当前位置: 仪器信息网 > 行业主题 > >

碳水化合物分析

仪器信息网碳水化合物分析专题为您提供2024年最新碳水化合物分析价格报价、厂家品牌的相关信息, 包括碳水化合物分析参数、型号等,不管是国产,还是进口品牌的碳水化合物分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳水化合物分析相关的耗材配件、试剂标物,还有碳水化合物分析相关的最新资讯、资料,以及碳水化合物分析相关的解决方案。

碳水化合物分析相关的资讯

  • 中国碳水化合物动物营养研究中心成立
    7月2日,中科院大连化学物理研究所与四川农业大学动物营养研究所、中泰和(北京)科技发展有限公司在四川农业大学成都校区签署三方协议,共同成立“中国碳水化合物动物营养研究中心”。  合作中,中科院大连化物所将承担碳水化合物分离、分析、检测和规模化制备等相关研究工作,四川农业大学动物营养所将负责对结构明确的碳水化合物进行动物营养学评价,以求筛选出优质的可应用于畜牧饲养的碳水化合物,中泰和(北京)科技发展有限公司除负责新产品的设计和市场推广外,还将为该中心提供必要的科研经费支持。  四川农业大学动物营养研究所1986年成立,主要从事猪、禽、反刍动物和水生动物的营养物质代谢、营养需要、营养调控、饲料营养价值等评定。先后承担完成了国家973、国家自然科学基金等部省级科研项目近三百项,获得国家科技进步二等奖3项、四川省科技进步一等奖3项、以及其它省部级奖励共计二十余项。已出版教材及专著40余部,每年发表论文130余篇。  中泰和(北京)科技发展有限公司是专注于糖工程技术在畜牧业应用研发、推广的专业服务商,以“前沿智慧,成就客户”的核心价值观,为商业饲料企业和饲料养殖一条龙企业提供动物营养/健康的解决方案。
  • 蛋白质、碳水化合物和脂肪可以预测你的寿命
    来自悉尼大学的一项新的全球研究着眼于大量营养物质(蛋白质、碳水化合物和脂肪)如何与不同年龄段的死亡风险联系在一起。这是迄今为止最广泛的宏观营养素供应、生存统计和经济数据分析。悉尼大学查尔斯珀金斯中心(Charles Perkins Centre)和悉尼大学科学院(University of Science)的研究员Alistair Senior博士领导的这项研究发现,即使在2016年全球数据中,营养不足的证据也很普遍;尤其是在蛋白质供应方面,“最佳”供应量随着年龄的增长而变化。Senior博士说:“我们发现,在脂肪和蛋白质供应相对较高(分别占能量的40%和16%)的地方,早年死亡的风险会降至最低。然而,在晚年,减少脂肪的能量供应并用脂肪代替碳水化合物,死亡率最低。”这项研究发表在今天的《PNAS》上。“这是一个引人入胜的故事,从国家粮食供应的层面反映了一个事实,即宏观营养需求随年龄而变化,”Senior博士说。“考虑到各国的粮食安全,以及供应的变化如何转化为死亡率的模式,这也可能是一个有趣的问题。”合著者Stephen Simpson教授补充说:“这项研究很吸引人。我们可以看到从中年到晚年碳水化合物比蛋白质比率的增加与死亡率的减少有关,对应了实验室的衰老生物学研究。”与Simpson合著《像动物一样吃》的David Raubenheimer教授指出:“虽然食物供应数据并不是饮食的直接指标,但它们能很好地衡量各国食物环境的差异。令人难以置信的是,我们在这个水平上也看到了个人饮食的详细研究的影响。这证明了食物环境对饮食和健康的影响,这是我们新书的中心主题。”为什么大量营养物质很重要大量营养素是我们所吃食物的主要能量来源,并分为三大类:蛋白质、脂肪和碳水化合物。研究发现,随着年龄的增长,与最低死亡率相关的人均总热量供应相对稳定(约3500kcal/cap/天),但就饮食蛋白质、脂肪和碳水化合物而言,热量摄入的组成并不稳定。在50岁之前,40%到45%的能量来自脂肪和碳水化合物,16%来自蛋白质,可以最大限度地降低死亡率。然而,对于晚年,脂肪和蛋白质的供应量分别为22%和11%,而用碳水化合物来代替这些与死亡率最低有关。Senior博士说:“真正令人高兴的是,我们看到了一个明显的变化,这使得50岁以上的死亡率降至最低,高碳水化合物的供应似乎变得很重要。”我认为有必要指出的是,尽管这并不是一个个人应该吃什么的指南——我们研究了一个国家在人均水平上的供应量。这在理论上设定了人们吃什么的上限,但有一系列因素可以将一个国家的粮食供应转化为最终实际消费的粮食。”从方法论的角度来看,这篇论文也很有趣。研究人员利用全球供应数据和来自103个国家的1879个生命表,在宏观层面测试了能量摄入(卡路里的数量)和宏观营养素的平衡:在国家的营养供应和它们的年龄别死亡率之间。他们发现,即使在校正了时间和经济因素后,宏观营养供应仍然是年龄别死亡率的有力预测因子。Senior博士说:“我们在这里应用的相同的统计方法可以重新应用于研究死亡风险的模式和各种饮食方面,包括不同的食物类型(例如植物和动物蛋白质),或者更广泛的饮食模式(例如‘地中海式饮食’)。”
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • 【瑞士步琦】不同类型化合物应用的最佳条件
    不同类型化合物应用的最佳条件现如今,Flash 及 Prep HPLC 色谱已经成为许多分离应用的首选方式。就像我这种“厨房小白”,黑暗料理界殿堂级人物,在做饭时,如果盐放多了都会不禁在想:是不是可以通过色谱分离的方式去除多余的盐?然而,尽管这些分离技术是化学的基础,但它们仍然难以捉摸,因为没有通用的一种方法可以适用于所有的样品。不同行业研究或感兴趣的化合物是多样性的,这些化合物理化性质差异性很大。幸运的是,前人们已经通过多年的经验总结出了对不同分子类型化合物最有效的纯化条件。所以,如果您在进行样品分离时,对流动相或固定相以及检测器的选择感到迷茫时。或许本篇文章会对您有些许的启发。第一阶段是流动相:样品一定要可溶于待选溶剂;其次是固定相:对您的样品要有保留。有两种色谱类型适用于这里:正相(NP)色谱和反相(RP)色谱。这两大色谱类型也是很多小伙伴在日常科研当中用到最广泛的。接下来是需要确定样品溶解度,判断是否可以液体进样?如果不可以,可以考虑固体上样的方式(Flash色谱)。最后一步是检测,包括需要了解样品是否具有紫外吸收,这将决定哪种检测方法对特定化合物最有效,之前“小步”同学也有给大家分享过关于检测器的选择,没有看过的同学可以点击这里,为了帮助快速进行 Flash 和 Prep HPLC 应用的开发,“小步”同学给出一些化合物类型适用的最佳条件。蛋白质和多肽蛋白质由氨基酸组成,在溶液中形成与它们的生物功能密切相关的高度有组织三维结构。多肽则是蛋白质的小版本,通常由含有 2-50 个氨基酸组成。就流动相而言,它们大多溶于水。反相(RP)色谱法适用于多肽或更小、更稳定的蛋白质,它们在纯化后会重新折叠。这需要含有较少极性溶剂的水混合物,如乙腈、异丙醇或乙醇。乙腈是最受欢迎的溶剂,因为它易挥发,很容易从收集的馏分中去除,除此之外,它还具有低粘度和低紫外线吸收等特点。对于多肽的分离,传统的三氟乙酸(TFA)被添加到流动相来进行pH控制(缓冲)和离子配对(与相反带电的离子团形成复合物以增强保留)。固定相是根据样品的分子量和极性进行选择。Prep HPLC 色谱法由于其可以搭配更小粒径尺寸色谱柱(柱效更高),所以成为分离极性相近或相似或化合物的首选纯化方法。对于 Prep HPLC 来讲,样品进样方式必须为液体进样。所以对于疏水性样品,使用低级性溶剂(乙腈),亲水性样品使用乙醇或丙醇最佳。对于高度亲水的样品,可以适当的加入微量二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)提高整体溶解能力,这使得样品可在最小溶剂体积内溶解,最大化减小溶剂扩散现象。如果需要使用固体上样,则更适用于 Flash 色谱。紫外检测器通常作为检测蛋白质或多肽最常用的方式,检测波长一般设为 280nm。这一波长已被证明特别有用,因为可以直接从蛋白质序列当中预测 280nm 处的摩尔吸收系数(消光系数),当然,这只适用于含有色氨酸或酪氨酸残基的蛋白质。如果芳香族氨基酸含量低或没有芳香族氨基酸,则推荐使用 205nm 作为检测波长。天然产物/提取物活的有机体,如植物、微生物或动物,通过初级或次级代谢途径产生这些代谢产物。初级代谢产物是生物体生长所必需的,次级代谢产物是初级代谢产物的最终产物。流动相的选择基于提取时所使用的溶剂类型,如果采用正相色谱(NP)纯化,则使用正己烷,石油醚,二氯甲烷(DCM),乙酸乙酯(EtAc),或其他与水不互溶的溶剂;反相色谱(RP)则采用乙醇和水进行提取,分离纯化流动相一般为甲醇/水或乙腈/水。对于固定相来说,所有的 NP(硅胶,二醇基,氨基等)和 RP(C18 等)均可被使用。天然产物的样品成分通常非常复杂,所以往往需要采用组合分离技术:通过 Flash 色谱进行前期预处理粗分,再经过 Prep 色谱对样品进行单体化合物分离。样品的载样量取决于天然产物提取物的体积,通常来讲提取物量都比较大。样品可以通过注射器或注射泵的方式注入到 Flash 色谱柱中,如果样品体积过大,则建议采取固体上样的方式,因为如果溶剂体积过大会导致色谱峰谱带变宽,进而影响分辨率。Flash 色谱预分离的样品后续可以在 Prep 上进一步纯化。天然产物样品的多样性和未知性决定了其被检测的方法。通常来讲,蒸发光散射检测器(ELSD)与紫外检测器(UV)的组合可以最大化保证样品检测的全面性。对于 NP 色谱,建议使用二极管阵列检测器(DAD)来对样品进行检测。碳水化合物碳水化合物可分为低分子量(单糖和双糖)和更复杂的重碳水化合物(寡糖和多糖)。单糖(葡萄糖)二糖(蔗糖)多糖(直链淀粉)碳水化合物都是亲水性的,流动相一般选择水/甲醇或水/乙腈进行搭配作为洗脱剂。在 RP 条件下,使用 C18 填料作为固定相可以降低高极性碳水化合物的保留。相反,氨基柱已经被证明是最适合作为分离碳水化合物的固定相。因为它不像 C18 那么非极性。上样方式方面,碳水化合物在 RP 条件下通常是可溶的,所以一般采用液体进样的方式进行上样。碳水化合物和脂类一样,缺乏发色团 目前,ELSD 是主要的检测方法。传统上使用示差折光检测器(RI),低波长 UV (190-205 nm),并通过薄层色谱进行纯化后分析。小分子药物这些化合物被定义为有机化合物,通常通过有机合成的方式获得。具有基本化学结构的小分子,分子量一般在 0.1-1kDA 之间。Flash 和 Prep HPLC 通常都可以在 NP 和 RP 条件下条件。小分子药物的目标通常是使用 RP,因为对它们来说水溶性是至关重要的。NP 只能在 RP 不可能的情况下使用或后续通过结构修饰等方式使其能具有更高的成药性。下表为正相色谱(NP)与反相色谱(RP)的对比:_优点缺点正相色谱(NP)__流动相有机试剂溶剂挥发试剂昂贵,安全与环保问题固定相二氧化硅填料便宜填料仅适合一次性使用最佳反相色谱(RP)__流动相水/醇混合物较便宜浓缩较慢(水沸点较高)固定相C18 填料可重复使用C18 填料较昂贵上样方式由样品的极性和纯化方式有关,高压不锈钢柱和 Flash 色谱柱可以液体和固体上样(只能 Flash 色谱使用)。液体注射进样是首选的方式,但是如果样品在方法的起始流动相梯度时溶解性不好,则需要采取固体上样。检测器方面,紫外检测器依然是首选,因为大多数的小分子药物都具有紫外吸收。然而,在某些情况下,如果化合物紫外吸收较弱,那么 NP 色谱所使用的有机溶剂会给其吸收带来干扰,进而影响实验人员对样品分离效果的判断。其他样品可能会是半挥发性的。基于此,在室温条件下使用 ELSD 检测器是最适的,因为高温条件下有机试剂的挥发顺带将化合物带走的情况时有发生,这会导致样品检测灵敏度降低。维生素/脂质由于维生素/脂质的性质多样性,以及篇幅原因。我们后续会专门出一期关于它们的文章,有相关研究的小伙伴可以持续关注哦。好了,现在您应该知道了不同类型化合物需要使用哪些色谱类型应用方法了吧。希望这篇文章能对您接下来的实验有所帮助!我是“小步”同学,我们下期再见!
  • “左右开弓”——为什么说 HILIC 也是您纯化极性化合物时所需方法?
    当我们面对一些实验的时候,潜意识里总是更倾向于用自己非常熟悉的某种方式或方法并尝试进行稍微调整就可以让它适用于当前面对的所有应用研究。但这就像是说,您拥有一把切菜非常好用的刀并不意味着它是锯木的最佳方法。亲水相互作用色谱(HILIC)今天呢,“小布”同学在这里和您再介绍一种分离方法:亲水相互作用色谱(HILIC)。认识它,熟悉它,装备它!让您面对不同实验可以做到“左右开弓”!OK!让我们看看它可以为您的极性化合物的纯化做些什么!HILIC 是分离高极性化合物的理想选择高极性化合物通常不能用我们熟知的典型色谱柱分离,即正相色谱(NP)或反相色谱(RP)。在正相色谱当中,由于化合物本身相对极性固定相来说过于粘稠,所以会导致洗脱时间过长。而高极性化合物的特点是在水性流动相中具有良好的溶解性,并且与典型的 NP 所用溶剂不兼容。而即使使用 RP 体系,高极性化合物却几乎不与非或弱极性的固定相进行相互作用,最终与溶剂前沿一起被洗脱,达不到分离的目的。每当遇到这种情况的时候,就是 HILIC 的 Showtime!它的分离往往发生在极性固定相且可使用水的反相溶剂条件下。在这种情况下,与无水的流动相相比,含水流动相在极性固定相的表面形成了富水层。梯度洗脱从低极性有机溶剂开始,通过增加极性水的比例来洗脱极性化合物。在正相色谱中固定相具有更高的极性,在反相色谱中流动相通常由水与有机溶剂组成,而水则是色谱常用流动相体系当中使用的最强极性洗脱剂。因此,HILIC 结合了正相色谱的固定相与反相色谱的流动相的特点来专门“对付”高极性化合物。简单总结就是:HILIC 采用反相色谱流动相体系,而按照正相色谱顺序出峰。尽管 HILIC 的混合模式机制至今仍在研究中,但主要的保留机制被认为是化合物在富含有机物的流动相和后来的富含水的流动相之间分配系数的不同。除此之外,还包括其他相互作用,如氢键、静电相互作用和偶极-偶极相互作用都有助于 HILIC 分离:如果您对 HILIC 色谱也感到跃跃欲试的话,我推荐您使用乙腈,因为它与水具有良好的互溶性以及良好的 HILIC 保留和低粘度特点。当然,您也可以根据实验具体情况选择其他有机溶剂。HILIC 中的相对溶剂强度如下:丙酮 丙醇 乙腈 乙醇 二恶烷 DMF ~甲醇 水就您的色谱固定相而言,任何极性相均可用于 HILIC 分离。例如:固定相示例中性二醇;酰胺带电离子Slica;氨基丙基相两性离子氨基酸、氨基磺酸固定相相组成中性极性官能团,如:酰胺、天冬酰胺、二醇、交联二醇、氰基和环糊精带电离子阴离子或阳离子官能团两性离子永久带正电荷(铵)和带负电荷(磺酸)的官能团适用应用中性亲水化合物和混有中性、阴离子、阳离子的混合物带电离子中性极性化合物氨丙基相的伯氨基带正电荷;因此,它对阴离子酸性化合物表现出较高亲和力。Slica 表面含有 pKa 为 3.5 的酸性表面硅烷醇基团,这意味着 ≥3.5 pKa 的 pH 值时,这些基团将被离子化,从而使 Slica 固定相可以作为阳离子交换剂,与带正电荷的碱基相互作用并对待分析物进行保留。两性离子由于它们的亲水性和弱离子交换特性,这些固定相适用于分离中性、酸性和碱性分析物以及极性和亲水性化合物以及无机离子。保留机制中性亲水相互作用;无静电相互作用带电离子来自阴离子或阳离子官能团的强静电相互作用两性离子弱静电相互作用选择理想 HILIC 固定相的一个好的原则是,通常来讲中性化合物的亲水性低于带电化合物,而高亲水性固定相需要保留它们(例如两性离子和酰胺固定相)。另一方面,由于静电引力,带电化合物在带电色谱柱上的保留太强,因此中性和两性离子相提供更好的结果。其实,不管正相色谱、反相色谱还是 HILIC 色谱等,都有其最适合的应用领域。即便 HILIC 结合了正相色谱与反相色谱的部分特征,也不代表其满足所有应用。就如同我们日常吃饭时,吃面往往用筷子是最简单高效的方式;喝汤则是用勺子最佳。实验亦如此,所以在实验过程中还是要根据实际情况选择最佳纯化方式。好啦,今天“小布”同学关于 HILIC 色谱的分享就到这里啦,相信诸位小伙伴们也对其有了一定的了解。希望在今后的实验当中它能够助您摆脱纯化高极性化合物的麻烦!各位,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 沃特世科技举办极性化合物分析网络讲座
    色谱条件优化之极性化合物分析挑战--沃特世全面解决方案    仪器信息网讯 随着液相色谱技术的发展,色谱柱技术也得到了迅速发展。针对常规色谱柱无法检测的极性化合物,waters 的宋兰坤博士利用仪器信息网的网络讲堂在12月23日为大家带来了一场非常精彩的在线讲座,她详细讲解了极性化合物分析带来的挑战和解决方案。本次讲座吸引了来自科研院所、检测机构及医药领域的专家学者等共计79人参加。  宋兰坤博士在讲座中首先介绍了反相色谱分析极性化合物时容易遇到的疏水塌陷问题。她指出疏水塌陷是和色谱柱固定相的设计有关,Waters的Atlantis T3亲水性化合物保留专用柱是采用三官能键合和封端技术,在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力。  Atlantis T3色谱柱分析极性化合物的机理为疏水作用力,可以采用纯水为流动相,最大程度的增加样品保留 其次通过减少填料上C18的覆盖率,使得样品更容易与残留硅羟基相互作用,也起到增加样品保留的效果。图 使用Atlantis T3 柱检测尿嘧啶  随后,宋兰坤博士指出如果反相色谱条件下仍没有好的保留或者MS响应很低,可以尝试选用HILIC柱。HILIC也叫亲水作用色谱,是正相色谱的一个“变种”,它避免了使用与水不相容的有机溶剂,流动相中含有水,又称“水相正相色谱”。  HILIC模式的三大优势在于:1、与反相色谱互补,可以检测在反相色谱柱中没有保留的强极性化合物 2、高比例的有机相可以增加ESI-MS响应,增强质谱的灵敏度 3、增加样品的高通量,通过PPT,LLE和SPE净化提取后为高比例有机相,HILIC模式不需要挥干和复溶,可以采用直接进样。  HILIC模式的保留机理,是极性待分析物在HILIC填料表面的水层和乙腈/水流动相之间进行分配,带电荷的极性分析物同带电荷的硅羟基发生阳离子交换作用,在带正电的分析物和带负电的硅胶表面存在氢键作用力。同时介绍了分析极性化合物时不同流动相的溶剂选择性和洗脱强度,并总结到随着溶剂极性的减弱,化合物的保留是在增加的。图 HILIC模式的保留机理  同时宋兰坤博士为大家对比了杂化颗粒和硅胶基质的HILIC色谱柱,在PH为5.5的条件下,进样2000针后,Xbridge HILIC 色谱性能仍然完好,硅胶基质HILIC色谱性能则有相当大的退化。图 杂化颗粒VS.硅胶基质HILIC的色谱柱化学稳定性  在将近1个小时的讲座之后,仪器信息网的网络讲堂进入在线提问环节,与会者踊跃提出问题,宋兰坤博士一一为大家做了详细解答。
  • 线上讲座:《从糖精到甜菊:甜味剂分析的进展》
    线上讲座:《从糖精到甜菊:甜味剂分析的进展》2011年9月27日,星期二,美国东部时间上午8时格林威治时间15:00网络讲堂概述: 天然或人造甜味剂,是一种用于复制糖的味道的化合物,通常包含一部分热量。特别是那些来自碳水化合物或含碳水化合物亚基的甜味剂,由于缺乏高效液相色谱紫外检测的声色团,因而灵敏度很低。此外,天然的甜味剂,如甜叶菊,包含许多结构类似的化合物,这使得分析起来很困难。而使用一根具有三种分离机理的色谱柱配合气溶胶检测器,就可以轻松的解决这个问题。甜菊苷,罗汉果皂苷V,从罗韩郭水果派生的甜味剂,都可以检测。网络讲堂适用对象:1. 新型甜味剂研发人员。2. 开发新的更灵敏的检测技术,用于人工和天然甜味剂的分析人员。3. 了解如何使用一根色谱柱分析天然甜味剂。4. 了解提高灵敏度对于监测纯化甜菊糖甜味剂净化副产品的重要性。5. 找到10分钟以内分析苷的方法。Register Today!报告人:Deepali Mohindra 赛默飞世尔科技戴安产品全球市场开发经理。 Deepali自2007年以来,一直负责戴安产品在食品,饮料和保健品行业全球业务发展。同时,她也是分析化学协会(AOAC)的成员。 Deepali具有生物科学学士学位和工商管理硕士学位。 报告人:Christopher Crafts Christopher Crafts目前赛默飞世尔科技戴安产品和应用工程师,研究重点是带电气溶胶检测技术和最新的高效液相色谱技术的方法开发。具有Merrimack College化学系的科学学士学位。毕业后的几年时间里,它主要从事监控同位素标记的化学品。他曾合作撰写论文,同时撰写APIs和反离子一书的其中一章。 报告人:Deanna Hurum Deanna Hurum是赛默飞世尔科技的一名化学家,在原戴安应用实验室从事离子色谱法和高效液相色谱法的分析工作经验超过3年。Deanna Hurum是20年的美国化学学会成员,具有罗切斯特大学获得博士学位,在来到赛默飞世尔科技之前从事环境和制药相关工作十几年。 Register Today! 赛默飞世尔科技戴安产品市场部
  • 【瑞士步琦】打响“珍贵化合物”保卫战?秘密武器微胶囊来帮忙!
    香精香料微胶囊化近来,将活性成分进行包埋或微胶囊化,并实现粉末化受到了很大的关注。这项技术可以为制药、生物、食品和化妆品等许多领域的产品提供新配方。包埋的主要目的是保护固体基质中的敏感化合物在保质期内免受周围环境的破坏。包埋也已用于改善产品的持久性、控释性和靶向性等。在食品和化妆品行业中,香精和香料化合物是很容易挥发的液体,通常对热、化学不稳定,对空气、光和辐射相当敏感。保护珍贵化合物的有效方法是将香精和香料封装到载体基质中。微囊化的优点如图1 所示。常用香精和香料微囊化的例子有鱼油、葵花籽油、薄荷油、柠檬油以及硫磺香精。因此,直径从亚微米到毫米不等的颗粒被称为微胶囊。▲ 图1:香精香料微胶囊化的优点各种技术已用于生产微胶囊,如喷雾干燥、微胶囊造粒仪、流化床、挤出、冷冻干燥、共结晶和凝聚、有机相分离。与其他方法相比,喷雾干燥法操作简单、重现性好、生产成本低、易于放大。1喷雾干燥技术喷雾干燥是一种广泛应用的技术,可将水溶液或有机溶液、乳剂、分散剂和悬浮液转换为干粉。这是一个快速且一步完成的过程,使其在降低成本、易于扩大规模和操作方面具有优势。重要的是,对温度敏感和挥发性物质,如酶、蛋白质、抗生素、香精和香料,可以在不损失活性的情况下进行喷雾干燥。其原因是粒子在该过程中的平均停留时间仅有几秒钟。瑞士步琦是喷雾干燥市场领导者,在全球拥最广泛的用户,喷雾干燥仪产品久经考验,性能出众,图2 显示了喷雾干燥仪 B-290 的原理示意图。液体样品通过蠕动泵送至喷嘴,由于喷嘴尖端的雾化作用,液体样品被分散成细小的液滴。干燥的空气由电加热器加热,并由抽气机在系统中流通。液滴经加热的干燥室落下,溶剂迅速蒸发。位于干燥室下游的旋风分离器,将干燥的颗粒与气流分离,干燥的产品落入收集容器中。出口过滤器捕获非常细的颗粒,防止它们离开系统。从而避免了环境污染,保护操作者和仪器免受这些细小颗粒可能对抽气机造成的腐蚀和磨损。▲ 图2:步琦喷雾干燥仪 B-290 示意图三种设计的喷嘴,都可以安装在 B-290 上,二流体喷嘴;三流体喷嘴;超声波喷嘴(图3)。二流体喷嘴有两个同心通道,压缩空气和乳化液分别在其中流动。对于非水混合物或高反应性物质,用惰性气体氮气来代替。压缩空气在喷嘴体内(内部混合)或在喷嘴尖端(外部混合)与液体进料混合。许多研究人员使用二流体喷嘴生产含有香精或香味的微胶囊,效果极佳。三流体喷嘴已被开发用于不乳化情况下两不相溶样品的喷雾干燥。因此,它可用于将香精香料封装到壁材料中。有三个独立的通道,分别用于芯材、壁材和雾化气体。最后,超声波喷嘴是第三种可选喷嘴。它在雾化表面将电能转换成机械振动能。与前两种喷嘴类型相比,它产生的微胶囊更均匀,尺寸分别更窄。制得的微胶囊尺寸在 10-60μm 范围内,形状相似,流动性好。这种喷嘴设置还需要一个超声波控制器。▲ 图3:超声波喷嘴,适用于生产 10-60μm 范围内的微胶囊2香精或香料微胶囊粉生产影响因素用喷雾干燥法制备香精和香料微胶囊通常是首选,并已被许多研究开发利用。通常,生产多芯微胶囊,芯材分散在整个载体中以形成有效的保护。也可制备芯-壳型微胶囊。微胶囊中芯材可达乳液总固形物含量的 20-30%。芯材和壁材经过混合、乳化、喷雾干燥工艺后就可以获得香精香料微胶囊粉末。但生产过程中:芯材、壁材、乳化剂、乳化工艺的选择、喷雾干燥参数调节等都是影响产品质量的重要因素。2.1 香精和香料香精和香料的性质通常是不溶于水、易挥发且对环境敏感,如鱼油、植物油、硫磺香精、d-柠檬烯类植物甾醇、核桃油、奇亚籽油等。 2.2 载体材料选择可以选择多种载体或基质材料进行封装。其性能应具有水溶性、成膜性、乳化性、低粘度、低吸湿性、低成本、口感温和、稳定性好等特点。考虑到这些先决条件,必须选择最佳的载体材料或载体组合。常见的载体材料有:碳水化合物:麦芽糊精、果胶、蔗糖、纤维素(如:羟丙基甲基纤维素(HPMC)、阿拉伯树胶、环糊精、改性淀粉(如:Hi-CAP100,N-LOK,CAPSUL,ENCAPSUL855,CRYSTAL TEX 627,CIEmCAP12633,CIEmCAP12634, CIEmCAP12635等)。蛋白质类:乳清浓缩蛋白(WPC)、乳清分离蛋白(WPI)、大豆蛋白、酪蛋白酸盐。其他材料:脱脂奶粉(SMP)、明胶、蜡。 2.3 乳液特征在微囊化中,其目的是控制包埋化合物的释放和保留。包埋香精香料的一个关键步骤是初始乳液的制备。它是决定活性化合物的保留率和挥发性成份包封率的重要因素。通过有效的乳化液,载体被吸附在油滴表面,降低了界面张力,并防止由于在油滴周围形成保护膜而凝聚。在这里,我们介绍乳化条件,例如固体浓度、乳液粘度、乳液稳定性、乳液液滴大小,这些条件被证明会影响微胶囊化产品的质量。固体浓度(载体材料)固体浓度的影响取决于芯材的类型,即取决于要封装的香精香料。干燥过程有一个最佳的固体浓度值。例如,研究发现薄荷醇的保留率随着载体材料麦芽糊精浓度的增加而增加。此外,也有研究观察到固体浓度的增加会导致包封率的提高。原因可以解释为高的固体含量减少了液滴干燥过程中干燥颗粒表面形成半透膜所需的时间。固体颗粒表面的快速形成可能与表面含油量低有关,因为芯材液滴进入颗粒表面的机会更少。 乳液粘度待喷雾干燥的初始进料乳液粘度应低于 300 mPas。高粘度会延长雾化过程并迅速形成半透膜。这将抑制液滴的内部循环和振荡,减少表面油并提高活性物质的保留。然而,增加粘度超过某一值并不能帮助挥发性化合物的进一步保留,因为在雾化过程中暴露程度越大,同时越难形成液滴。 乳液稳定性乳液稳定性应该被考察,即乳液应在整个喷雾干燥期间保持稳定。乳液的稳定性可以通过乳化指数来分析。静置 24h 后,由浓缩乳清蛋白和麦芽糊精(DE10)稳定的乳状液分离成油相和水相,不能用于喷雾干燥进料。然而,添加麦芽糊精乳清蛋白浓缩物和果胶乳液可稳定 24h,可用于喷雾干燥。这是因为蛋白质多糖复合物可以产生更高的液滴密度,降低了油相和水相的密度差,降低了导致相分离的驱动力。 初始乳滴尺寸最终的干燥产品规格,如粒径、包封率、表面油和挥发性保留率通常受乳液液滴尺寸的影响。研究发现,随着乳液直径的降低,包封率会增加。实验证明,小的乳液液滴将被使得香精香料更有效地包裹和嵌入最终的微胶囊中。薄荷精油在较小的乳液颗粒中比在较大乳液颗粒中保留得更好。相反,在雾化过程中,香料更容易从大乳液颗粒中蒸发。香料化合物的高挥发性和溶解度也可能导致在喷雾干燥过程中更高的损失。可以使用光学显微镜观察乳液的形态。总的来说,窄粒径分布有利于喷雾干燥过程。如需了解更多应用和喷雾干燥解决方案,欢迎联系瑞士步琦公司。3参考文献Gonç alves, A. Estevinho, B. N. Rocha, F., Design and characterization of controlledrelease vitamin A microparticles prepared by a spray-drying process. Powder Technology 2017, 305, 411-417.Bylaitë , E. Rimantas Venskutonis, P. Maþ dþ ierienë , R., Properties of caraway ( Carum carvi L.) essential oil encapsulated into milk protein-based matrices. European Food Research and Technology 2001, 212 (6), 661-670.Baranauskiene., R. Bylait&edot ., E. &Zcaron ukauskait&edot ., J. Venskutonis, R. P., Flavor retention of peppermint oil encapsulated in modified Starches. Journal of Agricultural & Food Chemistry 2007, (6), 335-339.Jiménez-Martín, E. Gharsallaoui, A. Pérez-Palacios, T. Ruiz Carrascal, J. Antequera Rojas, T., Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food and Bioproducts Processing 2015, 96, 52-64.Ordoñ ez, M. Herrera, A., Morphologic and stability cassava starch matrices for encapsulating limonene by spray drying. Powder Technology 2014, 253, 89-97.Roccia, P. Martínez, M. L. Llabot, J. M. Ribotta, P. D., Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technology 2014, 254, 307-313.Uekane, T. M. Costa, A. C. P. Pierucci, A. P. T. R. da Rocha-Leã o, M. H. M. Rezende, C. M., Sulfur aroma compounds in gum Arabic/maltodextrin microparticles. LWT - Food Science and Technology 2016, 70, 342-348.Whelehan, M. Marison, I. W., Microencapsulation using vibrating technology. J Microencapsul 2011, 28 (8), 669-88.Jafari, S. M. Assadpoor, E. He, Y. Bhandari, B., Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology 2008, 26 (7), 816-835.
  • 抛却传统检测器,ELSD充分简化HPLC药物分析!
    在药品质控、研究、临床应用及生产中,药物的质量分析评估是尤为重要的一步。 HPLC 法是常用的分析方法之一。HPLC分析检测仪器仪器特点光学检测器鉴于有些药物缺少适宜的光化学结构,因此不能用常用的光学检测器如紫外、荧光等检测;红外检测器灵敏度较低,不适用于梯度洗脱时应用;质谱检测器价格过高,又限制了它的应用;蒸发光散射检测器( ELSD )价格适中,功能相对全面,是较为理想的选择。ELSD应用领域ELSD能分析任何挥发性低于流动相化合物。因此,ELSD可被应用在以下领域:碳水化合物 / 药物 / 脂类 / 甘油三脂 / 未衍生的脂肪酸和氨基酸 / 聚合物 / 表面活化剂 / 营养滋补品 / 组合分子库… … ELSD优势1通用性2响应因子只与物性有关3与梯度洗脱相容… … 因而,ELSD被广泛应用于药物的分析测定中。尤其是利用结构相似、含量已知的物质作对照标定新的药品基准,是药物分析的一大发展。案例分享 案例主要介绍了Waters2424ELSD 在中药材中皂苷类成分检测中所展示的优越性。2424蒸发光散射( ELS )检测器色谱条件色谱柱:ODS 5um(4.6mm*200mm);流动相:甲醇:水=50:50;柱温:30°C;流速:1.0ml/min 。Waters2424蒸发光检测器(ELSD)的增益为100;喷雾器加热级别为90%;气体压力为20psi;漂移管温度为80°C。RESULT外标法 使用外标法绘制标准曲线,获得5~ 500mg/L的宽线性范围。三个浓度(10、50和200 mg/L)准品的保留时间和峰面积的RSD(n=5)分别在0.04~0.11 %和0.69~7.14 %之间,仪器精密度良好。2424蒸发光散射检测器结构紧凑,在雾化阶段和蒸发阶段均可控制温度,保低扩散性能以获得可靠 HPLC / ELSD 结果。每次运行时用户能够获得更多的峰信息以及 LC 的可靠性和重现性结果。2424蒸发光散射检测器可以作为 Breeze 系统的一部分在 Breeze 或者 Empower 或软件的直接控制下使用,或者作为独立的 ELS 单元使用。随着医药工业的发展及竞争加剧,对药物成分、代谢产生、降解物与杂质的定性、定量提出了更高的要求。在符合标准要求的前提下,Waters2424蒸发光散射检测器(ELSD)能够使复杂的药物分析变得简单化,并提供更灵敏、更稳定、更可靠的数据结果,为药物分析保驾护航。参考文献:[1] 黄永焯,王宁生,HPLC_ELSD在天然药物分析中的应用,广州中医药大学临床药理研究所;[2] 田洁,蒸发光散射检测器简化了药物HPLC分析的应用;[3] 刘超,蒸发光散射法与紫外法用于中药材中皂苷类及糖类成分检测的比较研究,山东中医药大学。
  • “冰糖心”好吃!苹果:不,这是病,得治!
    苹果水心病又称糖化病、蜜果病。我国的西北黄土高原和秦岭高地果区的元帅系和秦冠苹果受害严重,果实品质变劣,不耐贮藏,是一种苹果生理病害。 患水心病的苹果。图片来源:百度百科相关报道指出,苹果植物中从叶子转移到果实的主要碳水化合物是山梨糖醇。为了解苹果果实成熟过程中的碳水化合物代谢,了解水果中可溶性碳水化合物的分布似乎很重要,特别是山梨糖醇和蔗糖,因为山梨糖醇可能是水果中其他碳水化合物生物合成的原始基质,而且在植物组织中蔗糖必须由单糖生物合成。此外,由于已经有报道指出山梨糖醇可能与苹果果实中水心病的发病有关,果肉中山梨糖醇分布的可视化可以使人们了解水心病发病的机理。日本北海道大学农业研究院的科研人员使用基质辅助激光解吸电离飞行时间质谱成像(MALDI-TOF MSI)对成熟苹果的果实进行了相关研究,该研究建立了一种使用MALDI-TOF MSI可视化苹果果肉样品上可溶性碳水化合物分布的方法。 提到MALDI质谱成像技术,就不得不说一说融智生物QuanTOF质谱成像系统。融智生物于2017年推出QuanTOF质谱成像系统,该系统集合了新一代宽谱定量飞行时间质谱平台QuanTOF,拥有强大的5,000-10,000Hz长寿命半导体激光器,以及自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,5-10微米的高空间分辨率,且仍然保持极高灵敏度。这使得质谱成像真正可用于临床病理分析、术中分析等领域。 苹果果实的水平部分(a)和附在玻璃载玻片上的果肉冻干样本(b)。使用字母(A-D)和数字(1-4)的组合将样本分成16个块。研究人员从成熟的果实中水平切下果肉样品,将其安装在载玻片上,冻干,然后使用MALDI-TOF MSI(基质辅助激光解吸电离飞行时间质谱成像)仪器在样品周围自动探测单个可溶性碳水化合物的离子强度。利用HPLC测定了同一水果相邻组织中可溶性碳水化合物的含量,比较了基于MALDI-TOF MSI离子强度和HPLC离子强度的单个碳水化合物的分布。 MALDI-TOF MSI的单个碳水化合物分布的仿彩色图像,以及使用HPLC定量相邻的16个组织块中的碳水化合物含量。结果显示,每种标准碳水化合物的浓度与MALDI-TOF MS的相对离子强度之间存在正相关(p0.001,r20.95),因此似乎可以利用MALDI-TOF MS的离子强度来测定样品中碳水化合物的相对浓度。当DHB(2,5-二羟基苯甲酸)作为MALDI-TOF MSI(基质辅助激光解吸电离飞行时间质谱成像)基质时,从苹果果实标本中检测到仅附着钾离子的单电荷离子。MALDI-TOF MSI和HPLC都证实了果肉中蔗糖含量从中心到皮层的梯度增加。当基于MALDI-TOF MSI结果的单个碳水化合物分布的仿彩色图像与使用HPLC定量的相邻16个组织块中碳水化合物含量进行比较时,亮度与蔗糖和山梨醇的含量之间的强(p0.001,r2=0.6222)和弱(p0.10,r2=0.2123)相关性分别得到证实。尽管有人指出MALDI-TOF MS不适合检测低分子量(MW500)分子,因为基质的碎片离子峰有时会与目标分析物峰重叠。然而,本研究清楚地证明,使用MALDI-TOF MSI以DHB(2,5-二羟基苯甲酸)作为基质可以观察到苹果果实组织中蔗糖的分布。此外,它也适用于观察山梨糖醇分布。因此,MALDI-TOF MSI可用于检测苹果果实成熟过程中碳水化合物代谢的区域差异,并通过与外部13C标记的底物结合,逐步阐明水心病发病的机制。
  • 哥伦比亚制糖厂用总有机碳TOC分析法防止代价昂贵的产品泄漏
    挑战哥伦比亚的知名制糖企业Ingenio Pichichi的主要生产活动是加工甘蔗,为国内外客户提供各种各样的糖产品。糖厂重视环保和高效运营,追求高盈利。糖厂每天加工约4300吨甘蔗,出产蜂蜜制品、原糖、白糖、红糖等多种糖产品。由于产量巨大,优化生产并防止昂贵的产品泄漏到生产工艺之中就变得至关重要。糖厂的现场实验室收集数据,帮助糖厂做出可提高生产效率和节省成本的决策。将甘蔗加工成可出售的商品,需要涉及到一系列工艺步骤,包括粉碎、澄清、过滤、蒸发、结晶、离心。在蒸发阶段,需要用多级蒸馏系统来浓缩糖汁。锅炉为第一阶段供应清洁蒸汽源,第一阶段产生的蒸汽进入下一阶段,然后继续进行其他步骤。最后阶段产生的蒸汽被压力冷凝器冷凝成冷凝水后,被收集到冷却罐中。每个阶段的冷凝水都会被收集到冷却罐中,以后用作冷却水。为了保护锅炉和冷凝器等设备,冷凝水不可含有糖或糖汁,以免造成产品损失、降低工厂利润。因此,快速有效地监控产品泄漏或运行故障就变得非常重要。及早发现产品泄漏,能够帮助操作员及时停止、改变、或改进操作,避免损坏设备或增加成本。图1. Sievers InnovOx实验室型TOC分析仪用于泄漏检测解决方案从前,糖厂是用pH值、电导率、碱度、白利糖度(Brix Degree)、HPLC分析等方法来检测产品泄漏。在正常环境下,糖分子不会电离,其pH值为中性,因此上述大多数方法都不适用于检测糖泄漏。在高温高压的生产过程中,糖分子会分解,成为能够导致沉积、腐蚀、结垢的破坏性化合物。此外,当糖分子分解时,会失去原有的HPLC特征峰。这就使得工厂需要一种快速、可靠、准确的方法来监测糖。糖是由碳、氢、氧组成的碳水化合物。通过测量TOC总参数,精确量化溶液中的所有有机化合物,就能很容易检测出糖。TOC分析仪的工作原理是,将有机分子氧化成二氧化碳(CO2),然后检测逸出的二氧化碳。Ingenio Pichichi糖厂购买了Sievers InnovOx实验室型TOC分析仪(见图1),用来表征和分析系统。这帮助糖厂建立了蒸汽、冷凝水、冷却水的控制限,从而帮助糖厂优化生产工艺、提高生产利润。应当在以下几个地点监测TOC:第一台锅炉的进水每个阶段产生的冷凝水冷却罐的进水和出水Sievers InnovOx实验室型分析仪采用超临界水氧化(SCWO,Super Critical Water Oxidation)和非色散红外(NDIR,Non-Dispersive Infrared)检测技术,能够监测50 ppb(µg/L)至50,000 ppm(mg/L)碳浓度范围。糖厂预期的常规TOC值大概在200至500 ppm 范围内,但如果发生运行故障或产品泄漏,碳浓度会达到5,000至20,000 ppm TOC峰值。结论TOC分析是简便而准确的分析方法,能够检测出导致代价昂贵的设备损坏和生产损失的产品泄漏事件。哥伦比亚的知名制糖企业Ingenio Pichichi需要改进水系统的监测和性能。粉碎过程的蒸发阶段,包括不间断的蒸汽和冷凝水的反复加热和冷却阶段,是糖泄漏的多发阶段。Ingenio Pichichi糖厂使用Sievers InnovOx实验室型TOC分析仪对上述关键阶段进行TOC监测,实现了利润目标,同时达到了环保和运营目标。制糖厂中的TOC监测点点击可查看大图◆ ◆ ◆联系我们,了解更多!
  • 肉类氧化稳定性分析好方法
    肉是人类饮食中最古老的食物之一,如今肉类生产已达到工业规模。肉类蛋白质含量很高,碳水化合物含量很低,但脂肪含量会因动物的种类、品种、身体的解剖部位和烹饪方式而有很大差异。由于细菌发现了营养丰富的基质,肉类是一种极易腐烂的产品。其中,脂质氧化导致异味。为了保存肉类,为了储存和食用,肉质、多汁、风味或颜色都要使用添加剂来保护。 食品最重要的质量变化之一是由不饱和脂肪酸吸收氧气,自由或酯化。脂肪的自动氧化是一种由氧气、光、高温、金属痕迹,有时还有酶推动的化学反应。 OXITEST油脂氧化分析仪可以测定各种类型样品的氧化稳定性,而不需要进行初步的脂肪分离。根据最常见的应用,OXITEST加速氧化过程是因为温度和氧气压力这两个加速因素。该仪器测量两个腔室内的绝对压力变化,监测样品中反应组分的吸氧,并自动生成IP值。IP定义:IP代表诱导期,它是到达氧化起始点所需的时间,对应于可检测的酸败程度或氧化速率的突然变化。诱导期越长,抗氧化稳定性越高。OXITEST为质量控制和研发实验室提供了以下检测:◆原材料和配料的质量控制◆运输和对货物的影响◆储存期研究◆产品开发与行为◆配方优化◆成分和替代成分测试◆流程优化◆包装研究和替代包装比较
  • 2012年中日韩分析化学研讨会成功召开
    2012年中日韩分析化学研讨会作为慕尼黑上海生化展的同期活动之一,于2012年10月16日隆重召开,会议围绕着促进分析化学研究的主题,邀请了中国,日本和韩国的近三十位专家学者做报告,吸引了200多位专业人士到会,仪器信息网作为支持媒体也参加了此次会议。  会议开幕式上,清华大学化学系林金明教授,日本东京理工大学Hiroshi Nakamura教授,韩国首尔女子大学Dong-Sun Lee教授分别代表中日韩三国分析化学学者致辞。清华大学化学系林金明教授日本东京理工大学Hiroshi Nakamura教授韩国首尔女子大学Dong-Sun Lee教授  简短的开幕式后是大会学术报告部分,中科院化学所陈义研究员作了题为“具有生物亲和性的碳水化合物点芯片的合成”的学术报告 首尔女子大学Dong-Sun Lee教授介绍了“利用衣壳聚乙二醇和聚二甲基硅氧烷微量提取挥发性芳香化合物的方法”。岛津全球应用技术部的Yuki Hashi博士介绍了“利用HPLC和LC-MS发展提高分析效率的在线样品预处理系统”。中山大学李攻科教授介绍了研究成果“一步法样品制备新技术:用于植物中农药残留的痕量分析”。韩国南洋乳业公司Janghyuk AHN博士介绍了“通过简单样品制备和LC-MS/MS测定牛奶中的维生素”。此外还有许多专家学者分别介绍了各自的研究成果和并在会上和会后进行了深入的交流探讨。  通过这次学术交流活动,使分析化学界的科研人员获得了更加创新的研究思想,促进了分析化学研究的共同发展。中科院化学所陈义研究员首尔女子大学Dong-Sun Lee教授岛津全球应用技术部Yuki Hashi博士中山大学的李攻科教授韩国南洋乳业公司Janghyuk AHN博士
  • 线上课堂丨食品营养成分及品质分析解决方案
    线上课堂丨食品营养成分及品质分析解决方案俗话说,民以食为天。食物是人类赖以生存的物质基础。食品科学与食品工业的发展,极大地丰富了食品的种类和数量,人们对食品的需求也已经由简单的吃得饱逐渐转变为吃的好,也更注重营养。食品营养成分包括蛋白质、脂肪、碳水化合物、膳食纤维、微量元素等,也是评价食品品质重要的指标,因此食品营养成分含量检测成为食品研究领域的重要内容。随着工业技术水平的提高,测试手段也得到了快速的发展,各类测试仪器也应运而生。意大利VELP就是一家集设计、开发、生产和应用的仪器厂商,秉承节能环保的TEMS设计理念,贯彻自动化和智能化的发展方向,为食品、农产品相关企业、科研院校以及检测机构等提供食品分析的专业解决方案。我公司与意大利VELP公司已经合作十多年,一直作为意大利VELP公司在中国区营销合作伙伴和中国Preferred技术服务中心,目前已经得到行业里客户的普遍认可。本次讲座将详细介绍意大利VELP产品类型、特点以及在实际中的应用。欢迎各位老师扫码报名!!!
  • 五位院士领衔,2023年农产品加工及贮藏工程分会学术年会成功召开!
    图|中国农业大学食品科学与营养工程学院仪器信息网讯 5位院士领衔,100多位来自全国各地食品与农业工程领域专家做学术报告,130余企业、高校与科研单位,600位左右的科研工作者参加,浓厚的学术交流氛围……12月8-10日,中国农业工程学会农产品加工及贮藏工程分会(以下简称“分会”)学术年会在北京举办,本次会议由中国农业大学食品科学与营养工程学院和北京食品学会承办。开幕式上,分会理事长江正强教授、中国农业工程学会理事长兼农业部规划设计研究院院长张辉研究员、中国农业大学钱学军副校长、农业农村部乡村产业发展司二级巡视员陈建光、国家自然基金委化学学部五处处长张国俊分别致辞。2023年,也是我国著名农业、食品工程科学家、教育家,中国农业大学李里特教授逝世10周年,李先生曾任分会理事长多年,应多家协办单位要求,现场播放了纪念李先生生平的视频,结束后现场响起热烈的掌声,相信为祖国三农事业鞠躬尽瘁的李先生永远活在食品人的心中。接下来,五位院士分别作了主题报告。庞国芳院士中国工程院庞国芳院士分享内容的主题是:食品安全农药残留检测技术标准化研究30多年。庞院士将这三十年分为三个阶段:第一阶段(1985-1998年)研究气相色谱法,立足外贸、服务全国、对接国际AOAC(美国国际公职分析化学家联合会),1992年助力中国糙米出口日本。第二阶段(1997-2003年)研究液相色谱法,标志性成果是建立了2项国际AOAC标准,使秦唐地区肉鸡“飞”法向海外,打入国际市场。第三阶段(2001-2004)研究碳同位素质谱法,第四阶段和第五阶段分别为研究低分辨质谱和高分辨质谱。对中国蜂产品在美国、欧盟、日本世界三大主销市场面临的蜂蜜真假鉴别和农兽药残留技术壁垒进行了系统研究,开发了一系列新的检测技术,助力提升我国蜂产品的质量和行业的技术进步。谢剑平院士中国工程院谢剑平院士分享内容的主题是:风味科学——内涵、前沿与挑战。谢院士认为风味是人类感官效应和感知世界的重要组成部分,风味科学研究是考察人与自然互作关系的独特视角。风味科学的研究包含五个领域:风味神经效应与调控、风味工程技术与应用、风味特征解码与重构、风味感知基因与表达、风味识别转导与解析。通过报告我们可知风味脑科学正处于世界科技的前沿,人体的脑电图(EEG)、脑磁图(MEG)、正电子断层扫描(PET)、功能性磁共振成像(fMRI)有助于研究风味脑科学。谢院士还分享了国际风味产业巨头正在进行数字化转型,风味领域数字化产品风味设计转型速度正在加快。然而,风味化学与风味脑科学研究仍然存在诸多挑战。谢明勇院士中国工程院谢明勇院士分享内容的主题是:植物基乳酸菌发酵食品研发与产业化。因为慢性病是我国国民健康的头号杀手,慢性病的发展形势非常严峻,谢明勇院士认为一些具有降低慢病患病风险功效的新型植物性的发酵食品应该是未来的一个蓝海。植物性发酵食物在抗病毒感染,抗幽门螺旋杆菌感染,改善便秘、肠炎、尿酸高,减脂,调节三高等方面都有作用,谢院士团队研发的产品已有部分面市。单杨院士中国工程院单杨院士分享内容的主题是:饮食与健康。饮食中添加更多豆类、全谷物、坚果,更少红肉和加工肉类,可以延长寿命,即使是60岁和80岁才开始改变饮食的老年人,寿命也可延长8年或者3.4年。果蔬中的植物化学物质具有抗微生物、抗氧化、抗血栓、调节免疫、抑制炎症过程、影响血压、降低胆固醇、调节血糖、促进消化等功能。饥饿感也会延长寿命,饥饿会促使大脑表观基因组发生变化,影响基因表达,从而影响摄食行为及延缓衰老。金征宇院士中国工程院金征宇院士分享内容的主题是:碳水化合物与人体健康。金院士分享了碳水化合物的生理功能,指出辟谷和禁食5-7天甚至更长时间会给肌肉和心脏功能造成不可逆损伤的科学原因。近期有一项前瞻性队列研究表明,“生酮饮食”(高脂低碳水化合物饮食)与死亡率增加有关。摄入碳水化合物有助于增强肝细胞的再生,促进肝脏代谢,具有保护肝脏的作用。而且,膳食中补充抗性淀粉,可以通过调节肠道菌群及其代谢物,降低肝内脂质沉积和减轻炎症,有助于改善非酒精性脂肪肝。这次学术会议还设置了五个分论坛:分论坛一、食品加工技术与装备,分论坛二、食品营养与功能食品,分论坛三、食品质量安全与控制技术,分论坛四、食品冷链物流与品质检测,分论坛五、食品酿造与生物技术。(后续会陆续报道)墙报展区附:中国农业工程学会农产品加工及贮藏工程分会学术年会简介中国农业工程学会于1979年在杭州市正式成立,是中国科学技术协会所属的全国一级学会,是国际农业工程学会(CIGR)的国家会员。作为学术性、综合性和社会公益性科技社团,中国农业工程学会通过组织各项活动广泛团结、组织农业工程科技工作者,促进农业工程科技创新与繁荣发展,加强农业工程的普及与推广,加快科技人才的成长和提高,成为党和政府联系农业工程科技工作者的桥梁和纽带,是国家发展农业和农业工程科学技术事业的参谋和助手,是促进农业和农村经济发展的重要 社会力量。农产品加工及贮藏工程分会学术年会自2006年开始举办。至今全国已有十几所高校的食品学院承办该学术年会。
  • 全球首台红外微定量分析仪Direct Detect问世
    - Bradford、BCA太过繁琐? UV测蛋白结果不准确?- 全球第一台红外微定量分析仪Direct Detect - 2ul样本、1分钟检测、无需染色,准确读取蛋白定量结果Direct DetectTM全球第一台基于红外原理的生物分子微定量分析系统,只需要2ul样本及空白对照(Blank),就可以直接获取结果。无需样品处理,无需每次制作标准曲线,无需比色杯、没有废液。Direct DetectTM系统直接基于酰胺区在红外吸收光谱分析,无需考虑氨基酸的组成、染料性质、氧化还原电位这些因素,避免了比色法分析的缺陷,可以获得更加准确的结果。蛋白、脂肪、碳水化合物以及核酸都有可被区分的特定红外吸收光谱,所以您可以很轻松实现复杂混合物各种组分浓度的准确分析。浏览Direct Detect中文产品手册更多详情,请访问:www.millipore.com/directdetect 产品技术支持热线:400-889-1988Email: china.marketing.online@merckgroup.com
  • 使用ASTM方法对碳氢化合物的单一组分分析(DHA)
    在石油化工行业的各种分析实验室里,为了对一个特定的样品里的单个组分进行分析和鉴定以及对碳氢化合物的混合物进行表征,通常会用到碳氢化合物的单一组分分析(DHA)这种分离技术。多组分分析主要是检测汽油中的主体组分:石蜡,烯烃,萘和芳香族化合物和其他分子中碳原子数介于1到13的的可燃烧化合物,以确定汽油样品的总体质量。我们在这篇文章里所用到的氢气发生器设备是 Peak Precision 500 Hydrogen Trace Generator.对汽油中包含的易燃烧组分进行分析对于汽油的质量控制十分有必要。由于汽油样品的成分复杂,各组分的特性十分接近,为了将各个组分分离开,通常需要很长的色谱柱(100米)。碳氢化合物的单一组分分析的时候,多种方法通常会被用到,依据这些方法要用到的柱箱升温速率和色谱柱长度不同而将这些方法分开。这些方法各有利弊,有些方法对低沸点化合物的响应灵敏,分辨率高;有些方法对分子量大,出峰很晚的化合物有很好的分辨率。由于分析方法的性质复杂,再加上使用很长的色谱柱,在用氦气作载气的时候,气相色谱的测试时间往往会超过两个小时。但是,用氢气来做载气可以极大的提高测试的速度,因为氢气的高线性速率让它做载气时十分高效。这对石油分析实验室而言,无疑是一个十分吸引人的优点,因为样品的高通量意味着实验室的赢利水平提升。用氢气来做载气可加快气相色谱的分析速率,再加上当前氦气的供应紧张,价格上涨,这意味着那些从氦气切换到氢气做载气的气相色谱实验室不仅赢利水平会增加,同时分析的结果可以符合行业的标准。这篇应用文献阐明用氦气作载气时,按照ASTM的标准检测方法D67291来分析汽油样品的结果和利用毕克科技的Precision氢气发生器Trace生产出来的氢气未经过过滤来做载气,按照ASTM标准检测方法D67291 附录X2的汽油样品分析结果时的对比。通过对比,我们可以看到气相色谱跑样时间的减少,同时,对特定组分的分离效果保持不变。 结果与讨论对汽油进行碳氢化合物的单一组分分析显示:混合物中最后一个洗脱出来的化合物-正十五烷,当用氢气来替代氦气做载气时,它的出峰时间从125分钟减少到74分钟。(如图1所示)尽管分析的时间不同,但是,对汽油中的主要组分的分析(石蜡,烯烃,萘和芳香族化合物)显示使用氢气和氦气作载气时,测量出来的主要组分含量差异不明显。尽管用氢气来做载气时需要更高的气体流速,但是,在大多数情况下混合物的各组分分离的效果依旧很不错,甚至在某些时候,分离的效果得到了改善。对1-甲基环戊烯和苯的分离和检测,在汽油样品分析中有严格的规定,因为苯的碎片物质的分析十分重要。用氢气做载气的时候,尽管该有机物的洗脱时间变短了,但是,气相色谱对此有机物的分离效果却提高了。(如图2所示)对于甲苯和2,3,3-三甲基戊烷的分离,在用氦气作载气时可以实现,用氢气做载气时,这两个物质同时出峰(如图3所示)用氢气做载气时,若要将这两种物质进行分离,需对方法进行改进。用氢气或氦气作载气的时候,气相色谱对十三烷和1-甲基萘的分离效果都很好,不相上下。(如图4所示)碳氢化合物的单一组分分析结果显示,利用氢气做载气时,按照ASTM标准方法 D6729 附录X2的方法来进行汽油样品的分析既可以极大地减少分析的时间,同时,对特定关键组分的分离效果和分辨率依旧十分理想。表1 指定的ASTM标准检测方法在装有100米长毛细色谱柱高分辨率气相色谱仪的协助下,可以确定发动机燃料中易燃物的单一组分的含量。(ASTM 国际2002) 表2 对汽油中主要组分的定量分析及结果图1 利用氦气和氢气分别做载气时,对汽油样品进行碳氢化合物单一组分分析时的气相色谱图图2 利用氢气和氦气分别做载气时,对1-甲基环戊烯和苯的分离效果对比图3 利用氢气和氦气分别做载气时,对甲苯和2,3,3-三甲基戊烷的分离效果对比图4 利用氢气和氦气分别做载气时,对十三烷和1-甲基萘的分离效果对比 参考1. 指定的D6729-01标准检测方法需要用到装有100米长毛细色谱柱高分辨率的气相色谱仪,来确定发动机燃料中的易燃物的单一组分。 ASTM国际2002.2. 指定D6729-01附录X2,用氢气来做载气时,碳氢化合物的分析数据。ASTM国际2004
  • 总有机碳TOC分析仪对挥发性化合物的回收率
    1、挑战总有机碳(TOC,Total Organic Carbon)分析技术能够有效测量样品中的杂质,提供有机污染物的简明、非专属、全面的测量结果,为用户提供宝贵的工艺监测数据。准确地检测和量化低TOC浓度,对工艺控制、产品质量、资产保护来说至关重要。有机物的污染会影响生产工艺、污染制成品,导致整个产品批次不合格,甚至损坏生产设备。有机污染物的来源之一是挥发性化合物。挥发性和半挥发性化合物常来源于清洁剂或冷却剂。挥发性污染物也可能来自源水和化学分解产物。能够有效检测挥发性和半挥发性化合物,对于城市用水和工业用水处理工艺的全面检漏来说非常关键,我们可以用TOC分析技术来完成这项检测任务。先将有机物氧化成CO2,然后检测CO2的含量,从而完成TOC分析。有些常用的TOC分析方法会在过程中添加酸剂并进行气体吹扫。向液体样品中添加酸剂降低其pH值,可以确保将所有以碳酸根或碳酸氢根形式存在的碳转化为溶解CO2。气体吹扫就是使气泡通过液体样品,去除样品中的其它溶解气体或挥发性液体的过程。有些分析方法很难有效检测挥发性化合物,这是因为挥发性化合物会消失在气体吹扫过程中,或者需要用特殊方法才能检测到。这些局限性会造成监测数据不准确,从而导致应对决策延误甚至错误。本文比较了以下三种TOC氧化法对挥发性化合物的回收效率:高温催化燃烧法两级先进氧化法紫外-过硫酸盐氧化和膜检测法(此技术用于 Sievers M系列TOC分析仪)2、实验在实验中,我们用上述几种TOC氧化方法对不同的挥发性化合物进行测试,以了解这些氧化方法的分析性能。我们测量了TOC浓度分别为0.25 ppm、1.0 ppm、5.0 ppm的标准品的TOC值。本次研究根据以下化合物特性,选用4种化合物【丙酮、甲醇、甲乙酮(MEK)、异丙醇(IPA)/2-丙醇】进行测试:具有挥发性或半挥发性是水系统中常见的污染物可能影响制成品质量,或长期损坏生产设备催化燃烧(CC,Catalytic Combustion)式分析仪在本次研究中使用的催化燃烧式分析仪用铂催化剂和高温燃烧法进行TOC氧化,然后进行非色散红外(NDIR,Non-Dispersive Infrared)检测。在TOC或POC(Purgeable Organic Carbon,可吹除有机碳)模式下运行分析仪来分析挥发性化合物,工作流程见图1和图2。POC模式是分析仪的可选配置,不在本次研究中讨论。图1:催化燃烧式分析仪的NPOC(Non-Purgeable Organic Carbon,不可吹除有机碳)模式图2:催化燃烧式分析仪的TOC模式图1和图2是催化燃烧式分析仪的两种常见操作模式。图1显示,在NPOC模式的吹扫过程中,IC(Inorganic Carbon,无机碳)和POC被去除,因而不包含在测量结果中。图2显示了TOC分析的两步过程。在TC测量中,由于未吹扫就进行氧化,TC(Total Carbon,总碳)测量结果中包括了POC。在IC测量中,样品和酸剂经过吹扫,产生的CO2被载气送到NDIR部分进行测量。两级先进氧化(TSAO,Two-Staged Advanced Oxidation)式分析仪在本次研究中使用的两级先进氧化式分析仪用氢氧化钠和臭氧(能够产生羟基自由基)进行TOC氧化,然后进行NDIR检测 。在TC或VOC(Volatile Organic Carbon,挥发性有机碳)模式下操作分析仪来分析挥发性化合物,TC模式和VOC模式均为分析仪的可选配置。本次研究不评估TC模式。两级先进氧化式分析仪的VOC模式类似于催化燃烧式分析仪的POC模式,这两个术语可以互换使用。图3是两级先进氧化式分析仪的标准操作模式【TIC(Total Inorganic Carbon,总无机碳)+TOC模式】。在这两步操作模式下,在NDIR测量之前先进行IC和POC吹扫。由于未进行氧化,POC不包含在测量结果中。此模式的两个步骤使用同一样品,TOC代表样品中的NPOC。*注意:在 IC 测量步骤中,已通过吹扫去除了样品中的 POC 和 IC。图3:两级先进氧化式分析仪的TIC+TOC模式图4是两级先进氧化式分析仪的附加TC模式。在此模式下,用氢氧化钠和臭氧来预氧化样品,以便在吹扫之前氧化全部POC。分析仪的VOC模式是TC分析和TIC+TOC分析的结合。计算实测的“TC”与实测的“TIC和NPOC之和”之间的差值,即可得到VOC。VOC=TC–(TIC+NPOC)。图4:两级先进氧化式分析仪的TC模式Sievers M系列分析仪Sievers M系列TOC分析仪用紫外-过硫酸盐进行TOC氧化,然后进行膜电导(MC,Membrane Conductimetric)检测。分析仪可以在普通操作模式下检测挥发性有机物。图5是M系列分析仪所采用的TOC分析方法的流程。图5:M系列分析仪的标准操作图5显示了Sievers M系列TOC分析仪的普通分析模式。样品在被加入酸剂后,分流到分析仪中相互独立的TC通道和IC通道中。TC通道中的样品被加入氧化剂,然后在紫外线照射下,样品中的有机物被氧化。IC通道中的样品则跳过上述过程。各通道中的样品通过CO2渗透膜,将CO2分离开。TOC等于TC减去IC。如果需要事先去除IC以获得更准确的TOC结果,可以使用无机碳去除器(ICR,Inorganic Carbon Remover),而无需进行吹扫。建议当IC高10倍的TOC时使用无机碳去除器。IC通道中的样品被送进无机碳去除器,通过一圈CO2渗透管,即可在不使用载气的情况下去除IC。此方法不会在去除IC的过程中损失挥发性碳,因而能准确测量TOC。同催化燃烧工艺和两级先进氧化工艺相反,M系列分析仪内的样品不接触空气,这就能够确保在受控实验室环境中测得的挥发性有机物的结果真实反应了在线设置中的实际工艺样品的TOC。3、结果图6-9显示了上述三种TOC氧化技术的挥发性化合物回收率的测量数据。M系列分析仪在关闭无机碳去除器的普通分析模式下运行,催化燃烧式分析仪在TOC模式下运行,两级先进氧化式分析仪在VOC模式下运行。图 6:丙酮的回收率CC=催化燃烧TSAO=两级先进氧化图 7:甲醇的回收率图 8:甲乙酮(MEK,也称为丁酮)的回收率图 9:异丙醇(IPA)的回收率图6-9显示了在本次研究中评估的4种化合物的回收率。各图中的红线代表100%回收率。4、结论本次研究使用的所有分析仪都在正确的操作模式下成功完成了对化合物的分析,但Sievers M系列分析仪是唯一在标准操作模式下并且在不用载气的情况下有效检测挥发性有机物的仪器。表1列出了所有化合物和所有分析浓度的挥发性有机物的平均回收率。表 1:本次研究中的所有化合物和分析浓度的挥发性有机物的平均回收率分析仪平均回收率M系列分析仪100.04%CC103.02%TSAO90.52%在本次研究中使用的催化燃烧式分析仪只能在TOC模式(或配置可选附件的POC模式)下检测挥发性化合物。但大多数用户所采用的标准操作是NPOC模式,该模式无法检测挥发性有机物。在本次研究中使用的两级先进氧化式分析仪只能在TC或VOC模式下检测挥发性有机物,但这两种模式都是可选配置。催化燃烧式分析仪和两级先进氧化式分析仪都需要用载气进行吹扫和NDIR检测。用载气进行吹扫时,会损失挥发性和半挥发性有机化合物。用载气进行NDIR检测时,要求进行精确的气液分离,这是因为水分会影响测量结果的准确性。Sievers M系列分析仪采用膜电导检测法来测量液体(而非气体)的CO2,能够避免上述缺点。为了应对工艺偏差或泄漏,用户必须能够有效地监测有机污染物(如挥发性化合物)。精准的监测结果帮助用户正确掌握工艺。Sievers M系列分析仪能够在标准操作模式下准确测量挥发性化合物的TOC,为用户提供了理想的监测解决方案。紫外-过硫酸盐氧化结合膜电导检测技术,无需进行吹扫和使用载气,避免了挥发性化合物的损失。在低污染的情况下快速识别工艺泄漏和生产效率过低的原因,可以有效保护生产设备和制成品质量,帮助用户及时做出应对决策,从而为用户节省大量的时间和资金。Sievers M系列分析仪的检测限(LOD,Limit of Detection)和定量限(LOQ,Limit of Quantification)最低,对低浓度挥发性化合物的分析结果最准确,能够满足用户的一切监测需求。Sievers M系列TOC分析仪具有精准的分析性能、良好的整体易用性、无需另行购买可选附件,是检测挥发性有机化合物的理想工具。◆ ◆ ◆联系我们,了解更多!
  • 绿色智能装备改造将推动生物发酵技术升级
    3月初,“2024中国生物发酵产业技术大会”在山东济南隆重召开。本次大会由中国生物发酵产业协会主办,华熙生物科技股份有限公司协办。中国生物发酵产业协会理事长于学军主持 中国轻工业联合会会长张崇和在致辞中说,2023年,生物发酵行业通过中国轻工业联合会科技成果鉴定9项、获得科学技术一等奖2项,完成了蛋白酶、纤维素酶等8项酶制剂的筛选方法研究,建立了酶制剂特性评价关键技术,实现了药用氨基酸培养基国产替代。生物发酵行业科技水平的大幅提升,为保证行业产业链供应链的韧性和安全贡献了重要力量。他从三个方面对我国生物发酵行业的发展提出了要求:一是补短板,推动行业创新发展。去年11月29日发布的《轻工业共性关键技术目录》提出了 55项急需攻克和18项急需推广应用的共性关键技术,其中涉及食品行业19项。生物发酵行业要加大研发经费投入,培育科技创新平台,集聚产学研用资源,围绕基因改造、菌种构建、高效酶制剂、非粮生物质利用、智能化生物反应器、分离纯化装备等短板,开展联合攻关,突破技术瓶颈,加强成果转化,不断推动行业创新发展。二是固长板,夯实行业竞争优势。2023年,工信部等11个部门发布了《培育传统优势食品产区和地方特色食品产业指导意见》。《意见》提出,要打造“百亿龙头、千亿集群、万亿产业”的地方食品产业集群。生物发酵行业要强化生物合成技术,改造优化菌种,提升原料利用率,巩固氨基酸、有机酸、淀粉糖产量居世界第一的优势产业;要加大绿色智能装备改造力度,减污降碳,提质增效,不断提升行业创新能力,进一步形成和夯实行业竞争新优势。三是铸新板,布局行业未来发展。习近平总书记指出,要积极培育未来产业,加快形成新质生产力,增强发展新动能。生物发酵行业要加强前瞻谋划,聚焦前沿科技,利用合成生物技术,在未来食品、微生物替代蛋白、营养化学品、微生态制剂、医药中间体、生物材料等方面,加强技术创新,强化研发应用,不断抢占行业发展制高点。 中国轻工业联合会党委书记、会长张崇和 济南市商务局王志刚副局长在致辞中说,本次大会搭建了生物发酵产业合作交流平台,是对济南生物制造产业发展的大力支持。济南市在促进生物经济发展、推动我国生物制造产业由大变强等方面提供了较适宜的基础和环境。近年来,济南出台了一系列产业政策,鼓励和扶持生物产业的发展,并把“生物医药与大健康”列为济南市四大支柱产业之一,这也为生物发酵产业在济南发展营造了得天独厚的发展环境。真诚希望社会各界支持济南生物发酵产业发展,为中国生物发酵产业发展贡献济南力量。 济南市商务局王志刚副局长 中国工程院院士陈坚在《生物制造:前沿技术实现新质生产力》报告中指出,生物经济是第四次产业浪潮,生物制造是实现生物经济的主要途径,而发酵产业是生物制造的主要部分。目前,生物制造存在升级次数少、提高速度慢、产业链短、产品覆盖面少等问题,需要加快产品的更新迭代速度。合成生物学(技术)是生物制造的核心,其应用研究从高附加值向大宗产品(淀粉、蛋白等食品)转变。高通量筛选技术、高效微生物细胞工厂设计和构建可实现微生物菌株的快速迭代升级。而精密发酵和智能化制造,譬如连续反应的微纳反应器则可实现制造过程的快速迭代升级。他总结说,我们要以前沿技术实现发酵产业过程与产品的快速迭代升级,贯彻落实“时不我待推进科技自立自强 只争朝夕突破“卡脖子”,解决技术“卡点”、产业“痛点”、体制机制“难点”,畅通创新链、产业链、供应链的利益链条,实现重要产业“自主可控”、重点技术“并跑领跑” 、重大产品“特色优势”。 中国工程院院士陈坚 中国工程院院士吴清平在《重要健康微生物菌种定向选育及功能产品研发》报告中指出,微生物资源的研发和利用是推动生命科学领域发展的重要组成部分,是支撑生物经济发展和应对全球挑战的重要基础。随着技术的不断发展,微生物健康产品已得到广泛开发,在肠道菌群、平衡营养等方面发挥重要的作用。鉴于微生物产业在农产品安全、食品安全、环境保护、经济发展等方面的重要性,各国纷纷制定战略措施,推动微生物领域的研发。自2004年以来,《Nature》、《Science》等顶级学术刊物报道了大量有关肠道微生物与疾病和健康关系的研究论文,包括肥胖、糖尿病、癌症、自闭症等在内的超过50种疾病,都与肠道微生物失调有关系,其因果关系也在逐步阐明中。因此,人体微生物,特别是肠道微生物在未来医疗方面的应用广阔。他还对基于组学技术的新功能安全性评价方法、健康功能微生物科学大数据库构建功能基因勘探和新制剂合成创制进行了详细阐述。 中国工程院院士吴清平 中国工程院院士黄和在《功能性优质生物制造的现状与发展趋势》报告中指出,油脂健康是人类膳食中的“关键”。油脂是重要的能量来源,具有维护机体的心血管健康、缓解炎症、调节胆固醇作用。然而,不健康的油脂摄入是疾病发生和死亡的最主要危险因素。作为油脂消耗大国,我国是不健康饮食“重灾区”。然而,功能性油脂植物来源面临优良品种选育周期长、分子调控机制不清晰、基因编辑技术不成熟等挑战,未来需要借助机械化生产缩短优良品种选育周期,同时借助多组学分析技术进行大数据关联分析以及开发基因组编辑技术。本团队进行了长达 20年的DHA生物制造研究,从源头菌种挖掘、基因组解析、精准调控到工业化集成,实现了DHA的智能产业化。 中国工程院院士黄和中国工程院院士金征宇的《碳水化合物与人体健康》报告,对碳水化合物的生理功能、功能性碳水化合物(膳食纤维、淀粉基膳食纤维、抗性淀粉、抗性糊精等)、甜味剂的感知与健康、碳水化合物与健康饮食的关系进行了详细的分析和阐述。他指出,碳水化合物是人类最重要的供能物质,碳水化合物摄入与人体健康密切相关,碳水饮食是国民营养关注的焦点,碳水化合物饮食引发的相关健康问题已成为社会关注焦点。碳水化合物结构与功能调控一直是国际研究热点,近年来碳水化合物在结构解析、人工合成、营养调控等领域不断取得新突破。中国工程院院士金征宇大会同期还召开了2024合成生物学与生物制造论坛、2024年生物发酵美妆原料创新与应用论坛、生物发酵产业高质量知识产权保护论坛。
  • L-8900高速全自动氨基酸分析仪检测火腿和香肠中的游离氨基酸
    火腿和香肠含有供给人体需要的蛋白质、脂肪、碳水化合物及各种矿物质和维生素等营养,还具有吸收率高、适口性好、饱腹性强等优点,适合加工成多种佳肴。  为了考察火腿和香肠中蛋白的含量,介绍火腿和香肠中的游离氨基酸的检测。http://www.instrument.com.cn/netshow/SH100322/s243940.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」
    原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼郭藤 史碧云 高立红原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 低聚糖春节刚刚过去,忙碌了一年的你,放假在家面对各种美食糖果是否自控力显得不够了?在工作和生活中我们时常会看到“寡糖”或者“低聚糖”这个词,加了低聚糖的饮品、食品,牛奶本身也含有非常多种低聚糖,营养师给出的饮食指南中常常提到用富含功能性低聚糖的食物代替蔗糖的建议,许多保健品中也宣称添加了低聚糖,生病去医院也会经常输葡萄糖,那么,今天我们就了解一下低聚糖吧。寡糖(Oligosaccharide),又称低聚糖,为2-10个单糖分子通过糖苷键聚合而成的碳水化合物。低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域,因此糖类化合物的分离分析是糖学研究的热点之一,同时具有很大的挑战性,主要是由于糖类化合物结构的“微观不均一性”,存在大量的位置异构体和差向异构体,使其分离极其困难。由于寡糖分子的极性非常大,在很多类型的色谱柱上,保留表现都不是很理想,色谱峰形差强人意,尤其寡糖有非常多同分异构体存,难以实现较好分离。今天我们就给大家介绍一套非常适合寡糖的分析方法和流程: 基于目标物的化学特征可知,离子色谱对糖类物质很好的保留和分离效果,国内外相关文献报道已有很多,一些糖测定标准方法也是使用离子色谱法,结合质谱具有高灵敏度、高通量和高选择性等优势,将离子色谱与质谱联用,二者强强联合,可以解决寡糖等强极性化合物分析诸多难题,目前尚属于较新的应用技术,本实验建立了基于ICS 5000+-TSQ Altis分析不同聚合度寡糖样本的方法和流程,并且取得了非常好的结果,该方案可一次进样同时检测1~10不同聚合度的寡糖,线性范围跨越5个数量级,回归曲线的可决系数(R2)达到0.9999,并且有you秀的重复性,相关传统方法具有不可比拟的优势,是一种更可靠、前沿的分析方法。图1. ICS-5000+离子色谱-TSQ Altis三重四极杆质谱仪联用示意图下面,我们就以某样品为例展示寡糖的检测结果,该样品为不同聚合度寡糖混合物,M1/G1~M10/G10代表聚合度为1~10:图2.聚合度1~10寡糖样本离子流图(点击查看大图) 表1. M1/G1~M10/G10寡糖重复进样5次的RSD图3. 代表性化合物(M1/G1)的标准曲线及回归方程(点击查看大图)总结看完之后是不是对ICMS在寡糖研究中的表现十分惊叹呢?赶快扫码获得应用笔记,使用起来吧!糖类是一类结构复杂的生物分子,它不仅是生物体储存和释放能量的关键物质,更在生理和病理过程中扮演重要的角色,对于更多其它单糖或者低聚糖以及它们在生物样本中的检测,飞飞也可以帮你实现,精彩下期继续哦~扫二维码获得应用笔记
  • 仕富梅发布SERVOTOUGH激光气体分析仪系列产品
    2009-9-11,中国,上海 - 全球气体分析仪领先供应商仕富梅近期发布了SERVOTOUGH系列激光气体分析仪,该系列采用最新的抽取和直装式技术,性能卓著,适用于现场连续监测。  全球气体分析仪领先供应商仕富梅近期发布了SERVOTOUGH系列激光气体分析仪,该系列采用最新的抽取和直装式技术,性能卓著,适用于现场连续监测。  SERVOTOUGH激光气体分析仪是首款采用可调谐二极管激光吸收光谱技术的产品,对仕富梅世界领先的顺磁、氧化锆与红外技术进行了有益的补充。SERVOTOUGH 在仕富梅坚实耐用的设计中融入了NEO的精密技术,为极端或恶劣环境的现场测量提供了最佳解决方案。  激光系列产品可以检测多种气体,包括O2, HCl, HF, NH3, CO, CO2, H2O, H2S, HCN, NO, N2O, CH4及其它碳水化合物。响应快速,性能稳定可靠,且无需活动部件和消耗型部件,最大程度地降低了取样调节的需求,广泛适用于排放控制处理及燃烧控制。  因此,SERVOTOUGH激光分析仪适用于各种工业应用,如化学与石化处理,钢铁、铝及其他非有色金属加工,发电和垃圾焚烧。其典型应用为洗涤及减污工厂的排放控制系统,锅炉或垃圾焚烧炉的燃烧控制系统及氮氧化物催化剂厂的滑移控制。  &ldquo SERVOTOUGH激光系列产品意味着我们与NEO的伙伴关系迈出了第一步,这是一款极为重要的产品,它确保了我们可为全球市场提供各类完整的气体分析解决方案。&rdquo 仕富梅总经理Chris Cottrell说道。
  • 仕富梅发布SERVOTOUGH系列激光气体分析仪
    全球气体分析仪领先供应商仕富梅近期发布了SERVOTOUGH系列激光气体分析仪,该系列采用最新的抽取和直装式技术,性能卓著,适用于现场连续监测。  全球气体分析仪领先供应商仕富梅近期发布了SERVOTOUGH系列激光气体分析仪,该系列采用最新的抽取和直装式技术,性能卓著,适用于现场连续监测。  SERVOTOUGH激光气体分析仪是仕富梅自近期与Norsk Elektro Optikk(NEO)签订战略合作合同以来,首款采用NEO可调谐二极管激光吸收光谱技术的产品,对仕富梅世界领先的顺磁、氧化锆与红外技术进行了有益的补充。SERVOTOUGH 在仕富梅坚实耐用的设计中融入了NEO的精密技术,为极端或恶劣环境的现场测量提供了最佳解决方案。  激光系列产品可以检测多种气体,包括O2, HCl, HF, NH3, CO, CO2, H2O, H2S, HCN, NO, N2O, CH4及其它碳水化合物。响应快速,性能稳定可靠,且无需活动部件和消耗型部件,最大程度地降低了取样调节的需求,广泛适用于排放控制处理及燃烧控制。  因此,SERVOTOUGH激光分析仪适用于各种工业应用,如化学与石化处理,钢铁、铝及其他非有色金属加工,发电和垃圾焚烧。其典型应用为洗涤及减污工厂的排放控制系统,锅炉或垃圾焚烧炉的燃烧控制系统及氮氧化物催化剂厂的滑移控制。  “SERVOTOUGH激光系列产品意味着我们与NEO的伙伴关系迈出了第一步,这是一款极为重要的产品,它确保了我们可为全球市场提供各类完整的气体分析解决方案。”仕富梅总经理Chris Cottrell说道。
  • 婴幼儿配方奶粉新国标亮相,中小乳企成本提高淘汰赛加速
    p  婴配粉配方注册制还未完成,新一轮政策调整已经在路上。/pp  近日,国家卫生健康委员会(下称“卫健委”)公布了婴配粉新的国家标准并公开征求意见,在业内看来,国家对奶粉品类调控态度坚决,新标准提高了婴配粉产品的门槛,中小乳企成本将面临提升,奶粉淘汰赛进程不断加速。/pp  记者对比卫健委公布的新国标征求意见稿和2010年的老国标发现,变化主要集中在2个方面,一方面新国标增加了对部分营养素的规定,将胆碱等营养素从可选项改为必选项,增加了乳清蛋白和乳糖的比例要求 另一方面,新国标对于维生素、烟酸、叶酸,以及钠、钾、铜等营养素的用量的上下限,进行了严格规定。/pp  其中最明显的改动,是对过去行业中诟病较多的,以价格较低的蔗糖和果糖代替乳糖的问题进行了明确规定。在过去的旧标准中,只有1段奶粉的标准中对碳水化合物有明确的规定,而新国标中,1、2段婴儿配方奶粉应首选乳糖,同时乳糖要占碳水化合物总量的90%及以上,不应使用果糖和蔗糖。而在三段奶粉上,对于乳基幼儿配方食品(无乳糖和低乳糖产品除外),乳糖占碳水化合物总量应大于或等于50%。/pp  三元股份总经理助理吴松航告诉第一财经记者,此前行业里添加白砂糖,有成本也有口感的考虑,添加白砂糖的奶粉口感更甜更容易被孩子接受,但使用白砂糖容易诱发龋齿,如果改成乳糖,每吨奶粉会增加1000元的成本。/pp  江西美庐乳业总裁周晓法也表示,新标准中,麦芽糊精的应用也会受到限制,因为其也属于碳水化合物,相比之下乳糖可以分解成半乳糖和葡萄糖,为婴儿成长提供营养,而麦芽糊精只是提供能量,但一般中小企业会考虑成本问题而添加麦芽糊精。/pp  在上述人士看来,假如新国标落地,调整的项目虽多,但对大型奶粉企业的成本影响并不是很大,因为本身国内外大型企业的主力产品大多都使用乳糖,而且微量元素调整产生的成本变化有限,但对中小品牌的成本带来压力。/pp  在业内看来,新国标标准的变化本身就是意在进一步提高婴幼儿配方奶粉标准,抬高行业门槛推动优胜劣汰。/pp  独立乳业分析师宋亮告诉记者,如果按照新公布的标准,国内的婴幼儿配方奶粉国标将比欧美标准更加严格,欧美标准中有那么多规定项目,而且用量标准大多只有下限没有上限,新国标征求意见稿显然更苛刻。/pp  此外,由于从2018年1月1日起,国内生产和销售的婴幼儿配方奶粉需要经过配方注册,截至8月公布的最新一批,国内共有1177个配方通过注册,尚有数百个品牌等待审批,而新国标一旦执行,奶粉企业将面临修改配方的问题。/pp  在业内看来,未来的配方修改将是系统性的调整,而非简单的增减营养素,这对于在配方注册中买到配方或注册资格,而侥幸过关的中小企业来说无疑是个难题。比如根据新国标征求意见稿,乳糖要占到碳水化合物的90%及以上,就要减少麦芽糊精的用量,以前中小企业利用麦芽糊精提升奶粉的溶解性,一旦减少就需要对配方进行整体调整。/pp  值得注意的是,尚未通过配方注册的奶粉品牌也面临尴尬。/pp  宋亮告诉第一财经记者,从目前情况来看,新国标最终确定生效时间可能会在年底,因此对于已经获得配方注册的产品有更多的时间进行调整,但目前还没有获得注册的品牌可能要根据新的标准重新修订再做准备,影响会更大一些。/pp  从年初奶粉新政落地之后,随着库存耗尽,大量的中小品牌和贴牌产品被迫出局,奶粉行业整体出现了强者恒强,集中度提升的趋势,今年上半年奶粉市场主要国内外品牌,包括惠氏、达能、雅培、健合集团、伊利、蒙牛、澳优等大型的奶粉业务都出现了较大幅度的增长。中小品牌则在渠道竞争和不断适应政策变化中举步维艰。/pp  中牧集团旗下纽瑞滋CEO刘宁告诉第一财经记者,目前新国标的征求意见稿更多还是在技术层面的征询,到真正实施还会有一个过渡期,但不难看出国家有关部门对于婴幼儿奶粉品类的要求愈加严格,看的出国家监管的决心的趋势。行业发展趋势来看,具备技术和研发能力和全产业链,从源头到配方都掌握在自己手里的大品牌和大企业则更有竞争力。/pp/p
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • “含糖饮料”没告诉你的秘密-糖度含量引领健康生活
    世界卫生组织(WHO)曾调查了23个国家人口的死亡原因,得出结论:嗜糖之害,甚于吸烟,长期食用含糖量高的食物会使人的寿命明显缩短,并提出了"戒糖"的口号。营养调查还发现,尽管吃糖可能并不直接导致糖尿病,但长期大量食用甜食会使胰岛素分泌过多、碳水化合物和脂肪代谢紊乱,引起人体内环境失调,进而促进多种慢性疾病。"微糖"含糖量惊人,相当于10颗方糖,一点也不"微"。检测也发现,民众以为含糖量应该是全糖三分之一的"微糖"饮料,其实含糖量都超过三分之二。 入伏以来,果汁饮料是老百姓的消暑必备首选。但是你知道吗?其实果汁饮料的主要成分就两种,分别是水和白砂糖。还含有柠檬酸、柠檬酸钠、维生素C、食用香精等辅料。这篇文章我们就好好谈谈糖的问题!你知道了这些还不够,你知道一瓶饮料中到底含多少糖吗?酒泉检验检疫局的工程师将用仪器检测的数据告诉你。 将ATATGO(爱拓)全自动折光仪RX-5000a和分析天平开机预热30分钟,将预包装饮料打开,倒入于高脚杯中,用吸管吸取一滴饮料放入仪器中进行检测。按下开始键,开始检测。三分钟以后,仪器响起了滴滴声,检测完成。检测结果会让你大吃一惊!!! 纳尼?饮料中的含糖量有11.1%,这么高啊! 然后工程师用电子天平称量了一颗硬糖的重量,一颗糖有多重呢?马上为您揭晓?如果1瓶饮料按照450毫升算的话,饮料中含有50.4克糖,相当于你短时间内喝掉了12.5块糖。当然各位也不需要紧张糖类是碳水化合物的一种,我们平时摄入的食物80%以上是碳水化合物,只要不暴饮暴食,相信对我们的健康没有影响。有小朋友的家长要引起注意啊! 本实验通俗易懂,灵感来源于日常生活的点点滴滴。还有一个好办法,想要知道饮料的含糖量,可以看饮料包装上面的营养成分表,营养成分表中的碳水化合物含量就可以简单明了的告诉你答案哦. 该饮料的营养成分 果汁含量大于等于5%甘肃酒泉检验检疫局综合实验室食品检测工程师史海军工作照(供稿:甘肃酒泉检验检疫局) 所以果汁饮料之外的其它茶饮料样品的糖度测量可以参考此操作进行。欲了解更多产品资讯,或有样品需要测试请联系ATAGO中国分公司:www.atago-china.com 020-38393021,竭诚为您服务。 ATAGO(爱拓)中国市场部(宣)
  • 低碳行动,拯救北极熊于一声“碳”息
    Lightway- 点亮未来 - 2020年7月20日,国际权威杂志《Nature Climate Change》上发表了一篇关于北极熊的研究报告《Fasting season length sets temporal limits for global polar bear persistence》,并迅速登上各大热搜头条。报告指出,全球气候变暖导致北极海冰消融,使得北极熊的生存环境遭到极大破坏,北极熊被迫前往海岸地区。而在那里,北极熊很难找到食物和哺育幼崽,这将使北极熊的数量大幅下降。在部分地区,北极熊已经陷入数量螺旋式下降的恶性循环。 全球气候变暖最主要的原因是温室效应的不断累积,大气中的二氧化碳等温室气体就像一层厚厚的玻璃,把地球变成了一个大暖房。除非人类采取更多措施应对气候变化,否则这一物种或将在2100年左右几乎消失。 光催化CO2还原 如何实现CO2的捕捉、储存和利用,以及如何降低地球大气中的碳含量,成为了全球科学家研究的焦点。光催化方法还原CO2,可以在比较温和的光照反应条件一步直接获得一氧化碳/碳氢化合物等化学品及燃料,具有极大的应用前景。 光反应量子产率(PQY)为光催化过程的评价及催化剂的研究提供了重要的参考指标,PQY越高,说明光反应对光子的利用率越高,催化剂的性能也越好。 Ru-Re超分子复合物光催化剂体系CO2还原反应 钌-铼(Ru-Re)超分子复合物是近年来研究比较热门的光催化剂,可催化太阳光照下CO2还原为CO的光化学反应。 图1. Ru-Re超分子复合物催化下光反应示意图 光反应量子产率测试 CO2还原过程的光反应量子产率使用岛津公司最新发布的Lightway PQY-01光反应评价系统进行测试。实验中照射光波长为470nm,强度为17 × 10-9爱因斯坦/秒。PQY-01测试得到吸收光谱及吸收的光子数。CO2还原反应生成的CO使用气相色谱仪进行定量。图2显示了CO生成量和吸收光子数相关的直线。直线的斜率即为反应的量子产率,计算得到CO生成的量子产率为40%。 图2. 一氧化碳生成量 vs 吸收光子数 中间体追踪 光反应中间体的追踪对于研究反应机理,开发高效的催化剂体系十分有用。PQY-01可以直接检测到在Ru-Re超分子复合物催化下二氧化碳还原反应的中间产物(图1)。从图3和图4可见,随着反应的进行,在550nm附近出现了一个新的吸收峰,此峰为光反应中间产物的吸收光谱。经过与文献报道的数据进行对比,确认中间产物为单电子还原产物,为Ru-Re超分子复合物的光电子转移反应所生成。 图3. Ru-Re超分子复合物光催化反应的光谱测量结果 图4 Ru-Re超分子复合物光催化剂反应的微分光谱结果 如果这类Ru-Re催化剂能够投入实际应用,那么就如同植物能通过光合作用把二氧化碳合成为淀粉和蔗糖等碳水化合物一样,人类就可以通过效法自然的人工光合成,缓解温室效应,应对未来能源危机。
  • 你知道制备型 HPLC 用户喜欢分析色谱的两个原因是什么吗?
    样品的大量制备在时间、资源和未知性潜在问题方面需要花费的的成本很高。这就是为什么在进行规模实验之前进行小试分析,例如选择合适的固定相和流动相,以此来实现效益最大化。对于那些需要进行制备型HPLC的用户来讲,在较小规模上筛选纯化参数的完美方式是采用分析型HPLC。今天,“小步”同学讲向您展示为什么这种技术是有利的,以及是如何实现分析型HPLC与制备型HPLC的转化。制备型 HPLC在之前的文章中“小步”同学向大家描述了如何使用薄层色谱 (TLC) 来筛选合适的分离条件。在那篇文章当中,TLC 可以被视为小试实验。但是,如果您计划使用制备型 HPLC 进行大规模纯化,那么分析色谱则会等效于 TLC,成为您进行下一步的有效工具。分析色谱有助于选择流动相和固定相,同时节省时间、成本并减少大规模制备过程中可能发生的潜在意外因素。这是实验者喜欢这种方式的一个很好的原因。是的,分析型 HPLC 需要全自动设备,而且设备成本较昂贵。但与 TLC 相比,分析色谱可以使用梯度进行,这对用户非常有益。C18 反相色谱柱可以帮助提高过程的成本效益。这是因为 C18 固定相在用有机溶剂洗涤后可以重复使用,以去除强保留的杂质等。相反,Silica正相色谱柱在洗脱之后不能重复使用。当您编辑分析色谱方法过程时,您应该根据制造商的建议选择样品浓度和流速。通常情况下,建议载样量为 1-10mg,流速则为 0.1-10ml/min。分析色谱的目的是在最短的时间内以最大的负载量实现目标化合物与其余杂质等基线分离。一旦您对分析结果感到满意,您可以考虑直接运用制备型 HPLC 进行大量制备了。用户喜欢分析色谱的另外一个原因是,可以借助一些公式直接将分析色谱的方法转移到制备色谱上。最简单的方法是保持分析柱填料的粒径、长度与制备柱相同。如果您能做到这一点,您可以使用以下公式来确定载样量(体积或浓度)、流速和直径:载样A = 载样B x(直径A/直径B)² x(长度A/长度B)流速A = 流速B x(直径A/直径B)²其中:A 代表制备柱当量;B 代表分析柱当量除此之外,您依然可以使用相同的梯度方法(溶剂和时间的比率)。下表为一个示例:并且,“小步”同学还建议您从小一些的制备型 HPLC 色谱柱开始,如果需要的话,在之后的实验中再升级到更大的尺寸。希望这篇文章可以帮助您成功完成制备型 HPLC 的样品纯化,从而避免更多的时间与资源的浪费!好了,今天“小步”同学就介绍到这里,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 《食品安全国家标准 预包装食品营养标签通则》(征求意见稿)主要修改内容
    1、范围增加了 “本标准适用于直接提供给消费者的预包装食品营养标签 。非直接提供给消费者的预包装食品和给消费者的预包装食品食品储运包装如需标示营养签应按本准实施”。2、术语和定义能量有标准中用于计算食品能量的供成分有四大类,其转换系数( kJ/g)包括: 白质17,脂肪37,碳水化合物17,膳食纤维8。考虑到食品样中各类成分的含量水平和检测必需性,略去了乙醇,有机酸醇,有机酸 ,糖醇类(包括 ,糖醇类(包括 ,糖醇类(包括,糖醇类(包括D-甘露糖醇、麦芽糖乳山梨、木糖醇糖醇)等单体成分。碳水化合物本标准给出不同条件下可采用的碳水化合物计算方法。即:当营养标签中标示膳食纤维时, 碳水化合物=100-水分-灰分-蛋白质-脂肪-膳食纤维;当营养标签中不标示膳食纤维时,碳水化合物=100-水分-灰分-蛋白质-脂肪 当食品中蛋白质、脂肪含量达到 0 界限值时,碳水化合物= 糖+淀粉 。糖 食品中单糖、双糖之和(不包含糖醇)。用于营养标签标示的糖特指食品中葡萄糖、果糖、蔗糖、麦芽糖的总和。 营养素参考值(NRV) 修订 1.NRV 适用 于 37 月龄以及以上人群食用的预包装食品营养标签。 2.说明了对 NRV 制定的依据3.增加了使用方式。份量 本标准中的预包装食品的份量参考值也是根据消费者一次性消费习惯制定,适用于营养成分表中用“份”标示食品营养成分含量值的食品,并由此给出了对每份食品质量或体积的参考建议值(以可食部计)。3、基本要求增加 3.7 进口预包装食品的营养标签标示内容应符合本标准的规定。4、强制标示内容增加强制标示内容,修订为:4.1 所有预包装食品营养标签强制标示的内容包括:能量、蛋白质、脂肪、饱和脂肪(或饱和脂肪酸)、碳水化合物、糖、钠的含量及其占营养素参考值百分比(NRV%)。 增加警示语:儿童青少年谨慎选择高脂高盐高糖食品。5、可选择标示内容增加可选择标示成分:增加 n-3 脂肪酸、ɑ-亚麻酸、EPA、 DHA“0”界限值和修约间隔 增加份量标示,明确了使用方法:按份标示预包装食品中能量和营养成分的含量时,每份食品的质量或体积可按类别参考附录 E 推荐的食品份量参考值。增加 5.5 其它补充信息,包括可以使用消费者熟悉的“油盐”替代脂肪和钠,用“卡”等替代“千焦”等说明。可以使用膳食指南宝塔图形和核心推荐,宣传合理膳食和三减。 6、营养成分的标示和表达方式6.4 营养成分含量标示值的确定,可以采用现行有效的国家标准方法测定获得,也可根据配方原料组成利用《中国食物成分表》及其他来源可信的数据计算获得。判定营养成分标示值准确性时,宜综合考虑确定标示值的方法。对表 1 中部分营养素的名称、表达单位、修约间隔和“0”界限值进行修订。 1.增加 n-3 多不饱和脂肪酸、α-亚麻酸、EPA、DHA 的表达单位、修约间隔及 “0”界限值; 2.糖和乳糖分别标示,且符合相应单位及“0”界限值; 3.维生素 A、维生素 E、维生素 B12、烟酸(烟酰胺)、锌大的修约间隔及“0” 界限值 对表 2 中能量及营养成分的允许误差进行修订。 食品的蛋白质,多不饱和及单不饱和脂肪(多不饱和及单不饱和脂肪酸),碳水化合物,乳糖,总的、可溶性或不溶性膳食纤维及其单体,维生素,矿物质(不包括钠),强化的其他营养成分的允许误差范围≥ 80 %标示值。 食品中的能量以及脂肪,饱和脂肪(饱和脂肪酸),反式脂肪酸,胆固醇,钠,糖的允许误差范围≤ 120 %标示值。7、豁免强制标示营养标签的预包装食品1.增加了豁免简单处理或清洗的单一生干制品。 2.删除对现制现售以及通过计量方式销售预包装食品的豁免 3.规定豁免“最大表面积≤40cm2的食品”。8、附录A:营养参考值1.NRV 概念:保持原有科学概念,暂不增加 NRV-NCD(减少慢性非传染性疾病风险的营养素参考值)的概念。 2.目标人群:保持原有目标人群范围,即 37 月龄及以上。 3.营养素种类变化:删除胆固醇,同时氯、钼、铬营养素仍不制定 NRV。NRV包含了能量和 31 种营养成分参考数值。9、附录B:营养标签格式在附录中对格式形式、份的标示说明、 NRV 的以及能量单位的标示方式,以增加条款的方式进行具体文字描述,便于理解及应用。10、附录C:能量和营养成分含量声称和比较声称的要求、条件和同义语附录C 规定了预包装食品能量和营养成分含量声称的要求、条件和同义语。 其中删减部分营养声称及用语。1.删除“低蛋白质”声称2.“脱脂”的限制性条件修订为“其他乳制品应符合相应食品安全国家标准” 3.删除“无或不含饱和脂肪”的限制性条件; 4.“低饱和脂肪”的限制性条件修订为 “饱和脂肪供能比≤10%” 5.增加“n-3 多不饱和脂肪酸”含量声称及要求。 6.“碳水化合物(糖)”项目修订为独立的“糖”和“乳糖”,相应的含量要求及限制性条件不变; 7.“膳食纤维”声称的限制性条件增加列出单体成分。 8.增加膳食纤维含量声称方式“可溶性膳食纤维(或单体)来源或含有可溶性膳食纤维(或单体)”及“高或富含可溶性膳食纤维或(单体)”,并明确相应含量要求和限制性条件。 比较声称“参考食品”修订为: 1.同一企业的同类或同一属类或同质量等级食品的实测数据; 2.来源于《中国食物成分表》中的同类食品数据。 11、附录D:能量和营养成分功能声称标准用语附录 D 删除缺乏充足证据的用语; 对部分营养成份的功能声称用语进行增加及补充。12、附录 E 预包装食品份量参考值的推荐增加附录 E说明份量的表达,并以表E.1推荐预包装食品的份量范围,规范食品参考值的应用。
  • 我公司感官分析实验室承接各种检测项目
    北京盈盛恒泰科技有限责任公司于2014年在北京成立了感官仪器应用分析实验室,旨在通过智能感官设备对食品、药品、农产品进行感官评价,以实现感官评价的数字化,另外本实验室还可承接样品的营养成分分析检测项目。◆服务对象包括全国各高校、研究所、企业及社会机构,不仅可为客户提供客观准确的实验数据和分析报告还可就客户需求定制及实施实验方案。◆实验团队拥有丰富的行业经验和扎实的专业知识,为快速、准确的检测服务提供了强大的技术保障。◆实验室配备专业检测设备,主要包括日本INSENT电子舌、德国AIRSENSE电子鼻、美国FTC质构仪、ZP辣度快速检测仪,日本jwp公司卡路里分析仪,以及意大利VELP的凯式定氮仪、杜马斯定氮仪、纤维素/膳食纤维测定仪、脂肪测定仪、油脂氧化分析仪等。◆承诺检测时效,缩短结果输出时间,全面提升检测的准确性和时效性且对检测结果进行保密。◆我实验室还提供快检产品和检测耗材,包括DNA肉品/肉源/毛发/细菌病原体鉴定试剂盒。利用以上快速检测产品,用户可自行开展所需检测。 检测项目◆电子鼻PEN3电子鼻采用MOS传感器阵列技术,结合功能强大的数学分析方法,通过监测样品挥发的气体可快速对样品进行定性判断和定量预测。检测指标:样品总体挥发性风味特征。◆电子舌电子舌可以客观数字化的评价食品或药品等样品基本味觉感官指标,多种图形表达功能,适合不同测试结果的形象化展示。检测指标:样品的苦、涩、酸、咸、鲜、甜及回味(丰富度)◆质构仪物性分析仪可用于肉制品、粮油食品、面食、谷物、糖果、果蔬、凝胶、果酱等食品的物性学分析。检测指标:分析食品的硬度、嫩度、弹性、适口度、脆性、咀嚼性、胶粘性、粘附性、拉伸强度、延展性、恢复性、杨氏模量等物性指标。◆辣度快速检测仪采用电化学辣味传感器技术,可以快速检测辣椒酱、辣椒原材料、辣味汤料及其他含有辣椒素等辣味食品的辣度值。其他检测领域:大蒜中的己二烯二硫化物(大蒜气味的主要物质)含量测试;白葡萄酒中SO2的含量测试;生姜中的姜辣素含量测试;姜黄中的姜黄素含量测试;香草精中的香兰素含量测试。检测指标:辣度值(单位SHU)◆卡路里分析仪采用近红外光谱分析原理,可以直接测量单一食品材料和混合类食物的热量,检测时间只需5min。检测指标:热量/卡路里、蛋白质、脂肪、碳水化合物、水分、酒精等。 我公司提供多种检测项目,欢迎咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制