当前位置: 仪器信息网 > 行业主题 > >

量子效率测试系统

仪器信息网量子效率测试系统专题为您提供2024年最新量子效率测试系统价格报价、厂家品牌的相关信息, 包括量子效率测试系统参数、型号等,不管是国产,还是进口品牌的量子效率测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量子效率测试系统相关的耗材配件、试剂标物,还有量子效率测试系统相关的最新资讯、资料,以及量子效率测试系统相关的解决方案。

量子效率测试系统相关的论坛

  • 【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    [align=center][b][font=黑体]微型化荧光量子产率测试系统的搭建研究[/font][/b][/align][align=center][font=宋体]魏[/font][font=宋体]巍[/font], [font=宋体]李莉,朱倩倩,李军,李艳肖[/font][/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]通过微型化荧光量子产率测试系统的搭建,可以很好地增强弱信号荧光样品的响应,对有效解决该类样品的绝对量子产率难测定等难点,微型化的积分球系统实现了快捷简便的操作,获得液体、薄膜和粉末样品绝对量子产率的测量。首次微型化积分球,对测试系统关键部件进行设计及优化,分析了测试系统存在和误差和量子效率的影响因素,进一步完善固体荧光材料量子产率测试技术,为新型量子产率体系提供理论指导。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]荧光量子产率;微型化[/font][font=宋体];荧光光谱;测试[/font][align=center][b]Construction of miniaturized fluorescence quantum yieldmeasurement system[/b][/align][align=center] WEI Wei, LI Li, ZHU Qian-qian, LIJun, LI Yan-xiao[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]Through the establishment of theminiaturized fluorescence quantum yield test system, the response of weaksignal fluorescence samples can be well enhanced, and the difficulty ofdetermining the absolute quantum yield of such samples can be effectivelysolved. The miniaturized integrating sphere system can achieve quick and simpleoperation, and the absolute quantum yield of liquid, film and powder samplescan be measured. For the first time, the key components of the test system weredesigned and optimized, the factors affecting the existence and error of thetest system and the quantum efficiency were analyzed, and the quantum yieldtest technology of solid fluorescent materials was further improved, providingtheoretical guidance for the new quantum yield system.[b]Key words:[/b]fluorescence quantum yield microminiaturization fluorescence spectra measurement[font=宋体]众所周知,光致发光([/font]Photoluminescence[font=宋体]),是指物体依赖外界光源进行照射,从而获得能量,产生激发导致发光的现象。也指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到较高能级的激发态后返回低能态,同时放出光子的过程。光致荧光发光是多种形式的荧光([/font]Fluorescence[font=宋体])中的一种。而在现阶段光致发光材料的研究中,对荧光量子产率([/font]Quantum Yield of Fluorescence[font=宋体],[/font]QY[font=宋体])的数值的准确性和重现性十分重要,因其显示光化学反应中光量子的利用率从而反映光致发光材料发光能力的重要特征。荧光技术的应用几乎涉及了生活的方方面面。材料荧光技术在工业、能源、生物医药、环境监测、军事领域等均扮演着极其重要的角色。新技术、新产品的不断涌现,对该类产品的核心参数荧光量子产率的测量也提出了越来越高的要求。[/font][font=宋体]量子产率的物理意义为单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值,用来描述荧光材料发光能力。目前测量样品的荧光量子产率有两类方法:([/font]1[font=宋体])相对量子产率:需要一种已知量子产率的标准品作为参照,通过对标准物和样品进行吸光度和荧光的测量换算得到样品的量子产率。只适用于液体样品。([/font]2[font=宋体])绝对量子产率:不需要标准样品进行对比,广泛适用于液体、薄膜和粉末样品。荧光量子产率评价指标在光电器件、生物医药、传感器等研究领域有着举足轻重的分量。国外主要的荧光仪器公司均已推出商品化的绝对荧光量子产率测试系统。绝对量子产率测定法可直接对待测试样的量子产率进行测定,对荧光材料的研制有着重大的意义。[/font][font=宋体]随着我国现代化进程的发展,对各类科研分析仪器的需求与日俱增。研制国产绝对荧光量子产率测量系统,将终结这一领域长期依赖国外产品的历史,同时降低检测成本,使得更多的实验室都用得起、用得上荧光量子产率测量技术,促进我国新材料等领域更高速的发展。[/font][b]1[font=宋体]研究背景[/font]1.1[font=黑体]选题背景[/font][/b][font=宋体]近年来,我校各类学科的持续发展,共有[u]工程学[/u][/font][u]1[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1[font=宋体]‰[/font][/u][font=宋体],农业科学、化学、材料科学、临床医学、药理学与毒理学、生物学与生物化学、环境生态学、分子生物与遗传学等[/font][u]8[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1%[/u][font=宋体]。其中,[/font]2021[font=宋体]年,我校环境生态学、分子生物与遗传学[/font]2[font=宋体]个学科新晋全球排名前[/font]1%[font=宋体]。特别是伴随理工和医学药学等学科发展,对于各类研究手段或检测技术提出了更高的要求,量子产率的测试需求也随之增多。目前,我校在研的国家自然科学基金项目有关量子产率要求的科研项目不在少数,[/font]2018[font=宋体]年[/font]7[font=宋体]项,[/font]2019[font=宋体]年[/font]8[font=宋体]项,[/font]2020[font=宋体]年[/font]9[font=宋体]项,平均年资助金额超过[/font]200[font=宋体]万元,特别在能源、医学等热门研究领域对该测试的需求量持续攀升,为我校高质量高影响力论文的发表提供了基础。[/font][font=宋体]与此对应的测试条件,目前全校可测试绝对量子产率的仪器仅我校分析测试中心拥有,该仪器为高级稳态瞬态荧光测量系统([/font]QuantaMaster & TimeMasterSpectrofluorometer[font=宋体],产品型号:[/font]QuantaMaster?40[font=宋体])。该系统于[/font]2009[font=宋体]年购置安装运行,超过十多年的服务过程,分析测试中心的服务团队根据学校各学科的测试需求开发了激发[/font]/[font=宋体]发射光谱、上转换[/font]/[font=宋体]下转换光谱、荧光寿命、近红外荧光光谱、激光诱导荧光光谱等测试服务,该些测试手段的开发和使用也获得众多的肯定,如:[/font]2018[font=宋体]年获得[u]江苏分析测试科学技术奖[b]二等奖[/b][/u],[/font]2019[font=宋体]年作为典型测试服务[u]入驻[/u][/font][u]“[/u][b][u][font=宋体]江苏高校分测联盟[/font][/u][/b][u]”[/u][font=宋体]。但面对不断提高的测试要求和日益发展的测试技术,也逐步发现量子产率测试中存在了亟待解决和改进的问题。[/font][b]1.2[font=黑体]拟改进的问题[/font][/b][font=宋体]绝对荧光量子产率的定义为样品发射的光子数除以样品吸收的光子数。相比相对量子产率不需要标准品,广泛适用于液体、薄膜和粉末样品。该数值为目前较为认可的量子产率测试。但测量时需要积分球附件(图[/font]1[font=宋体])。[/font][b][font=宋体]积分球[/font][/b][font=宋体]([/font]IntegratingSphere[font=宋体])为内表面涂层一般是高反射性材料。样品表面各个方向的激发光或者是发射光进行积分球均匀化后从出射口出来,并进入到单色器中后被检测器检测到。多年的测试经验,研究发现该系统的量子产率测试存在如下拟解决或改进的问题:[u]([/u][/font][u]1[font=宋体])积分球体积过大[/font]-[font=宋体]操作复杂;([/font]2[font=宋体])内部材料易损伤[/font]-[font=宋体]误差较大;([/font]3[font=宋体])反射背景易污染[/font]-[font=宋体]数据失真。[/font][/u][align=center][img=,486,244]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058386226_3462_5248244_3.png!w690x346.jpg[/img][/align][align=center][b][font=宋体]图[/font]1. [font=宋体]绝对量子产率测量系统及存在的难点[/font][/b][/align][font=宋体]不难发现,积分球为该测试模块中最为核心的部件,作为测量系统中收集光的器件,光在积分球内多次漫反射。从图[/font]1[font=宋体]中可以看出该球内部的涂层为全反射材质(中心的配件为硫酸钡),且球体的直径[/font]100 mm[font=宋体],而待测样品需要放置在球体中心位置,仅暂居球体的小部分体积,无疑增加了操作过程的复杂度和清洁的难度。在实际操作过程中,对液体样品来说,采用石英比色皿,只需保证液体体积和浓度在可测试范围内,多次测试扣除背景也能够获得比较可信的数据。但相比溶液样品,准确测定固体样品量子产率的难度要大。因固体样品槽和积分球本身对光都有吸收,尤其是紫外段,因此量子产率测定肯定会有误差。且内部镀层易年份已经也较易在使用过程受到损伤(硫酸钡被剥落),使用的反射背景也很易受到外部环境污染,造成数据失真等问题。目前,积分球的体积和材质造成绝对量子产率测定中存在难以避免的误差:样品槽、积分球都会吸收光,造成量子产率测定的不准确性;溶液吸光度不同,会显著影响量子产率测定值;积分球污染会产生不必要的荧光,致使量子产率无法测试。所以,如何解决以上问题,是绝对量子产率测定中所面临的巨大挑战。[/font][b]1.3[font=黑体]拟采取的研制方法[/font][/b][font=宋体]基于前期调研,研究团队拟采用耦合积分球测试理论与反向倍加计算理论,利用现有的高级稳态瞬态荧光测量系统,搭建微型化积分球测试系统,从而实现绝对量子产率的瞬时测定、多种形态样品的测定和高灵敏度探测等测试手段,在测量得到材料的反射率、漫透射率和准直透射率后,利用反向倍加算法得到其基本光学参数如散射系数、吸收系数和各向异性系数,并进一步优化测试方法,从而优于国际上公开的标准绝对量子产率测试方法。[/font][b][font=宋体]技术路线:[/font][/b][font=宋体]项目的具体技术路线如图[/font]2[font=宋体]所示。[/font] [img=,534,160]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058471471_2138_5248244_3.png!w690x206.jpg[/img][align=center][b][font=宋体]图[/font]2. [font=宋体]微型化量子产率测量系统的技术路线[/font][/b][/align][font=宋体]本项目将从量子产率的发光机理出发,基于宏观参数测量理论和基本参数计算理论等核心技术,研究内容由以下三部分组成:[/font][b][font=宋体]([/font]1[font=宋体])微型化积分球的可行性[/font][/b][font=宋体]积分球,能够确定量子产率而不依赖于某一项量子产率的标准。使用积分球是确定固体,粉末和薄膜材料的量子效率的唯一方法。设计新型微型积分球提供了一个简单的方法来测量绝对量子产率而无需重新配置硬件。[/font][font=宋体]通过引入半积分球原理来微型化积分球,用一面平面镜堵住半球开口,利用平面镜对称成像原理对半球实物成立一个全等的虚像,实物半球与虚像半球共同构建出一个完整的积分球,进而微型化积分球,构筑微型化的球体方便地取代了常规比色皿支架避免了样品室的光学干涉。球体的顶部部分可以拆除,将测试样品很快的放进去,而无需使用任何工具。它可以容纳常规比色皿,薄膜和粉末。这是一个用来表征发光半导体,玻璃,陶瓷和纳米材料的重要工具。[/font][b][font=宋体]([/font]2[font=宋体])积分球内部结构的优化设计[/font][/b][font=宋体]积分球内壁白色漫反射层的质量,对测试精度影响较大。所设计的微型积分球,其所选用的高反射涂层,采用特殊配方和特殊工艺喷涂,反射率接近[/font]100%[font=宋体],反射率随波长变化小,具有良好的耐久性、防水性、耐辐射性。同时因激发光源和样品发射荧光的强度相差较大,在测量时既要满足最大光强不溢出,又要使样品的荧光发射强度满足测试所需的最小信噪比要求,因此对积分球内部设计如:样品与光源位置的设计,夹具的设计、内部挡板尺寸和位置的选择及积分球上用于入光和出光所开的窗口等因素等都需要进行相应的研究,从而最大程度的降低测量误差。[/font][b][font=宋体]([/font]3[font=宋体])耦合积分球和测试系统与优化升级[/font][/b][font=宋体]在原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,通过上述内容的研究完成微型化积分球及内部结构的优化从而借助原系统的现有功能,完成了[/font][font=宋体]微型积分球量子产率测量系统中各个部件的设计与选取,整合各个部件,搭建完整的测试系统。考虑其灵敏度、信噪比及光谱范围,对关键部件进行选取后,根据量子效率测量原理及基于积分球的量子效率测量方案从而耦合微型化积分球和测试系统的整合达到优化升级的效果。[/font][font=宋体]由于受到光源、单色器和探测器等的光谱特性的影响,由仪器直接记录的荧光光谱并不是所测量物质的真实光谱,这样的光谱被称为未校正光谱,这种光谱的形状和最大发射峰位置等与真实光谱都有一定的区别。在对物质进行荧光量子产率测量时,就必须对所使用的荧光分光光度计仪器进行光谱校正,获取物质的真实光谱,才能得出准确的荧光量子产率。[/font][b] 2 [/b][font=宋体][b]结果与分析[/b][/font][b]2.1 [font=宋体]设计思路[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。[/font][font=宋体]为了实现上述目的,本发明采取的技术方案如下:提供一种用于量子产率测试的双光路微型积分球,所述积分球装置包括壳体、球体两部分,所述壳体的内部为球体,所述球体壁上开设有第一入光口、第二入光口和出光口,所述第一和第二入光口均在壳体中,且入光口均配有活塞可以关闭,所述第一入光口和第二入光口均可有光源通过,出光口与输出端连接。优选的,所述双光路积分球装置的外部大小依据配置的样品室调节,壳体为黑色航空铝合金箱体。优选的,所述的入光口对准积分球中心样品槽。优选的,所述的积分球表面喷砂氧化黑,内壁均设有漫反射材料层。进一步的,所述漫反射材料层可为硫酸钡涂层或聚四氟乙烯涂层。(图[/font]3[font=宋体]中,[/font]1[font=宋体]、样品架,[/font]2[font=宋体]、出光口,[/font]3[font=宋体]、第一入光口,[/font]4[font=宋体]、第二入光口。)[/font][align=center][img=,214,217]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059144920_587_5248244_3.png!w335x302.jpg[/img][/align][align=center][b][font=宋体]图[/font]3. [font=宋体]基于双光路微型积分球的量子产量测试装置的整体俯视示意图[/font][/b][/align][b]2.2 [font=宋体]实物图[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,设定图(图[/font]4[font=宋体]左),实物图(图[/font]4[font=宋体]右)。依照原有测试系统的内部格局进行了相关参数的限定,引入可调节底座,更好的符合原有系统的升级。[/font] [font=宋体]对现有参数)积分球内部结构的优化设计,进行三维建模,实际内部图和模型图如图[/font]5[font=宋体]所示:[/font][align=center][b][img=,298,166]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059207524_4542_5248244_3.png!w453x246.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]4. [font=宋体]微型化积分球的实物设计图(左)和实物图(右)[/font][/b][/align][align=center][b][img=,280,212]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059260612_4504_5248244_3.png!w425x307.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]5. [font=宋体]微型积分球的内部实物图(左)和三维建模图(右)[/font][/b][/align][b][font=宋体]([/font]1[font=宋体])主要功能[/font][/b][font=宋体]测试发光材料的[b]绝对量子产率[/b](量子效率[/font]=[font=宋体]样品发射出的光子数[/font]/[font=宋体]样品吸收的光子数),样品(固体、液体、粉末及薄膜)被放置在[b]微型化积分球[/b](相当于样品腔)内,氙灯发射出的连续光谱经过单色仪分光后再通过光纤引入到积分球内的样品上,荧光样品受激发后会发出荧光,荧光光谱通过光纤被后端的光谱探测系统接收,可实现高灵敏度的多波长实时测量。[/font][b][font=宋体]([/font]2[font=宋体])技术参数、指标要求[/font][/b][font=宋体]微型化量子产率测试系统主要技术参数、指标要求:[/font][font=宋体]([/font]a[font=宋体])光致荧光效率测试范围:[/font]200 nm ~ 900 nm[font=宋体];([/font]b[font=宋体])积分球直径<[/font]100 mm[font=宋体],便于安装操作;([/font]c[font=宋体])量子效率最小测试误差不大于[/font]1%[font=宋体];微型化积分球便于灵活使用,结构稳定,系统无需频繁校准,满足液体、薄膜和粉末样品的绝对量子产率的多次测量。[/font][b]2.3 [font=宋体]测试过程[/font][/b][font=宋体]原则上,要做两次发射扫描。而且,在数据采集时每一次都要做激发校正和发射校正。发射校正为必要检测项是因为检测系统的量子转换效率随波长变化而不同。激发校正为选作项,因为此项是用来校正灯泡功率波动和强度漂移。[/font]1[font=宋体])第一次样品的发射扫描必须同时记录下激发峰和所有的荧光发射峰。为了保持线性关系,初始强度必须低于[/font]1000,000counts/s[font=宋体](在使用狭缝和楔形光闸的情况下),选择的步长精度要能解析激发峰。当激发光谱和荧光光谱有效分离时,仪器会分两部分记录光谱扫描结果。[/font]2[font=宋体])第二次扫描激发光谱和背景曲线是在只有溶剂或缓冲液的条件下测定,作为空白对照值。[/font][b]2.4 [font=宋体]数据分析[/font][/b][font=宋体]荧光量子产率为荧光量子数与吸收量子数的比值。荧光量子数为第一次空白中曲线中全部荧光谱线的积分值。吸收量子数为激发谱线中曲线第二次样品曲线减去第一次空白曲线的面积的积分值。可通过积分软件在选择范围内积分得出两个值。“总面积”代表[/font]X[font=宋体]轴与曲线间面积的积分值。“峰面积”代表在测量范围内曲线与线性背景之间面积的积分值。在此背景下,用“峰面积”来计算比用“总面积”计算更为准确。[/font][b]3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]研制的国产绝对荧光量子产率测量系统,主机采用高级稳态瞬态荧光测量系统,样品光路设计采用积分球技术,光谱校正采用量子计数器和标准钨灯方式,配合荧光量子产率分析软件,可实现对物质荧光量子产率的绝对法测量。用已知量子产率的标准物质进行验证,通过实现绝对量子产率的升级和改造,增加现有仪器的新功能开发,提高仪器的完好率、利用率、降低维修率等;将新功能应用更好地应用于物理、化学、医药和材料科学等研究领域,以满足日益增长的科研测试需求,从而进一步反馈学校科研项目的发展和高质量科技成果的产出,系统的研制将对我国在绝对荧光量子产率测量方面取得重要进展。[/font][b][font=宋体]参考文献:[/font][/b][1][font=宋体]石广立[/font],[font=宋体]张恒[/font].[font=宋体]测量荧光量子产率的方法及装置[/font].CN201811115211.4[P].[2][font=宋体]王培虎[/font],[font=宋体]潘东杰[/font],[font=宋体]蔡贵民[/font].[font=宋体]一种使用积分球测量荧光量子产率的测量装置[/font]:CN201720505578.1[P].[3][font=宋体]张伟[/font],[font=宋体]邹贤劭[/font].[font=宋体]一种荧光量子产率测试仪及其测试方法[/font]:CN201910032496.3[P].[4][font=宋体]胡晓月屈泽华黄红香[/font].[font=宋体]积分球测量荧光量子产率的最优测试条件研究[/font][J].[font=宋体]中国测试[/font],2021, 47(10):59-62,74.[5][font=宋体]魏巍[/font],[font=宋体]束爽[/font],[font=宋体]寿邱杰[/font],[font=宋体]等[/font].[font=宋体]一种基于双光路微型积分球的量子产率测试装置[/font]:202310647492[P].[6][font=宋体]冯国进[/font],[font=宋体]王煜[/font],[font=宋体]郭亭亭[/font].[font=宋体]固体材料绝对荧光量子产率测量的研究进展[/font][C]//[font=宋体]中国计量测试学会光辐射计量学术研讨会[/font].[font=宋体]中国计量测试学会[/font], 2009.[hr/]

  • 【求助】求助测量固体粉末的量子效率,重谢哦

    [em58] [em58] 最近要测试样品的量子效率,可惜溶解性很差,有没有高人讲解下怎么测试固体的量子效率哦我学校就一台F4500不知道可以测试不 可以送一个scifinder的使用密码或者数据库的密码,只要我有的一定重谢欢迎加我的QQ哦 :93533473

  • [求助]请教关于量子效率的问题

    各位大虾,在这里向大家讨教下面几个问题.[1]量子效率可分为外量子效率和内量子效率两种说法.在关于荧光粉的研究论文中,有的有给出这两个值,而有的并没有区分,只是给出一个量子效率值.不知这个情况所给的量子效率是否就是指外量子效率?[2]包头钢铁学院李玉林老师在杂志上一篇名为"灯用稀土荧光粉的发展"的论文(见附件)上说卤粉的量子效率有90%.她也没清楚说明这是否为外量子效率.不知不同色温的卤粉是否有不同的量子效率?如果是的话,那么它们的值一般在什么范围呢? 请知道的大虾帮忙提供一些信息.在此先谢了![em17]

  • 【求助】F-7000测量荧光量子效率的问题

    不知道怎么做固体的荧光量子效率。照说明书做了一下,量子产率不是0就是负数。校正的部分先不管了。测量的部分 method部分不知道选 emission还是exctitation,激发波长啊,范围啊,也不知道有什么讲究。重点是这么设定后,出来的光谱除了激发光有一个峰,其他荧光峰一个也没有,也不知道是哪里出了问题。只好来求教大家了。坛子里搜了搜,资料有一些,基本上手头都有了,只不过是英文的。测荧光量子效率的时候要先测一个标准物质,然后再测一个试样,之后导入数据进行计算。 我的问题是用发射光谱还是激发光谱来做测试有什么区别吗?有做过的人能详细写一下步骤就好了。感谢。

  • [求救]请教用F4500测定量子效率?!

    做稀土配合物,基本上不溶解,连DMF都只是微溶,请教高手可以用F4500测定量子效率不?可以的话告之详情,不行的话用什么方法测试好! 千谢万谢!最好可以讲具体点!

  • 荧光量子效率

    各位有测定过荧光量子效率的朋友们,请教一下测定方法,如:有关公式,标准物等.谢谢!

  • 中国科大合作研究首次实现高效率长寿命量子存储器

    中国科学技术大学微尺度物质科学国家实验室潘建伟院士及其同事包小辉、赵博等同德国研究人员合作,实现了具有高读出效率及长存储寿命的高性能量子存储器。该实验在国际上首次将长存储寿命和高读出效率在单个存储器内结合起来,向可升级长程量子通信及可升级光学量子计算迈出了至关重要的一步。该工作于5月20日发表于《自然—物理学》。 量子存储器的主要用途是存储单个量子态,从而实现不同量子操作的时间同步。量子存储器是量子中继及大尺度光学量子计算中的关键器件,其核心性能指标是存储寿命和读出效率。目前,量子存储器已经在冷原子系综、热原子系综、单个中性原子、低温固体、金刚石色心等体系中实现。从其核心性能指标来看,冷原子系综的发展水平远优于其他实验体系,最有希望被用于可升级量子通信和光学量子计算。因此,冷原子系综体系一直是国际上量子存储及其应用方面的主要研究热点。到目前为止,作为量子存储器最重要应用之一的量子中继单元也仅在冷原子系综体系内被实现。 在以往研究中,延长存储寿命和提高读出效率这两部分往往是分开进行的,使得存储寿命和读出效率这个两个主要指标没有得到同步提升。具体来讲,在以往实现长寿命量子存储的实验中,尽管存储寿命已经提升至毫秒量级以上,但读出效率却仅为20%左右;在实现高效量子存储的实验中,尽管读出效率已经提升至70%以上,但存储寿命却仅有几百纳秒到几微秒左右。仅单一性能指标较好的量子存储器无法满足量子中继及光学量子计算等的实际应用需求。 在提升存储寿命方面,潘建伟小组在2008年发现原子团内的随机运动带来的自旋波乱相构成了限制毫秒级量子存储的主要物理机制,并通过延长自旋波波长的方式,成功地提升存储寿命至1毫秒。在提升读出效率方面,相关研究结果表明,利用光腔增强的方式可以有效地提升读出效率。因此,如何将长寿命量子存储及腔增强量子存储这两部分的方法、技术相结合,是在冷原子系综体系内实现长寿命高效量子存储器的关键。 为了延长自旋波波长,需要采用共线读写的几何结构。为了区分前向散射与背向散射过程,需要采用环形腔共振技术。这两部分相结合带来的一个重要技术难题是:需要实现环形腔与四个模式的同时共振。潘建伟小组通过巧妙的方案设计,将这一四重共振的技术难题简化为双重共振,降低了实验难度,最终成功实现了3.2毫秒的存储寿命及73%的读出效率。该成果为目前国际上量子存储综合性能指标最好的实验结果。论文审稿人认为,该工作是“朝向可升级量子信息处理方向的重要研究成果”,“开启了利用多个原子系综研究复杂量子信息方案的大门”。 潘建伟小组从2005年开始在冷原子系综量子存储方面开展了系统研究,迄今为止已经在《自然》、《自然—物理学》、《自然—光子学》和《物理评论快报》四份国际著名学术期刊上发表高水平论文十余篇,是目前国际上在量子存储研究方面居于领先地位的几个主要研究小组之一。 论文链接

  • 荧光量子效率

    各位,我在文献上看到测定荧光量子效率公式见附件![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=2705]相关附件[/url]

  • 【国产好仪器讨论】之北京卓立汉光仪器有限公司的太阳能电池QE/IPCE(量子效率)测量系统(Solar Cell Scan100)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C95922%2Ejpg&iwidth=200&iHeight=200 北京卓立汉光仪器有限公司 的 太阳能电池QE/IPCE(量子效率)测量系统(Solar Cell Scan100)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器简介: Solar Cell Scan100 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 技术参数: Solar Cell Scan100 主要技术指标 150W氙灯 光学稳定度≦0.8%,可工作在斩波模式(适合常规单晶/多晶/非晶硅、CdTe CIGS GaAs 等太阳能电池)与连续模式(适合慢响应染料敏化电池,有机太阳能电池) 测试光斑尺寸: 3mm~10mm 三光栅DSP扫描单色仪 波长范围: 300nm~2000nm 波长准确度: a) ±0.3nm(1200g/mm,300nm) b) ±0.6nm(600g/mm,500nm) c) ±0.8nm(300g/mm,1250nm) 扫描间隔: 最小可至0.1nm 输出波长带宽: 5 nm 多级光谱滤除装置 根据波长自动切换,消除多级光谱的影响 光调制频率: 4 - 400 Hz 标准样品台尺寸: 164mmx164mm 标准硅探测器: 含校正报告 偏置光源: 光强可调,最高可大于1个太阳常数(需选配) 样品最大尺寸: 156mm×156mm 数据采集装置灵敏度: a) 斩波模式:2nV;b) 连续模式:100nA 测量重复精度: 对太阳光谱曲线积分重复性在±1%以内 测试周期: 单次扫描1min,完整测试5min (步长5nm) 反射率测量: 镜面反射 300-1100nm(需选配);漫反射 300-1600nm(需选配) 温度控制: 恒温控制:25±1℃(需选配);变温控制:5~40℃(需选配) 3D Mapping: 156mm×156mm,100um分辨率 仪器尺寸: 主机:842mm×770mm×575mm;控制柜:800mm×600mm×1300mm 主要特点: Solar Cell Scan100系统组成 ■ 系统包括两个150W氙灯,分别做为探测光源和....【了解更多此仪器设备的信息】

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 【求助】荧光内量子效率为负数

    仅仅改变吸收范围,荧光内量子效率从负数变到大于1变到小于1,不知道是哪里有问题。请各位指教。外量子效率在上述情况下一般在0.2-0.4或者接近0。附上结果。Results of Quantum yield calculationInternal quantum yield: -2.306External quantum yield: 0.470Absorptance: -0.204Amount of absorption: -102.866Amount of fluorescence: 237.216Calculation ParametersWavelength area (absorption): 530.0 - 720.0 nmWavelength area (fluorescence): 550.0 - 700.0 nmIntegrating sphere correction: OnNormalized wavelength: 600 nmCommon with sample and without sample: OnFilter correction: OffQuantum yield factor: 1.00File nameDiffuser measurement data:C:\Program Files\FL Solutions\Correct\diffuser_20101202_164704.FDSIntegrating sphere measurement data (without sample):C:\Program Files\FL Solutions\Correct\withoutsample_20110510_174143.FDSMeasurement data without sample:C:\Documents and Settings\Administrator\桌面\withoutsample.FDSMeasurement data with sample:C:\Documents and Settings\Administrator\桌面\sample2.FDS

  • [求助]:关于固体的荧光量子效率的测定问题?多谢大家!

    我是首先合成了一种稀土有机配合物(粉末),然后掺杂到聚合物基体(固态)中做复合材料,现在需要测定两者的荧光量子效率,前者可以溶解到溶剂中测定相对的效率,但是后者就没法弄了,大家有没有什么办法测固体的吗?如果选参照比的话,如何选定固体的那?谢谢大家了!

  • 专家创新胶体量子点太阳能电池转化效率纪录

    一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”

  • 【分享】我自主研制纠缠光子法探测器量子效率绝对定标装置

    由中国计量科学研究院承担的国家“十一五”科技支撑课题 “利用相关光子测量技术建立光电探测器量子效率测量装置的研究”近日通过了专家验收。该课题自主研制的缠光子法探测器量子效率绝对定标装置,成功将我国光辐射功率计量的量程能力扩展到了光子水平,为用光子数重新定义国际基本单位之一的“坎德拉(cd)”量值复现研究奠定重要基础。  课题的研制成功,缩短了我国与国际发达国家之间在实现基于量子物理复现光辐射功率基准研究方面的差距;同时为研究量子信息、生物医学、空天探测器、天文物理、环境科学等领域中涉及到的光子探测技术提供了光子水平的计量技术保障。

  • 【ICP参数解读--编号3】SCD、CID与CCD检测器、量子化效率

    不知道大家有谁知道SCD、CID和CCD,问题:1、SCD、CID和CCD分别是什么检测器?1、为什么有的ICPOES用CID检测器,有的用CCD检测器,有的用SCD检测器,这三者有什么区别?2、应用方面,检测效果SCD、CID与CCD上有什么优缺点?3、量子化效率:500nm 55%,200nm 10%是什么意思,是不是量子化效率越高越好?

  • 【科研仪器案例库收录文章展示】:微型化荧光量子产率测试系统的搭建研究

    【科研仪器案例库收录文章展示】:微型化荧光量子产率测试系统的搭建研究

    [font=none][size=16px][color=#004be0]第16届原创大赛继续与中国仪器仪表学会合作。凡符合要求的原创作品将被推荐到“ 科研仪器案例库 ”,被案例库收录后,将由中国仪器仪表学会授予“科研仪器案例库收录证书”;征集活动结束后,被评为优秀案例的,将由中国科协授予“优秀案例授予证书”,助力参赛者评定职称。(注:往届获奖作品若有投递案例库的意向,可咨询主办方)[/color][/size][/font][align=center][size=18px][b][color=#ff0000]【科研仪器案例库收录文章展示】:微型化荧光量子产率测试系统的搭建研究[/color][img=,690,509]https://ng1.17img.cn/bbsfiles/images/2024/01/202401191720270697_8566_3237657_3.png!w690x509.jpg[/img][img=,690,338]https://ng1.17img.cn/bbsfiles/images/2024/01/202401191719271969_3816_3237657_3.png!w690x338.jpg[/img]原文链接:[/b][url]https://bbs.instrument.com.cn/topic/8271194[/url][/size][/align]

  • 【转贴】人类医学史的新篇章--量子光能治疗系统

    记者日前获悉,一种被誉为奈尔斯量子光能终极版的新型治疗系统在前不久正式问世。该系统通过发射620-760nm之间的红色电磁波,并通过科技手段将其聚强,对人体全身进行照射。穿透深度可达15mm,通过光量子的光电磁反应和光化学作用,深层作用于人体的血管组织、淋巴组织、神经末梢、皮下组织等部位并与人体细胞产生一系列光生物刺激作用,从而影响人类已知的9982个基因中111个基因的表达,最终增强人体细胞能量,促进细胞的增殖和抗氧化能力,增强细胞的新陈代谢的抗凋亡能力,有效清除体力自由基,增强血液携氧能力,降低血液粘稠度,彻底改善全身血液微循环等,从而对伤口愈合、糖尿病、心脑血管疾病、亚健康等起到明显的治疗作用。 该系统是奈尔斯量子光能治疗系统在经过4年的临床后推出的增强型,与原型相比较具有光照剂量更强、光生物学作用更强、治疗范围更广、治疗效果更好等特点。

  • 【分享】荧光量子产率的测定

    系统的讲述了荧光量子效率的测定方法,以不同的物质为标准物质的测定,以及系统的校正。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=105818]the measurement of photoluminescence quantum yields[/url]

  • 瑞士科学家为量子“纠缠”分类

    可预测新技术运用量子态的可能性2013年06月08日 来源: 科技日报 作者: 常丽君 科技日报讯 “纠缠”是量子力学的一个基本特征,而且这种现象有多种不同的形式。据物理学家组织网6月6日报道,最近,瑞士苏黎世联邦理工学院的物理学家和数学家显示了怎样把不同形式的量子“纠缠态”有效而系统地分类。研究人员指出,这一方法非常重要,因为它有助于预测将一种量子态应用于新技术的可能性有多大。相关论文发表在最近的《科学》杂志上。 美国物理学家理查德·费曼曾说“没人能理解量子力学”,这么说是想强调,即使那些科学带头人,也在艰难地开发着他们对量子力学的直觉设想。量子现象通常在经典物理学中找不到相匹配的部分,典型例子就是量子纠缠:纠缠的粒子之间无论相隔有多远,好像都能直接地互相影响,就像能隔着任意遥远的空间互相“通讯”似的。爱因斯坦曾把这种行为叫做“幽灵般地超距作用”。 当两个以上粒子相纠缠时,它们之间的互相影响表现为不同的形式。纠缠现象为何有这些不同的表现,科学家尚未完全理解,至今也还没有一般性的方法,系统地将纠缠状态划分类别。现在,研究小组开发出一种方法,能把既定的量子态归入某一类可能的纠缠态。 该方法指出,不同类型的纠缠态与几何形体即多面体有关,这些形体代表“空间”,也就是某种纠缠的可用空间。一种给定的状态是否属于某种多面体,可以通过检测个别粒子来确定,而检测方法有很多。新方法通过检测个别粒子来描述纠缠态特征的可能性,不仅效率很高,而且不必同时检测许多粒子,这是与其他方法的不同之处,也意味着它能扩展到多粒子系统。 该校理论物理学院教授马提亚·克里斯丹德解释说:“对3个粒子来说,有两种根本不同的纠缠类型,一种是通常认为的更‘有用’的。而对4个粒子来说,粒子间纠缠的方式已近乎无数种,随着每增加一个粒子,纠缠的复杂程度会迅速增加。”论文第一作者、他的博士生迈克尔·沃特说,“我们的纠缠多面体方法,把这些状态划分为有限的体系,大大减少了复杂性。” 多粒子量子系统可能在未来技术中发挥重要作用,做到在经典物理学框架下完全不可能的事情。从反窃听信息传输、解决计算难题的高效算法,到改进照相印刷分辨率的技术等。在这些应用中,纠缠态是基本资源,精确地表现了经典物理学与量子力学不同的地方。在合适使用的情况下,这些复杂状态为各种新奇应用开辟了道路。 研究人员在计算中显示,纠缠多面体的方法不仅是一种简洁的数学构造,而且在现实实验条件下也能可靠地发挥作用,这预示着新方法可以直接用于那些使用了新奇量子技术的系统。(常丽君) 《科技日报》(2013-06-08 二版)

  • 过滤效率测试常用方法介绍

    一般通风过滤机试验方法计数法试验台与计重法和比色法所用类似,发尘所用的高浓度试验粉尘也与计重法和比色法所用类似。粉尘的“量”是微小粒径段颗粒物的个数。测量粉尘的仪器为激光粒子计数器。试验过程中,在每次发尘试验的之前和之后,进行计数测量,并计算过滤机对各种粒径颗粒物的过滤效率。当达到终止试验的条件时停止试验。过滤机的典型效率值是在规定粒径范围内,各阶段瞬时效率依发尘量的加权平均值。欧洲标准规定,计数测量时使用的特定的多分散相液滴,如用Laskin喷管吹出的DEHS喷雾,或使用与标定计数器所用标准颗粒物相同的Latex乳胶球。美国规定计数测量使用漂白粉。计数效率不再是个单一的数值,而是一条沿不同粒径的过滤效率曲线。欧洲的试验表明,当试验的终阻力为450Pa时,0.4?放m处的计数效率值与传统比色法效率值接近。美国标准规定针对不同档次的过滤机测量不同粒径范围的效率值,其试验终阻力仍是“2倍初阻力或更高”。完整的计数效率测试是破坏性试验,不能用于产品的日常检验。计重法试验尘源为大粒径、高浓度标准粉尘。粉尘的主要成分是经筛选的、规定地区的浮尘,再掺入规定量的细碳黑和短纤维。大多数国家规定使用美国亚利桑那荒漠地带的“道路尘”,中国标准曾规定使用黄土高原某村落的尘土,日本标准规定使用源于日本的“关东亚黏土”。测量的“量”为粉尘重量。过滤机装在标准试验风洞内,上风端连续发尘。每隔一段时间,测量穿过过滤机的粉尘重量或过滤机上的集尘量,由此得到过滤机在该阶段按粉尘重量计算的过滤效率。***终的计重效率是各试验阶段效率依发尘量的加权平均值。计重法试验的终止试验的条件为:约定的终阻力值,或效率明显下降时。这里的所谓“约定”是指客户与试验者间的约定,或试验者自己的规定。显然,约定终止试验的条件不同,计重效率值就不同。终止试验时,过滤机容纳试验粉尘的重量称为“容尘量”。计重法用于测量低效率过滤机,那些过滤机一般用于中央空调系统中的预过滤。计重法试验是破坏性试验,不能用于制造厂的日常产品性能检验。大气尘计数法尘源为自然大气中的“大气尘”。粉尘的“量”为大于等于某粒径的全部颗粒物个数。测量粉尘的仪器为普通光学或激光尘埃粒子计数器。效率值为新过滤机的初始效率。大气尘计数法用于测量一般通风用过滤机。其效率值只代表新过滤机的性能。中国的效率分级是建立在大气尘计数法基础上的。比色法试验台和试验粉尘与计重法所用相同。粉尘“量”为采样点高效滤纸的通光量。在过滤机前后采样,采样头上有高效滤纸,显然,过滤机前后采样点高效滤纸的污染程度会不同。试验中,每经过一段发尘试验,测量不发尘状态下过滤机前后采样点高效滤纸的通光量,通过比较滤纸通光量的差别,用规定计算方法得出所谓“过滤效率”。***终的比色效率是试验全过程各阶段效率值依发尘量的加权平均值。终止试验的条件与计重法条件相似:约定的终阻力值,或效率明显下降时。比色法用于测量效率较高的一般通风用过滤机,空调系统中的大部分过滤机属于这种过滤机。比色法曾是国外通行的试验方法,这种方法逐渐被计数法所取代。严格的比色法是破坏性试验。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制