当前位置: 仪器信息网 > 行业主题 > >

红外低频区分析

仪器信息网红外低频区分析专题为您提供2024年最新红外低频区分析价格报价、厂家品牌的相关信息, 包括红外低频区分析参数、型号等,不管是国产,还是进口品牌的红外低频区分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外低频区分析相关的耗材配件、试剂标物,还有红外低频区分析相关的最新资讯、资料,以及红外低频区分析相关的解决方案。

红外低频区分析相关的论坛

  • 【资料】低频噪音之定义

    我国对于低频噪音的声音频率范围订为 20~200Hz ,其中对人体影响较为明显之频率,主要为 3-50Hz 之频率范围。 低频噪音特性 当平常在室外或开门窗时,屋外噪音成份中,低频噪音部份被其它中高频噪音盖过去而没有感觉,但关了门窗时,中高频噪音会被门窗隔音而低频噪音会比较明显,因此,通常再夜深人静或较为安静的时候,较容易感受到低频噪音的干扰。 低频噪音之影响 低频噪音对人体会产生压迫感,对睡眠及生心理的影响大,可能导致神经衰弱、忧郁症等,尤其是年纪较大者更容易产生影响。 低频噪音之发生机构及发生源 发生机构: 1.平板的振动:如大型振动、道路桥梁、溢水水坝水流等。 2.气流的振动:空气压缩机、真空帮浦等压缩膨胀。 3.气体非常态激振:如大型送风机之旋转失速。 4.空气的急速压缩、开放:如爆破、铁路列车高速通过隧道等。 发生源: 有压缩机、送风机、冷却水塔、引擎、抽水机、输送带、锅炉、冷气器、变压器、直升机、洗衣机、冰箱、汽车、铁桥、隧道、爆发、地震、打雷、风等

  • 如何鉴别网售电疗仪是低频机还是中频机

    如何鉴别网售电疗仪是低频机还是中频机

    (本视频位置在3.示波器观察法,第一段(30秒钟)是某按摩仪“循环档”的波形及声讯,全是低频;第二段(30秒钟)是另一款按摩仪“按摩档”的波形及声讯,其中有低频调制的中频率波(888Hz),可以听到嘟-嘟-嘟的声讯。) 大多数人对电脉冲医用治疗仪和家用理疗仪的概念比较模糊。而由于没有国家统一标准,设计制造自由度大,产品五花八门、种类繁多,网上销售鱼龙混珠。一些网店把中频作为一个噱头,卖高价钱。实际上,从电疗仪的电路结构看,单一低频机到中频机设计,不会增加什么成本,二者功能兼有的仪器,成本会稍高一点。 医疗器械注册指南指出,低频治疗仪频率范围为2~100Hz,中频治疗仪频率范围为1千Hz~3千Hz。低频电疗仪,作用人体表皮神经,家用电疗仪采用较多;而中频电疗仪作用人体较深皮层神经,多用于医用治疗,相应对使用技术要求较高。 一般的消费者,缺乏相应的专业知识,根本不知道电脉冲中低频是咋回事,无法判断。下面介绍几种分辨方法。1、看注册证 正规的医疗器械注册产品,由省级药品监督管理局批准,可以在国家药品监督管理局(NMPA)网站上查阅到相关资料,在其注册证上会明确地标示频率指标。往往是那些非注册产品,为了销售,在宣传页上含混其词,个别甚至进行虚假宣传。查询渠道:国家药监局官方网站首页https://www.nmpa.gov.cn→查询→医疗器械→境内医疗器械(注册)→输入厂商提供的注册号2、听音法 用常见的耳塞式耳机串联一只500欧姆左右的电阻,接在电疗仪的两个输出电极间听音,可以鉴别出电疗仪输出的电脉冲是低频还是中频信号。若耳机中出现断续的“哒哒哒”敲击声,像快速敲门那种声音,则是低频电疗仪,若耳机中出现断续的“嘟-嘟-嘟”或“滴-滴-滴”像蜂鸣器那种声音,则是中频电疗仪。(文头视频中有中、低频的声讯)[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856146501_132_1807987_3.jpg[/img]3、示波器观察法示波器观察是终极鉴别手段,一切电脉冲波形都会在其检测下露出原形。有条件的用户可以使用。下面一款贴牌机,宣称中低频按摩仪,但没有中频功能:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856153038_8542_1807987_3.jpg[/img]下图是某款中低频按摩仪低频档的波形,频率45.988Hz:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856157169_9932_1807987_3.jpg[/img]下图是这个按摩仪的中频档波形,与低频档的电波频率没有变化,都是45.988Hz,只是同样的档位输出脉冲电压幅度加大,比低频档高出近一倍,见下图:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856159103_3638_1807987_3.jpg[/img](视频......)该处视频见文头,视频中第一段(30秒钟)是某按摩仪“循环档”的波形及声讯,全是低频;第二段(30秒钟)是另一款按摩仪“按摩档”的波形及声讯,其中有低频调制的中频率波(888Hz),可以听到嘟-嘟-嘟的声讯。下面是可听见“嘟-嘟-嘟”声讯按摩仪的波形图片,是低频调制中频波:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856158093_7142_1807987_3.jpg[/img]对该低频调制中频波进行分析,这个中频波频率为888Hz,距离电疗仪的中低频划分标准1000Hz还差一点:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091856159821_4652_1807987_3.jpg[/img]结束语:购买低频电疗仪还是中频电疗仪,或购买中低频兼有的仪器,根据自己的需要决定,而不是价格越高越好。要知道,电疗仪仅仅是一种辅助治疗仪器,效果因人而异。就家庭使用而言,功能简单适用就好,不需要追求高大上、全功能。在购买前,对于没有医疗器械注册证的产品,一定要在网店对话框中询问清楚仪器是低频还是中频?或二者兼有,留下网页凭据,便于收到货后,出现货不符实问题,进行退换货、索赔。使用电疗仪要遵守注意事项,避免身体出现严重不适问题。

  • 人们该如何应对低频噪音?

    一种神秘的嗡嗡声虽小,但却足以让人陷入疯狂。生活中人们很少意识到低频噪音的存在,而在不知不觉中却身受其害。请关注——人们该如何应对低频噪音?  据国外媒体报道,一种神秘的嗡嗡声虽小,但却足以让人陷入疯狂,能够听到这些噪音的人们往往产生头痛、恶心、头晕以及睡眠障碍,但却没法找到源头采取合适的解决措施。  为何人们对低频噪音如此无能为力?为何在生活中人们很少意识到低频噪音的存在,导致受困扰时无从下手?  对人工次声波源须采取积极措施  目前世界范围内已报道出现这种噪音的地区包括英国的利兹、布里斯托尔,美国新墨西哥州的陶斯以及悉尼的邦迪海滩附近。  来自广东汕头的叶先生在微博上转发了一则关于神秘Hum的新闻,并表示自己曾听到过这种声音。他说,这种声音出现在汕头市长平路和金环路交界处周围,一般只有在失眠的时候才会听到,“这种声音肯定不是耳鸣!”汕头大学物理学毕业的叶先生非常坚定地表示:“起初我以为是空调机坏了,包括邻居电冰箱产生的电磁波都在怀疑范围内,但后来发现就算把窗户关上也于事无补,声音反而更大。”  中国科学院声学研究所噪声振动实验室副主任杨亦春研究员告诉笔者:“曾经有个50多岁的北京女士搬入昌平的一所新房子,但一进门就发现有种非常扰人的声音,导致出现头晕眼花等症状,来找我询问原因。与其相似的还有天津、沈阳、武汉、苏州等地的受害者也多次上门咨询过。”杨亦春表示:“很多的案例都表明了这种低频噪音的确存在,但由于它们对人的影响没有高频噪音那样容易让人察觉,导致被忽略。”  那么,究竟是什么原因产生这种低频噪音呢?杨亦春介绍,作为一种低频声波,次声波总是伴随着许多自然现象而出现,几乎普遍都存在,一般来说都较弱,对人体不会产生损伤。第一是水坝泄洪能够产生很强的次声源;第二是机电设备,比如大型发电机组、大型机车或者是怠速状态的公交车、工程车及楼房安装的水泵等;第三是各种自然灾害,比如地震、海啸、台风、泥石流等;第四是家用电器也能产生较弱的低频噪声和次声,尤其是洗衣机、冰箱和空调室外机。人们无法完全躲避次声波,也没有太大的必要害怕次声波。但是随着现代工业的发展,出现了越来越多的人工次声波源,人们必须思考如何采取积极措施,减少或抵消次声对人体的伤害,使居住环境更健康。  需加强相关研究和建立行业规范  杨亦春介绍,声学所噪声振动实验室曾对低频噪声做过大量实验研究,希望了解什么样的噪声能够对人产生什么样的影响。在研究中他们发现,除了20Hz以下频率的高声压级次声波对人体有损伤作用外,高声压级的低频噪声对人伤害非常大,最常见的是频率在100Hz及其以下的宽频带噪声,这些声音一般来自工业或家庭用电。正常情况下人耳对50Hz的声音并不会感到显著的不适,但电在运行的过程又会产生25Hz到150Hz之间的倍频和差频波,想知道这些波对人体具体产生的影响,就需要更多的实验测试来完成,这也正是现在科学界所缺乏的研究。  哈尔滨工业大学长江学者、国家千人计划专家康健教授补充道:“低频声在户外的传播距离很远,一个声音通过长距离的传播之后,往往是低频多,高频少,因为高频声音衰减的比较多。”  为什么说当前国内外的标准都很不完备呢?“其实所谓的标准,主要是针对大型机电设备和家用电器。这些标准在制定上主要注重A声级效应,企业界往往都依据现有的国家标准,为了降低设备的总A声级而把设备的运转频率压降,在低频率运转时就产生了这种低频的噪声。家用电器也是如此,像大型空调本身的功率达数千瓦级甚至更高,其在低频率工作时有可能产生很大的低频声”,杨亦春解释道。所以,在低频噪音标准的规定上,杨亦春建议能够提高低频噪声和次声波对人体损伤效应的认识,加强相关研究,并根据深入研究所得到的实验结果为依据,制定更为详尽并且严谨的行业噪声标准,进而指导机电产品的声学设计。  重视低频噪声并积极预防  “有一个很有趣的现象,20Hz以下的次声波任何人都是听不到的,但高于20Hz的低频声波有些人就能够听到。一些特定的中老年人能够听得到较低频率的声音,而一些少年人能够听得到20kHz以上频率的声音,这是因为每个人身体的共振频率不同,感受也就不同,这也是已有报道声称只有2%的人能够听到Hum的缘由。”  能够听到较低频率噪声的通常都是一些中老年人,所以被低频噪音伤害的群体也以中老年人为主。杨亦春根据自己曾经在实验中不小心遭受到的次声波和低频声波伤害总结出:“低频噪声造成的损伤主要是对神经系统,导致人们头晕、精神萎靡、没食欲,思维也跟着混乱。而当年汶川地震伤亡人数如此巨大,人们推测有部分原因是人们感受到地震发出的低频声波后产生了头晕的症状,方向分不清,走路也走不动,所以没能及时成功逃生。”  面对这种低频噪音,人们需要提高敏感度,在生活中做足各种预防措施,杨亦春介绍了一些切实可行的办法:“如果这种噪声能够确定是水泵造成的,通过墙体途径传导的难以预防,但若是空气传播,建议采用双层或者多层玻璃窗,可以起到一定的隔声作用。还有在选择家居用品的时候,尽量使用比较软的材质,比如软的床、软的沙发和软的墙面,这些都能起到缓冲减弱作用。最后是很多人普遍使用的,像开电风扇或者播放音乐,根据听觉掩蔽效应,在听到更大的声音时往往会忽略低沉声音的存在。”

  • 【分享】低频噪声 挡不住的致病源

    凡是噪声都会对人体产生危害,而低频噪声更会对人体健康产生长远的影响,但是,现在这种低频噪声所产生的危害还没有得到人们足够的重视。  低频噪声源主要有四大类:电梯、变压器、中央空调(包括冷却塔)及交通噪声,一般是指频率在500赫兹(倍频程)以下的声音。低频噪声对生理的直接影响没有高频噪音那么明显,但是近来国内从事低频噪声研究的专家指出,低频噪音会引起头痛、失眠等神经官能症。目前,国内声环境质量标准及其监测方式主要是针对高频噪声的检测,低频噪声因分贝数并不高,导致经常有市民被噪声折磨却投诉无门。  低频噪声充斥现代生活  早在上世纪90年代初,低频噪声就已经悄悄地开始影响人们的生活。当时一些开在居民区的“卡拉OK厅”和“迪斯科舞厅”生意兴隆,尽管那些娱乐场所里有着厚厚的墙纸和各种隔音设备,但阻挡的只是属于“高频”的歌声,而低频噪声,比如歌舞厅内的鼓点震动声却可穿墙透壁,直达市民们的客厅、卧房等处。此外,随着城市道路、桥梁以及各种大楼的建成,特别是在一些住宅小区内,电梯和那些本来置于楼外的变压器房、水泵纷纷被移入居民楼内,使用时产生的震动就形成了低频噪音。中国疾控中心环境影响评价室主任窦燕生特别对记者指出,现在有很多的高层塔楼使用的都是二次供水,这种利用高压水泵供水的方式会产生很强的震动低频噪音,尤其对四层以下的居民会产生很大影响。  解放军总医院耳鼻喉研究所王秋菊博士告诉记者,低频噪声按传播途径主要分为结构传声、空气传声及驻波,其中驻波危害最重。对于楼内变压器、水泵等造成的结构传声,可以在安装电梯、变压器、水泵等的时候加上减震措施,最好是将这些装置安装在楼外 对于空气传声,可以在房屋的窗口上安装通风隔声窗来改善。  低频噪声不容易衰减  窦燕生主任对记者说,凡是噪声都会对人体产生危害,而低频噪声更会对人体健康产生长远的影响。但是,现在这种低频噪声所产生的危害还没有得到人们足够的重视。  窦燕生主任举了一个例子,低频噪声不像紧急刹车声和迪厅音乐那样刺耳,但二者都会产生声压。高频噪音随着距离越远或遭遇障碍物,能迅速衰减,如高频噪音的点声源,每10米距离就能下降6分贝,马路上的线性声源每10米也能下降3分贝。而低频噪音却递减得很慢,因此能够长距离奔袭和穿墙透壁直入人耳。  低频噪声造成慢性损伤  首都医科大学宣武医院耳鼻喉科医师孟庆书告诉记者,噪音污染已经是世界七大公害之首,而低频噪声对人体是种慢性损伤,更不容忽视。  低频噪声由于可直达人的耳骨,而且会使人的交感神经紧张,心动过速,血压升高,内分泌失调。人被迫接受这种噪声,容易烦恼激动、易怒,甚至失去理智。如果长期受到低频噪音袭扰,容易造成神经衰弱、失眠、头痛等各种神经官能症,甚至影响到孕妇腹中的胎儿。很多人抱着忍一忍的态度是十分不正确的。

  • 检测达标也有低频噪音

    环保人士表示,即使噪音排放达标也同样容易出现噪音扰民。因为,我国现行的环保法规设定的区域环境噪声规范标准,只规定了高音的最高限值,对于低频噪声,并未做明确规定。而环保部门针对这种不超标、却让人苦不堪言的低频噪音,只能进行协调,无法处罚。 专家介绍,高频噪音随着距离越远或遭遇障碍物,能迅速衰减。而低频噪音却递减得很慢,声波又较长,能轻易穿越障碍物,长距离奔袭和穿墙透壁直入人耳。压缩机、送风机、引擎、输送带、锅炉、变压器、汽车机械、器械都是产生低频噪音的来源。

  • 红外光谱的定量分析和定性分析

    红外光谱定性分析:一般采用三种方法:用已知标准物对照、标准谱图查对法和直接谱图解析法。 1. 已知物对照应由标准品和被检物在完全相同的条件下,分别绘制红外光谱图进行对照,谱图相同则肯定为同一化合物。 2. 标准谱图查对法是一种最直接、可靠的方法。在用未知物谱图查对标准谱图时,必须注意:测定所用仪器与绘制标准谱图的在分辨率和精度上的差别,可能导致某些峰细微结构的差别;未知物与标准谱图的测定条件必须一致,否则谱图会出现很大差别;必须注意引入杂质吸收带的影响。如KBr压片可能吸水而引入水吸收带等。 3. 对于未知化合物,可按照如下步骤解析谱图:先从特征频率区入手,找出化合物含有的主要官能团;指纹区分析,进一步找出官能团存在的依据;仔细分析指纹区谱带位置、强度和形状,确定化合物的可能结构;对照标准谱图,配合其他鉴定手段,进一步验证。 红外光谱定量分析: 选取合适的定量吸收峰,测定吸收峰的吸光度,依据朗佰-比尔定律,计算待测组分含量。

  • 红外光谱的定量分析和定性分析

    红外光谱定性分析:一般采用三种方法:用已知标准物对照、标准谱图查对法和直接谱图解析法。 1. 已知物对照应由标准品和被检物在完全相同的条件下,分别绘制红外光谱图进行对照,谱图相同则肯定为同一化合物。 2. 标准谱图查对法是一种最直接、可靠的方法。在用未知物谱图查对标准谱图时,必须注意:测定所用仪器与绘制标准谱图的在分辨率和精度上的差别,可能导致某些峰细微结构的差别;未知物与标准谱图的测定条件必须一致,否则谱图会出现很大差别;必须注意引入杂质吸收带的影响。如KBr压片可能吸水而引入水吸收带等。 3. 对于未知化合物,可按照如下步骤解析谱图:先从特征频率区入手,找出化合物含有的主要官能团;指纹区分析,进一步找出官能团存在的依据;仔细分析指纹区谱带位置、强度和形状,确定化合物的可能结构;对照标准谱图,配合其他鉴定手段,进一步验证。 红外光谱定量分析: 选取合适的定量吸收峰,测定吸收峰的吸光度,依据朗佰-比尔定律,计算待测组分含量。

  • 低频电磁场测量系统的问题

    [b]低频电磁场测量系统NBM550+EHP50F+EF0391 大家有用过这个仪器吗? 是不是一个主机加两个探头,用来测工频电磁场密度还有工频密度的啊? 可是我看详细配置怎么是 [/b][list=1][list=1][*][b]电磁辐射分析仪主机,[/b]2.[b]射频电场探头, 3[/b].[b]工频辐射测量仪(可同时测量电场和磁场合;工频辐射测量仪与显示主机连接光纤不小于5m,以避免人员对测量的影响;工频辐射测量仪能够独立测量并存储数据,不需要使用额外的专用主机,可使用普通电脑作为显示单元,独立工作时间不小于24小时。) 这个工频辐射测量仪不是探头吗? 怎么回事?为什么还是可单独使用并且还能同时测电场和磁场呢?[b][/b][/b][list=1][/list][list=1][list=1][/list][/list][list=1][list=1][list=1][/list][/list][/list][list=1][list=1][list=1][/list][/list][/list][list=1][list=1][list=1][/list][/list][/list][/list][/list][list=1][/list][list=1][/list][list=1][/list]

  • 低频噪音监管难 澳门将拟案禁止住宅区设酒吧

    针对大众关注的低频噪音干扰,澳府环保局计划今年内订出具操作性的低频噪音指引,并不排除立法。同时,旅游局正启动拟订相关草案,明令禁止在住宅区域开设酒吧、餐厅等娱乐场所。  低频噪音未纳入法案监管  低 频噪音在测量和监管上存在难度,尤其在楼宇密集、土地面积稀少的澳门,受到该类噪音干扰的居民较多,但一直未纳入《预防和控制环境噪音》法案监管。针对澳 门范围调查分析,环保局发现当地低频噪音主要来源为车辆、工商业通风设备、人为活动、冷气机或雪柜等。数据显示,2010至2013年间,澳门每年的噪音 投诉为400至500宗,低频噪音个案总数约占总投诉一成。  针对上述投诉,环保局分析了测量数据,认为设于同一幢建筑或楼宇如卡拉O K、酒吧、的士高等场所,其设备产生的低频噪音最影响居民,“震动声响可由一楼直传至十几楼”。上述设备较难通过一般性隔音材料阻隔。因此,局方认为较好的解决方法便是从距离入手。  环保局对空调设备展开研究  澳门环保局环境污染控制厅长叶扩林表示,大众较关注空调通风设备发出的低频噪音,故已针对酒店、酒吧等娱乐场所的相关设备,开展了首阶段研究,争取今年内订 出具操作性的低频噪音指引,同时不排除立法。他表示,届时有关指引可提供向娱乐场所发放牌照的部门,或让执法部门在处理投诉时作参照。未来,局方将会根据 指引试行成效,咨询社会及业界,通过立法方式加入在“噪音法”里,完善管制。  环保局认为,全球暂未有一个国家或地区能清晰订明低频 噪音的定义,加上受不同场所背景噪音影响,订定标准有一定复杂性。目前,首阶段研究工作已经完成,下阶段要具体针对澳门与路氹不同区划的低频噪音源头,作 现场及深入分析,当中包括计算背景噪音,争取今年内完成整项研究。  此外,旅游局正启动拟订《规范酒店、餐厅及酒吧业务的行政法规草案》,禁止在住宅开设相关场所,并开展咨询。  背景  环境噪音污染 国内尚无相关立法  记者了解到,在全国两会上有委员提出,必须尽快修订完善《环境噪音污染防治法》。国内现行的《环境噪音污染防治法》是在17年前制定的,公众投诉常常面临取 证难,维权难,而由于噪音分贝值很难准确检测,再加上各地管理部门对于噪声污染防治的规定不尽相同,管理部门在处罚时又面临执法难。来自于K TV场所、 歌厅之类的低频噪音更是成为监管难点,不仅由于其符合现有噪音排放标准,同时对于这类振动噪音相关法规也无约束,现有监测技术设备更难胜任。这类经由低音 制造的重低音威力着实不小,嗡嗡嗡的低沉声音从地底下和空气中传来,往往冲击着人的耳膜。目前国内对低频噪音的排放没有明确标准,有专家表示,噪音排放达 标却存在扰民现象,环境执法部门想管却无法可依,只能以协调为主。

  • 有做低频核磁的么?

    听说低频核磁可以比较轻松的测出T1、T2,但是还不是很清楚低频核磁具体的检测方向和应用领域,希望有人在用,上传点资料啥的,供大家学习学习!

  • 红外法分析水中油,从什么角度分析更合理,实验安排?

    如题目,计划做红外光谱实验对水中污染油进行定性定量分析。第一次做实验,而且借用别人的实验室,所以一定要先安排好实验。我打算用3种油(汽油、柴油和煤油),按照不同浓度混合模拟污染油。具体按照什么浓度混合,共需要配置多少种,还是没有把握,希望有经验的前辈给予指点,谢谢另外我考虑用中红外还是近红外容易分析,老师要求能分出混合油中的具体种类,并定性分析。但是考虑每种油都是混合物,性质不确定,该如何区分呢?从分子的角度应该选择什么作为区分物质?

  • 低频噪音成都市顽疾 治理尚无法可依

    “长此以往,我都快要崩溃了。”12月19日,在新疆库尔勒市九洲奇乐小区高层401杨女士的卧室里,一阵阵的嗡鸣声,让杨女士抱怨连连。她告诉记者,都已经连续几年了,一到冬季采暖期,地下室的锅炉藩始工作,她睡不着觉的日子也是如期而至。  锅炉嗡鸣不胜其烦  “我们家受影响最严重。”杨女授说,2009年毕业以后,为了方便上班和照顾老人,她就从家里搬来和爷爷、奶奶住在了一起。刚开始生活倒也温馨平静,可是进入冬季以后,她就发现在她睡觉的卧室里,总有持续的嗡鸣声,即使戴着耳塞也无济于事。经过仔细检查,杨女士发现,让她深恶痛绝的嗡鸣声,是高层地下室锅炉所产生的。由于楼下三层是商户,夜间并没有人在楼里,所以她就成了最大的噪音受害者,而高层住户,则是采用天然壁挂炉自行供暖方式,锅炉只是供头三层的商户供暖。  在经历了一段时间的不眠之夜后,杨女士终于接受了现实,并形成了习惯,一进入冬季就只能挪窝到客厅沙发,或借宿到朋友家里。杨女士说,为了争取到一个夜深人静的安静休息环境,她多次找到物业公司要求处理,并向环保部门进行投诉,可效果却并不理想。  12月19日,记者采访了杨女士居住小区的物业公司相关负责任人。该负责人表示,杨女士也向他们反映过在冬季供暖期,有地下室噪音扰民的问题。但地下室水泵和锅炉的正常工作,肯定会发出一定的声音,而且之前也经过环保部门的检测,并没有超标。  如果要彻底解决问题,除非是改变该居民楼底商的供暖方式,通过和燃气公司协商,同楼上居民住宅一样采用壁挂炉采暖,但这会牵扯到很多人的利益,具有一定的操作难度。  问题存在却无法可依  11月18日,记者就杨女士遭遇的噪音问题采访了库尔勒市环境保护局监察大队的相关负责人。该负责人说,最近,他们经过长时间的多次协调,才为塔指西路一栋居民楼解决了水泵噪音问题,让受水泵工作震动噪音影响了很长时间的市民,看到了重获清静居住环境的希望。最近几年,由于高层住宅的激增,水泵、锅楼房和空调外挂机等机器所带来的低频噪音污染问题也越来越多,其中很多都是开发商在建设期间,考虑不足所致。后期,随着这一方面经验的增加,这类问题应该会逐渐减少。  低频噪音的危害  同时,该负责人还称,目前国家并没有专门的认定标准,因此无法为杨女士遭遇的这种低频噪音问题进行检测。国家目前通行的有关噪声的法律法规,只适用于经营性范畴,居民住宅并不在此类之中。针对陈女士的情况,张队长建议,应积极与小区物业和开发商沟通,“也可以通过法律途径解决”。  解放军第二七三医院五官科的胡长涛医生告诉记者,白天,低频噪音很容易就被人们说话、看电视和其它声音所掩盖,直到夜深人静,低频噪音才会显示出它穿透力强的特性。长期处在低频噪音的环境中,会出现神经衰弱等一系列精神问题。  胡长涛举了一个例子,低频噪声不像紧急刹车声和高分贝音乐那样的高频噪音刺耳。高频噪音随着距离越远或遭遇障碍物,能迅速衰减,而低频噪音能够长距离奔袭和穿墙透壁直入人耳。低频噪声对人体是种慢性损伤,不容忽视。  据悉,有关部门正在努力制定新的噪音检测标准。随着新标准出台,将会对低频噪音标准有明确规定。届时,市民们有望通过新的噪音检测标准来保护自己的耳朵。

  • [求助] CHI660B 交流阻抗分析求教

    小弟最近刚开始用chi660b测交流阻抗,发现自己的结果有几个地方不是很清楚,特来请教:1、如何区分自己测得电阻是电子电导还是离子电导?除了通过温度变化来确定,能不能从阻抗谱上分析?2、在低频区,我怎么有些样品的斜率怎么大于1?是我电极的问题么?

  • 【分享】低频噪声污染:城市居民健康的“潜在杀手”

    在高分贝值噪声的制造者要承担相应法律责任的今天,低频噪声问题却逐渐“浮出水面”,并且“游离”于现有的法规之外。环境声学专家表示,从娱乐场所的“低音炮”、小区楼房的电梯、水泵到路上跑的公交车,城市生活越来越多的低频噪声污染源,已经成为居民健康的“潜在杀手”。 低频噪声污染非常普遍,电梯在运行时产生的低频噪声对顶楼以下二三层的住户都会产生影响;安装在小区地下室的水泵、变压器,严重的会影响十楼以下的所有住户。  “低音炮吵得我都有点神经衰弱了”   声也就只有40多分贝,但震撼效果却非常强。  福建省环境监测中心站环境声学专家林观辉说,住房的‘嗡嗡’的响声来自该楼地下室变压器房,属于典型的低频噪声,它是通过墙壁一直传到四楼林先生家的。 低频噪声污染非常普遍,电梯在运行时产生的低频噪声对顶楼以下二三层的住户都会产生影响;安装在小区地下室的水泵、变压器,严重的会影响十楼以下的所有住户。  在厦门,已有1000多个各类场所面临低频噪声污染问题,很多家庭深受其害。厦门市环保局局长谢海生说,经济发展带来城市娱乐业和餐饮业的繁荣,而这两个行业产生的噪声污染也越来越严重。去年厦门市总共受理6914起环保投诉,其中60%是噪声污染和油烟问题的投诉,噪声污染当中又以低音喇叭产生的低频噪声污染为主。  “关不住”的低频噪声对人危害极大  正常人能听到的声音频率为20-20000赫兹,频率低于300赫兹的声音为低频声音。医学专家通过研究发现,低频噪声对人体并不仅造成功能性损害,还可能引起器质性损害以及精神损害。福建省老年医院特检科主任杨云说,低频噪声可以直达人的耳骨,使人的交感神经紧张,心动过速,血压升高,内分泌失调。人如果长期受到低频噪声袭扰,容易造成神经衰弱、失眠、头痛、记忆力减退、综合判断能力下降等神经官能症。国外研究还发现,低频噪声可以穿透人体腹壁和子宫壁,影响胎儿器官发育,甚至造成胎儿畸形。  福建省环境监测中心站环境声学专家林观辉说,“同样是70分贝的声音,100赫兹和1000赫兹频率,人体耳朵感应的声响就不一样。人体内器官固有频率基本上在低频和超低频范围内,很容易与低频声音产生共振,所以人会烦恼、感觉不适。此外,低频声音在空气中传播时,空气分子振动小,摩擦比较慢,能量消耗少,所以传播比较远,通透力很强,能够轻易穿越墙壁、玻璃窗等障碍物。”

  • 【分享】-----红外光谱基团频率分析及应用

    红外光谱基团频率分析及应用 基团频率和特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。 实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。一、基团频率区和指纹区(一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子, -C  N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C  N基越近, -C  N基的吸收越弱,甚至观察不到。1900~1200 cm-1为双键伸缩振动区 该区域重要包括三种伸缩振动: ① C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、 醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰。② C=C伸缩振动。烯烃 的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。③ 苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围, 是C-H面外和C=C面内变形振动的泛频吸收,虽然强 度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。 其中 1375 cm-1的谱带为甲基的 C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。 900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。 例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。二、常见官能团的特征吸收频率三、影响基团频率的因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。 影响基团频率位移的因素大致可分为内部因素和外部因素。 内部因素:1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。(1)诱导效应(I 效应) 由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。(2)中介效应(M效应)当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O键频率出现在1700 cm-1 。 分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动! 相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。4.Fermi共振 当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种现象称为Fermi共振。外部因素 外部因素主要指测定时物质的状态以及溶剂效应等因素。 同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。例如,丙酮在气态时的 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。 在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。因此,在红外光谱测定中,应尽量采用非极性的溶剂。

  • 【求助】求低频阻抗仪

    有没有专门测试低频阻抗谱的仪器,频率希望有1mHz-5Mz范围,电化学工作站太贵了,而且我只需要测试阻抗谱。其他不需要。

  • 高频红外碳硫分析仪检测的相关分析

    高频红外碳硫分析仪检测的相关分析 在铸造行业的金属冶炼中,碳硫元素会不可避免的进去金属元素中,并且对金属材料的性能产生重要的影响。以钢铁为例,在钢中碳属碳化物形式,而硫属于钢中的有害元素,所以在钢铁中碳硫的含量比至关重要,对它们的分析检验是判断材料是否满足标准的最好方法。 分析碳硫的方法很多,一般有燃烧法、碘量法、库仑法、电导法、非水滴定法等等。但是目前这几种方法均属于化学方法,需要化学试剂和辅助设备,对分析调试人员的技能水平要求也比较高,工作效率不高。 在国外高频红外测碳硫的技术早已普遍应用与碳硫元素的分析测定,高频红外碳硫技术也是目前我国应用最广泛的分析技术,红外碳硫仪和高频感应炉相结合,于氧气流中,加助熔剂燃烧试样,碳生成二氧化碳和一氧化碳,硫转化成二氧化硫,以红外吸收法测定氧气流中的碳硫化合物含量,进而转化为钢铁材料中碳硫元素的百分含量。 高频红外碳硫分析仪1HW型是宁四分公司应用高频红外技术,自主创新的高新技术产品。在成功研发上市之后,荣获国家实用新型专利“高频红外碳硫分析仪”,专利号:ZL200920037753.4。 之后还通过市级科技成果登记和省级新产品鉴定,被认定为江苏省高新技术产品。

  • 江苏省计量院低频磁场抗扰度测试系统顺利通过验收

    [align=left][color=#333333]日前,江苏省计量院购置的低频磁场抗扰度测试系统顺利通过验收。该套系统主要用于测试汽车电子产品的低频磁场抗扰度能力。系统投入使用后可以满足南京众多汽车厂商的电磁兼容测试需求。[/color][/align][align=left][color=#333333]  低频磁场抗扰度测试系统包括信号发生器,磁场线圈,亥姆霍兹线圈,磁场探头,电流和电压监控器等。测试频率范围涵盖15Hz~150kHz,最大场强可达1000A/m。低频磁场抗扰度试验开展后,江苏省计量院在汽车电子产品电磁兼容领域的检测项目更加全面,检测能力进一步得到提高。[/color][/align]

  • 【原创】高频红外碳硫分析仪技术解析

    红外碳硫仪 -高频红外碳硫分析仪器 产品介绍 红外碳硫分析仪与高频感应燃烧炉配套使用,能快速、准确地测定 钢、 铁、 合金、 有色金属、 水泥、矿石、玻璃、 煤、 焦炭、 催化剂及其它固体材料中碳、硫两元素的质量分数。是集 光、机、电、 计算机、分析技术等于一体的高新技术产品,具有测量范围宽、分析结果准确可靠等特点。

  • 介绍一种新技术,缩短阻抗的低频区测试时间

    最近很郁闷,总是有人诽谤我们代理的德国的IM6电化学工作站,[em36] ;如果说得很有道理,也就算了,可是偏偏是什么都不懂的人乱说,竟然还有人相信,呵呵,果然是三人成虎啊。本来不想发帖的,实在是这口气憋不下去,所以就在这里做个广告了。众所周知,阻抗谱是评价有机膜的有力工具,目前在这方面已经有了许多研究成果,由兴趣的同好们可以发信找我索要部分资料(JCT05年登的一个专题)。可是对于阻抗谱来说,低频区的谱图采集十分耗费时间,而且长时间的激励信号容易使体系发生极化,某些不稳定的体系,低频的阻抗谱因而质量不好。针对这种情况,Zahner公司开发出了一种松弛伏安法技术,可以有效地减少测试时间,同时保证了足够的取样点数(总的来说,时间缩短为原来的1/3--1/4;取样点数接近百个)。其机理类似截断电流法。首先对待测体系施以一定的极化电压(至稳态电流出现,约需要30s--5min不等),之后撤去极化电压,通过一个快速取样设备(600Hz)和一个电流切换开关,记录撤去电势后的体系的电压变化,数据通过对数K-K变化,以及复杂的计算,输出为低频区的阻抗谱。这个功能是通过IM6的一个电化学噪音附件实现的;可以说目前国内能够提供类似功能的工作站是没有的;而且不客气地说,除了Zahner以外,似乎其他几家的仪器的功能已经很久没有更新了。当然,也许我的观点是错误的,希望大家来信批评,当然索要资料也可以。我的信箱是hlzhang@universalhkco.com

  • 关于微区分析的一些看法

    近来闲着没事,就开始想了一些东西。现拿出来和各网友交流,不对的欢迎讨论。最近有许多单位在打听微区分析方面的事,老是问我你们的仪器的准确度是多少?在交谈中我觉得他们存在许多的误区,以为微区分析什么样都能做,还有定量方面“冷场不准确”的思路在里面,将定量准确度和冷场挂钩。因此我在向他们解释的时候也将这个问题好好的思考了一下。才有了下面这篇文章,由于写的时间较短错误在所难免,也希望各位专家能指出来。关于微区分析的一些误区所谓的微区分析主要指的是EDS\WDS\EBSD谱分析等。借助于透射、扫描电镜进行的元素定性、定量(检出限0.1%)分析以及晶粒结构观察。其好处是将微区观察和材料的各种分析相结合。可以对样品定位观察并分析,改变了过去做分析时不清楚是在样品那个部位的缺陷。目前的微区分析似乎是越来越火,微区分析在厂家的渲染下也似乎无所不能。许多电镜的新用户也在这种风气下,越来越重视所采购的电镜是不是能满足分析功能,而将仪器本应有的分辨能力放到了一边。我们不能说厂家说得不对,可是不全面的正确就容易形成一个误区。现在的微区分析也存在这样的误区,以至于许多用户花了许多冤枉钱却得不偿失。具体来说误区有以下几个方面。1. 微区分析的普适性微区分析(EDS\WDS\EBSD)并不是如因厂家描述而给一个从没接触过的这些工作的用户所形成的想象那样普适,什么样品都能满足需要。的确EDS的定性分析以及无标样定量分析对样品的要求不是那么的高,大部分样品只要能在扫描电镜下观察到都能比较轻松地获得他们的EDS谱图。但是对于那些主要是碳\氮\氢\氧所组成的高分子材料除了里面的无机物掺杂可以用EDS检出外,其余的基本就无法说得清楚了。而EDS的有标样定量\WDS定性定量由于对标样以及样品的要求,普适性就更加的差了。至于EBSD分析的对象是表面平整的、导电的结晶体因此它们的使用范围将更加的窄,一般也就在特殊材料领域里面使用。2.样品制作的复杂性微区分析样品制作简单只是对于EDS定性或无标样定量分析而言的,即便是在这些分析中对样品也有一个平整度的要求,只是不是那么的严而已。而对于EDS定量和WDS分析样品时要求样品表面起伏不能超过1MM,否则结果将不准确,EBSD的要求就更加的严格。制样过程的繁杂就不可避免,人工制样费时\费力对技术要求高而结果可能还不理想。配置一套制样设备价格不菲而且也需要工作人员有一定的制样工艺基础,不是随便上个人就能做好的。因此对于微区分析来说除了EDS定性和无标样定量其余的分析手段制样都较为复杂,需要有专门的培训和专门的仪器才能完成。3. 分析结果的准确性主要是针对能谱和波普分析来说。它们和仪器状态、检测元素、检测元素在样品中的含量、检测方法还有环境因素有关。最好的条件下EDS检测误差范围在(1-3)%,检出限最高为0.1%,WDS相对来说要高一个数量级。因此这也是个有许条件结果。所以泛泛的说准确度对于微区分析是没有意义的4. 电镜的适用性    目前流行的说法是冷场不适合做微区分析,要做微区分析必须得要热场。理由是冷场束流小、且不稳定。那么让我们先来看看微区分析对仪器束流的要求:EDS分析在几十个PA到十个NA左右,EBSD也基本如此,波普要求6、7个NA以上;束流稳定性定性分析要求不高,无标样定量要求束流漂移不超过3%,定量分析要求漂移在1%以内。那让我们来看看冷场,束流在几个PA到2NA,束流稳定性(工作5个小时以上漂移在3%以内)。可以说这样的结果做EDS定性分析、无标样定量以及EBSD都是够用的,只是不能做EDS有标样定量以及波谱分析。实际上对于冷场来说由于样品室真空度要求比较高,谱线损失小,一般束流要求并不高。本人在实际工作中很轻松(不需要对物镜光阑或聚光镜作调整,引出电流也只需调整到10UA)就将能谱的输入计数率调整到2-4K之间,这也是能谱分析输入计数率的常规要求。太高了由于处理时间的原因,死时间增加也是得不偿失的。而对于EDS有标样定量和波谱分析由于对样品要求高、需要配备标样和专门的制样设备,所以配置该设备的用户不多,即便配置了用到的机会也不多。可以说冷场电镜可以满足90%以上的用户进行微区分析的需要了,而分辨能力以及低压特性却是热场电镜无法比拟的。目前热场所谓的高分辨就是将热场想方设法变成冷场,费用大大增加,结果却未必如意。就像是摄像机拍照,怎么改变都无法和照相机相比,我担心的是不要为了高分辨而丢了自己的特色。好歹还有做能谱的优点呀。我们可以相信微区分析还会更好的发展,用户也会越来越多。不过我觉得平民化的发展应该在能谱的定性和无标样定量方面,这个是主力。而EDS定量以及EBSD还有WDS的发展是特殊人群的特殊需求,应该不会成为主力。即便目前买了EBSD的用户也有很多,不过大部分应该还是在睡觉。这和制样和操作解谱的瓶颈有关。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制