当前位置: 仪器信息网 > 行业主题 > >

纤维卷曲弹性仪

仪器信息网纤维卷曲弹性仪专题为您提供2024年最新纤维卷曲弹性仪价格报价、厂家品牌的相关信息, 包括纤维卷曲弹性仪参数、型号等,不管是国产,还是进口品牌的纤维卷曲弹性仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维卷曲弹性仪相关的耗材配件、试剂标物,还有纤维卷曲弹性仪相关的最新资讯、资料,以及纤维卷曲弹性仪相关的解决方案。

纤维卷曲弹性仪相关的资讯

  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • 浙大攻克世界性难题:让石墨烯有弹性
    p  在80后90后的童年记忆中,有一个著名的历史故事,司马光砸缸。当陶土做的水缸被石块砸了一下,就破了一个洞,水流出来了,掉在缸里的孩子也得救了。/pp  而对于女孩子来说,跳皮筋是洋溢着欢快笑声的集体游戏,在牛皮筋的一勾一拉中,旋转,跳跃,不停歇。/pp  这两个童年记忆,其实包含着一个自然界的普遍规律,玻璃、陶瓷这样的无机材料通常都是又脆又硬的,没有什么弹性,而橡胶这类的有机材料韧性好,弹性足,可以反复拉伸。/pp  如何让无机材料变得像有机材料那样可以回弹,是世界很多科学家的努力目标。/pp  这其中就有浙江大学高分子科学与工程学系的高超教授团队。最近,他们的研究取得了突破性进展,设计制备出了高度可拉伸的全碳气凝胶弹性体,并且表现出优异的性能,今后有望应用在柔性器件、智能机器人及航空航天等多个领域。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/99d0c873-4a30-4542-90ee-86367a879173.jpg" title="3.jpg"//pp  论文发表在国际著名期刊《自然通讯》,共同第一作者为博士生郭凡、姜炎秋,通讯作者为许震特聘研究员、高超教授。br//pp  strong打破物质的本性/strong/pp  材料科学的发展一直与人类文明密切相关。现如今我们已经拥有了各种各样的材料。可是让科学家烦恼的是,无机材料耐高低温但没有弹性,有机材料有弹性却又不耐高低温。/pp  如果能研究出一种无机材料,在保持耐高低温的同时具备一定的弹性,该多好啊。“这样就能扩大材料的使用范围。我们做科学研究就是要打破物质的本性,这样才能发现新性能,寻找新用途。”/pp  研究团队在研制这一新材料时,聚焦的无机物材料为碳。因为碳所特有的导电性能,为未来应用提供了更多可能性。他们发现,高分子弹性体,比如橡胶,分子是链状结构,就像柔软的棉线团,有很多缠结的地方可以被拉开,当外力去除,这些高分子的“棉线”又重新缠结变成线团。无机物之所以不能拉长再回弹,就是因为没有相似的结构。/pp  这时候,高超团队搬出了他们的研究老伙伴,石墨烯。他们希望能在“一片片”的石墨烯中制造出一些褶皱,将高分子的可拉伸“线团结构”拓展成为石墨烯中可拉伸的“纸团结构”,来提高石墨烯的延展性。/pp  团队借鉴生物学理念,从肌肉和关节的拉伸中寻找答案,设计出类似传统拉缩式灯笼的结构,并用3D技术打印出来,通过限位压缩定型,形成一些“褶皱”。这时候,石墨烯材料可以拉伸100%。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/96def27c-0e76-4da6-b6ea-cf62831f59ba.gif" title="PT180405000012hNkQ.gif"//pp  继续拉伸,石墨烯的“一片片”分子结构之间就会出现裂纹。怎么办?团队引入了另外一种纳米材料——碳纳米管,在石墨烯的片层之间打上“补丁”。这样一来,石墨烯就可以拉伸200%了。br//pp  高超教授说,这种全碳气凝胶弹性体具有优异的抗疲劳性能,在拉伸200%的状态下,可稳定循环至少100圈 在100Hz、1%应变的状态下,可稳定循环至少百万次。“之前一些研究是在有机材料上涂一层无机材料,以此来实现可拉伸。我们这套方法是改变了材料的本身特性。”/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/eb23600f-2e7b-4eed-b973-5aac366964dd.jpg" title="4.jpg"//pp  对于这一新型材料的未来发展前景,高超教授表示,可以应用到与仿真机器人相关的导电弹性体上,比如电子皮肤等等。“更大的意义,我们希望开拓一个新的研究领域。当大家都在研究气凝胶的压缩性能时,我们希望换一种思路,从拉伸这个方向开展研究。”br//pp  strong从一只雁到一群雁/strong/pp  高超团队与石墨烯的情缘已有十年之久。“石墨烯本身是一个‘很小’的材料。国际科研领域已经对它的纳米级结构分析得非常透彻了,我们想看看,把它组装起来变‘大’后会怎么样。”10年前的2008年,高超被引进加入浙大高分子系后,为自己定了一个清晰的全新研究方向——石墨烯宏观组装。/pp  他用一首儿歌来解释这项研究。“秋天到了,一行大雁往南飞,一会排成一字形一会排成人字形。”当一群大雁在飞行时,我们一眼就能看出雁群的形状,反倒是一只大雁在空中飞的时候,我们很难看清楚它的结构。/pp  通过群效应团队发现了氧化石墨烯的液晶现象。在一次实验中,团队成员把氧化石墨烯倒进一个杯子,偶然对着光一晃,发现杯中出现了彩色带。这是什么原因呢?团队顺藤摸瓜,发现氧化石墨烯在溶液中的浓度达到某个临界值时,会自发进行取向排列,不但可以流动还高度有序。/pp  又有一次实验,成员把两条氧化石墨烯纤维放在一起,过了一会儿,这两条纤维居然“焊”在一起了。原来氧化石墨烯有一种“自融合”的本领。/pp  从这两大发现出发,团队“倒腾”出了四大发明:石墨烯纤维、石墨烯组装膜、石墨烯泡沫、石墨烯无纺布,科研成果发表在《自然通讯》和《先进材料》等国际著名期刊上。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/4097cb8e-708a-4cfb-ae4d-85994a64a7d4.jpg" title="5.jpg"//pp  高超说,一流是要不断奋斗出来的,“不是说做好一个工作就行,而是要不断推进”。在团队建设中,高超也非常强调“一流”,认为要有一流的文化、一流的平台、一流的待遇,最终产出一流的成果。他经常跟学生说:“科研首先要发奋,拼搏了才能有所发现,有所发明。还要努力让科研成果转化为对社会有用的产品,让科技发达起来,让国家发达起来。”br//pp  从最初的几个人,到现在的几十人,高超团队也从“一只大雁”发展到了“一群大雁”。对于过去没钱买研究设备的窘况记忆犹新,对于未来,高超说,他会坚持在首创、极致和影响力三个层面上继续努力。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/2ca1ddb9-ed63-40a0-8d43-cff98afbd069.jpg" title="6.jpg"//pp strong 科学也可以诗情画意/strongbr//pp  对于石墨烯宏观组装研究,高超今年1月还专门写了一首诗来解释其中的奥妙。/pp  氧化石墨烯/pp  插层氧化银成金,/pp  水洗超声片片新。/pp  纵是千疮身百孔,/pp  组装修复变烯神。/pp  高超说,这首诗的大意就是,氧化石墨烯通过插层、氧化、水洗、超声等过程制得,尽管缺陷很多,但可以通过组装及结构修复形成有重要应用价值的石墨烯宏观材料。在他心目中,氧化石墨烯的可塑性太强了,可以在很多领域派上用场。早些年,他还写过另外一首诗来赞美石墨烯。/pp  烯望/pp  石陶铜铁竞风流,/pp  信息时代硅独秀。/pp  量子纪元孰占优,/pp  一片石墨立潮头。/pp  科研工作很忙,这些作品都是高超利用坐火车乘飞机这样的琐碎时间完成的。写诗和骈文是高超业余的重要爱好。他认为科学家也可以写风花雪月的诗句,但如果用诗的语言表达科学,更有利于传播科学,也更能发挥科学家的特长。/pp  “习总书记曾说,科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。我觉得,研究不能只是成为枯燥的论文,还要让公众能够看懂。”/pp  他还认为,科学家要多交小朋友,从而提高科学的吸引力和公众的科学鉴赏能力。/p
  • 动态弹性模量测试仪研制
    table width="600" border="1" align="center" cellpadding="0" cellspacing="0"tbodytrtd width="115"p style="text-indent: 0em " dir="ltr"成果名称/p/tdtd width="499" colspan="3"动态弹性模量测试仪br//td/trtrtd width="115"p单位名称/p/tdtd width="499" colspan="3"p中国建材检验认证集团股份有限公司/p/td/trtrtd width="115" valign="top"p联系人/p/tdtd width="185" valign="top"p艾福强/p/tdtd width="161"p联系邮箱/p/tdtd width="153"pafq@ctc.ac.cn/p/td/trtrtd width="115"p成果成熟度/p/tdtd width="499" colspan="3"p□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产/p/td/trtrtd width="115"p合作方式/p/tdtd width="499" colspan="3"p□技术转让□技术入股□合作开发 √其他/p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong成果简介:/strong/pp style="line-height: 1.75em "strong /strong/pp style="text-align: center line-height: 1.75em "img src="http://img1.17img.cn/17img/images/201603/insimg/2951acd4-0cb9-42bb-ba31-1bc4d37da508.jpg" style="width: 300px height: 226px " title="弹性模量检测仪1.jpg" width="300" height="226" border="0" hspace="0" vspace="0"//pp style="text-align: center line-height: 1.75em "img src="http://img1.17img.cn/17img/images/201603/insimg/ba13ec0a-c570-4f8f-b857-abc41b0a226e.jpg" style="width: 300px height: 256px " title="弹性模量检测仪2.jpg" width="300" height="256" border="0" hspace="0" vspace="0"//pbr/p style="line-height: 1.75em " 本方法利用脉冲激励器来激励矩形截面的梁试样,测量样品的弯曲或扭转频率。作用在试样上的瞬时激励是通过自动激发装置或手动小锤的敲击来实现的。激励引起样品的自由振动,通过试样上方的信号接收器得到振动信号,进而通过快速傅立叶变换得到自由振动的前几阶频率,首先利用弯曲振动的基频算出试样的弹性模量,进而利用扭振主频率计算出剪切模量。由于梁试样自由振动的基频是由样品尺寸、弹性模量和样品质量所唯一确定,因此当基频已经测到后并且试样的质量和尺寸已知的情况下可以计算出弹性模量。弹性模量取决于弯曲响应频率,剪切模量取决于扭曲响应频率。泊松比由材料的杨氏模量和剪切模量决定,三者只有两项是独立的。 br/ 该仪器测试精度高、操作方便,通过一次敲击(激励)能够快速而准确地同时得到材料的共振频率、弹性模量、剪切模量和泊松比以及内耗等基本弹性参数。测试结果重复性好,对样品完全没有破坏,也可连接高温炉进行高温弹性性能测试(高温炉为选购件)。 br/ 该仪器高度集成,使用USB接口进行数据通讯、实现了热拨插和即插即用,采用全新工艺,实现硬件的高可靠性、强抗干扰能力和高信燥比,机型外观美观、性能稳定、能方便扩展高低温测试模块。 br/ 性能指标 br/ 最高采样频率:2MHzbr/ 增益设置:1-128(1、2、4、8、16、32、64、128) br/ 频响范围:20-20kHzbr/ 灵敏度: 50 mv/pabr/ 输入阻抗: 1Ω与27pF并联 br/ 时基范围: 10ns至1 sec/div br/ 时基精确度: 50ppmbr//p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 本产品适用于航空航天、汽车工业、工矿企业、科研部门、大专院校、技术监督、工程监测等,对各种陶瓷、玻璃以及各种陶瓷基复合材料的弹性模量,采用脉冲激励法可以实现对样品的无损检测,在准确测量样品的弹性模量的同时又不会对样品其他力学性能造成影响,应用前景广泛。/p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 实用新型专利两项: br/ 一种用于测量材料弹性性能的固定装置。 br/ 专利号:ZL 2015 2 0392701.4br/ 一种样品激发装置及材料弹性性能测试系统 br/ 专利号:201520860414.1br/ 行业标准一项 br/ JC/T 678-1997 玻璃材料弹性模量、剪切模量和泊松比试验方法。/p/td/tr/tbody/table
  • 高能非弹性中子散射谱仪在东莞揭牌
    作者:朱汉斌 张玮 来源:中国科学报11月12日,由中国科学院高能物理研究所(以下简称高能所)与中山大学共建的高能非弹性中子散射谱仪(以下简称高能非弹谱仪)在中国散裂中子源园区揭牌。这是中国散裂中子源首台非弹性散射类型谱仪,也是国内首台中高能非弹性中子散射谱仪,填补了我国百meV以上中高能非弹性中子散射的空白。记者获悉,高能非弹谱仪是中国散裂中子源建设的八台合作谱仪之一。自2019年9月开始,建设团队攻克了一系列关键技术,克服了疫情等重重困难,最终于今年1月12日成功产出第一束中子,标志着谱仪设备研制与安装的成功,开始进入调试阶段。非弹性中子散射谱仪既可获得散射中子的空间分布信息,同时也可获取散射中子的能量变化,可以在动量与能量空间测量物质微观结构的动力学行为,是研究材料元激发(如晶格、自旋动力学)最直接的工具。中国散裂中子源根据元激发的能量尺度和能量分辨的需求,规划了三台直接几何非弹性中子散射谱仪。“此次揭牌标志着双方合作取得又一代表性成果。”中国科学院院士、高能所所长王贻芳在致辞时表示,高能所和中山大学有悠久的合作历史和良好的合作基础,高能所在粤的三个重大设施的建设都有中山大学的贡献,双方于2017年底签署了《战略合作协议》,高能非弹谱仪的建设是协议重点内容之一。中国科学院院士、中山大学校长高松致辞时表示,中山大学和高能所将以高能非弹谱仪建设合作为契机,在科学研究、人才培养等方面继续深入合作,共同为粤港澳大湾区建设和国家科学技术发展做出更大贡献。同时期待高能非弹谱仪开放运行后,坚持面向世界科技前沿和国家战略需求,主动服务粤港澳大湾区,积极推动我国中子科学与技术发展。“高能非弹谱仪将为高温超导物理机制、量子磁性作用机制、热电材料输运性质、电池中离子扩散机制、以及生物材料活性等前沿基础研究工作提供晶格热振动、自旋波、晶体场等关键微观结构动力学信息,从而为相关材料的性能提高与新材料开发提供重要的基础支撑。”高能非弹谱仪首席科学家、中国散裂中子源学术委员会主任童欣表示。据介绍,本次建成的高能非弹谱仪的入射中子能量为10-1500 meV,最佳能量分辨率3%,提供1.5-800K高低温环境和7T磁场环境,利用费米斩波器和带宽斩波器协同工作,可实现多波长模式和单波长模式的快速切换。
  • 我国首台高能非弹性中子散射谱仪建成
    图为高能直接几何非弹性中子散射飞行时间谱仪。(中山大学供图)中山大学与散裂中子源科学中心合作建设的高能直接几何非弹性中子散射飞行时间谱仪(以下简称“高能非弹谱仪”)于11月12日揭牌,预计明年正式投入使用。这是我国首台非弹性中子散射飞行时间谱仪,填补了我国高能非弹性中子散射领域的空白,主要性能指标达到国际先进水平。中子散射谱仪是一种能深入研究材料内部结构和运动等性质的测量仪器。用特定速度的中子轰击样品,能够在了解材料微观结构和关联强度的基础上反映其特性,为物理、化学、材料、力学和交叉学科研究提供有力支撑。中山大学物理学院中子科学与技术中心主任、教授王猛介绍,高能非弹谱仪正式投入使用后,团队可以利用中子谱仪观察镍氧化物的磁激发谱,获取磁性、自旋动力学等数据,助力高温超导的机理研究。2021年和2022年,高能非弹谱仪共获批专项博士研究生指标15名,面向谱仪的学科发展设置,采取双导师制,由中山大学物理学院的教授和散裂中子源的导师共同指导。高能非弹谱仪将为中子谱仪研究领域培养青年人才提供平台。中国科学院院士、中山大学校长高松表示,谱仪开放运行后,将坚持面向世界科技前沿和国家战略需求,主动服务粤港澳大湾区,积极推动我国中子科学与技术发展。
  • 许昌质检中心1016万仪器采购大单结果揭晓
    仪器信息网2012年9月28日讯 2012年9月3日,许昌市质量技术监督检验测试中心通过许昌光大电子商务技术有限公司连续发布4个采购信息(招标编号分别为:许财招标采购-GK20120964、许财招标采购-GK20120965、许财招标采购-GK20120966、许财招标采购-GK20120967),截止到2012年9月26日,此次招标工作已经完成,共计花费10,163,000元本网先将中标结果整理如下:招标编号采购仪器及数量中标厂商中标金额(元)许财招标采购-GK20120964ICP 1台、ICP-MS 1台、原子吸收光谱仪1台等河南贝尔伟业仪器有限公司2964000许财招标采购-GK20120965气相色谱仪1台、热裂解仪 1台、液相色谱仪1台、超纯水机系统1台、红外光谱仪1台、致病菌快速筛选仪1台等郑州博文源智能化工程有限公司2980000许财招标采购-GK20120966氨基酸分析仪1台、原子荧光光度计1台、卷曲弹性仪1台、干热收缩率测试仪1台、精密纤维切片仪1台、数字式显微成像系统1台、纤维细度分析仪1台、化纤长度分析仪1台、泡沫仪1台、回潮率检测烘箱1台等河南普士诺电子科技有限公司1270000许财招标采购-GK20120967元素分析仪1台、电子拉力万能材料试验机1台、冷冻离心机1台、耐光耐气候试验机1台、通用标准光源箱1台、PH计1台、电子摩擦色牢度仪1台、耐洗色牢度试验机1台等郑州鎏钰商贸有限公司2949000  仪器信息网整理
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 发布国检集团 DST-V动态弹性性能测试仪新品
    仪器名称:固体材料弹性性能测试仪(触摸屏)型号:DST-V仪器用途:用于测试固体材料的弹性性能,包括玻璃、陶瓷、石墨、金属和合金、塑料和高分子制品、岩石、木材和复合材料等多种类型的材料,通过简单的敲击,即可得到杨氏弹性模量、剪切弹性模量、泊松比等信息,具有测量范围广,精确度高和操作简单方便的特点。仪器采用触摸屏一体设计,开机即用,无需预热、校准或调整,测试速度快。测试样品的尺寸要求较少,不需要特别制样。非接触式检测,测试样品无污染、无破坏。仪器方便升级在不同温度环境下进行测试,非常适合科研和质检领域。仪器原理: 测试时将样品放置在不影响样品自由振动的支撑体上,敲击样品,以激发振动。利用振动传感设备收集振动信号,得到振动频率,结合样品重量、长度、宽度、厚度等样品尺寸信息,软件即可计算出杨氏弹性模量、剪切弹性模量、泊松比等数据。符合标准:JC∕T 2172-2013 精细陶瓷弹性模量、剪切模量和泊松比试验方法 脉冲激励法GB/T 22315-2008 金属材料 弹性模量和泊松比试验方法GB 3074.2-2008 石墨电极弹性模量测定方法GB/T 30758-2014 耐火材料 动态杨氏模量试验方法(脉冲激振法)JC/T 678-1997 玻璃材料弹性模量、剪切模量和泊松比试验方法ISO 12680-1耐火材料动态杨氏模量试验方法—脉冲激振法ASTM E1876-01(2009)固体材料杨氏模量、剪切模量和泊松比试验方法(脉冲激振法)技术参数:频率范围:20~20000Hz频率分辨率:0.1Hz测量项目:杨氏模量:2~300GPa 误差:±0.5% 剪切模量:2~200GPa 误差:±0.5% 泊松比: 0~0.5 误差:±5% 阻尼比: 0~1试样形状:长条状 或 圆棒状试样尺寸:长条状样品的长度/厚度3圆棒状样品的长度/直径4可测样品类型:所有具有弹性性能的固体材料 创新点:1.仪器采用触摸屏一体设计,稳定可靠,人机交互界面友好。2.开机即用,无需预热、校准或调整,具有测量范围广、测试速度快、精确度高和操作简单方便的特点。3.非接触式检测,测试样品无污染、无破坏。4.零耗材,使用成本低。国检集团 DST-V动态弹性性能测试仪
  • 李侠:科技体制改革弹性有多大
    时至今日,科技体制改革面临的最大理论问题就是变革的弹性:即集中与自由是以二元形式存在,还是集中为主,自由为辅?或者反之,自由为主,集中为辅。其实,这个问题也是国际科学界长期以来没有根本解决的问题。个人和组织常常会陷入某种既有的观念框架中,以至于无法想象出其他的选择模式,这就是典型的&ldquo 认知路径依赖现象&rdquo 。人是自己所拥有的观念的奴隶,作任何决策时我们都不应该忽略认知模式所施加的影响。  回首即将过去的一年,新一轮科技体制改革的大幕已经徐徐拉开,一些关键信号已经释放出来。例如,在今年由科技部、财政部共同起草的《关于深化中央财政科技计划(专项、基金等)管理改革的方案》中,最引人关注的就是方案提出的&ldquo 科技计划体系主要包括国家自然科学基金、国家科技重大专项、国家重点研发计划、技术创新引导专项(基金)、基地和人才专项5个方面&rdquo 。这5方面的科技计划都要纳入公开统一的国家科技管理平台,中央财政加大支持力度。这则信息内涵丰富:一方面,其界定了未来研究类型的划分 另一方面,明确提出了资源的重新集中化。这实在是近年来科技体制改革少见的大动作。  资源的集中管理解决了前期宏观管理上的&ldquo 九龙治水&rdquo 局面,在微观实践层面则解决了个体重复申报等问题。但现在的问题是,未来政府将不再直接管理科研项目,那么资源集中后将由谁来管理?按照2013年的科技统计公报数据,这笔中央财政拨款达2728亿元之巨,即便5个平台均分也各有约540多亿元。这无疑是一个庞大的资源平台。就目前口碑最好的国家自然科学基金委来说,它的资源总量也就200亿元左右。很难想象500多亿元的平台要拥有怎样的气概?如果仍用原班人马、原有管理模式,那些曾经的&ldquo 973&rdquo &ldquo 863&rdquo 换个名义重新出现在新的机构里,那么这些平台的权力实在太大了,完全有可能演变为霍布斯意义上的新的&ldquo 利维坦&rdquo 。如果这种可能性不能得到有效防止的话,那么只能说此次改革未来将充满不确定性。而且,如果试验失败的话,其后果将是灾难性的。举国科研被SCI牵引的局面就是一个典型例子,终结一项有问题的政策的成本将是巨大的。  其实,资源配置方式从分散到集中,只解决了表面问题,而未触及科技体制改革的实质,即&ldquo 状态&mdash &mdash 结构&mdash &mdash 绩效&rdquo 的根本性改变。集中是我们所熟悉的管理模式,并且凸显了权力的自信,而分权恰恰是我们所不熟悉的。对于以往的&ldquo 集中型分散&rdquo 模式带来的问题,国家作为委托人的极度不满是可以被体会到的:投入与期望的产出严重不对称,同时各种不端行为发生,这种状况必须得到改变。历史的吊诡之处在于,当改变成为所有人的共识时,恰恰意味着谁都不知道该怎么改。但是&ldquo 变&rdquo 又成为双方可化解尴尬局面的唯一出路。改革的潜在陷阱在于,我们所解决的问题远远不及我们所带来的新问题多。那么,如何预防这些潜在的风险?这就是我们所关注的改革的弹性问题,即收与放的问题。  在决定放与收的边界时,要考虑到科技事业的固有特点:科学与自由探索有关,而技术与目标导向与关。前者的产出具有公共物品的属性,适合国家支持,而后者的产出具有商业价值,因此与市场机制匹配。如果完全被市场模式主导,就会出现遏制科学发展的情形。另外,两者的研究属性也不同,前者崇尚自由,后者则是集中约束下的目标定向行为。这些特点决定了科技体制改革的弹性问题,而改革弹性约束了改革的潜在边界。基于此,科技体制改革就是要解决好实践层面的资源分配与激励机制。只有如此,才能带来国人期盼的&ldquo 状态&mdash &mdash 结构&mdash &mdash 绩效&rdquo 的根本性改变,否则片面追求绩效与状态只能是缘木求鱼。  在具体措施方面,我们不妨把资源的竞争性分配与保障性分配区分出来。以往的项目申报都属于竞争性的分配模式,这方面已有很多研究,不再多谈。这里只谈保障性供给模式的建设。科技界不能搞平均主义,保障性供给如何避免吃大锅饭并实现激励机制?笔者曾建议,中国科技界应向国际体育界学习,对各领域的科研人员实行排名制,而排名是定期动态调整的。该项工作可由行业协会与第三方独立机构完成。只有进入排名的才可以申请保障性供给,这样就解决了吃大锅饭与激励机制的问题。  客观地说,如果完全采用竞争模式,其危害主要有两点:其一,带来整个科技界的急功近利与浮躁气息 其二,落后的管理体制无法有效分配资源,只能靠简单地增加资助额度来化解新增资源带来的日益增大的评审成本,从而导致资源的边际效用递减。实行各学科人才排名制,其优点有二:其一,管理部门能时刻掌握人才家底的库存,便于关键时刻解决国家之需 其二,排名制提供的激励机制,最大限度地集聚了当下的智力资源,并能永续地成为国家储备人才的蓄水池。  中国科技已到了从量的扩张到质的提升阶段,如何提升质恰恰是当下破题的关键所在。众所周知,知识产品的生产是有周期的,让科技工作者安静下来,有时间打磨自己的知识产品,就需要从制度层面入手,塑造群体的质量偏好。美国政治学家盖伊· 彼得斯曾说:市场模式的胜利只是意味着市场取向的解决方法已经取得了合法性。问题在于大科学时代,科技内在结构是非常复杂的,任何单一模式都不是包治百病的万能胶囊,我们必须在集中(举国体制)与分散(市场体制)之间寻找一种建设性的均衡。(作者系上海交通大学教授)
  • 仪器情报,科学家首次提出用于弹性导电体的互连技术!
    【科学背景】柔性和可拉伸电子技术,因其在可穿戴、皮肤贴合、机器人、生物医学和生物电子学等领域的前沿应用,已成为当前研究的热点。然而,这些技术在材料和结构布局方面的持续发展也带来了一系列挑战,其中主要问题在于缺乏简便、适应性强且可靠的电路互连技术,长期以来困扰着柔性和可拉伸电子设备的发展。目前的研究表明,传统的金属焊接和导电粘贴策略在柔性基板和电路易受损的问题上存在局限性,而自修复材料和液态金属等技术虽能实现CE电路的自连接,但在与独立制造的电子组件的粘附性和机械适应性方面仍有待进一步提升。针对这一挑战,厦门大学材料科学与工程系袁丛辉副教授张铁锐教授和戴李宗教授合作提出了一种低电压、快速的电焊接策略,通过设计由硼酸酯聚合物和导电填料组成的导电弹性体(CEs)。这种策略不仅能在环境条件下实现CEs的自焊接,并能有效地将CEs与金属、水凝胶及其他导电弹性体等材料实现焊接,还通过电化学反应触发界面粘接剂的暴露或动态键的断裂/重组来产生焊接效果。结果显示,这种电焊接技术能够确保电路接口的机械适应性和导电性,并能轻松地在千帕至兆帕范围内产生高强度的焊接连接。这一创新不仅为构建独立的柔性和可拉伸电子设备提供了坚固的平台,还为设备的灵活拆卸和按需组装提供了新的可能性,推动了柔性电子技术向更加成熟和应用广泛的方向发展。【科学亮点】 (1)实验首次提出了一种低电压(1.5至4.5V)和快速(5秒)的电焊接策略,用于在柔性和可拉伸电子设备中集成刚性电子组件和软传感器。这一策略基于设计的导电弹性体,包括硼酸酯聚合物和导电填料,能够自身焊接并实现对金属、水凝胶和其他导电弹性体的焊接效果。(2)实验结果表明,通过电化学反应触发界面粘接促进剂的暴露或动态键的断裂/重组,该电焊接技术能够确保电路接口处的机械适应性和导电性。在不同电子组件(如软传感器、可变形电子元件和市售刚性电子元件)之间实现稳定的互连成为可能,同时在千帕至兆帕范围内产生可靠的焊接强度。(3)尽管金属焊接技术(如锡焊接和激光焊接)存在的高温损伤问题,以及传统导电粘贴策略的低粘接强度和复杂后处理,本文提出的电焊接技术克服了这些限制。它不仅能够在柔性基板和电路中实现可靠的互连,还为构建独立、可拆卸的柔性和可拉伸电子设备提供了坚固的平台。【科学图文】图1. C-BPE的设计和电焊接概念;Ag-BPE的导电和机械性能。图2. Ag-BPE的自焊接和Ag-BPE/金属焊接。图3. Ag-BPE/水凝胶焊接和Ag-BPE/CE焊接。图4.通过电焊接技术构建柔性和可拉伸电子设备。【科学启迪】本文创新性地将电焊接技术从传统的物理熔化过程转变为化学过程,结合了电化学反应和动态键反应。通过这种方法,能够在低电压和快速的条件下,实现导电弹性体(CEs)与不同的导电材料和电子组件的可靠焊接,包括具有刚性和软性特性的元件。这一理念不仅解决了柔性和可拉伸电子设备中常见的接口粘附、机械匹配和界面结合稳定性等问题,还显著简化了操作流程,并提高了材料的适应性。通过电化学策略精确控制动态键的可逆反应,为材料内部的新功能提供了开发空间,例如在生物电子学、能量存储和机器人技术领域的潜在应用。这种创新不仅促进了柔性电子设备的进一步发展和商业应用,还为多领域的工程应用提供了一种全新的材料连接和功能设计策略。参考文献,Haimen Lin et al. ,Electrically weldable conductive elastomers.Sci. Adv.10,eadp0730(2024).DOI:10.1126/sciadv.adp0730
  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印
    研究背景细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。研究内容近日,哈尔滨工业大学(深圳)陈华英课题组在英国皇家化学会(RSC)期刊 Lab on a chip 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” (《单细胞连续捕获、弹性模量测量和可寻址分选打印》)的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。该论文第一作者是哈工大(深圳)在读硕士研究生蔡逸珂和硕士毕业生余恩。陈华英副教授为通讯作者。微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。▲图1 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。
  • IMCE发布双样品高温弹性模量仪新品
    双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能上,指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件立式膨膨胀仪!创新点:双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件膨胀仪!双样品高温弹性模量仪
  • 2013年MTS弹性体设备用户培训班成功举办
    2013年3月18-22日,MTS在上海交通大学闵行校区举办了为期 5天的弹性体设备用户培训。 培训期间, 来自一汽、一汽大众、上海大众、北汽福田、无锡特瑞堡、泛亚汽车、哈金森工业橡胶等近40家整车及零部件用户、80名培训人员参加了此次培训。 本次培训由MTS美国弹性体系统专家Justin Ficker先生,MTS中国应用工程师马金财先生主讲,主要针对弹性体的控制系统、软件操作、试验设置等进行演示和实际操作练习,受到了广大用户的普遍欢迎。 培训最后一天,培训人员参观了无锡特瑞堡减震器有限公司,无锡特瑞堡是业内著名的汽车减震器供应商,有着MTS各系列的弹性体和零部件试验系统,广大客户在现场通过观看试验演示对设备有了更深一层的了解。 参观结束后,MTS中国区副总裁、销售总监王爽先生与特瑞堡公司减震事业部亚太区副总裁、技术总监Didier Gawronski先生、采购总监冯强会谈,就双方今后的发展和合作交换了意见、并取得共识。 MTS中国2013年3月
  • 福瑞股份2000万欧元收购法国肝脏弹性检测设备商
    福瑞股份3月13日晚发布董事会决议公告称,公司拟使用超募资金2000万欧元等值的人民币,收购法国医药公司Echosens SA100%股权。  Echosens SA成立于2001年,总股本16.26万欧元,主要生产肝脏弹性检测设备Fibroscan。 Fibroscan是全球首个通过量化肝脏硬度数值进行诊断和监测的无创即时检测设备,可对肝纤维化程度做出准确判断。  福瑞股份表示,此举显著提升公司在全球医药行业的竞争优势和行业地位,有利于公司扩大海外市场。  福瑞股份11日收报26.03元,涨1.44%。
  • 弹性蛋白食品原料中的锁链素和异锁链素的分析
    弹性蛋白是存在于血管壁和韧带等部位的一种硬蛋白,由于其具有赋予皮肤弹性和保持皮肤张力的功效,因此在功能性食品等领域中得到应用。对鱼类或哺乳类动物的血管壁等部位进行处理后,进行酶解,得到的粉末称为弹性蛋白肽。以该弹性蛋白肽为原料进行加工后的产品即为 “含弹性蛋白肽食品 (简称:弹性蛋白食品)”。日本健康和营养食品协会公布了弹性蛋白食品及原料(弹性蛋白肽)的《品质规格标准》,该标准规定对弹性蛋白食品和原料进行水解后,使用氨基酸分析仪对弹性蛋白中特有的组成氨基酸——锁链素和异锁链素进行定性和定量分析。日立使用LA8080全自动氨基酸分析仪,对以鲣鱼为原料的弹性蛋白肽进行测定。实验部分仪器配置日立LA8080全自动氨基酸分析仪 高速分析法标准品锁链素、异锁链素 图1. 色谱分析条件 图2.标准品测定结果 图3. 样品的前处理方法 (盐酸水解)图4. 鲣鱼弹性蛋白肽测定结果生理体液分析法标准品锁链素、异锁链素、17种氨基酸图5.色谱分析条件 图6.标准品测定结果 图7. 鲣鱼弹性蛋白肽测定结果结论日本规定的弹性蛋白食品及原料的测定方法中采用了高速分析法和生理体液分析法两种,可根据实验目的采取相应的分析法。如果只关注弹性蛋白食品特有的组成氨基酸——异锁链素和锁链素这两种成分,可以采用高速分析法测定。如果除了锁链素和异锁链素,还关注其他组成氨基酸,希望研究弹性蛋白肽原料,可以采用生理体液分析法测定。高速分析法利用双柱实现了高速分析,在30min内成功分离了异锁链素和锁链素,相比生理体液分析法,将分析时间缩短至1/4。日立全自动氨基酸分析仪一直深受用户信赖,市场占有率极高,拥有多项独家技术,性能卓越,专为氨基酸分析而设计制造。关于日立LA8080全自动氨基酸分析仪的详情,请参考:https://www.instrument.com.cn/netshow/SH102446/C296474.htm
  • IMCE 弹性模量和内耗分析仪在沈阳金属所安装完毕
    2006年9月3号到12号,比利时IMCE总经理BART BOLLEN先生亲临沈阳金属研究所技术支撑部,对所里使用此仪器的研究人员进行全面系统的培训。目前,主要负责人 张重远,杨菲老师已利用此仪器进行各种科学实验。IMCE 公司的高温弹性模量和内耗分析仪,主要用于涉及工业和航空等高端技术陶瓷,金属等力学性质的分析和研究。目前,此仪器在国内填补了此项技术分析的空白,它可以分析样品形状具有良好均匀性、弹性和等方性的陶瓷、金属样品,测量其弹性模量,剪切模量,泊松比率,阻尼等物理性质与温度或时间的关系曲线,给分析工作者提供了大量的有用科研信息
  • TA仪器与陕西科技大学联合举办“材料热分析和粘弹性表征及其应用技术交流会”邀请函
    TA仪器与陕西科技大学联合举办&ldquo 材料热分析和粘弹性表征及其应用技术交流会&rdquo 近年来随着材料研究的不断发展,在化工、医药、食品、能源、新材料等工程技术领域对于材料的研究不断深入,作为材料研究的重要工具,流变仪,动态热机械分析仪、热重分析仪、差示扫描量热仪等仪器越来越广泛的应用其中,这些仪器对于材料的粘弹性能、热物性能的研究提供了的重要技术手段。此次会议主要是加强这些领域的技术交流,针对各领域研究人员及工程技术人员,达到深入的了解材料在热分析和粘弹性等方面的基础理论和表征方法的目的,包括这些测试的最新应用。提高技术人员在自己的研究领域内,确定材料在热物性和粘弹性方面的测试目的和评价手段,更好的针对自己的研究领域和实验所需参数选择和组织更好的研究工作。会议主要内容:一、材料热分析表征及其应用1、材料热分析(热重、差热)的特性及其表征方法2、材料热分析测试的结果分析及其实验方法改进3、材料热分析测试的应用二、材料粘弹性能表征及其应用1、材料的粘弹特性及其物理指标2、材料粘弹特性的仪器测试方法3、材料粘弹特性的应用--------------------------------------------------------------------------------------演讲嘉宾:(以下排名按照演讲顺序,不分先后)刘保健副教授陕西科技大学化学与化工学院 主要研究方向 高分子物理,聚合物结构与表征的实验研究,不同结晶度聚乳酸膜降解性的研究等王宇副教授西安交通大学理学院材料物理系 物质非平衡合成与调控教育部重点实验室,目前从事的研究领域主要包括: 智能材料、形状记忆与磁控形状记忆合金、固态相变与玻璃化转变、磁热与磁致伸缩效应。曾在日本国立物质材料研究机构、美国Los Alamos国家实验室进行研究工作。杨胜鹰 先生毕业于北京化工大学高分子材料系,国家高级工程师,在加入美国TA仪器之前,他在石化行业材料研发行业任职多年,拥有非丰富的研发和技术支持经验。李润明 博士TA仪器流变技术支持,上海交通大学材料学博士。主要研究方向是聚合物流变学,在材料表征分析和测试领域具有丰富的经验。马倩 博士TA仪器热分析技术支持,美国Tufts大学凝聚态物理博士,师从美国著名热分析科学家Peggy Cebe。有着多年高分子热分析表征以及X射线散射理论和实验研究经历。会议时间 2013年4月18日会议地点:陕西科技大学逸夫楼会议室会议日程安排08:50 - 09:00 会议嘉宾致辞09:00 - 09:40 材料动态粘弹性理论及实验表征 李润明 博士09:40 - 10:30 流变在材料粘弹性的表征方法及其应用 李润明 博士10:30 - 10:40 茶歇10:40 - 11:00 流变仪技术应用专题 刘保健 先生11:00 - 11:40 DMA在材料粘弹性的表征方法及其应用 李润明 博士11:40 - 12:00 DMA在记忆合金方面的测试和应用 王宇 先生12:00 - 14:30 午餐14:30 - 15:20 差热法对于材料的表征方法及其应用 杨胜鹰 先生15:20 - 16:10 热重法对于材料的表征方法及其应用 马倩 博士16:10 - 16:20 茶歇16:20 - 16:50 TA热物性测试仪器及其应用 马倩 博士16:50 - 17:30 参观陕西科技大学化学与化工学院重点实验室仪器展示现场问答附件:材料热分析和粘弹性表征及其应用技术交流会详情请垂询: TA仪器市场部王小姐电话: 021-34182128 传真: 021-64951999Email: vwang@tainstruments.com
  • 包装膜袋拉力机的抗拉强度与伸长率、弹性模量之间的关系
    在包装行业中,包装膜袋的抗拉强度、伸长率及弹性模量作为衡量材料性能的重要指标,一直是研发与生产过程中的关键关注点。包装膜袋拉力机作为检测这些性能的重要工具,其准确性与可靠性对于评估材料质量至关重要。本文将从抗拉强度、伸长率与弹性模量之间的关系入手,深入探讨包装膜袋拉力机的工作原理及其在包装行业中的应用价值。1. 抗拉强度:抗拉强度是指材料在拉伸过程中能够承受的最大应力,通常以单位面积上的力(如N/mm² )来表示。它是衡量材料抵抗拉伸破坏能力的重要指标。2. 伸长率:伸长率是指材料在断裂前能够拉伸的百分比,用来衡量材料的延展性。伸长率越高,说明材料的延展性越好,能够承受更大的变形而不破裂。3. 弹性模量:弹性模量是材料在弹性变形阶段应力与应变的比值,反映了材料抵抗形变的能力。弹性模量越高,材料的刚性越大,形变越小。它们之间的关系:抗拉强度与伸长率:一般来说,抗拉强度高的材料,其伸长率可能较低,因为高强度的材料往往具有较强的内部结构,不容易发生形变。相反,伸长率高的材料,其抗拉强度可能较低,因为它们能够承受更大的形变。抗拉强度与弹性模量:抗拉强度高的材料通常具有较大的弹性模量,因为它们能够抵抗更大的应力而不发生塑性变形。弹性模量高的材料也往往具有较大的抗拉强度。伸长率与弹性模量:伸长率高的材料通常具有较低的弹性模量,因为它们能够承受更大的形变。弹性模量高的材料通常具有较低的伸长率,因为它们不容易发生形变。综上所述,包装膜袋拉力机的抗拉强度、伸长率和弹性模量之间存在着一定的相互关系。了解这些关系有助于更好地评估和选择适合特定应用的包装材料。例如,对于需要较高抗拉强度的应用,可以选择抗拉强度高、弹性模量大的材料;而对于需要较好延展性的应用,可以选择伸长率高的材料。
  • IMCE发布高温动态弹性模量和阻尼分析系统新品
    仪器简介:比利时IMCE公司是一家专业的测试弹性模量和阻尼内耗分析仪器的生产厂家, 仪器基于共振频率动态测量方法, 应用完全非破坏性测试技术, 适用于陶瓷及金属等多种材料的生产(质量控制)及科学研究领域, IMCE公司是目前世界上唯一能在1750C高温和气氛控制条件下, 利用目前最先进的软件评估及研究, 精确测定共振频率、弹性模量、剪切模量和阻尼内耗等相关技术指标。 公司主要产品有:1、弹性模量和阻尼内耗分析仪 型号:RFDA MF Professional 2、高温炉: 型号:RFDA-HT1700 型号:RFDA-HTVP1700C 型号:RFDA-HTVP1600 HT1600, HT650. HT1050 3、软件 型号:RFDA MF Software 在中科院沈阳金属研究所高性能陶瓷与复合材料重点实验室及测试中心有该公司2套先进的高温测试系统。 技术参数:1、共振频率。 10Hz ~ 130KHz2、阻尼或内耗(10ˉ5-----0.1) 3、弹性模量 4、剪切模量 5、泊松比率 6、温度:室温--1750C。 7、气氛控制8,真空系统,激光检测主要特点:1、动态法测试(线性或非线性) 2、样品完全非破坏性测试符合ASTM-E-1876-99方法创新点:双样品高温弹性模量仪HT1700,在原有HTVP1700基础上,简化结构,去掉真空组件,增加了双样品支座及测试系统;性能上除了不能做真空及密封外,其它指标同HTVP1700相同,并且可以在普通空气下实验,可以同时测试2个样品,设备体积减小,提高测试效率一倍,价格降低一半!目前世界上同类设备中温度最高,双样品结构独一无二!高温动态弹性模量和阻尼分析系统
  • 中科院力学所苏业旺团队提出提高可拉伸电子器件弹性延展性的新策略—过加载
    可拉伸电子器件在过去十多年中被广泛应用于健康监测、康复医疗、智能工业及航空航天等领域。无机可拉伸电子器件的关键技术创新在于通过力学结构设计实现弹性拉伸性,对任意复杂曲面实现共形贴附/包裹,并且能维持稳定的电学性能。例如,“岛-桥”结构是可拉伸电子器件中最常见的一种结构。其中,功能性元器件置于不可变形的“岛”上,互联导线形成“桥”并提供整体结构的弹性延展性。实现可拉伸电子器件弹性延展性的策略是至关重要的,并引起了大量的关注。 尽管先前有很多研究集中在可拉伸结构的设计上,但目前主要只有两种策略被用于实现或提高结构的弹性延展性(如图1所示):(1)预应变策略。波浪形条带是一种典型的例子,平面的条带被转印/粘接在预拉伸的弹性基底上,释放预应变后,由于压应力的存在使得条带产生面外屈曲变形,形成具有拉伸性的波浪形结构。此外,更加复杂的三维可拉伸微结构也可以通过二维平面前驱体粘接在预应变的基底上制备而成。(2)几何结构设计策略。各种具有弹性可拉伸的几何互联被设计出来,如:“之”字型、马蹄型、蛇型、分型、非屈曲蛇型、螺旋型以及剪纸结构等,这些几何结构在弹性延展性和各种应用场景中表现出不同的特点。有时这两种类型的策略也可以相互结合以增强结构的弹性延展性,如:预应变基底显著增加了蛇形互联结构的弹性延展性。 图1. 可拉伸结构在过去几十年的发展过程 近日,中国科学院力学研究所苏业旺团队创新性地提出第三种提高可拉伸电子器件弹性延展性的新策略——过加载策略(如图2)。互联结构转印、粘接在弹性聚合物基底上后,对整体结构进行过弹性极限拉伸,释放拉伸应变后,互联结构的弹性延展性可以提高到原来的两倍,这对可拉伸电子器件的性能至关重要。理论、有限元及实验结果均证明过加载策略对不同几何构型、不同厚度的互联结构是有效的(如图3、4、5)。其基本机理在于:过加载过程中弹塑性本构关系的演变使得互联结构关键部位的弹性范围扩大一倍。过加载策略易于操作,并可与其他两种策略相结合以提高结构弹性延展性。这对无机可拉伸电子器件的设计、制造及应用具有深远的意义。 图2. 过加载策略的操作过程以及各过程中蛇形互联结构的应变分布图3. 基于独立金属厚蛇形互联(MTSI)的过拉策略力学分析。(a)MTSI的本构关系:理想弹塑性;(b)MTSI的力学模型;(c)过加载操作过程示意图以及各过程中蛇形互联圆弧顶截面处应力分布。(d)MTSI的增强弹性延展性随第一次施加应变/过加载应变的变化,包括理论、有限元和实验结果图4. 基于独立MTSI的过加载策略的实验验证。(a)独立MTSI初始状态的图像以及拉伸150%时的正面和侧面视图;(b)狗骨头形铜片的单向拉伸应力-应变曲线;(c-k)在第一次施加拉伸、卸载和第二次施加拉伸过程中,力与施加应变的关系曲线,第一次施加应变分别为:30%、50%、60%、75%、90%、110%、120%、130%、150%图5. MTSI粘结在软基底上的力学分析。(a-c)粘接在软基底上的厚马蹄形、之字形、分形互联的增强弹性延展性与第一次施加应变/过加载应变的关系;(d)粘接在软基底上蛇形互联结构的弹性延展性随其厚的变化关系;(e-g)三种不同厚度蛇形互连增强弹性延展性与第一次施加应变/过加载应变关系的有限元分析结果该研究成果以“An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics”为题发表于学术期刊《Advanced Materials》(DOI: 10.1002/adma.202300340)。论文的第一作者为中国科学院力学所博士生李居曜,通讯作者为中国科学院力学所苏业旺研究员,参加该工作的还有中国科学院力学所的武晓雷研究员。该工作得到了国家自然科学基金委、中国科学院从0到1原始创新计划、中国科学院交叉学科创新团队和国家WR计划青年项目的支持。 原文链接:An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics (wiley.com)
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • “变革性技术关键科学问题”重点专项:2021年拟拨6.37亿,围绕材料等5领域部署
    3月29日,科技部发布了国家重点研发计划“变革性技术关键科学问题”重点专项2021年度项目申报指南。“变革性技术关键科学问题”重点专项,重点支持相关重要科学前沿或我国科学家取得原创突破,应用前景明确,有望产出具有变革性影响技术原型,对经济社会发展产生重大影响的前瞻性、原创性的基础研究和前沿交叉研究。指南中明确,该重点专项2021年拟部署项目的国拨概算总经费为6.37亿元,将围绕空间、电子信息、材料、地学及生命等5个领域方向部署项目,优先支持34个指南方向。1. 月球内部圈层结构与演化过程的研究利用历史数据特别是嫦娥系列月球探测数据,以重、磁、电、震、热等几大核心要素,开展多物理场的综合研究,构建月球内部圈层结构模型,剖析月球内部圈层结构特性及其形成的机理,研究月球大尺度演化历史中的重大事件,构建新的月球演化理论框架,实现对月球内部圈层结构和月球演化过程认知的新突破。2. 空间超冷原子奇异物理性质研究发展空间微重力条件下制备、测量、精密调控10~100pK量级温度超冷原子的新方法和新思路,研究超冷原子气体的奇异物理特性。研究10~100pK温度下,光晶格中超冷原子的量子相变,研究这种极端条件下产生的新物态,以及这些物态的新物理性质和动力学过程;研究物质波辐射和相干特性,并对其进行精密探测,探索异核量子少体奇异分子特性;基于空间超冷原子气体,发展探测超出标准模型的新粒子与新相互作用的新思路,研究包括轴子与类轴子粒子在内的暗物质备选 粒子的新奇量子态。为空间超冷原子相关科学实验提供科学依据和研究基础。3. 新型空间高能辐射探测的重要科学问题研究面向新一代更高性能、国际领先的空间暗物质粒子、宇宙线和伽马射线的探测需求,开展关键科学问题研究。研究大接收度、宽能量动态范围条件下,从海量杂乱信息中智能判选有效事例的科学问题和优化方法,充分利用多种探测器的能量、时间和簇射形状等信息,实现多种类粒子的高效准确获取;研究高精度高分辨率的电荷重建测量算法,降低高能宇宙线碎裂效应和簇射反冲效应的影响,发展多变量分析和粒子鉴别算法,提升对电子和光子的测量能力;研究核子、电子特别是伽马光子的高精度能量和方向/径迹重建算法,最大限度地修正簇射反冲效应和不同入射角度的影响;研究利用电离效应、地磁刚度、穿越辐射等多种标定手段相结合的可靠在轨标定方法,确保测量能标的准确性;开展实验进行验证。4. 天体爆发现象的高能辐射研究利用多波段多信使天文观测设备和手段,对双致密星并合引力波电磁对应体、X射线双星、快速射电暴、高能中微子以及伽马暴和磁星进行探测研究,研究X射线中子星和黑洞双星、快速射电暴、高能中微子以及伽马暴和磁星暴发的产生机制,破解黑洞、中子星和磁星等致密星的形成和演化以及双致密星的并合机制,研究强引力场、强磁场、高密度下的物理规律, 测量引力波速度和哈勃常数等基础物理参数。5. 多源卫星数据在轨智能融合理论与方法面向快速获取信息的需要,探索多源卫星数据在轨智能融合新理论与新方法。研究单平台多载荷自融合系统架构, 研究多源异构卫星数据信息相关性度量理论与方法,建立多星协作认知模型,突破单星分辨率与探测识别精度极限,开展多星协作对提升状态判读与动态过程预测准确性的理论与数值分析,研究基于知识与数据双驱动的多源数据智能融合方法与低能耗硬件加速计算方案,研制多源数据融合在轨处理试验系统并进行航空 验证。6. 基础三维无源元件的单片高集成度自卷曲技术针对微型电子系统对高集成度基础无源元件的需求,研究单片自卷曲技术。研究自卷曲结构的薄膜应力生长调控机制和异质晶体薄膜集成结构的应变诱导卷曲力学机理;提出高频、高磁导率纳米颗粒磁流体芯及其毛细注入机制;研究力-电-热多物理场耦合规律,建立等效分析模型;探索零功耗的自卷曲结构可重构方法,实现基础无源元件电性能可调。 7. 电磁矢量高分辨成像理论与系统研究针对单一波束宽度范围内多目标分辨的需求,开展基于电磁矢量的高分辨成像理论与技术研究,突破多目标分辨的电磁衍射极限限制。研究非线性电磁矢量波前调制理论与技术,探索可重构矢量调制材料特性同系统非线性状态数量最大化的联系;研究基于波前非线性调制的信号处理与成像算法;研制短基线稀疏阵列三维成像雷达原理样机,开展飞行试验,为电磁矢量高分辨三维成像技术应用奠定技术基础。8. 红外微分体制和硅基单片集成的探测芯片技术针对红外高背景辐射环境中微弱目标的红外探测跨代技术所需要的芯片技术,构建红外成像芯片的微分体制和硅基单片集成体制;研究微分物理量原位直接探测的方法,基于光-电联合调控对不同的光场要素实现原位集成式微分感知的技术;研究基于胶体量子点的硅基单片集成短波红外探测芯片,重点突破量子点的批量化合成、暗电流抑制和弱信号采集技术;建立适应微分体制和硅基单片集成体制的红外成像芯片关键技术。9. 面向宽温域功能器件的连续组分外延薄膜技术与材料以宽温域实用功能器件为牵引目标,发展水平方向化学组分连续变化的外延薄膜生长技术和匹配的水平空间跨尺度表征技术;制备连续组分铁电和热电功能材料单晶薄膜;获得居里温度和热电优值等关键参量随精细组分的定量化规律;研究连续组分外延薄膜宽温域下参量调控机制;研制基于连续组分外延薄膜的宽温域连续响应功能器件。10. 面向半导体集成的铁电调控新功能器件面向半导体集成多功能电子和光电子器件的发展需求,开展铁电氧化物薄膜和二维层状材料与第二、三代半导体相兼容的异质集成技术和可控制备工艺的研究;研究铁电-半导体界面特性及其功能器件极化调控规律,突破常规晶体管的性能瓶颈;构建铁电多功能性调控金属离子发光物理模型和技术方法,革新传统的发光触发和调制技术,研究铁电氧化物的多功能性与半导体光电特性的耦合,实现基于新机制的半导体集成的铁电功 能调控光电子器件。11. 生物过程启示的陶瓷材料室温制备关键科学问题研究自然制造过程中生物材料组成和显微结构形成过程的典型特征;研究生物环境、类生物环境、生长因子等条件下陶瓷材料合成和显微结构形成动力学过程,开展生物合成陶瓷材料结构形成动力学的跨尺度理论模拟和计算;研究微纳尺度限域环境、外场(光、力、电)等辅助条件对物质传输、反应和组装致密化机制的影响,设计和研发陶瓷材料室温制备装备,优化制备工艺参数,研制宏观尺寸工程陶瓷材料。12. 大尺寸异形构件的热防护材料及其制造技术面向大尺寸异形构件整体制造及热防护的需求, 研究多元超高温陶瓷复合材料高温长时抗氧化机制,优化设计宽温域抗烧蚀多元超高温陶瓷组分;研究反应熔渗法制备大尺寸构件的多元超高温陶瓷生长机制,发展陶瓷与碳/碳材料结构功能一体化的梯度复合方法;研究大尺寸构件碳基体与陶瓷相的定向引入方法、应力形成机制与变形控制方法,形成大尺寸异形构件整体制造与分区域热防护制备技术。13. 劣质地下水改良的原位调控理论与技术研究面向劣质地下水分布区安全供水的重要需求,研究原位调控含水层条件下原生劣质地下水中氟、砷、氨氮等典型有害组分的去除机理,构建水质改良原位调控理论体系;开发典型原生劣质地下水中有害组分及赋存状态的原位与现场快速检测方法,研发劣质地下水多相态条件下有害组分反应性溶质运移模型,探索强化吸附除氟、强化固定除砷和强化生物脱氮等原位改良技术,建立典型原生劣质地下水原位调控的技术方法体系。14. 中国东部深层高温地热的形成机制、分布特征和资源评价针对中国东部深层高温地热的动力背景、生成与聚集机制、分布规律等开展研究。通过地球物理、地质、地化综合研究,解析地幔、岩石圈和地壳结构及其热物理参数;查明中国东部新/活动构造特别是控热构造的三维分布与时空演化特征; 开展有效热源分析,建立地热场挽近时期构造-热演化历史;结合地震、电、磁、重力等地球物理数据、地质地球化学资料,探索精细刻画浅部地壳热结构新的计算模型;开展干热岩结构力学成 因、压裂、特别是临界CO2压裂改造方法与机理研究。15. 富氦天然气成藏机制及氦资源分布预测技术研究有效氦源的评价参数及氦气释放机制,揭示控制氦源效率及潜力的关键因素;研究复杂地质介质中氦的运载机制及控制因素,揭示地质条件下温度、压力、介质特征对氦气运移、富集的控制;研究富氦气藏成藏过程及关键控制因素,阐明古老克拉通地台区富氦气藏、深大断裂/岩浆活动区富氦气藏、非常规天然气(页岩气、煤层气等)富氦气藏的成藏条件、动态富集过程及关键控制因素;建立氦源效率、有效性及潜力评价技术、复杂地质条件氦气运载效能评价技术、富氦气藏成藏条件及富氦天然气有利分布区带及勘探目标预测技术,综合集成构建氦资源评价预测技术。16. 火星的宜居环境和生命信号探索研究基于我国和国际上已有数据,结合火星陨石、模拟样品的实验室研究,充分参考地球类火星的极端环境条件,研究火星表面水成矿物的分布、含量和形成环境,水成地貌特征和古沉积环境演化,为生命可能产生的大概率区域提供参考;研究火星表层以下水冰分布,并寻找可能的地下宜居环境;分析火星陨石中的硫等挥发性元 素的同位素组成和不同氧气含量下硫等挥发性元素的光化学反应过程;研究地球临近空间、柴达木盆地等类火星极端环境中的生物多样性、分布特征和适应机制,开发地球代表性生物标志物在模拟火星环境中的检测方法,提出若干可测量的关键检测技术指标。17. 空间微重力燃烧的基础性研究面向先进能源动力和高性能发动机提高能效、燃烧源污染物的控制、地面和载人航天防火技术,通过一系列的微重力燃烧实验,得到解耦浮力效应的科学实验数据,促进对燃烧现象科学本质的认识和模型的建立,推动燃烧科学和技术的创新。具体内容包括:层流近极限燃烧特性研究;射流火焰湍流转捩及火焰结构特性研究;载人航天火灾行为及材料防火安全研究;航空航天液体燃料燃烧机理研究;微重力燃烧的碳烟生成研究,火焰合成特 种材料研究。18. 空间环境中新材料制备原理与特种成形技术基于空间环境的特殊条件,探索新材料变革性制备原理与特种成形技术。揭示超高温金属材料的液态热物理性质,探索空间快速凝固动力学规律;研究新型大块非晶与稀土磁性合金的空间制备与成形过程,优化非晶/纳米晶软磁合金组织和磁性能;探索空间环境中液相分离机理,发展高性能稀土镁合金特种成形技术;研究无机功能晶体的空间生长动力学及其生物医学特性,实现其结构和缺陷的主动调控;建立有机功能材料和纳米复合材料的空间合成新途径,发展新型凝胶润滑材料和含浸润滑剂多孔纳米复合材料。19. 空间胚胎发育和生命孕育研究研究空间微重力对哺乳动物和人类生殖细胞及其支持细胞协同发育的影响,从分子、细胞、组织等多个层面,系统地探究微重力环境对生殖细胞及其支持细胞协同发育的影响;研究空间 微重力下体外培养和分化胚胎干细胞为各类功能细胞、组织及器官的特性变化及基本规律;研究空间环境低敏感小鼠品系的筛选和构建,空间小鼠培养关键科学与技术问题。20. 日—地和日球层边界探测中的重要科学问题围绕理解日—地多圈层耦合过程和日球层边界的复杂系统开展重要科学问题研究。基于光谱成像观测研究日冕磁场、密 度、温度、速度的空间分布及其快速演化;建立太阳风结构的多视角观测的反演方法,研究其在行星际空间中的传播特征和演化规律,研究太阳风与地球磁层相互作用的关键区域(包括磁层顶、极光区和磁尾)的成像特征;建立数据驱动的内/外日球层全链条三维多元太阳风动力学演化模型,模拟背景太阳风环境及太阳风暴大尺度结构的传播与演化;研究太阳风边际结构及动态特性,星际介质对太阳风的侵入作用;研究太阳风超 热粒子及异常宇宙线的起源、加速和演化,银河宇宙线在太阳系边际的调制传输机制。21. 基于范德华外延—剥离转印的半导体器件制作新方法面向未来信息系统对高性能半导体器件的需求,突破衬底对器件性能的限制,探索基于范德华外延—剥离转印的器件制作新方法,实现不依赖外延关系的衬底选择,为高效率光电器件和大功率射频器件的研制提供变革技术。22. 基于声波新原理激励小型化天线技术面向低频天线机动化和高频天线芯片化的重大应用需求,研究多频段小型化声波激励天线新机理、新材料和新工艺,突破天线尺寸数量级缩减的技术瓶颈和传统天线辐射效率与带宽的物理极限,实现天线技术在尺寸和性能上的跨越。23. 具有开放扩展架构的模块化移动终端技术针对传统移动终端更新换代导致的资源浪费,研究可持续演进的模块化终端新形态,通过软件、模块升级与按需组合,支持多频段、多体制无线接入,实现终端由封闭向开放扩展架构的转变。24. 超铺展液滴调控技术用于高效农药利用的基础研究面向农药高效利用的重大需求,研究农作物叶面独特的微观结构和性质对农药液滴撞击在其表面迸溅和沉积的影响机制;构筑适用于多种作物和农药的新型高效表面活性剂超铺展剂体系,与农药活性调控技术相结合,解决农药的残留问题;与高效植保装备和精准施药技术相结合,构建能够使农药喷雾在作物和杂草间靶向喷洒、高效选择性沉积、抗风雨侵蚀的颠覆性技术,突破传统方法的极限,全面提升农药利用率;推动精准农业的实用化,完成农田农药喷洒测试。25. 高灵敏高速高温超导单光子探测材料与器件面向自由空间光通信对轻质小型、高灵敏光子探测器的迫切需求,聚焦星间激光通信等航空航天国家重大战略,开展新型结构高温超导薄膜制备过程与跨尺度物性理论研究和工艺优化设计;揭示基于量子金属态的新型超导量子效应形成机制;建立微结构与库珀对输运特性的构效关系和评价准则;发展基于高温超导体量子金属态的高灵敏、高速单光子探测原型器件。26. 稀土基新型电子相变半导体与敏感电阻器件围绕国家战略,从电子材料角度变革现有突变式敏感电阻元器件技术;发展稀土镍基氧化物等新型电子相变材料的非真空制备技术并结合理论计算优化其制备工艺;发展其金属绝缘体相变温度在宽温区范围的精准设计方法;研究其高压诱导电子相变特性与机理;研究其氢致电子相变特性、机理、与潜在器件应用;制作稀土基突变式热敏、压力敏感电阻原型器件。27. 分布式光纤地震成像与反演的关键技术及应用研究针对我国页岩气等非常规油气安全、高效开发关键需求,探索三分量分布式光纤地震传感技术;基于井中与地面光纤传感记录,开展裂缝发育、流体运移成像与反演方法研究,开展地下介质结构动态成像与物性参数动态反演方法研究;开展非常规油气开发现场及周边区域野外监测示范。28. 南极冰下复杂地质环境多工艺钻探理论与方法针对南极复杂冰下地质环境研究需求,变革现有冰层钻进及冰下地质钻探取样技术,探索面向南极恶劣地表环境和暖冰、脆冰与冰岩界面等复杂冰下地质环境的多工艺钻探取样理论与方法,提高复杂冰层钻进速度和增加冰下基岩取心长度。29. 高铁地震学研究针对高铁路基安全、地震预测、智慧城市地下空间探测与监测等重大问题需求,变革性地把高铁噪声源转变为可利用的优质震源,探索以高铁震源为代表的移动组合震源激发地震波场新理论,发展基于移动组合震源的地下介质结构探测、动态监测等系列新技术。30. 高通量培养筛选鉴定健康相关微生物的关键技术建立健康相关微生物菌自动分离培养及性状分析平台,揭示重要肠道细菌及代谢产物对“微生物—代谢—免疫”轴影响的微观机理;建立多组学大数据分析技术与人工智能算法,揭示临床常用药、疾病与健康相关的微生物组特征以及代谢、免疫特征;建成中国健康人体微生物实体库和微生物组的健康大数据库,突破微生物组研究关键技术,发展具有应用前景的微生物组干预技术,促进新型健康药物研发。31. 空间领域青年科学家项目针对太阳活动和空间天气的智能预报,地月空间探索等领域中的基础科学问题开展研究。32. 电子信息领域青年科学家项目针对碳基结构与硅基片上集成技术、语义通信理论与编码方法、多功能毫米波无源元件设计理论与实现技术、光电融合计算加速技术等领域中的基础科学问题开展研究。33. 材料领域青年科学家项目针对强自旋轨道耦合材料、二维量子材料、光—电—磁功能材料、柔性材料、生物医药材料等新概念功能材料与器件领域中的基础科学问题开展研究。34. 地学领域青年科学家项目针对地球与生命早期协同演化的金属同位素示踪技术与原理,关键带水文生物的地球化学研究,热带、中高纬度气候系统与我国极端天气气候的关系,涡旋运动与海洋生态系统储碳过程的关系等领域中的基础科学问题开展研究。
  • HEPS自主研制共振非弹性散射分析晶体完成在线实测
    2023年5月,国家重大科技基础设施高能同步辐射光源(HEPS)自主研制的共振非弹性散射(RIXS)分析晶体完成在线实测,实测能量分辨率37.7meV@8.9keV,标志着HEPS自主研制光学部件又进一步。   HEPS是亚洲首台第四代同步辐射光源,有利于开展高能量分辨谱学实验。为满足高分辨谱学需求,HEPS光源部署自主研制高分辨RIXS谱学分析晶体,100毫米直径的球面衬底上,布满近1万块1.5毫米见方、2毫米厚的小晶块,小晶块之间排列取向精度误差小于400μrad。该类分析晶体制备工艺极为复杂,国际上仅有少数光源具备此类分析晶体研制能力。HEPS高能量分辨谱学线站负责人徐伟研究员带领团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关,完成RIXS分析晶体自主加工。   RIXS分析晶体的在线表征是检验分析晶体品质的关键步骤。2023年5月,高分辨谱学线站团队包括徐伟研究员、郭志英副研究员、张玉骏副研究员、靳硕学副研究员等通过与日本超级环光源-日本量子科学技术研究开发机构线站(SPring-8-QST-BL11XU)的Kenji Ishii(石井贤司)教授合作,顺利完成了RIXS分析晶体的在线表征。曲率半径2米的单晶硅(553) RIXS分析晶体,实测分辨达到37.7meV (FWHM)@8985eV。这一结果表明,HEPS团队已具备RIXS分析晶体自主研制能力。   值得一提的是,2022年10月,依托北京同步辐射装置,HEPS首批自主研制X射线拉曼散射(XRS)谱仪分析晶体完成在线表征,实测1eV(FWHM)@9.7 keV;2023年3月,依托上海光源BL13SSW稀有元素线站,HEPS相关人员与上海光源边风刚研究员、何上明研究员、曾建荣副研究员、洪春霞高级工程师等团队合作,完成了一批(15组)条带型高分辨XRS分析晶体的在线表征,实测0.53 eV@9.7 keV。   高分辨分析晶体再一次取得突破性进展,离不开团队合作、国内外同行协助。下一步,团队成员将齐心协力,进一步开发定制指数面硅基、非硅基高能量分辨分析晶体。在满足HEPS高分辨分析晶体需求基础上,也可为国内外同行提供先进光学部件。   高分辨分析晶体在线表征得到上海光源稀有元素线站BL13SSW、测试线站BL09B,日本SPring-8 BL11XU等线站的大力支持。
  • 显微镜下昆虫世界:绿丽蝇产卵瞬间(组图)
    北京时间11月11日消息,据国外媒体报道,英国作家、动物学家汤姆杰克逊在他的新书《微小怪物》(Micro Monsters)中公布了一组显微照片,集中展现了电子显微镜下的奇妙世界。  它们或许看上去就像是某部恐怖电影中的可怕怪物,但这些微小的生物就藏在我们家里、衣服上,甚至是身体上。汤姆杰克逊的新书《微小怪物》收录了80种世界上最恐怖的昆虫和其他微小动物的三维照片。他用时三个月整理令读者感兴趣的照片,为写这本书准备素材。    彩色扫描电子显微照片,展现了家居尘垢皮屑中的一只尘螨。  一只正在产卵的绿丽蝇。  一只褐色蚂蚁正在咬一片草叶。    一条蛆的头部。     树叶上的一只蠼螋。   一只欧洲大黄蜂。  一只盲蜘蛛。    两只水熊虫。  利用当今最先进的技术,科学家给这些小小的生物镀上一层金,用液氮进行冷冻。接着,通过扫描电子显微镜向拍摄主体发射电子束,使这些结果中展现令人不可思议的细节。在这些照片中,无脊椎动物甚至看上去就像拥有表情一样,比如微笑着的沙蚕,头部的触须好像脸上长出的尖刺,花园中常见的面容乖巧的瓢虫,看上去正在残忍地将植物根茎中的蚜虫撕成碎片。  一只土鳖虫。   一只谷象鼻虫。  一只厩螯蝇。   一只果蝇。  其他值得注意的照片还包括卷曲的彩色沙虫,准备觅食的钩虫露出的光秃秃的尖牙,虱子悉心照料人发丝上的卵,以及果蝇的特写镜头。汤姆今年38岁,来自布里斯托尔。他说:“我希望将所有最可怕、最凶残的微小生物照片都收录在新书中。这本书展现了存在于孩子身边、家中、公园中和院子里的一切东西。其中,既有像蠕虫和蜘蛛这样我们熟悉的东西,也有像寄生虫和尘螨这样我们不太熟悉的东西。关键在于,它们都与这些奇特的照片有关,让我们能以全新的视角看待它们。”  两只兽疥螨,一大一小。   一只人头虱和一枚卵。   一只可传播黄热病的蚊子。   一只白蚁。   一只舌蝇。  杰克逊编著过80多部适于成年人和儿童阅读的书籍,而新书《微小怪物》则让他有机会去展示发生在我们身边的事情,而这些事情是我们肉眼所无法看到的。他说:“当前最先进的科学都发生在这一层面,但这类工作常常因更大的项目而变得黯然失色。一旦你近距离观察,你可以看到正在发生的故事。”  据悉,扫描电子显微镜被用于向拍摄主体(这次是昆虫和其他微小生物)发射电子束。电子相比光波波长更短,所以,使用电子显微镜可以捕捉到更小的物体。杰克逊说:“这项技术的不同之处在于,我们是以三维形式进行扫描,可以令它们看上去栩栩如生。我们给它们镀上了一层金,并用液氮进行冷冻以记录这些照片。”  一只正在吃树叶的蚜虫。   一只蓝丽蝇。  一只黄粪蝇  一只长角甲虫。    一只食蚜蝇  “最令我满意的照片是昆虫们的近照,清晰地展现了它们的眼睛、下颚甚至是头部的毛发。我曾将这本书拿给我儿子尼德看,他晚上确实没有做噩梦,相反,他还十分喜欢。尼德尤其喜欢令人厌恶的蠕虫。写完一本书,看到辛勤付出有所回报,始终有一种让人轻松的感觉。”《微小怪物》不久将由Amber Book出版社在英国发行。
  • 面条被曝添加食用胶增加弹性 湿面条能燃烧
    面条店使用的柠檬黄、蓬灰等添加剂,在粮油店调料店就可买到  近日读者投诉称,卖面条的在面条里掺食用胶,买回的湿面条能点着燃烧!记者调查时发现,确有一些经营者在使用化工添加剂,一些粮油店也销售这些添加剂。不法商贩在面条中添加化工产品如食用胶、柠檬黄、蓬灰、复合磷酸盐等,以增强面条的筋度和弹性,有的加入明矾使面条白亮光洁。  绝对猛料  面条掺食用胶,湿面条能燃烧  19日,郑州的赵女士向记者投诉称:“有个亲戚做面条生意,里面掺有食用胶。这样的面条咋煮都不会断,亲戚说卖面条的都加有这种东西,米线里也掺有食用胶,吃起来很筋。我上网一查,很多人说吃一碗米线等于吃进一个塑料袋。”  20日,家住经三路的张先生对记者说:“中午我从农贸市场买回湿面条,做饭时两根面条掉火旁很快被燃着了。我拿几根面条用火机点燃,想不到面条都燃烧了,烧后有股刺鼻的气味,烧后的粉末发硬,面条里到底添加的是啥东西?”  骇人调查  面条店用得多,添加剂卖得俏  3天来,记者在枣庄农贸市场和都市村庄暗访10多家面条店,发现做面条的在面条里掺有添加剂。在一家面条店记者看到,面条里掺有一种叫“蓬灰”的添加剂。记者问:“这东西添进去能吃吗?”女店主说:“现在都用这种东西,拉面、面条和米粉中都加有这东西。”  记者在枣庄市场一面条店以买面粉为名进入店内,见地上放着一瓶落满灰尘的玻璃瓶,内装铁红色添加剂。拂掉灰尘后记者看到是半瓶柠檬黄。记者问这是干啥用的,老板说:“是往热干面里加的。”  记者在另几家面条店调查时,有店主直言不讳地说:“现在有哪家不用添加剂?”  记者调查时了解到,面条店使用的柠檬黄、蓬灰、复合磷酸盐等,在粮油店调料店都可买到。记者在枣庄农贸市场问几家粮油店,果真有卖的。记者分别买几种后,与一店主攀谈:“这些东西卖得好吗?”  女店主:“卖得可好了,市场卖面条的都用这个。卖面条的有的在面中加有明矾,这样面条看上去白亮光滑,好卖。明矾加到油条里,炸出的油条好看还不塌架。”  另一调料店老板告诉记者:“我这里添加剂都卖完了,马上要进货。”记者买来湿面条试验,湿面条一点就烧出了火苗  眼见为实  记者亲自试验,面条烧出火苗  记者分别购买了5种面条,在点燃试验后发现湿面条真的可以燃烧,还烧出了火苗,如不人为熄灭,长长的面条可全部烧完。面条烧后发出皮毛烧焦的气味,很刺鼻,剩下发黑的灰烬用手捏感觉非常硬。  为验证购买的面条与自己做的手工面有无区别,记者和面后做成面条用火点燃,面条着火后很快自动熄灭,燃后的灰烬一捏即成碎末。
  • 美国CEM Liberty微波多肽合成系统一次性合成长达111-mer的多肽
    美国CEM Liberty微波多肽合成系统(多肽合成仪)一次性合成长达111个氨基酸的多肽,创造单次合成多肽的最长记录! CEM 高超的微波技术,第一次被用到多肽合成,开辟了多肽合成的新纪元。合成速度比传统提高20倍,多肽产物达到前所未有的纯度和产量,使得许多合成反应可免去纯化步骤。标准的10肽ACP序列合成纯度竟达到98%。Liberty优异的性能令人惊讶和难以置信。2004年美国多肽协会推荐荣获国际应用科学R&D100发明奖,并被美国纽黑文国家实验室、安进公司应用于艾滋病和SARS病毒的药物研究。 在环形微波作用下,聚焦能产生超高耦合效果,使卷曲的肽链结构充分展开,强化反应的效果和速度。样品在优化的温度下利用微波能量,促进反应速度比传统方法快至20倍,多肽反应更快、产率更高,产物更纯。 Liberty的主要优势: 1)可以使卷曲的肽链结构充分展开! 2)防止长链多肽聚合! 3)消除双重耦合,消除外消旋现象,从而可以合成更长、更困难的多肽! 4)降低树脂的要求!5)极快的合成时间,一天完成一个月的工作! 6)更高的多肽纯度! 7)高难多肽的合成,一次自动合成12个多肽。 (详情请参阅英文文献)Investigation of the Structure of the N-terminal Region of PrionProtein (PrP) via the Microwave Synthesis of Peptide Fragments up to 111 Amino Acids in LengthCEM Liberty 微波多肽合成系统
  • 赛默飞推出TSQ 8000 Evo检测橡胶及弹性体材料中11种亚硝胺
    2015年1月23日,上海——赛默飞近日推出TSQ 8000 EVO检测橡胶及弹性体材料中11种亚硝胺的应用方法,助力亚硝胺检测分析,帮助客户实现快速检测和定性定量,并轻松搞定样品。N-亚硝基化合物是一类很强的化学致癌物质,包括亚硝胺和亚硝酰胺两大类物质,通常泛称为亚硝胺。超过 300 多种 N-亚硝基化合物在一种或多种动物身上显示出具有致癌作用,并且 40 多种动物包括灵长类都是易于感染 N-亚硝基化合物而引起癌症,而且这类强致癌物质在实验动物体上诱导出的肿瘤在形态学特点与生化特点上都与相应的人体器官上发现的肿瘤相似。美国环境保护局(USEPA)认为 N-亚硝基二甲胺(NDMA)在极低的浓度(0.7 ng/L)下就会致癌,已将其列为优先控制污染物。许多国家及国际组织都对相应制品中 N-亚硝基胺的检测制定了严格的标准,如中国出台了 GB28482-2012 《婴幼儿安抚奶嘴安全要求》;欧盟《玩具安全新指令》(2009/48/EC)中,对其中的 N-亚硝基胺含量及迁移量有着极为严格的规定。同时,与该指令配套的欧盟协调标准 EN71-12 要求至少检测 13 种 N-亚硝基胺,包括脂肪族亚硝胺、脂环族亚硝胺及芳香族亚硝胺等。针对以上需求赛默飞提出基于串接气质联用TSQ 8000 Evo 的解决方法。本文以 TSQ 8000 Evo 为平台建立了橡胶及弹性体材料中 11 种 N-亚硝基胺 GC-MS/MS 检测方法,结合赛默飞特有的TraceFinder软件系统进行数据采集、数据分析和报告输出,实现了数据的快速采集及数据结果的智能处理。为 N-亚硝基胺的痕量检测提供了强而有力的技术支持。应用下载链接:http://www.thermo.com.cn/article6946.html ---------------------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 中国农大采购79台/套仪器设备
    一、采购人名称:中国农业大学  地址:海淀区圆明园西路2号  二、招标代理机构名称:中国乡镇企业总公司  三、招标编号:CTEC11B320  四、采购项目名称:中国农业大学“985工程”仪器设备采购项目  五、项目批准文号:教财司预函[2010]125号  六、招标内容:包号品目号货物名称数量简要技术要求11-1PCR仪2温度范围:4-100℃1-2多功能电泳仪1样品通量:1-1201-3肉色测定仪(普通型)26301 CPU1-4胴体肌肉PH值直测仪(普通型)2测量范围:PH 0-141-5智能电导率测定仪(普通型)2测量范围:0-20ms(电导率)1-6体式显微镜1变倍比:≧7.7:11-7生物显微镜1照明:高级LED照明器1-8根系分析系统1分辨率DPI(点/英寸):480022-1高速台式离心机1温度精度: ±2℃2-2低速台式大容量离心机1定时范围0min~99min2-3台式离心机2定时范围0min~60min2-4高速冷冻离心机1转速精度 ≤100rpm2-5水平电泳槽2缓冲液容积 : 600ml2-6电泳仪2控制功能:微处理器智能控制2-7摇床1电源: 单相220V 50HZ2-8纤维细度分析仪1夹持长度: 20 mm2-9纤维卷曲弹性分析仪1试样夹持长度: 20mm2-10平板加热器2温度稳定: ± 5℃2-11净化工作台1适用人数:单人单面2-12净化工作台2适用人数:双人单面2-13电热板1温度稳定: ± 0.2 ℃2-14超声波清洗器1容量(L):14.42-15电热鼓风干燥箱3温度波动:±1℃2-16水浴恒温振荡器1振幅: 旋转30mm2-17生化培养箱1容积:250L2-18光照培养箱1容积:430L2-19恒温培养箱1消耗功率:600W2-20紫外分光光度计1光谱带宽 2nm2-21冰箱2总有效容积:260L2-22自走草坪剪草机1修剪宽幅:21inch2-23起草皮机1起草皮宽度:355mm2-24叶绿素仪1测量面积:2mm×3mm2-25便携式叶面积仪1长度分辨率:1mm2-26便携式土壤紧实度仪1探针长: 900 mm33-1生物显微镜15目 镜:WF10X/20mm3-2体式显微镜1目镜筒:45°倾斜3-3显微镜1放大率范围:40X-1000X3-4电子天平1量 程 100/220g3-5电子天平1全程温度补偿3-6电子天平1重复性误差:≤0.1mg3-7生化培养箱1有效容积(L):2383-8漩涡混合仪4温度范围: 5-40℃3-9台式酸度计3pH分辨 0.013-10高压锅2容积:50L3-11梯度PCR仪1相对湿度≤70%3-12高速台式离心机1最高转速:14,800 rpm3-13蛋壳色度仪1波长范围 360nm 到740nm  本项目共分3个包,投标人可以投全部的包,也可以只对其中一包或几包货物进行投标,但不允许将某一包的内容拆开来投标。  七、合格投标人的资质要求:  1、投标人应为在中华人民共和国内注册的企业法人,具有独立承担民事责任的能力   2、投标人应有良好的商业信誉、充足的资金保证和健全的财务会计制度   3、投标人必须具有履行合同所必需的设备和专业技术能力   4、投标人必须有依法缴纳税收和社会保障资金的良好记录   5、投标人必须在近三年的经营活动中没有重大违法记录 不能是正在接受有关部门审查、被其它企业兼并(包括收购、重组)和因重大经济纠纷正在法院打官司的企业 也不应是被相关机构宣布上了“黑名单”的企业   6、投标人在过去和现在都不应与采购人在本次招标项下拟采购的货物从事设计、编制技术规格和其他文件提供咨询服务的单位及其相关联的所属机构有任何直接和间接的关系。  7、法律、行政法规规定的其他条件。  八、招标文件发售:  1、时间:2011年09月06日至2011年09月26日上午9:00~11:00,下午13:00~16:00(节假日除外)。  2、地点:北京市朝阳区农展南路5号京朝大厦8层811房间,100125  3、价格:招标文件每包500元人民币,,售后不退。如欲邮购,请按下述地址汇款,另加邮寄费50元人民币。  4、京外企业购买招标文件可以先发送电子版本,以纸质版本为准。  九、开标时间及地点  1、投标截止时间:2011年09月27日北京时间上午10:00时。  2、开标时间:2011年09月27日北京时间上午10:00时。  3、开标地点:北京市朝阳区农展南路5号京朝大厦8层806房间  十、联系方式  联系人:于勇谋、巩芹、唐沙  联系电话:010-59193837、010-59193844  传真:010-59193811  电子信箱:yymou@yahoo.com.cn  开户名称:中国乡镇企业总公司  银行帐号:2200201018726  开户银行:中国民生银行北京建国门支行
  • 389万!江西省定南县第一人民医院肝弹性检测仪器、原子荧光光度计等采购项目
    项目编号:ZHH2023-DN-G001品目二ZHH2023-DN-G001品目一项目名称:原子荧光光度计等肝弹性检测仪器等采购方式:公开招标预算金额:3890000.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求定财购2023B000827449原子荧光光度计等1批1180000.00元详见公告附件定财购2023B000827450肝弹性检测仪器等1批2710000.00元详见公告附件合同履行期限:除采购人有其他要求外,中标人应在政府采购代理机构规定的时间内(中标通知书发出之日起20日内)与采购人签订合同,并于30日内完成供货、安装、调试、培训并交付使用。本项目不接受联合体投标。
  • 首个可弯曲、可穿戴太赫兹扫描仪问世
    碳纳米管制成的可弯曲太赫兹扫描装置  据美国电气与电子工程师协会(IEEE)网站14日报道,日本东京工业大学川野由纪夫(音译)和同事利用碳纳米管研发出首个可移动、可弯曲、可穿戴的太赫兹扫描仪,能对包括人体在内的三维卷曲物体进行成像检测。相关研究细节发表在《自然光学》杂志网络版上。  太赫兹射线对应的频率范围在电磁光谱的红外和微波之间,能穿透几乎各种材料且不会造成损害,因此,太赫兹摄像头在非侵入性高分辨率成像领域运用潜力广泛,可检测暗藏的武器、识别爆炸物及检查机械部件缺损等。  但传统太赫兹成像技术用不可弯曲的材料制成,只适用于检测平面样本,难以对大多数三维卷曲结构进行扫描,很多安检场所使用的太赫兹扫描仪需旋转360° 才能拍摄到人体各个角度,这使得安检系统体积过于庞大。  川野和同事利用碳纳米管薄膜设计研制出的首个可弯曲太赫兹成像装置,能在室温下探测到频率在0.14到39太赫兹范围内的所有射线,并且可包裹起来方便携带。利用这种成像仪,他们成功检测出隐藏在多张纸下的纸屑和锗盘堆中的金属线圈,并找出塑料盒内潜藏的一块口香糖。他们还识别出塑料瓶内的金属杂质和注射器上的细微裂口。上述结果表明,新太赫兹扫描仪可用在工业企业中对非平面产品如塑料瓶和药品进行快速和多角度检测。  另外,他们开发出可穿戴扫描仪并成功检测到人手发出的太赫兹射线。川野认为,不需外来太赫兹射线就能给一只手成像,是太赫兹扫描仪向医学运用迈出的重要一步,未来可用来检测癌细胞、汗腺和虫牙等各种健康问题,实时监控自身日常健康状况。  川野表示,接下来他们会将这些新太赫兹成像仪和信号识别电路与无线通信装置一起集成到单个芯片上,从而开发出高速太赫兹监控系统。之后会启动实时医用监控设备的开发工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制