓶口进行消毒,要使用酒精棉球作为消毒的重要工具。器皿的瓶口要进行两次以上的酒精消毒,提取工作完成之后要科学的安放检测样品,并且随时检查储存检测样品的空间,避免检测样品受到污染。食品微生物检验的主要内容与特点1、检验内容目前我国对食品微生物检验的根本要求是安全无毒害。在对食品微生物进行检验时,主要内容包括3点:(1)对食品污染程度的检验,以检验食品样本中菌落总数、大肠菌群总数和霉菌总数为主,这种检验方式,只能对样本的污染程度做出判断,不能说明食品是否存在安全问题。(2)对食品中致病菌的定性检验,即检验食品样本中是否存在某种或多种致病性微生物,常规检验的致病菌主要有金黄色葡萄球菌、沙门氏菌、志贺氏菌、单核细胞增生李斯特氏菌、致泻大肠埃希氏菌、溶血性链球菌、蜡样芽孢杆菌、阪崎肠杆菌及副溶血性弧菌等。(3)对食品中致病菌的定量检验,即检验食品样本中某种或多种致病性微生物存在的量,通过检验结果结合科学数据,对食品样本的危害程度进行分析。2、食品微生物检验的特点(1)食品微生物检验涉及的微生物范围广,种属多。采集食品微生物检验样品比较复杂,要求高。食品微生物检验的研究对象包括:a.经食物传播的病原微生物,他们是人类疾病病原微生物、畜禽疫病的病原微生物和人畜共患传染病病原微生物,这几类微生物可达数百种;b.引起人类食物中毒的微生物及其毒素;c.引起食品腐败变质的微生物;d.食品工业微生物。可以说食品微生物检验接触的微生物类群、种属比其他专业微生物检验为多。(2)食品中待分离细菌数量少、杂菌量多,对检验工作干扰严重。食品微生物检验,其目的菌,如致病性微生物和食品中毒微生物及毒素,主要来源于生产加工、储存运输、销售等过程中污染的,在污染的微生物中,致病性微生物一般数量相对较少,却有大量的非致病性微生物污染,两者之间比较悬殊。(3)食品中微生物检验具有数量观念在GB 4789食品卫生微生物学检验方法中,对某些微生物的数量已经明确规定,除要检测食品污染程度指示菌,如菌落总数、大肠菌群的测定外,还有致病菌如金黄色葡萄球菌、产气荚膜梭菌、蜡样芽胞杆菌都需要菌数计算。诊断食物中毒仅做定性试验是不够的,还需要对致病菌定量检验。随着科技发展,各种致病菌的定量检验必将全面开展。食品微生物检验工作者必须不断摸索、积累,致病菌的定量检验,使其他致病菌的定量检验早日开展。(4)食品微生物检验需要准确性与快速性。食品生产后,为了保持新鲜程度,一般都是尽快的进入市场,转到消费者手中的,这就要求就检验工作尽快获得结果,保证食品的食用安全。另一方面,工厂化大规模生产的食品,每一批次数量较大,采样数量、采样方法和检验方法都直接影响到检验正确性和批量产品的处理,如果检验的结果不准确,将会造成严重的政治影响和经济损失。这一点是食品微生物检验工作必须注意的问题。(5)微生物检验具有一定法律性质。对食品的微生物检验,世界各国均制定有检验法规。作为食品微生物检验人员,在进行食品微生物检验时,均应按规定要求实施,不得任意更换其他方法。无菌操作的重要性所谓无菌,指的是不存在保证生命活动的营养细胞的状态。而无菌操作则是采用无菌的器械进行操作,防止微生物进入无菌范围的技术。在食品微生物检验中,无菌操作是重要的理念,只有采用无菌操作技术,保持食品样本在检验过程中不受到二次污染,才能保证检验结准确的反映出食品样本的卫生状况。在食品检验的各个环节,都有可能有微生物的进入,因此无菌操作技术应贯穿整个检验过程,如果有一个环节没有采用无菌操作,那么其他环节的无菌操作也将没有任何意义。无菌操作的具体应用1、取样食品微生物检验首先是从样本中无菌称取要求检验的质量,取样过程中使用的天平要经过消毒,检验用品如剪刀、药匙要经过170℃/2h 干热灭菌。取样过程严格按照无菌操作进行,才能保证食品样品的原始状态。前处理根据国标要求,取样后要对样品进行前处理。一般而言,称取 25g/ml 样品于盛有225ml无菌稀释液的无菌均质袋中均质,制备成1:10样品匀液进行检验。对于计数样品要,制备10倍系列稀释样品匀液,操作方法参见GB4789.2-2016。整个过程必须严格按照无菌操作进行。3、纯种分离在食品微生物检查过程中,为了更加准确的确定微生物群体,需要将疑似的目标菌从混杂的样品中分离出来,进而得到纯培养物。通常情况下,需要结合不同微生物的具体特性,针对性的选择培养基与培养条件,促进目标微生物的繁殖。或者通过使用某种抑制素,抑制除目标菌以外的杂菌生长,进而将其他杂菌淘汰。接着将培养物接种在固体培养基上形成目标菌的单菌落。这种单菌落还需要进行一定的纯化与鉴定,才能保障分离的菌株为纯菌株。在整个分离纯化过程中,通常需要用接种环把微生物的纯培养物从一个器皿转接到另一个器皿中培养。在这一过程中,如果不能严格按照无菌操作进行,很难保证检验结果的准确性。同时,实验人员应加强自身实验水平与操作能力,确保无菌操作技术熟练、准确。4、革兰氏染色革兰氏染色技术是食品微生物确认鉴定中重要的方法,将疑似的目标菌经过纯化分离后染色,在光学显微镜下观察微生物形态,能初步鉴定微生物是否是所检验的目标菌。革兰氏染色的操作步骤:涂片—初染—媒染—脱色—复染,整个过程中最重要的是涂片,涂片过程中必须严格无菌操作,避免杂菌混入,影响镜检结果。5、空白对照根据《GB4789.2-2016 食品安全国家标准食品微生物学检验菌落总数测定》,将营养琼脂培养基倾入加有1mL空白稀释液灭菌培养皿内作空白对照。空白对照的结果可以说明三个问题:① 检验过程中所使用的检验用品灭菌是否彻底;② 无菌室的空气条件是否达到标准;③ 操作人员的无菌操作技术是否规范。通过空白对照的结果可直接检验出实验器皿、实验条件以及实验人员的操作是否达到无菌操作的要求。只有空白对照结果符合要求,实验结果才是有效的。随着我国经济的快速发展,我国人民的生活水平迅速提高,人门对食品的质量提出了更高的要求,食品微生物检验工作是保证产品质量的重要工作。而无菌操作技术是食品微生物检验工作作的重要环节,研究食品微生物检验过程中的无菌操作枝术。操作人员在进行微生物检验时,一定要树立无菌操作观念,规范无菌操作程序,才能保证检验流程顺利完成。同时,操作人员要根据实际需要,合理运用无菌操作技术,避免在微生物检验中,引入杂菌,影响检验结果的真实性、准确性。
  • 6项白酒智能酿造工厂团标立项 涉及红外/近红外分析方法
    为了推动白酒企业智能化建设,促进白酒行业生产方式的转变,提高投配料、量质摘酒、分级入库过程的精细化、数字化,减少人为误差,确保酒的品质,提升优质酒的产率,提高白酒生产质量管控水平,为白酒行业智能化生产提供技术支撑。日前,中国酒业协会团体标准审查委员会发布关于批准白酒智能酿造工厂系列6项团体标准立项的函。相关内容显示,原申请8项目精简合并为6项。根据《中国酒业协会团体标准管理办法(2019修订版)》的规定,经中国酒业协会研究决定,批准中国酒业协会白酒技术创新战略发展委员会作为该标准的牵头单位,组建起草工作组,拟定详细的工作进度和时间表,开展标准的起草和制订等工作。各文件名称及相应的适用范围和主要技术内容如下:白酒智能酿造工厂系列团体标准情况序号标准名称适用范围技术内容1白酒智能酿造工厂 过程质量监控白酒智能工厂各生产过程的操作白酒智能工厂:过程质量监控的操作规程及相关术语2工业互联网 标识解析 白酒酿造 标识编码规范白酒生产车间和采购各相关工艺流程的操作白酒酿造标识编码规范的操作规程及相关术语3白酒工业智能制造成熟度评价实施指南对白酒企业智能制造成熟度水平的评估白酒工业智能制造成熟度评价的操作规程及相关术语4白酒智能酿造投配料 近红外光谱法应用指南应用近红外光谱分析技术于白酒摊凉加曲、投配料工段的操作应用近红外光谱分析技术于白酒摊凉加曲、投配料过程的通用操作规程及相关术语5白酒智能酿造 量质摘酒 红外光谱法应用指南 应用近红外光谱分析技术于白酒摘酒工段的操作应用近红外光谱分析技术于白酒摘酒工段的通用操作规程及相关术语6白酒智能酿造 基酒分级入库 红外光谱法应用指南白酒基酒入库分级等需要快速评估白酒品质的工段应用中红外光谱法于白酒分级基酒入库工段的通用操作规程及相关术语基于此,中国酒业协会白酒技术创新战略发展委员会同时也发布了关于征集白酒智能酿造工厂系列6项团体标准起草单位的通知。通知中明确了起草单位、起草人资格条件: (1)从事白酒相关的技术研发、产品制造、原辅料供应、检验检测以及科研教学或从事设备研发、信息化技术等相关领域;(2)申请人拥有白酒智能化生产技术或研究经验;(3)申请人所在单位具有一定的制造或科研水平,重视标准化工作;(4)愿意承担开展标准化工作所需的资金、技术和人力支持。
  • 粮科院开启粮食近红外快检方法及仪器行业适用性验证评价工作
    为高质量筛选粮食收储快速检测方法标准应用的测定产品,国家粮食和物资储备局科学研究院粮油质量检验测试中心拟于近期组织开展粮食近红外快检方法及仪器行业适用性验证评价工作,验证测试评价的项目为粮食中的水分、粗蛋白质和粗脂肪含量。验证评价项目表评价项目验证标准方法基质样品形态编号名称名称标准代号1水分含量粮油检验稻谷水分含量测定近红外法GB/T 24896-2010稻谷颗粒2粉末3粮油检验小麦水分含量测定近红外法GB/T 24898-2010小麦颗粒4粉末5粮油检验玉米水分含量测定近红外法GB/T 24900-2010玉米颗粒6粉末7粗蛋白质含量粮油检验稻谷粗蛋白质含量测定近红外法GB/T 24897-2010稻谷颗粒8粉末9粮油检验小麦粗蛋白质含量测定近红外法GB/T 24899-2010小麦颗粒10粉末11粮油检验玉米粗蛋白质含量测定近红外法GB/T 24901-2010玉米颗粒12粉末13粮油检验大豆粗蛋白质、粗脂肪含量的测定近红外法GB/T 24870-2010大豆颗粒14粉末15粗脂肪含量粮油检验玉米粗脂肪含量测定近红外法GB/T 24902-2010玉米颗粒16粉末17粮油检验大豆粗蛋白质、粗脂肪含量的测定近红外法GB/T 24870-2010大豆颗粒18粉末按照通知要求,生产企业和单位需于2023年12月14日前提交粮食近红外快检方法及仪器行业适用性验证评价材料的电子版发送至指定邮箱。参与现场验证评价仪器设备的保障工作,提供至少3台(套)仪器参与验证,指派专人做好仪器设备操作、故障排除的培训工作,并协助国粮局科研院检测中心完成现场验证其他工作。详细通知如下:关于组织粮食近红外快检方法及仪器行业适用性验证评价工作的公告为高质量筛选粮食收储快速检测方法标准应用的测定产品,受中储粮质检中心有限公司委托,国家粮食和物资储备局科学研究院粮油质量检验测试中心拟于近期组织开展粮食近红外快检方法及仪器行业适用性验证评价工作。现面向社会邀约粮食近红外快检产品生产企业和单位参加,相关事宜公告如下:一、时间2023年12月20日至31日。二、验证评价工作地点北京市西城区百万庄大街11号粮科大厦。三、验证评价内容本次验证测试评价的项目为粮食中的水分、粗蛋白质和粗脂肪含量,具体项目详情见附件1,工作方案见附件3。四、生产企业和单位需提交的材料1.粮食近红外快检方法及仪器行业适用性验证评价申请表(附件2);2.企业或单位法人资格证明材料;3.产品合格证书、产品说明书和相关技术证明材料;4.用户使用意见或相关材料;5.有关部门提供的与申请内容密切相关的证明材料(如检验报告、环保许可证、环境评价证明、安全生产许可证、采用国际或国家标准证明等);生产企业和单位需提供包括上述内容的纸质版和电子版材料各一式三份(加盖公章);用于验证评价的仪器设备至少三台(套);生产企业和单位对所提供的材料的合法性、真实性和完整性负责。五、材料提交流程生产企业和单位需于2023年12月14日前提交粮食近红外快检方法及仪器行业适用性验证评价材料的电子版发送至指定邮箱,待验证评价工作人员确认后,各申请参与本次验证的生产企业和单位指定1名负责人(技术人员)与验证评价工作组联系,沟通验证评价工作的具体事项,签署技术服务合同,并将相关纸质版材料邮寄到指定地址。六、费用本次验证评价采用自愿报名的方式,工作的成本费用由各参加验证评价的企业和单位承担,用于支付验证所需的标准物质、试剂耗材采购等费用,以及承担验证评价工作的技术人员和专家的劳务费、专家费等,按照“一项一申请”原则计算相关费用,每个项目收费标准6000元人民币。请各参与企业和单位签署技术服务合同后,按要求及时将款项汇至指定账户,本次验证评价工作只接受对公银行账户转账汇款。汇款账号信息如下:收款单位名称:国家粮食和物资储备局科学研究院收款账号:110060774012015000329开户银行:交通银行北京百万庄支行七、工作组联系人韩老师:010-58523432 hyt@ags.ac.cn郭老师:010-58523432 gyy@ags.ac.cn纸质材料邮寄地址:北京西城百万庄大街11号1102室 100037附件:附件1 粮食近红外快检方法及仪器行业适用性验证评价意向表.doc附件2 粮食近红外快检方法及仪器行业适用性验证评价申请表.doc附件3 粮食近红外快检方法及仪器行业适用性验证评价工作方案.doc国家粮食和物资储备局科学研究院粮油质量检验测试中心2023年12月1日
  • 近红外技术在烟草行业中的应用进展
    p style="text-align: left "  近红外光谱分析技术在烟草行业的应用在国外起步较早,最早可追溯到1961年Crowell等人应用NIR技术测试了湿焦油中的水分。20世纪70年代国外开始将近红外技术应用于烟草化学成分测定。1992年出版的《Handbook of Near-infraed Analysis》一书中专门讲述了利用近红外光谱分析法定量分析烟草化学成分。20世纪90年代中后期,美国PM公司开始使用近红外技术研究烟叶分级和叶组配方,2000年以后使用近红外在线分析技术研究制丝线生产配方的稳定性等质量控制。br//pp  国内近红外分析技术应用于烟草始于1995年,王文珍等采用近红外光谱技术测定了烟草中的总氮含量。之后近红外光谱技术在国内烟草行业进入了高速发展时期。1997年,上海烟草(集团)公司技术中心与中国农业大学共同承担的《近红外技术在烟草品质检测中的应用研究》,建立了烟草常规化学成分的近红外快速分析技术。随后烟草行业先后布局了《应用近红外检测技术快速测定烟叶主要化学成分(20项指标)研究》、《应用烟气粒相物近红外光谱预测主流烟气七种有害成分释放量的技术研究》、《卷烟叶组烟气有害成分释放量近红外预测技术研究》、《基于在线检测和集成信息控制的智能配方打叶技术体系研究》、《FT-NIR分析技术在烟草常规化学分析中的应用》、《云南优质烤烟质量标准体系及快速检测技术研究》、《上海烟草集团公司烟叶原料质量体系研究与应用》、《烟草近红外大数据构建及应用研究》等近红外技术应用研究项目,各中烟公司也相继开展了不少近红外相关的子课题项目进行应用研究。/ppspan style="color: rgb(255, 0, 0) "strong  离线应用/strong/span/pp  近红外的离线应用在烟草行业最为广泛,相关报道也最多。涉及到烟草行业的方方面面。/pp  在烟草化学成分检测方面,对影响烟草品质风格的众多化学指标现已证明都能够建立较好的定量模型并应用sup[1]/sup。除了烟叶,一些中烟公司还对卷烟的烟气化学成分做了相关应用研究,建立的模型能够达到预期的分析效果sup[2]/sup。另外在烟用材料的化学成分检测中,一些中烟公司也做了一些探索性应用研究sup[3]/sup。图一和图二分别是贵州中烟利用近红外检测烟气粒相物中化学成分及滤棒中三醋酸甘油酯的场景。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 288px " src="https://img1.17img.cn/17img/images/201907/uepic/0de39d80-20e0-4876-9f1c-3754be13248d.jpg" title="01.jpg" alt="01.jpg" width="600" height="288" border="0" vspace="0"//pp style="text-align: center "strong图一 近红外检测烟气粒相物中化学成分/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/201907/uepic/112e61ef-ef3f-4f6a-8758-7cdfa79f8115.jpg" title="02.jpg" alt="02.jpg" width="600" height="450" border="0" vspace="0"//pp style="text-align: center "strong图二 近红外检测滤棒中三醋酸甘油酯/strong/pp  在物理指标方面,现已能对烟叶的叶片结构sup[4]/sup、烟叶拉力等指标进行检测;在三纸一棒的应用方面,如:卷烟包装盒的色差分析sup[5]/sup,卷烟纸厚度、透气度等性质的测定sup[6]/sup;配方设计的应用方面,如:梗丝、薄片丝在烟支中的添加比例[7]等近红外技术也都有很好的应用。/pp  在判别分析方面,各中烟公司针对各自品牌特点,用近红外技术对烟叶的类型、产地、部位、等级进行判定sup[8, 9]/sup;卷烟的真伪判别sup[10]/sup;烟用材料判别sup[6]/sup;卷烟的配方设计sup[7]/sup等都做了大量的相关工作,并在应用中取得了较为满意的结果。/ppspan style="color: rgb(255, 0, 0) "strong  在线应用/strong/span/pp  近红外在线分析并没有像离线分析一样百花齐放,虽然目前市场上已经开发不少针对卷烟工业企业在线近红外仪器产品,考虑到在线应用涉及到企业的生产控制甚至是决策,牵一发而动全身,各中烟公司还是保持谨慎态度,目前仅针对打叶复烤的均质化加工sup[11]/sup,工业企业的制丝线质量稳定性控制的相关应用sup[12]/sup。/ppspan style="color: rgb(255, 0, 0) "strong  网络化应用/strong/span/pp  传统的近红外分析主要是采用单台仪器进行样品测定,难以满足烟叶原料收购、复烤、入库、醇化过程中广域范围内大规模快速检测及信息汇总的需求。 近年来,以网络技术为依托的近红外检测网络体系构建已成为近红外分析检测的一个重要发展方向,烟草行业也达成共识,认为构建近红外光谱分析网络体系是将近红外技术的优势在实际应用中发挥到最大的一个重要途径。基于此,上海烟草集团针对近红外检测管理现状,提出“动态建模,网络共享,全程管控”的网络化管控体系,保证近红外检测数据质量。云南中烟构建了烟叶原料近红外光谱分析物联网系统。山东烟草研究院以烟叶品质控制为切入点,研发形成支撑多检测终端的烟叶品质快速分析网络化平台。湖南中烟开发了专门用于烟气快速检测的近红外云服务系统。贵州中烟提出了“数据规范、中心建模、资源共享、智能分析”的网络化管控方案,组织实施了《贵州中烟化学成分近红外速测系统的云分析系统软件开发》项目,开发了基于互联网技术的烟草近红外速测系统,如下图三所示。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 407px " src="https://img1.17img.cn/17img/images/201907/uepic/3232b023-abfe-4c71-8122-fb019bfae30f.jpg" title="03.jpg" alt="03.jpg" width="600" height="407" border="0" vspace="0"//pp style="text-align: center "strong图三 近红外云分析系统/strong/ppspan style="color: rgb(255, 0, 0) "strong  数据应用/strong/span/pp  基于近红外分析技术快速高效、成本低、绿色环保的优点,行业每年产生了海量的近红外光谱数据,但也存在不少问题。/pp  (1)首先,近红外数据分散在各中烟企业、复烤企业和科研机构,只能为各自单位发挥作用。/pp  (2)其次,由于各工商企业经典化学分析数据存在较大差异,且近红外建模样品的地域差异大,再加上光谱采集参数、操作方法和操作流程各异,导致各单位近红外预测数据偏差较大。/pp  (3)第三,由于各单位的近红外采集信息格式不统一,数据整合难度大,严重制约了行业近红外光谱数据的有效利用。/pp  为了解决上述问题,2019年中国烟草总公司批复了《烟草近红外大数据构建与应用》项目。希望借此项目统一近红外光谱数据采集规范、开发近红外光谱数据采集系统、构建近红外光谱数据库和化学成分数据库,形成行业共享的烟草近红外大数据平台,实现数据规范、中心建模、资源共享、智能分析的目标,为烟草行业高质量发展提供有力支撑。/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  参考文献/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [1] 蒋锦锋, 李莉, 赵明月. 应用近红外检测技术快速测定烟叶主要化学成分 [J]. 中国烟草学报, 2006, (4): 8-12./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [2] 王家俊, 梁逸曾, 汪帆. 偏最小二乘法结合傅里叶变换近红外光谱同时测定卷烟焦油、烟碱和一氧化碳的释放量 [J]. 分析化学, 2005, 33(6): 793-7./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [3] 曹建国, 窦峰. 近红外漫反射光谱法测试醋酸纤维滤棒中的三醋酸甘油酯 [J]. 烟草科技, 2005, 38(3): 6-9./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [4] 周汉平, 王信民, 宋纪真, 等. 烟叶结构和油分的近红外光谱预测 [J]. 烟草科技, 2006, 50(1): 10-4./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [5] 张翼鹏, 李超, 赵敏, 等. 基于近红外光谱法的卷烟包装材料色差分析 [J]. 烟草科技, 2016, 49(2): 75-81./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [6] 王家俊, 汪帆, 马玲. SIMCA分类法与PLS算法结合近红外光谱应用于卷烟纸的质量控制 [J]. 光谱学与光谱分析, 2006, 26(10): 1858-62./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [7] 胡立中, 张胜军, 余小平, 等. 均匀设计-PLS-NIR法预测卷烟配方烟丝中梗丝及薄片丝含量 [J]. 中国烟草学报, 2010, 16(2): 26./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [8] 束茹欣, 王国东, 张建平, 等. 国产烤烟烟叶的NIRS模式识别 [J]. 烟草科技, 2006, 8): 12-5./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [9] 张辞海, 胡芸, 刘娜, 等. 基于主成分分析和神经网络的近红外光谱烤烟产地判别 [J]. 贵州农业科学, 2018, 46(1): 109-12./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [10] 葛炯, 王瑾, 王维妙, 等. 近红外技术在卷烟真伪鉴别中的应用 [J]. 烟草科技, 2007, 48(4): 75-8./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [11] 胡芸, 刘娜, 姬厚伟, 等. 近红外光谱技术在线快速检测复烤片烟化学成分应用研究 [J]. 安徽农业科学, 2017, (19): 78-80,3./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  [12] 张佳芸, 胡芸, 彭黔荣. 近红外光谱技术在快速检验制丝过程中烟丝质量均一性上的应用 [J]. 理化检验(化学分册), 2018, 54(9): 998-1003./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: right "(张辞海,彭黔荣 贵州中烟工业有限责任公司技术中心,550009)/p
  • 国家药监局发布阿胶益寿口服液中牛皮源成分检查项补充检验方法
    日前,国家药品监督管理总局发布公告(2021年第120号),根据《中华人民共和国药品管理法》及其实施条例的有关规定,发布《阿胶益寿口服液中牛皮源成分检查项补充检验方法》(BJY 202110)。该补充检验方法由山东省食品药品检验研究院起草,河北省药品医疗器械检验研究院复核。阿胶益寿口服液主要成分有阿胶、熟地黄、制何首乌、人参等多种中药材。主要功效:补气养血。据不完全统计,目前经过药品监督管理局审批的生产阿胶益寿口服液资质的企业有22家。补充检验方法规定:照高效液相色谱法(中国药典2020年版通则0512)和质谱法(中国药典2020年版通则0431)测定;明确了色谱、质谱条件与系统适用性试验;牛皮源成分参比溶液的制备以及供试品溶液的制备等操作方法。供试品的提取离子流色谱中,应不得检出与参比溶液色谱相应的色谱峰。判定原则为:供试品的提取离子流色谱中,未同时出现与参比溶液色谱相应的色谱峰,视为未检出;供试品的提取离子流色谱中,同时出现与参比溶液色谱相应的色谱峰,且供试品色谱中m/z 641.3(双电荷)→726.2的色谱峰面积值不大于参比溶液中相应的峰面积值者,视为未检出;供试品的提取离子流色谱中,同时出现与参比溶液色谱相应的色谱峰,且供试品色谱中m/z 641.3(双电荷)→726.2的色谱峰面积值大于参比溶液中相应的峰面积值者,视为检出。
  • 分子光谱快检仪器的发展动态——CCATM'2014 过程/环境/气体分会场
    现场快速检测具有样本数量大、成分种类多、操作人员杂、分布地点远的特点,因此要求分析技术分析速度快、检测范围广、操作方法简、便携性能好,对仪器的要求是仪器小型化、操作简便化、软件智能化。而分子光谱技术可以很好的满足上述要求,因此在快速检测中扮演了重要角色。  在CCATM&rsquo 2014过程/环境/气体分会上,清华大学孙素琴教授为我们介绍了分子光谱现场快速检测仪器的发展动态。清华大学孙素琴教授  目前,用于现场快速检测的分子光谱仪器有手持式/便携式红外光谱仪、手持式/便携式近红外光谱仪、手持式/便携式拉曼光谱仪、便携式紫外光谱仪、小型分子荧光光谱仪等。小型仪器的尺寸可与常用的电压电流表相类似,稍大的仪器也可用拉杆箱等携带,非常方便。  而分子光谱仪器具有的扫描方式简单灵活、无需制备样品,直接测量等特点更是很好的满足了操作简便化的要求。与智能化的软件相结合,检测完毕能很快出结果,实现了快速识别即快速响应,扫描结果真正实现了快速定性的目的。  另外,孙教授还提到,分子光谱具有极强的指纹特征性,物质在结构或含量上的变化都会在其分子光谱上表现出来。混合物的分子光谱与其所含成分密切相关,当混合物的组成有所变化时,其分子光谱必然也会随之发生相应的改变。以奶粉为例,利用红外光谱,可同时定性分析出奶粉中蛋白质、脂肪、糖类等组分,可以实现不同产地奶粉中各含量的差异对比,也可以实现奶粉组分含量大小的对比,与化学计量学相结合,还可以实现异常成分的解析。因此分子光谱可以实现正常产品常量指标成分定性检测、定量指标成分定量检测和异常产品异常成分初步分析。  孙教授相信,分子光谱技术是一种绿色、环保、速度快的分析技术,加上与化学计量学的结合,分子光谱技术一定会在现场快速检测中扮演重要的角色。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。预 处 理水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。仪 器 100ml具塞量筒或比色管。试 剂(1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。试 剂 水样稀释及试剂配制均用无氨水。(1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。(2) 1mol/L盐酸溶液。(3) 1mol/L氢氧化钠溶液。(4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。(5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。(6) 防沫剂,如石蜡碎片。(7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。步 骤(1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。(2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项(1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。(2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。(3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法 GB7479--87概 述1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。仪 器(1) 分光光度法。(2) pH计。试 剂 配制试剂用水应为无氨水。1. 纳氏试剂 可选择下列一种方法制备。(1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。步 骤1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。2. 水样的测定(1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。注意事项(1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。(2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法GB7481--87概 述1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。仪 器(1) 分光光度计。(2) 滴瓶(滴管流出液体,每毫升相当于20±1滴)试 剂 所有试剂配制均用无氨水。1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。步 骤1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。试 剂(1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。(2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。(3)0.05%甲基橙指示液。步 骤1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。计 算氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法概 述1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。仪 器(1) 离子活度计或带扩展毫伏的pH计。(2) 氨气敏电极。(3) 电磁搅拌器。试 剂 所有试剂均用无氨水配制。(1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。(2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。(3) 电极内充液:0.1mol氯化铵溶液。(4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。步 骤1. 仪器和电极的准备 按使用说明书进行,调试仪器。2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。注意事项(1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。(2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。(3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。(4) 水样不要加氯化汞保存。(5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。(6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 应用讲座丨清华大学分析中心亚微米分辨红外-拉曼-荧光联用系统在众多领域的应用及操作培训
    报告简介:2024年4月3日,清华大学分析中心与Quantum Design中国将联合举办亚微米分辨红外-拉曼-荧光联用系统(PSC mIRage-LS)的培训讲座。本次培训将详细介绍mIRage-LS产品在化学、材料、环境、生命科学等多个领域的前沿应用,及上机操作、DEMO样品测试等,欢迎有需求的师生报名参加,一起探讨前沿应用与方案。培训议程:时间培训内容上午mIRage-LS亚微米分辨红外-拉曼-荧光联用系统产品及应用介绍下午上机演示,DEMO样品测试培训时间:2024年4月3日(周三)10:00-16:00培训地点:清华大学理科楼报名方式:1. 邮箱报名:andy@qd-china.comperry@qd-china.com2.电话报名:010-85120278-868010-85120278-8773. 扫描二维码或点击此处报名:备注:1. 报名截止时间2024年4月2日16:00,报名截止后将进行邮件确认。2. 本学期计划按照样品分类安排专题上机培训。欢迎有相关需求的师生联系我们,一起探讨培训内容与方案。mIRage-LS介绍mIRage-LS是美国PSC公司推出的一款基于光热红外(O-PTIR)原理的新型显微红外光谱仪。与传统FTIR不同,mIRage-LS不依赖于残留的红外辐射分析,而是采用可见光作为“探针”,检测样品因本征红外吸收引发的表面快速光热膨胀或收缩变化,进而获取样品表面微小区域的结构信息。mIRage-LS采用非接触模式测量,制样简单,空间分辨率可达亚微米级(~500 nm),适用于化学、材料学、环境学、生命科学等多个领域。图1 mIRage-LS光谱仪mIRage-LS的优势:&bull 亚微米空间分辨的红外光谱和成像(~500 nm);&bull 与透射模式相媲美的反射模式下的图谱效果;&bull 非接触测量模式—使用简单快捷,无交叉污染风险;&bull 很少或无需样品制备过程(无需薄片), 可测试厚样品;&bull 可透射模式下观察溶液中的样品;&bull 实现同时同地相同分辨率的IR和Raman测试;&bull 荧光显微成像实现荧光标记样品快速定位。图2 OPTIR光谱测试原理mIRage-LS应用领域1. 环境微塑料图3 微塑料颗粒(~600 nm)的O-PTIR光谱及成像分析(引自Microscopy Today, 2022, 17, 3, 76-85)2. 高分子材料图4 1210 cm-1处采集的PP/PTFE的O-PTIR光谱和显微图像(引自Materials & Design, 211 (2021), 17, 110157)3. 半导体图5 薄膜晶体管显示器中污染物的O-PTIR分析图6 器件表面缺陷的红外和拉曼光谱同步(同时间、同位置)分析(引自Microscopy Today, 2020, 28, 3, 26-36)4. 生命科学图7 脑组织的明场显微图像、O-PTIR光谱及成像分析图8 无荧光标记条件下单个细胞的O-PTIR显微光谱及成像分析(引自Nanomedicine: Nanotechnology, Biology, and Medicine, 43 (2022) 102563)5. 文物鉴定图9 柯罗19世纪绘画作品中锌皂异质性的O-PTIR显微光谱及成像分析(引自Anal. Chem. 2022, 94, 7, 3103–3110)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制