当前位置: 仪器信息网 > 行业主题 > >

红外发射测试仪

仪器信息网红外发射测试仪专题为您提供2024年最新红外发射测试仪价格报价、厂家品牌的相关信息, 包括红外发射测试仪参数、型号等,不管是国产,还是进口品牌的红外发射测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外发射测试仪相关的耗材配件、试剂标物,还有红外发射测试仪相关的最新资讯、资料,以及红外发射测试仪相关的解决方案。

红外发射测试仪相关的论坛

  • 红外发射管与红外接收管的区分

    940nm  现在市场上使用较多红外发射管的是850nm和940nm 因为850nm发射功率大,照射的距离较远,所以主要用于红外监控器材上;而940nm主要用于家电类的红外遥控器上。  峰值波长:λp (单位:nm)  发光体或物体在分光仪上所量测的能量分布,其峰值位置所对应的波长,称为峰值波长λp 辐射强度:POWER(单位:mW/sr)用以表示红外线发光二极管(IR LED)辐射红外线能量之大小。  辐射强度(POWER)与输入电流(If)成正比,发射距离与辐射强度(POWER)成正比。 mW/sr:表示红外线辐射强度的单位,为发射管发射红外线光之单位立体角(sr)所辐射出的光功率的大小  半功率角:2θ1/2 指发射管其上下或左右两边所辐射出的红外线强度为该组件最大辐射强度的50%时,其上下或左右两边所夹的角度称为半功率角。  人们习惯把红外发射管和红外线接收管称为红外对管。红外对管的外形与普通圆形的发光二极管类似。初接触红外对管者,较难区分发射管和接收管。本文介绍三种简便的识别方法。http://www.dzsc.com/data/uploadfile/20121019105553605.jpg 1. 根据内部结构识别  红外对管的内部结构如左图(a),(b)所示。左图(a)是红外发射管,管芯中央凹陷,类似聚光罩的形状。左图(b)是红外接收管,管芯中央的平台上有红外感光电极。红外对管的两引脚1长1短,长引脚是正极,和普通发光管相同。  2.用三用表测量识别  可用500型或其他型号指针式三用表的1kΩ电阻挡,测量红外对管的极间电阻,以判别红外对管。判据一:在红外对管的端部不受光线照射的条件下调换表笔测量,发射管的正向电阻小,反向电阻大,且黑表笔接正极(长引脚)时,电阻小的(1kΩ~20kΩ)是发射管。正反向电阻都很大的是接收管。判据二:黑表笔接负极(短引脚)时电阻大的是发射管,电阻小并且三用表指针随着光线强弱变化时,指针摆动的是接收管。  注:1)黑表笔接正极,红表笔接负极时测量正向电阻。  2)电阻大是指三用表指针基本不动。  3. 通电试验方法判别 用一只发光二极管和一只电阻与被测的对管串联,如上图2所示。图中电阻起限流作用,阻值取220Ω~510Ω。LED发光二极管用来显示被测红外管的工作状态。用遥控器(电视机遥控器等)对着被测管按下遥控器的任意键,LED亮时,被测管是红外接收管。不亮则是红外发射管。

  • 【求助】求助 红外测固体材料的发射率

    问高手一个问题:我想用红外仪测量固体材料的发射率,可不知如何操作,特到此向高手前辈请教!!我实验室已配备Bruker的傅里叶红外仪同时还配了一个黑体发射炉。十分感谢!

  • 亿光发射管简介

    亿光发射管也可以称作亿光红外发射管或亿光红外线发射二极管,属于二极管类。它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。亿光发射管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。亿光红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装  亿光发射管参数介绍  发射距离、发射角度(15度、30度、45度、60度、90度、120度、180度)、发射的光强度、波长。是亿光发射管的物理参数,需了解其电性能参数:市场上常用的直径3mm,5mm为小功率亿光发射管,8mm,10mm 为中功率及大功率发射管。小功率发射管正向电压:1.1-1.5V,电流20ma,中功率为正向电压:1.4-1.65V 50-100ma,大功率发射管为正向电压:1.5-1.9V200-350ma。1-10W的大功率亿光发射管可应用于红外监控照明。http://www.dzsc.com/data/uploadfile/20121018152042817.jpg  亿光发射管应用范围  亿光发射管的应用范围主要有以下几点:  1、适用于各类光电检测器的信号光源。  2、适用于各类光电转换的自动控制仪器,传感器等。  3、根据驱动方式,可获得稳定光、脉冲光、缓变光,常用于遥控、警报、无线通信等方面。  使用注意事项  亿光发射管应保持清洁、完好状态,尤其是其前端的球面形发射部分既不能存在脏垢之类的污染物,更不能受到摩擦损伤,否则,从管芯发出的红外光将产生反射及散射现象,直接影响到红外光的传播。  由于红外波长的范围相当宽,因此亿光发射管必须与LED接收管配对使用,否则将影响遥控的灵敏度,甚至造成失控。因此在代换选型时,要务必关注其所辐射红外光信号的波长参数。  亿光发射管的发光功率与光敏器件的灵敏度因封装而有角分布使用时注意安装指向调整,更换时亦应做相应调整,注意管子的极性,管子不要与电路中的发烧元器件靠近。  亿光发射管在工作过程中其各项参数均不得超过极限值,因此在代换选型时应当注意原装管子的型号和参数,不可随意更换。另外,也不可任意变更亿光发射管的限流电阻。

  • 注射器连接力测试仪

    注射器连接力测试仪是制药机械检测仪器中应用较为广泛的一种,全称为注射器针与针座连接力测试仪,这款仪器由济南三泉中石研发并生产,注射器连接力测试仪符合国标YBB00112004的检测。注射器是一种常见的医疗用具,用于医疗设备、容器、如有些色谱法中的科学仪器穿过橡胶隔膜注射。将气体注射到血管中将会导致空气栓塞,从注射器中去除空气以避免栓塞的办法是将注射器倒置、轻轻敲打、然后在注射到血流之前挤出液体。注射器针筒可以是塑料也可以是玻璃制成的,并且通常上面都有表示注射器中液体体积的刻度指示。注射器连接力测试仪的检测对于保证医疗器械的质量有着重要的意义。下面介绍下注射器连接力测试仪的基本信息:技术特征大液晶显示测试过程、PVC操作面板配备微型打印机,快速打印实验结果通过调换不同夹具,可扩展进行多种试验项目限位保护、自动回位等智能配置,保证用户的操作安全丝杠传动系统速度随意调节,注射器连接力测试仪保证试验速度及位移准确性一机具备拉压试验、剥离强度、开启力、穿刺力等四项单独实验项目,满足不同包材测试需要专业电脑软件操作系统,注射器连接力测试仪方便用户连接计算机进行数据保存、分析、打印采用进口传感器系统,注射器连接力测试仪的测试精度在行业内遥遥领先,有效的保证了试验结果的准确性仪器配置标准配置:注射器连接力测试仪主机、微型打印机、胶塞穿刺力夹具、拉环开启力夹具、测试软件、通信电缆选用配置:折断力夹具、组合盖开启力夹具、拉伸夹具等注射器连接力测试仪是一款多用途高性能医药包装综合性能测试仪器,广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位,济南三泉中石研发生产的注射器连接力测试仪现已被多家知名药企采购使用,包括北京协和药厂、哈药集团、海正辉瑞制药、黑龙江哈尔滨医大药业、山东鲁抗医药集团、深圳华润九新药业、河北爱尔海泰制药等近千家企业。文章来自知名的检测仪器研发生产厂家--济南三泉中石实验仪器有限公司官方网站,欢迎转载,转载请标明出处。

  • 注射器拔出力测试仪

    注射器拔出力测试仪也叫注射器针头护帽拔出力测试仪,是专业检测预灌封注射器组合件的试验仪器,该仪器符合YBB00112004国标检测,注射器拔出力测试仪由济南三泉中石研发生产。  注射器拔出力测试仪的研发工程师告诉我们:市场上预灌封注射器质量问题十分严重,国家药品监督管理局不定期进行抽查,发现不合格产品居多,主要是易氧化物的最大残留量、容量允差和注射针的牢固度等问题,影响到产品的使用安全。另外注射器针头护帽的拔出力也是很多企业没有重视的检测项目。下面给大家介绍下注射器拔出力测试仪的性能参数:  测试原理  将试样装夹在医药包装撕拉力测试仪两个夹头之间,两夹头做相对运动,通过特殊夹头将进行穿刺或开启力试验,通过注射器拔出力测试仪测力系统精确测试此过程中的力值变化与位移变化,从而得出相应力值数据。  适用范围  注射器拔出力测试仪 YYB-01应用于安瓿瓶、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、注射针等药品包装材料,进行折断力、穿刺力、滑动性、开启力、拉伸强度、热合强度、剥离强度等拉压撕试验。  仪器特点  注射器拔出力测试仪支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。仪器采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。医药包装撕拉力测试仪是一款多用途高性能医药包装综合性能测试仪器。注射器拔出力测试仪应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。

  • 国家重点研发计划“红外发射谱段空间辐射基准载荷技术”项目启动

    日前,“十三五”国家重点研发计划 “地球观测与导航”专项“红外发射谱段空间辐射基准载荷技术”项目启动会在中国科学院上海技术物理研究所(以下简称“上海技物所”)召开。  项目负责人、上海技物所副所长丁雷研究员介绍了“红外发射谱段空间辐射基准载荷技术”项目的实施方案。该项目针对基准载荷对定量化的苛刻要求,围绕红外发射谱段空间基准载荷高精度、可溯源至国际单位制的量值需求,进行高光谱红外基准载荷技术研究、空间红外辐射基准源研制及溯源技术研究、红外高光谱基准载荷数据预处理及订正模型研究、红外基准载荷空间应用技术研究。项目的顺利开展将对促进国产红外遥感载荷高定量化的发展,满足气候变化监测的严苛要求,将起到重要的推动作用。[align=center]  [img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/images/news/1_26.jpg[/img]  图1:项目启动会现场[/align] 该项目于2018年5月批复立项,执行时间为4年。共分为高光谱红外基准载荷技术、空间红外辐射基准源研制及溯源技术、红外高光谱基准载荷数据预处理及订正模型和红外基准载荷空间应用技术等4个课题。项目将研制空间辐射基准载荷从机制上对遥感辐射定标进行规范,保证所有的直接获取数据或者有源产出数据都能够真实有效的溯源到国际基本单位SI 上提供核心技术,同时建立我国自主的空间绝对辐射定标基准系统,构建覆盖全国的空天一体遥感网络,对我国的气候、国土资源环境监测和预报有重大的科学及政治意义。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/images/news/2_14.jpg[/img]  图2:课题组主要成员和咨询专家合影[/align]其中,中国计量科学研究院承担该项目课题二 “空间红外辐射基准源研制及溯源技术研究”。该课题负责人中国计量院热工所研究员郝小鹏介绍,此课题围绕红外发射谱段空间基准载荷高精度、可溯源至国际单位制的量值需求,研制温度范围覆盖250 K-330 K的大口径空间红外辐射基准黑体源定标系统,开展真空低背景红外高光谱亮温基准量值传递方法研究,建立可溯源至国际单位的高精度空间基准定标系统。

  • 【资料】光谱测试仪

    [B]光谱测试仪美国McPherson 公司在光学光谱仪单色仪测试仪领域有半个多世纪的丰富经验,现在拥有完整成熟的产品线,为分子和原子光谱领域的科研学者的深入研究提供了各种解决方案。我们经过五十多年不断的努力和发展,在光学光谱领域已经形成了完整成熟的光谱仪,单色仪,光谱测试仪产品线,为分子和原子光谱领域的科研学者的深入研究提供了各种精密分析工具。我们的设备涵盖从红外(infrared)到软X光 (soft X-ray)和超紫外谱段(short ultraviolet wavelength)的所有光谱领域,从小型光谱仪单色仪(miniature spectrometers)到20多吨重30多米长的大光谱仪单色仪系统。在使用真空和超真空技术(vacuum and ultra-high vacuum technology)的工业产业中您不难发现我们制造的真空系统(vacuum systems)、穿透焊接配件(penetration welded components)和分级冷却防渗漏部件(cold stages and mechanisms).单色仪和光谱仪根据波长和分辨率可以分为三大类:四、紫外、可见光、红外波段单色仪/光谱仪(从185nm到20um光谱范围)五、真空紫外到可见光波段单色仪/光谱仪六、远紫外和X软射线单色仪/光谱仪(~1 nm到310 nm光谱范围l)

  • 求助傅里叶变化红外光谱仪+积分球测薄膜红外反射率(发射率)的问题

    大家好,我有个测量问题一直有疑问,想请教大家。我需要测量镀在玻璃上的红外高反膜层,波长从2000nm - 16000nm,使用的仪器是PE的spectrum 3 + pike 积分球,积分球使用MCT检测器,用液氮冷却。我测量之前,先使用附带的金反射镜,把积分球调到sample 或者 用样片,把积分球调到reference档 进行背景扫描。1. 测量的结果很奇怪,超过50%的点的反射率大于了100%,导致算出来的发射率接近0,这肯定是不正常的。 是不是需要把金反射镜送到计量科学院进行标定?2. 对同一样片,在不同的时间,测出的结果差异很大,这个正常吗? 比如今天测发射率7%,明天测9%,感觉稳定性一般。3. 光阑的大小对结果影响也很大,光阑一般选择多大合适呢?谢谢大家。我被这个问题整得焦头烂额,但又不知道问谁。今天终于找到组织了,希望各位老师给与指教。

  • 热辐射性能:量热法半球向全发射率测试技术综述

    热辐射性能:量热法半球向全发射率测试技术综述

    [color=#990000]摘要:热量是一种过程量,是热能传递的度量,量热技术就是研究热测量方法的一门技术科学。由于量热技术可以对物质吸收和放出热量进行精确定量测量,这使得量热技术在材料热物理性能测试中应用十分广泛,也是材料热辐射性能测试中的一种常用方法。半球向全发射率作为一种热交换分析计算和材料热辐射性能评价中最常用的性能参数,是材料热辐射性能中的必测参数。在真空条件下采用量热法测试半球向全发射率,由于其测试直接和简单,因此量热法作为一种绝对测量方法而被认为具有最高的测量精度。本文详细介绍了量热法半球向全发射率测试技术的两类主流方法:稳态法和瞬态法,介绍了国内外在这两类方法中比较有代表性的研究工作,最后总结了这两类方法它们各自的特点及适用范围,为建立相应测试设备和研究测试方法提供参考。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=量热法半球向全发射率测试技术,690,436]https://ng1.17img.cn/bbsfiles/images/2021/09/202109141051379730_9244_3384_3.png!w690x436.jpg[/img][/align][color=#ff0000]由于本文内容包含大量数学公式,不便在网页中进行编辑和显示,特在此近刊登文章目录,详细内容请阅读附件原文。[/color][color=#ff0000][/color][size=24px][color=#990000] 目录[/color][/size][size=24px][color=#990000][/color][/size][color=#990000][b]1. 热辐射性质的内容及其定义[/b][/color][color=#990000] 1.1. 发射率.[/color] 1.1.1. 光谱定向发射率 1.1.2. 光谱法向发射率 1.1.3. 全波长法向发射 1.1.4. 全波长半球向发射率 [color=#990000] 1.2. 吸收率 [/color] 1.2.1. 光谱定向吸收率 1.2.2. 全波长定向吸收率 1.2.3. 光谱半球向吸收率 1.2.4. 全波长半球向吸收率 [color=#990000] 1.3. 反射率 [/color] 1.3.1. 光谱定向—半球向反射率 1.3.2. 全波长定向—半球向反射率 1.3.3. 光谱半球向—定向反射率 1.3.4. 全波长半球向—定向反射率[color=#990000] 1.4. 透过率 [/color] 1.4.1. 光谱定向透过率 1.4.2. 全波长定向透过率[color=#990000][b]2. 发射率测量方法概述 3. 稳态量热法半球向全发射率的测量[/b][/color][color=#990000] 3.1. 保护电热法 3.2. 间接电热法 3.3. 直接通电加热法 3.4. 辐射加热法 3.5. 薄膜热流计法[/color][color=#990000][b]4. 瞬态量热法半球向发射率的测量[/b][/color][color=#990000] 4.1. 辐射加热法 4.2. 直接通电热脉冲法[/color][color=#990000][b]5. 总结 [/b][/color][color=#990000][b]6. 参考文献 .......................................................... 34[/b][/color][color=#990000][/color][color=#990000][/color][color=#990000][/color]

  • 【线上讲座241期】材料红外光谱透射比、反射比、发射率的高精度测量方法~~~火热上线 至7月25日

    欢迎大家前来与ppddppdd老师一起就材料红外光谱技术知识的相关问题进行探讨!活动时间:2014年07月16日——2014年07月25日【线上讲座241期】材料红外光谱透射比、反射比、发射率的高精度测量方法 主讲人:ppddppdd--IR版面专家 活动时间:2014年07月16日——2014年07月25日 热烈欢迎ppddppdd老师光临红外光谱版面进行讲座!http://img3.17img.cn/bbs/upfile/2009226105115.gif提要一、透射比绝对测量二、反射比绝对测量三、吸收比绝对测量四、发射率绝对测量五、透射,反射,吸收,发射的相对测量方法http://img3.17img.cn/bbs/upfile/2009226105115.gif欢迎大家前来与ppddppdd老师一起就红外光谱技术相关的内容进行探讨交流!以上资料为ppddppdd老师所著,未经ppddppdd老师和仪器信息网同意任何个人和单位禁止转载!!!提问时间:2014年07月16日--07月25日答疑时间: 2014年07月16日--07月25日特邀佳宾:IR / NIR版面版主、专家以及从事红外光谱分析的同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就材料红外光谱技术知识的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2014年07月25日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :ppddppdd老师您好!我有以下问题想请教,请问:……http://img3.17img.cn/bbs/upfile/2009226105115.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归ppddppdd老师和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://img3.17img.cn/bbs/upfile/2009226105115.gif

  • 荧光光谱仪发射谱的测量原理?

    发射谱,通常称为荧光谱。在特定激发波长情况下,一段发射波长和该波长荧光强度对应曲线。如果是扫描光谱仪,激发波长选择后,发射侧光栅扫描,发射单色仪的波长对应检测器强度的曲线;如果是CCD检测器,就是对应像素的波长和强度的关系。光栅可能也需要扫描来侧高分辨率的宽范围的图谱。测量时为了提高信噪比,可以在激发侧加带通滤光片来最大限度抑制杂散光,在发射侧添加高通滤光片(低通,上转换时候)来消除二次散射光。通常设定激发波长后,发射范围设定不要包括激发波长,当然,PLQY特殊测试要求除外。要考虑检测器的响应线性区间。

  • 场发射性能测试

    问一下上海市哪里有检测场发射性能的地方,高校或机构?我要检测电泳沉积碳纳米管薄膜的场发射性能,包括电压-电流曲线、阀值电压、发光点密度等等。检测仪器大致是一个真空二极管结构。

  • 全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器太阳能光热系统性能测试仪器监测方法1、外墙保温系统外墙保温系统的节能监测主要包括系统耐候性试验、系统抗风载性能试验、系统抗冲击性能试验、抗拉强度试验和传热系数测定试验等。而在当前的建筑节能监测中,主要技术是能够快速准确地测定建筑外围护结构的热工性能,即得出外围护结构的传热系数。传热系数的测定方法主要有热流计法和热箱法两种。热流计是建筑热耗测定中常用仪表,其监测基本原理为:在被测部位至少布置两块热流计,测量通过建筑构件的热量,在热流计的周围和对应的冷表面上各布置4个热电偶测量温度,并直接传输进入微机系统,通过计算可得出传热系数值。而热箱法的工作原理为:在试件两侧的箱体(冷箱和热箱)内,分别建立所需的温度、风速和辐射条件,达到稳定状态后,测量空气温度、试件和箱体内壁的表面温度及输入到计量箱的功率,就可以计算出试件的热传递性质,热箱法不适合于现场监测,适合于外墙、楼板、门窗的热传递系数的实验室测量。目前较先进的方法还有红外线热像仪法。红外线热像仪是集先进的光电技术、红外探测器技术和红外图像处理技术于一身的高科技产品。热像仪测量物体表面温度是一种非接触式、快速的测量仪器,测量物体表面温度分布,能够直观的显示物体表面的温度分布范围。此外还有显示方法多、输出信息量大、可进行数据处理、操作简单、携带方便等优点。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920056230_4359_4136176_3.jpg!w690x690.jpg[/img]2、建筑外门窗试验建筑外门窗的节能监测主要包括保温性和气密性能的监测。门窗是建筑外围护结构中热工性能最薄弱的构件,通过建筑门窗的能耗在整个建筑物能耗中占有相当可观的比例。调查表明,我国北方一些地区的采暖建筑由于采用普通钢门窗,冬季通过外窗的传热与空气渗透耗热量之和,可达全部建筑能耗的50%以上 夏季通过向阳面门窗进入室内的太阳辐射所得的热量,成为空气负荷的主体。外门窗保温性能以传热系数为评定指标。其监测方法为标定热箱法。试件一侧为热箱,模拟采暖建筑冬季室内气候条件,另一侧为冷箱,模拟冬季室外气候条件,在对试件缝隙进行密封处理,试件两侧各自保持稳定的空气温度、气流速度和热辐射条件下,测量热箱中电暖气的发热量,减去通过热箱外壁和试件框的热损失,除以试件面积与两侧空气温差的乘积,即可得出试件的传热系数。外门窗的气密性监测一般可采用压力法,就是利用风机等增压或减压的原理,使建筑外门窗内外之间人为造成压力差,测定在该压力差条件下的空气渗透量。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920334308_3344_4136176_3.jpg!w690x690.jpg[/img]太阳能光热系统性能测试仪器监测技术我国建筑节能监测技术是与建筑节能工作的开展同步发展起来的,太阳能光热系统性能测试仪器具体分为直接监测和间接监测2大类。直接监测是采用能源计量法,即对拟进行监测的建筑物单元提供热源,待稳定后,测试室内外温度,计量热源供应总量。据建筑面积、实测室内外空气温差、实测能源消耗推算标准规定的温差条件下的建筑物单位耗热量。间接法是通过测试建筑物围护结构传热系数和气密性,计算建筑物的耗热量。测试围护结构传热系数通常是设法在被测结构的两侧形成较为稳定的温度场,测试该温度场作用下通过被测结构的热流量,从而获得被测结构的传热系数,实际现场测试围护结构传热系数的方法有热流计法和热箱法。直接法必须在冬季供暖稳定期测试,即使对于北方采暖建筑使用也有一定的局限性,对于夏热冬冷地区,就更加不便应用。间接法虽然理论上基本不受供暖季节的限制,但为了在被测结构两侧获得较为稳定的热流密度,通常也以在冬夏两季测试为宜。

  • 纺织品远红外性能及其测试研究

    纺织品远红外性能及其测试研究Research on Textile Far-infrared Performance and the Testing Standards 文/倪冰选 张鹏 杨瑞斌 左芳芳摘要:本文概述了国内外远红外纺织品的发展状况,纺织品远红外性能作用机理、测试方法和评价标准等。远红外纺织品具有非常大的发展前景,需要进一步加强对远红外性能测试方法和评价标准等基础性研究。关键词:远红外线;发射率;温升;评价标准1 远红外纺织品发展概况在纺织服装领域,日本、美国、德国、俄罗斯等发达国家最早开展对远红外技术的应用研究,推动了远红外纺织品的发展。尤其在日本,20世纪80年代中期远红外纤维制品的相关专利在日本大量涌现,形成一股开发远红外功能纺织品的热潮。日本钟纺公司采用陶瓷粉末渗入尼龙或腈纶聚合物中,分别纺出“玛索尼克N” 和“玛索尼克A”远红外纤维;旭化成公司采用碳化锆陶瓷溶液涂层开发出新型尼龙保暖织物“SOLAR-V”,主要用于滑雪衫。我国从20世纪90年代开始开发远红外纺织品。江苏省纺织研究所开发了远红外涤纶短纤维;天津工业大学开发的远红外丙纶,导湿性好,价格低廉,轻便,抗菌防蛀性好。目前开发出的各种远红外纺织品主要采用将超细陶瓷粉末作为添加剂加入到纺丝液中制备远红外纤维,或者采用陶瓷粉末制成的整理液对纺织品进行整理。主要应用的陶瓷粉末:金属氧化物,如Al2O3,TiO2,BaO,ZrO,SiO2等;金属碳化物,如SiC,TiC,ZrC等;金属氮化物,如BN,AlN,ZrN等。2 远红外纺织品作用机理2.1 远红外线红外线位于可见光和微波之间,红外线的波长范围很宽,科学上将其划分为三个波段:近红外波段:0.77~3 μm;中红外波段:3~30 μm;远红外波段:30~1000 μm。由于中红外波段范围很窄,在医疗保健领域,将中红外波段纳入远红外波段 。2.2 作用机理热辐射是以电磁波形式传递能量为特征的传热方法。热辐射主要包括紫外线、可见光、红外线。根据基尔霍夫定律,一个良好的辐射体必然是一个良好的吸收体,即一个物体发射热辐射的能力强,则其吸收的能力也强,两者成正比。人体既能辐射远红外线,又能吸收远红外辐射。由于人体60%~70%为水,根据匹配吸收理论,当红外辐射的波长和被辐照的物体吸收波长相对应时,物体分子共振吸收。人体所发射的热辐射的主波长在10 μm左右,远红外纺织品在吸收外界能量后辐射出3~25 μm的远红外线,与人体能够吸收的红外线相符,能形成共振。远红外纺织品吸收来自人体的红外波能量,并反馈给人体,提高了皮肤温度,从而达到蓄热保暖的目的。被皮肤吸收的热量可以通过介质传递和血液循环,使热能到达肌体组织,达到保健和辅助医疗效果。远红外纺织品一般通过提高表面发射率来提高发射功率。2.3 功能远红外纺织品主要有保暖功能(即保温功能)、保健功能和抗菌功能等。远红外纺织品由于添加了发射率高的远红外线辐射材料,其保温性能表现为利用生物体的热辐射,吸收、存贮外界向生物体辐射的能量,使生物体产生“温室效应”,阻止热量流失,起到良好的保温效果。因此,远红外织物具有显著的保暖作用,适宜制作防寒织物、轻薄型的冬季服装。被皮肤吸收的热量可以通过介质和血液循环,使热能到达肌体组织,可促进人体血液循环和新陈代谢,具有消除疲劳、恢复体力及对疼痛症状缓解的功能,对身体炎症有一定的辅助医疗作用。因此,远红外产品对血液循环或微循环障碍等引起的疾病具有一定的症状改善和辅助治疗功效。适宜制作贴身内衣、袜子、床上用品,以及护膝、护肘、护腕等。纤维中微粒子的加入,使纤维表面出现多孔性,表面积增加,表面活性及表面状态的吸附、扩散等特性明显提高,使产品具有吸汗、除臭、杀菌等功能。抑菌试验表明:远红外纺织品对金黄色葡萄球菌、白色念珠菌、大肠杆菌等致病菌的抑菌率达95%,利用这些特性可制作卫生、医疗用品等产品。3 测试方法与相关标准3.1 标准目前关于远红外纺织品功能测试标准主要有国家标准GB/T 18319—2001《纺织品红外蓄热保暖性的试验方法》、纺织行业标准FZ/T 64010—2000《远红外纺织品》、中国标准化协会标准CAS 115—2005《保健功能纺织品》。GB/T 18319—2001标准规定了用红外辐射计测定纺织品红外反射率和透射率,计算吸收率,以及用点温度计测定辐照升温速率的方法。主要从红外吸收率和红外辐照升温速率两方面测试及评价FZ/T 64010—2000标准规定了远红外纺织品的技术要求、试验方法、检验规则、结果判定和使用说明等。该标准以法向发射率作为远红外纺织品远红外功能的评价指标,以试样法向发射率减去对比样(即相应非远红外产品)法向发射率的差值作为法向发射率提高值。试验仪器为红外光谱仪和黑体炉。最后计算的法向发射率是8~15μm波段的法向发射率。CAS 115—2005标准采用测定法向发射率的方法,制定了远红外功能评价指标,是我国目前适用于保健功能纺织品的唯一标准,其中关于具有发射远红外线功能纺织品的部分规范了其术语定义、试验方法、结果判定、标志等内容,适用于远红外法向发射率大于0.2的各种织物、粉末等材料及导热物体的远红外法向发射率的检测。样品法向发射率采用温度为100℃时样品法向全辐射亮度与相同温度下标准黑体法向全辐射亮度比较的方法测量。试验仪器包括红外光谱仪(或红外辐射计)和黑体炉。计算机通过程序将黑体炉的辐射亮度、试样的辐射亮度、对比样的辐射亮度进行数据处理,计算出4 ~16 μm波段的法向发射率。三个标准的内容比较如表1所示。表1 三个标准的比较标准领域性质波长范围技术要求洗涤性能FZ/T 64010-2000行业标准产品标准8~15μm远红外纺织品法向发射率提高值应≥8.0%印染后整理织物洗涤10次后,法向发射率提高值应≥7.0%GB/T 18319-2001国家标准方法标准0.8~10μm——CAS115-2005协会标准产品标准4~16μm法向发射率提高值应不小于0.08,其法向发射率应不小于0.80;洗涤30次后,法向发射率提高值应不小于0.063.2 测试指标与方法远红外纺织品主要功能是保暖功能,因此其保温性能为主要考查指标。针对远红外纺织品,评价其远红外性能的指标主要有发射率和温升。保健功能指标主要为血液的微循环等。卫生指标只是附加功能,只有当使用要求时才需要考查。3.2.1 发射率只要不是绝对零度,任何物体都能辐射红外电磁波。物质远红外线辐射能量强弱的指标有辐射功率和辐射度等,但在实际应用中,常采用发射率来表征。发射率指在一个波长间隔内,在某一温度下测试试样的辐射功率(或辐射度)与黑体的辐射功率(或辐射度)之比。发射率是介于0~1之间的正数。一般发射率依赖于物质特性、环境因素及观测条件等。发射率可分为半球发射率和法向发射率。半球发射率又分为半球全发射率、半球积分发射率、半球光谱发射率;法向发射率又分为法向

  • 总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    [color=#990000]摘要:本文对目前国内外采用ASTM C835高温总半球发射率测试方法进行的研究报道进行了文献分析,分析目前造成在1000℃以上高温区间无法或很少进行总半球发射率测试的原因,并尝试找出解决方法或替代方案以实现高温范围内的准确测量,为今后高温总半球发射率测试方法的选择和测试设备设计提供参考。[/color][hr/][size=18px][color=#990000]1. 引言[/color][/size]  总半球发射率是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的重要基础物理性能数据。  总半球发射率的测试方法很多,但在高温条件下,经典的方式是直接通电量热法,相应的标准测试方法是ASTM C835“材料表面在1400℃高温范围内的总半球发射率标准测试方法”。  按照ASTM C835标准测试方法的设计,对于可直接通电加热的电导体材料,总半球发射率的最高测试温度可以达到1400℃。但从目前国内外研究报道来看,采用这种方法进行的测试极少能达到如此高的温度,绝大多数报道的总半球发射率测试温度范围都在1000℃以下,这说明这种方法在高温范围内的应用具有一定的局限性。  本文将对目前国内外采用ASTM C835测试方法进行的研究报道进行文献分析,分析造成无法或很少在1000℃以上高温范围进行总半球发射率测试的原因,并尝试找出解决方法或替代方案,以实现高温范围内的准确测量,为高温总半球发射率测试方法的选择和测试设备设计提供参考。[size=18px][color=#990000]2. 文献综述和分析[/color][/size]  对于总半球发射率的测量,做为经典的测试方法,ASTM C835的应用十分普遍,使用这种测试方法可以准确测量和评价服役中材料的高温热辐射性能。但我们在文献研究中发现,在ASTM C835的实际应用中很少有文献报道超过1000℃的测试数据。  首先我们分析了ASTM C835标准测试方法文本[1]的参考文献,其中引用了Richmond等人1960年对几种金属合金总半球发射率的测试研究报道[2]。在Richmond等人的报道中,总半球发射率的测试温度最高就达到1000℃,如图2-1所示。  从图2-1所示的NBS测试结果中可以隐约看出总半球发射率值在800~1000℃区间内有个峰值。这种在1000℃附近发射率发生突变的原因,一直没看到有相关文献进行过分析报道,直到2000年Greene等人[3]针对发现的这种现象进行了专门的研究。[align=center][color=#990000][img=发射率(Emissivity),623,756]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201551458107_282_3384_3.png!w623x756.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-1 在美国国家标准局(NBS)和通用电气公司(GE)接收管部门对通用电气公司提供的金属板样品测量的结果[2][/color][/align]  为了测试Inconel 718在不同表面状态下的高温总半球发射率,Greene等人[3]采用了S型热电偶,但当样品表面温度超过1000℃时测量发射率遇到了困难。在高于1000℃后,S型热电偶开始给出未知原因的异常读数,得到的发射率测量结果如图2-2所示。通过单独实验Greene等人研究了这种异常现象,在该实验中,将热电偶焊接到一小块Inconel 718上,然后缠绕在标准热电偶管上。将热电偶置于大气压下的熔炉中,并对两个测量温度进行比较,结果显示在图2-3中。第一次温度上升到1000℃时,温度异常首先出现在1000℃;当温度升高到1200℃时,与标准校准热电偶的偏差恢复。偏差趋势随着重复的热循环而重复,如图2-3所示,由此显示了作为测量标准温度的函数的两个测量温度之间的差异,可以清楚地看到点焊热电偶的塞贝克系数异常,它在大约1000℃时具有最大影响。[align=center][color=#990000][img=发射率(Emissivity),690,542]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201552577851_2873_3384_3.png!w690x542.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-2 Inconel 718的发射率测试结果[3][/color][/align][align=center][img=发射率(Emissivity),690,538]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553092817_3983_3384_3.png!w690x538.jpg[/img][/align][align=center][color=#990000]图2-3 样品热电偶和参考热电偶之间的温差[/color][/align]  由于真空条件下的这种异常总是出现在1000℃以上的温度,Greene等人因此决定只报告测量的发射率高达1000℃。另外Greene等人还认为对于其他热电偶类型、不同基材(如其他Inconel和不锈钢)、各种热电偶连接方法(即单独点焊线、相互点焊然后点焊到表面的导线),需要在氧化和惰性气氛中进行热循环,以帮助解释这种异常行为并提高对1000℃以上条件下热电偶行为的深入理解。  从Greene等人[3]的研究结果可以看出,在1000℃左右的温度测量中,通过点焊在被测样品上的热电偶获得的测温数据要比实际温度值高,如将此温度测量值代入测量公式,势必会得到比实际值偏小的总半球发射率,这就解释了在1000℃左右总半球发射率开始变小的现象。  尽管Greene等人[3]通过试验手段并解释了ASTM C835标准方法中采用样品上焊接热电偶进行测温过程中会在1000℃左右区间出现发射率测量结果异常现象,但并没有相应合理的解决办法,所以只能进行1000℃以下温度范围的发射率测量和报道。  近二十多年来,在采用ASTM C835标准方法进行的测试研究报道中,基本没有看到温度要超过1000℃以上进行测试的尝试。最典型的是加拿大核试验室的Fong等人[4]采用最新电子自动化技术在2015年完成搭建了直接通电法总半球发射率测试装置,如图2-4所示。从文献报道可以推测,这是目前国际上最新搭建的测量装置,此装置的测试过程完全自动化并控制测量准确,整个测试过程非常漂亮,如图2-5所示,但最高温度也只能达到1000℃的测试能力,如图2-6所示。[align=center][color=#990000][img=发射率(Emissivity),690,477]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553219609_7110_3384_3.jpg!w690x477.jpg[/img][/color][/align][align=center][color=#990000]图2-4 (a)压力管发射率测试样品的配置,(b)钟罩型发射率仪器底部照片[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,224]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553350253_8997_3384_3.jpg!w690x224.jpg[/img][/color][/align][align=center][color=#990000]图2-5 1000℃下的压力管发射率测试过程;(a)预氧化表面和(b)未氧化表面[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,495]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553456415_846_3384_3.jpg!w690x495.jpg[/img][/color][/align][align=center][color=#990000]图2-6 在600℃至1000℃范围内测量的预氧化和未氧化压力管样品的总半球发射率值[/color][/align]  通过报道文献分析,近十几年来,采用ASTM C835标准方法进行各种材料发射率测试和研究比较活跃的机构,主要是中国清华大学的符泰然团队和美国密苏里大学的汤普森团队。清华大学符泰然团队在2010年就开始对ASTM C835方法进行研究和研制了相应的测试设备,并发布了很多文献报道[5][6],但所报道的发射率测试温度最高也只能达到1000℃,对温度高于1000℃的测试只字未提。  密苏里大学汤普森团队2010年前就进行了ASTM C835方法研究,同样也研制了相应的测试设备,如图2-7和图2-8所示。[align=center][color=#990000][img=发射率(Emissivity),690,704]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554053335_146_3384_3.jpg!w690x704.jpg[/img][/color][/align][align=center][color=#990000]图2-7 密苏里大学量热法总半球发射率测试系统钟罩内部结构图[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,516]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554162712_5436_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#990000]图2-8 密苏里大学量热法总半球发射率测试系统[/color][/align]  从密苏里大学近十多年来发表的文献中,可以看到他们经常会发布一些超过1000℃的发射率测试结果或其他文献数据,而且在测试过程中全部都采用了K型热电偶进行样品表面温度测量,本身也没想采用S型热电偶进行更高温度的发射率测量。如在2010年的文献中[7],介绍了超高温反应堆系统潜在结构材料总半球形发射率的测试结果,如图2-9所示。从图中可以看出,密苏里大学的测试并未超过1000℃,但用来对比的文献数据则最高温度达到了近1200℃,并且温度在1000℃附近时发射率有明显的异常波动。[align=center][color=#990000][img=发射率(Emissivity),690,433]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554280088_6996_3384_3.jpg!w690x433.jpg[/img][/color][/align][align=center][color=#990000]图2-9 氧化镍发射率测试数据(三角形和空心圆)与其他文献数据的比较[/color][/align]  在密苏里大学2012年的文献中[8],介绍了Hastelloy总半球形发射率的测试结果,如图2-10所示。从图中可以看出,测试结果在1000℃附近波动明显。[align=center][color=#990000][img=发射率(Emissivity),690,431]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554387619_847_3384_3.jpg!w690x431.jpg[/img][/color][/align][align=center][color=#990000]图2-10 纯镍、Hastelloy N和Hastelloy X样品在1153K空气中氧化15分钟后的发射率测试结果比较[/color][/align]  在密苏里大学2012年的文献中[9],介绍了Haynes 230总半球形发射率的测试结果,如图2-11所示。从图中可以看出,测试结果同样在1000℃附近有明显的下降。[align=center][color=#990000][img=发射率(Emissivity),690,426]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554493500_2148_3384_3.jpg!w690x426.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-11 原始状态Haynes 230发射率测试结果和相似实验条件下两个不同测试数据[/color][/align]  同样,在2015年的文献中,介绍了lnconel 718在不同热处理后的发射率测试结果,如图2-12所示。从图中可以看出,测试结果同样在1000℃附近有明显波动,但这其中的波动部分原因也可能是氧化层在1000℃附近的变化所引起。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554589029_7043_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-12 不同热处理状态的lnconel 718发射率测试结果[/color][/align]  有关1000℃后的高温区域测试过程中发射率的异常现象,密苏里大学在之前的文献报道中从未提起,发射率测试温度范围大多也没有超过1000℃。但在2016年发布的文献中[11],介绍了91级A387合金发射率测量结果在827℃左右达到峰值,并随着温度进一步升高而逐步减小,如图2-13所示,而且这种随温度逐步减小的现象,也发生在进行过喷砂和氧化处理后的91级A387合金测试过程中。这种在827℃左右就开始出现异常的现象确实少见,所以文章作者也声明造成这种下降的原因尚不清楚,需进一步调查。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555075221_3087_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-13 轻度打磨的91级A387合金的总半球发射率[/color][/align]  在随后两年发表的文献[12]和博士论文[13]中,密苏里大学还是采用了K型热电偶对几种典型合金材料进行了全半球发射率测试,在文献综述中提到了1000K后发射率有明显的降低现象,测试结果也再现了这种现象,但都没再提及这种反常现象和原因。但在对高温反应堆系统结构材料发射率的长期预测中[14],首先报道了对合金718进行的额外测量和短期氧化研究结果,以确定氧化合金718中发射率下降的原因。图2-14显示了合金718在空气中氧化10分钟处理后的四种不同样品的发射率,每次测试都在1200K峰值发射率附近的不同温度下终止。使用SEM-EDS检查样品没有发现表面形态和成分的任何变化来解释氧化合金718的行为,由此在随后的长期氧化研究结果中就没再出现1200K以后的结果。[align=center][color=#990000][img=发射率(Emissivity),690,423]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555160390_4720_3384_3.png!w690x423.jpg[/img][/color][/align][align=center][color=#990000]图2-14 合金718在空气中氧化长达10分钟的总半球发射率[/color][/align]  在密苏里大学随后几年发表的新材料发射率测试研究报道中[15][16],再也没有出现超过1000℃的实验数据。  从上述文献分析可知,目前国内外绝大多数研究机构对1000℃以上高温发射率中存在的异常现象都没有很好的解决办法,测试结果自然也不能做为准确数据得到应用,但在实际工程应用中还是迫切需要这些高温数据。  美国桑迪亚国家实验室的辐射热测试组(RHTC)多年来一直从事对各种材料在高温热环境下的热辐射性能进行研究,主要测试和研究的材料包括Inconel600、SS304、17-4PH SS、碳化硅和铝合金。在总半球发射率的温度依赖性研究方面,他们外协了美国历史悠久的热物性研究实验室(TPRL),委托TPRL采用他们特有的高温多参数热物性测试设备对典型材料进行了高温总半球向发射率的测试[17][18]。  TPRL的高温多参数热物性测试设备可用于测量材料的多个热物理性能,包括热导率、热扩散率、比热、热膨胀、电阻率、发射率、焓、半球总发射率、Wieddemann-Franz-Lorenz比、汤姆逊系数、塞贝克系数、珀尔帖系数和理查森系数。设备中使用的样品要求是棒状电导体材料,金属、合金和石墨材料已使用该设备进行了广泛的测量。使用热电偶进行温度测量,可以在室温至约1000℃范围内测量大多数这些特性。然而,该装置主要是一种高温(1000℃)设备,使用光学高温计进行温度测定,该设备结构如图2-15所示。[align=center][color=#990000][img=发射率(Emissivity),690,359]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555258790_8446_3384_3.jpg!w690x359.jpg[/img][/color][/align][align=center][color=#990000]图2-15 TPRL高温多参数热物性测量设备结构示意图[/color][/align]  TPRL的高温多参数热物性测试设备对总半球发射率的测试,采用是ASTM C835方法,但高温温度测量采用的则是非接触式光学高温计。在对Inconel 600热电偶护套材料的发射率测试中,进行了各种预先热处理,样品A在稀薄火焰中在1400℃下加热4小时,样品B在1050℃的浓火焰中加热4小时。样品C和D在空气中分别在1100℃下电加热4小时和5分钟。样品E做为参考样品,由原始的Inconel 600热电偶护套材料组成,没有氧化,也就是说,由于测量是在高真空下进行的,所以参考样品在测量过程中表面没有氧化。整个测试过程的温度至少达到了1071℃,最高达到了1181℃,测试结果数据和图形描述如图2-16和图2-17所示。[align=center][color=#990000][img=发射率(Emissivity),690,429]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555364019_3535_3384_3.jpg!w690x429.jpg[/img][/color][/align][align=center][color=#990000]图2-16 作为不同温度和表面处理状态下的Inconel 600总半球发射率测试结果[17][18][/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,358]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555454741_5446_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2-17 不同表面状态和温度下的Inconel 600总半球发射率[/color][/align]  从上述TPRL公布的测试结果可以看出,无论在任何表面状态下,发射率随温度的变化基本都是一个接近线性的单调上升变化趋势,并未出现其他实验室采用热电偶测温所出现的1000℃附近的发射率异常波动现象。[size=18px][color=#990000]3. 总结[/color][/size]  通过上述ASTM C835标准测试方法应用的研究报道分析,可以得出以下结论:  (1)在测试过程中,如果在通电加热样品上直接焊接热电偶进行温度测量,由于在高温区间样品材料会出现塞贝克系数异常而导致发射率测量结果反而会随着温度上升而下降。如果采用非接触测温方式,则没有这种现象。这说明接触式热电偶测温会对高温发射率测量结果带来了很大影响,很多时候往往会得到相反的结果。  (2)热电偶测温方式往往适用低于1000℃温度区间的发射率,但在通电样品上焊接多只热电偶往往又会在温度测量准确性上带来较大误差,这是因为多只热电偶通过导电样品形成了短路。  (3)采用非接触式光学高温计进行温度测量,尽管测量温度区间可以实现很宽泛的范围,但光学高温计自身也涉及到一个发射率参数问题,样品发射率在不同温度下的改变也会影响测温精度,除非使用温度测量与发射率无关的多光谱红外测温仪器,而这种多光谱测温仪器的测量准确性还需要进一步考核和研究。  (4)由以上结论可以看出,无论采用热电偶还是采用光学高温计,都会带来不可知的测量误差,区别是热电偶带来的发射率误差是方向性的,而光学高温计的误差则是幅值大小方面的。目前最大的问题是还没有很好的技术手段来解决这些误差影响因素,而这些问题在很大程度上限制了ASTM C835标准测试方法在高温发射率测试方面的应用。  (5)鉴于ASTM C835标准测试方法在高温总半球发射率测试方面所面临的无解问题,但还要进行各种材料高温发射率的准确测量,因此我们建议采用另一种间接通电加热的量热法测量高温半球向发射率。这种测试方法与ASTM C835方法的主要却别是样品加热方式,在这种测试方法中,两片薄被测样品将薄发热体夹持在中间,发热体通电加热来间接加热被测样品,而温度测量则采用独立的铠装热电偶,由此避免样品高温段塞贝克系数异常和焊接质量对温度测量的影响,又可以规避样品上直接焊接热电偶经常带来高温易脱落造成试验失败的现象。[size=18px][color=#990000]4. 参考文献[/color][/size][1] ASTM C835-06(2020), Standard Test Method for Total Hemispherical Emittance of Surfaces up to 1400℃, ASTM International, West Conshohocken, PA, 2020, www.astm.org.[2] Richmond, J. C., and Harrison,W. N., “Equipment and Procedures for Evaluation of Total Hemispherical Emittance,” American Ceramic Society Bulletin, Vol 39, No. 11, Nov. 5, 1960.[3] Greene G A, Finfrock C C, Irvine Jr T F. Total hemispherical emissivity of oxidizedInconel 718in the temperature range 300~1000 C[J]. Experimental Thermal and Fluid Science, 2000, 22(3-4): 145-153.[4] Fong R W L, Paine M, Nitheanandan T. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5 Nb pressure-tube materials at 600 C to 1000 C under vacuum[J]. CNL Nuclear Review, 2016, 5(1): 85-93.[5] T. R. Fu, P. Tan and C. H. Pang, "A steady-state measurement system for total hemispherical emissivity," Measurement Science and Technology, vol. 23, no. 2, p. 10, 2012.[6] T. R. Fu, et al., "Total hermispherical radiation properties of oxidized nickel at high temperatures," Corrosion Science, vol. 83, pp. 272-280, 2014.[7] Maynard R K, Ghosh T K, Tompson R V, et al. Total hemispherical emissivity of potential structural materials for very high temperature reactor systems: Hastelloy X[J]. Nuclear technology, 2010, 172(1): 88-100.[8] A. J. Gordon, et al., "Hermispherical total emissivity of Hastelloy N with different surface conditions,"Journal of Nuclear Materials, vol. 426, no. 1, pp. 85-95, 2012.[9] R. K. Maynard, et al., "Hemispherical Total Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Haynes 230," Nuclear Technology, vol. 179, no. 3, pp. 429-438, 2012.[10] B. P. Keller, et al., "Total hemispherical emissivity of lnconel 718," Nuclear Engineering and Design, vol. 287, pp. 11-18, 2015.[11] C. B. Azmeh, et al., "Total Hemispherical Emissivity of Grade 91 Ferritic Alloy with Various Surface Conditions," Nuclear Technology, vol. 195, no. 1, pp. 87-97, 2016.[12] T. S. Hunnewell, et al., "total Hemispherical Emissivity of SS 316L with Simulated Very High Temperature Reactor Surface Conditions," Nuclear Technology, vol. 198, no. 3, pp. 293-305, 2017.[13] Al Zubaidi F. Total Hemispherical Emissivity of Reactor Pressure Vessel Candidate Materials: SS 316 L, SA 508, and A 387 Grade 91[D]. University of Missouri-Columbia, 2018.[14] Tompson Jr R V, Ghosh T K, Loyalka S K, et al. Long-term Prediction of Emissivity of Structural materials for High Temperature Reactor Systems[R]. Univ. of Missouri, Columbia, MO (United States), 2018.[15] Walton K L, Maynard R K, Ghosh T K, et al. Total Hemispherical Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Alloy 617[J]. Nuclear Technology, 2019, 205(5): 684-693.[16] Al Zubaidi F N, Walton K L, Tompson R V, et al. Emissivity of Grade 91 ferritic steel: additional measurements on role of surface conditions and oxidation[J]. Nuclear Technology, 2021, 207(8): 1257-1269.[17] J. Gembarovic, "Total Hemispherical Emissivity of Thermocouple Sheaths, in A Report~Sandia National Laboratories," Thermophysical Properties Research Laboratory, Inc:, West Lafayette, IN, 2005.[18] A. L. Brundage, et al., "Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple," Journal of Fire Sciences, vol. 29, no. 3, pp. 195-211, 2011.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=发射率(Emissivity),690,316]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201556153448_487_3384_3.jpg!w690x316.jpg[/img][/align][align=center][/align]

  • 区域地球化学交流电弧发射光谱法测银-红外灯干燥问题

    老师们,标准规范区域地球化学交流电弧发射光谱法测银DZT0279.11-2016中[img=,690,96]https://ng1.17img.cn/bbsfiles/images/2024/03/202403211027598619_5099_4104231_3.png!w690x96.jpg[/img]在红外灯下干燥45分钟,红外灯干燥的目的是什么?可以改成烘箱75℃烘干一小时吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制