当前位置: 仪器信息网 > 行业主题 > >

合成工具和试剂

仪器信息网合成工具和试剂专题为您提供2024年最新合成工具和试剂价格报价、厂家品牌的相关信息, 包括合成工具和试剂参数、型号等,不管是国产,还是进口品牌的合成工具和试剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合合成工具和试剂相关的耗材配件、试剂标物,还有合成工具和试剂相关的最新资讯、资料,以及合成工具和试剂相关的解决方案。

合成工具和试剂相关的资讯

  • 默克有机合成级试剂给力大促销,最低5折起!
    德国默克Merck Group品牌旗下Schuchardt系列有机合成级试剂囊括了5000多种产品,除了可应用于有机合成领域,还可用于生产表面活性剂、清洁剂和添加剂等。 我们的优势:· 150年有机化合物生产经验,一如既往的行业质量标杆,至今仍然是合成级试剂的实际质量标准。· 产品范围广,除了基础有机化工原料,还有应用于制药,光电等各种领域的高端有机化合物。· 包装齐全,除了您在产品目录中看到的各种规格,我们还能根据客户的具体参数和包装要求定制生产。 促销时间:即日起至2011年12月31日货号中文品名目录价促销价8017911000合成级氯苯4363058017912500合成级氯苯9156408083520100合成级三乙胺3571708083520500合成级三乙胺4463128222871000合成级过氧化氢2412178221840500合成级吐温204393108221870500合成级吐温807505818221871000合成级吐温809738308016630100合成级三氟化硼甲醇溶液4493148016630500合成级三氟化硼甲醇溶液12685308036460100合成级二异丙胺2261908036461000合成级二异丙胺4624008074851000合成级PEG4003802668003800100合成级顺丁烯二酸(马来酸)2261908003800500合成级顺丁烯二酸(马来酸)5112568003801000合成级顺丁烯二酸(马来酸)4494448030101000合成级二乙基胺2721908030102500合成级二乙基胺5204208032351000合成级N,N-二甲基乙酰胺7866708032352500合成级N,N-二甲基乙酰胺160313708082600025合成级三氟醋酸2171528082600100合成级三氟醋酸4943718082600500合成级三氟醋酸192116408082601000合成级三氟醋酸426136408209310100合成级1-辛醇2261908209311000合成级1-辛醇7886008220500100合成级十二烷基硫酸钠盐4003008220501000合成级十二烷基硫酸钠盐14009708086971000合成级邻二甲苯9094908086972500合成级邻二甲苯195111808006580250合成级正硅酸乙酯3892728006581000合成级正硅酸乙酯6325408016410250合成级过氧化苯甲酰3382368016411000合成级过氧化苯甲酰10657458063730100合成级硼氢化钠9666768063730500合成级硼氢化钠27081895促销热线:021-38521857 13585814054产品专员:Ruby Cai关于默克默克集团是一家全球化的医药和化学企业,2009年总销售额达77亿欧元。它的历史可以追溯到1668年。目前在全球64个国家拥有近40,000名员工(包括默克密理博),共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团(Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250g H109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mg F101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25g B101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 霍尼韦尔推广B&J高纯溶剂及试剂在DNA/RNA合成中的应用
    霍尼韦尔推广Burdick&Jackson高纯溶剂及试剂在DNA/RNA合成中的应用满足中国新药开发、诊断及测序等应用领域快速增长的需求 作为进军中国DNA/RNA试剂市场的重要举措之一,霍尼韦尔于2011年10月14日在北京举办了“Burdick & Jackson高纯溶剂及试剂在DNA/RNA合成中的应用”技术研讨会。40余名来自高校、科研单位及DNA/RNA专业合成公司的技术人员参加了本次会议。 交流会由霍尼韦尔Burdick & Jackson 生物医药部技术经理Venkatraman Mohan博士主讲。他在研讨会上作了“高纯溶剂在寡核苷酸合成中的作用: 纯度来源于设计”的精彩报告。报告议题包括:DNA/RNA合成试剂的发展趋势;寡核苷酸表征的分析手段进展;B&J DNA/RNA试剂的独特优势;B&J活化试剂及氧化试剂新产品介绍。 Mohan博士还强调了Burdick & Jackson为客户提供的强大的技术支持。参会听众与Mohan博士就DNA/RNA合成及相关应用领域进行了广泛而深入的交流,并对B&J新推出的 rBMI 活化试剂及高性价比的氧化试剂新配方反响热烈,这些新试剂配方可有效提高寡核苷酸的纯度及产率,并减少总体生产成本。 近年来,随着新药开发、诊断及测序等应用领域的迅速发展,DNA/RNA自动合成产业在中国呈爆炸式增长。“霍尼韦尔将DNA/RNA高纯溶剂及试剂产品线引入到中国恰逢其时。” 刘士姮博士介绍, “Burdick & Jackson的专业生产经验、强大的技术支持团队、以及可靠的产品品质可为我们的用户创造更多的价值。” 霍尼韦尔研究用化学品产品经理刘士姮博士在对Burdick & Jackson在高纯溶剂及DNA/RNA合成试剂工业领域的领导地位、产品品质和试剂包装方面的优势作了介绍。 作为全球DNA/RNA合成溶剂及试剂的领导者,霍尼韦尔Burdick & Jackson一直致力于为全球DNA/RNA用户提供高品质试剂产品及包装方案。 霍尼韦尔 Burdick & Jackson 已经为化学和制药行业提供优质研究化学品长达 50 多年。它在美国密歇根州马斯基根建有实验室和生产工厂。要了解有关 Burdick & Jackson 产品的更多信息和进入在线产品销售网点。
  • 广东检测公司采购58类仪器及耗材试剂工具
    广东某检测公司,采购以下仪器设备及耗材试剂实验室工具,需要广州地区能提供整包服务的供应商对接,无法提供的请勿打扰,最好是国产,采购清单如下:硬件-前处理-常用拆分取样工具(套)序号工具名称型号规格数量1电烙铁内热式30W4把2热焊枪4把2螺丝刀套装1套4套3电缆剥线钳4把4锤子4把5镊子4把6顶切钳4把7剪刀4把8锯子4把9壁纸刀4把10吸锡线4卷11斜口钳4把12扳手活动扳手(200毫米)4把13打磨砂纸800目4张14记号笔4支15自封口袋2号袋、4号袋、6号袋 各1包16护目镜实验室防飞溅,防冲击,防酸碱4副17手套蓝丁晴橡胶4副18实验服纯棉4套19口罩N9520个硬件-前处理-常用机械制样工具(组)序号工具名称型号规格数量1细磨机规格要求:1-5个μm1台2分析天平规格要求: 精度0.1mg 1台3粗磨机规格要求: 0.5-1.0毫米1台4液氮罐规格要求: 10L1个5刷子木尼龙排刷/板刷4把6搪瓷盆带盖 15cm*20CM4把7勺子不锈钢304 10ML4把硬件-前处理-常用化学制样设备序号工具名称型号规格数量1马弗炉规格要求:实验室箱式炉 技术参数:80-1200°C 220v,50Hz,3500W1台2坩埚规格要求:瓷坩埚 可耐热1200度左右使用1台4电热板消解仪(含消解罐)规格要求:玻璃陶瓷加热面,分体式PID智能程序控制,控温室温-400°C,温度稳定度±1℃,功率2000w,电源220/50Hz,1台6磁力搅拌器规格要求:带加热的 达到100度 220V±10V 转速:0~2000rpm 搅拌容量:(10-2000ml)×4 1台7索氏提取装置规格要求:组装的即可; 由蒸馏瓶、提取器(管)、冷凝器(管)三部分组成的1台8超声波水浴仪规格要求:标称频率:35KHZ 标称功率:80W 温控功率:80W1台时间控制:全液晶数字化程序控制温度控制:0-99℃电源电压:AC220V/50Hz9真空旋转蒸发仪(旋蒸装置)规格要求:2L 旋转功率 40W 旋转速率0-120rpm 真空≤133Pa 加热功率1200w 温度正负1°C PID智能控温1台10氮吹仪规格要求:水浴氮吹仪 可以处理1-12支大容量样品,处理量50/100/150/200可定容至0.5ml/1ML/2ML 气压操作方式 12位独立控制 温度℃ 室温-100℃) 加热方式 水浴统一控制 电源220V 50Hz 其他参数1台11固相萃取装置规格要求:国产 12位 含萃取柱 独立控制真空可调 石英玻璃材质 配套试管 1套硬件-前处理-常用化学制样器皿(套)序号工具名称型号规格数量1吸量管1ml 2ml 5ml 10ml 各8支16个2移液枪1ml 移液枪:4支8支10ml移液枪:4支3吸耳球中号4个4容量瓶1ml容量瓶:10个64个2ml容量瓶:10个5ml容量瓶:10个10ml容量瓶:10个50ml容量瓶:10个100ml容量瓶:10个500ml容量瓶:2个1000ml容量瓶:2个5烧杯100ml烧杯:10个30个250ml烧杯:10个500ml洗瓶:10个6量筒10ml:1个3个50ml量筒:1个250ml量筒:1个7试管10ml 40个40个8试管架20*404个9称量纸5cm*5cm1盒10表面皿130mm表面皿40个11玻璃漏斗50mm玻璃漏斗40个12定性滤纸d9cm1盒13有机废液桶5L1个14无机废液桶5L1个15移液管架大号4个16铁夹台含试管夹8个17试管夹木制或竹制 含水率低于18%,长度不,小于180mm,宽度20mm,厚度10mm20个18电热套双屏显示 220V电压 温控400-1000°C4个硬件-前处理-常用化学试剂及标准物质序号名称规格数量1无色试剂瓶250ml无色试剂瓶120个2棕色试剂瓶250ml无色试剂瓶80个联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 新冠病毒检测工具汇总 除了核酸试剂盒还有这些手段
    p  新型冠状病毒COVID-2019仍然是公众最关注的的话题,红外热成像仪、核酸检测试剂盒、抗体快速测试卡等一大批仪器在这场抗疫战争起到了至关重要的的作用。例如:/pp  a href="https://www.instrument.com.cn/news/20200213/521866.shtml" target="_self"红外热成像入校园!体温快速筛查系统在国科大四校区全面启用/a/pp  a href="https://www.instrument.com.cn/news/20200217/522086.shtml" target="_self"15分钟现场筛查!南开大学7天研制出新冠病毒抗体快速测试卡/a/pp  12日在瑞士日内瓦闭幕的新型冠状病毒全球研究与创新论坛将研发更加简便的确诊工具定为短期内最迫切的目标。br//pp  a href="https://www.instrument.com.cn/news/20200214/521891.shtml" target="_self"新冠病毒全球论坛聚焦:研发比PCR检测更简便易行的确诊工具/abr//pp  那么,目前可能适用于新型冠状病毒的检测手段都有哪些?/pp  strong一、核酸检测方法/strong/pp  strong1. 全基因组测序/strong/pp  全基因组测序可准确鉴定病毒,但是目前的高通量测序平台测序时间较长,灵敏度相对较低。/pp  特点:可准确鉴定病毒、在病毒溯源和流行病学调查中有重要作用/pp  问题:测序时间较长、灵敏度相对较低/pp  strong2. RT-PCR/strong/pp  基于病毒基因保守序列的RT-PCR检测方法,是呼吸道病毒检测的常用方法,本次新冠病毒检测也同样适用。该方法通过对病毒RNA进行提取、逆转录、PCR扩增病毒保守序列(RdRP基因(特异性靶点)、E蛋白基因、N蛋白基因以及一个鉴定保守基因S区位点 可以只检测RdRP基因或者选择RdRP基因和其他多个基因确认),扩增体系中的荧光蛋白会结合扩增出的双链DNA序列从而发出荧光,根据检测到的荧光值判断是否有病毒存在并定量。/pp  该方法的优点是相较于其他抗原抗体法(如胶体金技术)更为灵敏,检测结果更为准确,但是检测需要专业的仪器和分子检测实验室以及专业的操作人员,操作不当或者实验室条件不足可能会因气溶胶污染造成假阳性,且整个流程需要几个小时,相较于胶体金法时间更长。/pp  strong3. CRISPR/strong/pp  CRISPR系统由向导RNA(gRNA)和Cas蛋白组成,gRNA能够指导Cas识别并切割带有特异序列的RNA或者DNA分子。其中Cas13a蛋白在特异性切割靶标RNA时,会继续切割非靶标RNA,利用这一特点,在整个体系中加入带有荧光标记的RNA信号分子,一旦带有荧光的RNA被切开,就会发出荧光信号,该技术与等温扩增技术结合,可高特异性高灵敏性低对病毒核酸进行检测。/pp  该技术检测时间相较于RT-PCR短,但是CRISPR系统研究出现时间较短,该系统存在有脱靶的可能,其灵敏度和特异性还有待考证。/pp  strong4. 逆转录环介导等温扩增法(RT-LAMP)和实时RT-LAMP/strong/pp  逆转录环介导等温扩增法(RT-LAMP)对2009年H1N1大流行病毒的敏感性为97.8%,特异性为100%。基于LAMP的检测方法也被用于检测高致病性的H5N1和H7N9禽流感病毒,其敏感性比基于RT-PCR的方法具有可比性或更高的灵敏度。/pp  二、strong病毒分离鉴定/strong/pp  病毒培养是诊断流感病毒感染的传统方法之一,但是传统的分离鉴定方法需要连续培养多天,敏感性和特异性都会低于核酸检测方法,虽然在前期确定侵害性病原物起到关键作用,但较为耗时,且不便捷,不能满足大量疑似患者筛查需求。/pp  strong三、免疫学检测方法/strong/pp  strong1. 直接免疫荧光技术/strong/pp  将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位,这种检测方法的敏感性低于核酸检测方法。/pp  strong2. 免疫胶体金层析技术/strong/pp  胶体金是一种常用的标记技术,是蛋白质等高分子被吸附到胶体金颗粒表面的包被,是以胶体金作为示踪标志物应用于抗原抗体的一种新型的免疫标记技术。用于检测病毒使用的试剂条包被的是人体免疫系统中出现的该病毒特异性抗体或者是检测病毒本身的抗原,检测结果会出现肉眼可见的红色或者粉色条带。/pp  虽然免疫胶体金层析技术操作简单,出结果快(一般为20分钟),但是此方法敏感性较差,加入样本后的原理靠的是层析,也就是往外分散,如果材料等质量有误差,会影响检测结果 也会因为病人感染时间较短或者采样部位导致病毒含量较低,导致出现假阴性。另外,该方法由于依赖抗原抗体,对于前期开发时选择包被的抗原/抗体最为关键,短时间内开发出的产品有待确认其特异性和灵敏性。/pp  strong四、其他方法/strong/pp  基因芯片技术、酶联免疫吸附测定(ELISA),IgG及IgM免疫荧光检测。/pp  在本次疫情中,通过临床特征和各项指标的判断,以及核酸检测来最终确诊是否为新冠病毒感染,其中CT影像和核酸检测一直作为诊断标准在疫情诊断中发挥着重要作用。从目前来看,不同检测方法均存在着各自的优势和弊端,只有综合运用各种检测工具,才能实现快速高效的检测,缩短新冠患者的确诊周期。/ppbr//p
  • 大连化物所发展出利用生物质合成共聚酯单体新方法
    近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。  随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高。聚(对苯二甲酸-间苯二甲酸-环己烷二甲醇酯)(PCTA)作为一种代表性的共聚酯,其性质可以通过间苯二甲酸来调控。与传统的聚对苯二甲酸乙二醇酯(PET)相比,PCTA具有更高的耐化学腐蚀性、抗冲击性、玻璃化温度和透明度等特点,可广泛应用于化妆品容器、家用电器和医疗包装等领域。目前,PCTA单体主要由石油下游产品制备获得。为了减少对化石能源的依赖性,发展温和可持续路线制备PCTA单体具有重要意义。  该合作团队在生物质合成路线(Angew. Chem. Int. Ed.)的基础上,发展出一种以生物质基平台化合物丙烯酸酯和乙醛为原料,合成共聚酯PCTA单体的新方法。该过程包括三步反应,分别是乙醛与丙烯酸酯的Morita-Baylis-Hillman反应、H2SO4/SiO2催化一步脱水/Diels-Alder反应、Pd/C催化脱氢反应,总收率为61%;此外,改变上述过程的第三个反应催化剂,即利用Pd/C-Cu/Zn/Al双床层催化剂进行催化加氢反应,可获得另外一种重要的增塑剂单体——UNOXOLTM二醇(CHDM),该过程的总收率为67%。此外,合作团队还运用生命周期评价(LCA)方法将本工作中的生物质路线与传统石油路线进行对比,表明该生物质路线展现出积极的碳减排能力。该研究为共聚酯单体的合成提供了新方法,并为生物质资源转化提供了新思路。  近日,相关研究成果以Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde为题,发表在《德国应用化学》上,并被选为热点文章(Hot Paper)。研究工作得到国家自然科学基金、大连化物所所内合作项目、洁净能源创新研究院-榆林学院联合基金等的支持。  论文链接
  • 从连续流技术看吉利德Remdesivir的合成
    吉利德公司的广谱抗病毒药物瑞德西韦(Remdesivir),针对2019新型冠状病毒(2019-nCoV)显示了好的疗效。这一令人振奋的结果一经报道,即刻吸引了众多制药企业的关注。康宁反应器技术作为连续流技术的倡导者,从连续流技术的角度来看看吉利德Remdesivir的合成。图1:Remdesivir分子结构化学名:(2S)-2-ethylbutyl2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo [2,1f] [1,2,4] triazin-7-yl)-5-cyano-3,4-dihydroxy tetrahydrofuran-2-yl)methoxy) (phenoxy) phosphoryl) amino) propanoateCAS号:1809249-37-3当下,国内很多药企也纷纷将目光聚焦到了Remdesivir,不少企业和研发机构已经开始立项开发此药。甚至连化学中间体商也加入了这股热潮。合成路线图:Remdesivir合成为Nature2016年报道的第二代合成方法,实验室可放大至百克级。共6步反应,收率分别为40%,85%,86%,90%,70%,69%,中间体6合成需要两步,收率分别80%,39%。化合物3的合成是低温有机强碱加成反应,该步反应收率低,放大困难。而微通道在此类反应展现了很强大的优势,有潜力来解决这类问题。图4:化合物4的合成化合物4的合成,可以用连续流的方式进行。为此,Gilead在中国也申请了专利(CN107074902)。该氰基化反应,采用连续流反应器,温度控制在-40℃,而釜式工艺中需要降温到-78℃。在化合物6的合成中,第一步反应先合成化合物9,该取代反应极易发生二取代而造成选择性降低。连续流可以精准控制反应物料摩尔比及反应温度,在一定程度上提高反应选择性。纵观Remdesivir合成,有多步反应使用了低温。而低温反应在工艺放大过程中,普遍存在着控制难,收率低等问题。康宁微通道反应器,模块化设计,相比于传统釜式反应,具有100倍传质效率,1000倍换热面积,精确控制停留时间。特别适用于非均相反应、放热量大、具有安全风险以及小试工艺无法放大的反应。参考文献:Nature, 2016, Doi:10.1038 /nature 17180 pages381–385微通道连续流技术作为化工研发和生产的一项技术创新越来越受到重视。它在很大程度上改善物料的传质和反应的放热情况,提高反应的安全性及中间体的不稳定性,从而在反应选择性和收率上与传统釜式反应相比具有明显优势。当进行有机金属类化学反应时,通常有两种过程机理如下图1所示。控制有机锂中间体的稳定性作为内温函数 (IT)和停留时间(τ)第一种机理从上图1中a)曲线可以看出在反应进程中在亲电试剂猝灭前增加芳基锂中间体的半衰期来延长停留时间(最多分钟)。在这种情况下,混合效率起次要作用。停留时间(反应)可以被很好地优化,最大化地转换芳基卤化物为相应的芳基锂中间体。这类反应通常可以在反应器中在-78°C进行放热的卤素和锂的交换,然后用亲电试剂在-78°C下偶合。第二种机理是对于极快速反应(反应时间小于1秒),如图1中b)曲线所示,相反侧重于瞬时、高效混合和停留时间较短的反应。在这种情况下,反应时间是由准绝热条件下的混合时间和相变条件来决定。这种类型的操作通常在微反应器中进行,通过快速捕获不稳定芳基锂物种避免其分解。有各种文献报道的例子显示在反应时间小于1秒尺度上化学合成,如不稳定芳基锂中间体的生成与具有功能性亲电试剂结合生成新奇,令人印象深刻的新型化学品。对于金属有机类型的反应,微通道连续流反应器可以在低温下很好地控制反应温度及有机锂试剂及底物的混合。基于微反应器高效混合及精准控制反应温度的优点,可以在药物研究的不同阶段快速提供少量或批量的产品。再如图3所示,变换不同的亲电试剂和底物,可以得到不同的偶合产物。微通道反应器可以作为一个药物开发和批量生产的强有力的工具,因为其独特的混合和换热及温度精准控制的功能,为新奇药物的开发打开了一个新的窗口。康宁研发型反应器平台开发的工艺到康宁工业化生产无放大效应,可以更快、更好地应对市场的需求。康宁公司不仅对低温有机强碱反应经验丰富,对其他类型反应也有很好的经验。比如Remdesivir合成的最后的一步(水解反应),康宁在其类似底物的反应中展现了很大的优势,收率得到了大幅度的提升。如您想了解更多成功案例,欢迎来康宁反应器技术有限公司深度交流。参考文献:Org. Lett. 2016, 18, 3630?3633康宁反应器技术康宁生产和销售系列微通道反应器;• 为客户提供研发平台整体方案,协助客户进行工艺筛选和工艺开发;• 提供连续流微反应技术培训及售后服务;• 为客户进行研发工艺论证,提供工业化可行性方案• 为客户定制工业化整体方案并加以实施;• 为教育系统提供教学设备教师培训,提供合作交流机会;• 为园区化工企业提供连续流技术培训;协助园区进行本质安全教育;康宁与世界最领先科技持续公司密切合作,打造化工、医药企业的研发和生产的前瞻性可持续创新技术。康宁反应器技术有着10年的工业化业绩,积累了大量工艺开发及工程放大经验,可有效地帮助客户实现这一革命性创新带来的价值。用心做反应既是康宁微通道反应器通道设计的写照,更是康宁反应器团队多年来坚守的职业操守。
  • 安捷伦科技公司针对癌症和遗传疾病研究推出 HaloPlex 新一代测序试剂盒
    安捷伦科技公司针对癌症和遗传疾病研究推出 HaloPlex 新一代测序试剂盒目录及定制产品可实现快速、靶向的基因组分析 2013 年 6 月 11 日,加利福尼亚州圣克拉拉市 - 安捷伦科技公司(纽约证交所:A)今日推出了针对特定疾病状态的一系列新型 HaloPlex 新一代测序产品。包括两种目录产品:HaloPlex 癌症研究试剂盒和 HaloPlex 心肌病研究试剂盒,以及针对心律不齐、ICCG 基因组区域、X 染色体、努南综合征以及结缔组织疾病的五种预先设计的研究试剂盒。结合安捷伦的 SureDesign 及 SureCall 软件,这些新型试剂盒可使实验室更加可靠、快速和灵活地进行数据的整合分析和报告。 &ldquo 采用台式测序平台后,临床研究实验室在日常分析中越来越倾向于使用预先设计的靶向序列捕获试剂盒,&rdquo 安捷伦测序产品开发工作的参与者,美国医学遗传科学院专家委员 (FACMG)、加拿大医学遗传学学院院士 (FCCMG)、乌普萨拉大学医院临床分子遗传学家 Berivan Baskin 博士如是评价,&ldquo 这类新型 HaloPlex 试剂盒结合安捷伦的分析软件,可提供高灵敏度、高特异性的综合分析结果。&rdquo &ldquo 临床研究实验室常常缺乏必要的时间和资源来确定各个疾病相关的基因,并将其合并到其自定义的测序基因组合中,&rdquo 安捷伦副总裁基因组学解决方案部门总经理 Jacob Thaysen 谈到,&ldquo 所以我们通过与行业专家紧密合作,开发了这些靶向疾病的测序试剂盒,以帮助这些实验室显著改善工作流程和研究结果。&rdquo HaloPlex 靶向序列捕获解决方案将聚合酶链反应系统的速度和特异性与基于解决方案的杂交形式的可扩展性和捕获片段大小灵活性完美结合,免除了文库构建的需要。这种用于新一代测序的简化的序列选择性解决方案有利于解决与靶向重测序相关的瓶颈问题,并且无需再使用昂贵的专用仪器和繁琐的实验方法。 SureDesign 和 SureCall 软件程序是安捷伦新一代测序靶向序列捕获完整解决方案中不可或缺的组成部分。SureDesign 使 HaloPlex 用户可以开发自定义的基因组合以及加入额外的预先设计的基因/区域以满足实验室的特定需求,极大地增强了灵活性。SureCall 可大幅降低研究人员在进行数据分析时的难度,简单明了地进行变体识别。 安捷伦基因组学 安捷伦科技公司是新一代测序和基因组学芯片靶向序列捕获领域的全球领导者。Agilent SureSelect 和 HaloPlex 靶向序列捕获系统能使研究人员轻松选择待测序的基因组片段,无需耗费时间和金钱对整个基因组进行测序。HaloPlex 系统具有&ldquo 当日完成待测序样品制备&rdquo 的快速工作流程,非常适合于新一代台式测序仪;而 SureSelect 系统能够在一个反应对中准确捕获所有的外显子组和甲基化组,很适合用于高通量新一代测序系统。这两个系统仅仅是两种代表性产品,其源自安捷伦在芯片制造过程中所获得的合成复杂的定制长寡核苷酸混合物的专业知识。其他基于此项核心技术的产品线包括用于基因表达的全基因组测量和比较基因组杂交的基因芯片,以及用于原位杂交寡核苷酸荧光染料的高特异性、高灵敏度产品系列 SureFISH。除了寡核苷酸类产品之外,安捷伦还提供用于测量样品质量的微流控生物分析仪、能够提高新一代测序效率的目标富集工具,以及用于基因组实验的全套试剂、硬件、方法和生物信息学软件。 关于安捷伦科技公司 安捷伦科技(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财政年度,安捷伦的收入为 69 亿美元。要了解关于安捷伦的信息,请访问 www.agilent.com。
  • RapiGest SF试剂:促进溶液中蛋白酶解的有利工具
    Ying Qing Yu与Martin Gilar 美国马萨诸塞州米尔福德沃特世公司简介 本应用纪要中,我们介绍了沃特世专利RapiGest&trade SF试剂的物理化学性质及其应用领域。2002年,我们首次推出RapiGest SF,这一创新产品是帮助酶消解的有利工具,可促进溶液中蛋白的消解,它能够改善样品制备过程中蛋白的溶解度。 RapiGest SF提高酶解速率与完全程度的机理详见图1。温和的蛋白变性可打开蛋白结构并暴露酶切位点,以供酶切。在RapiGest SF溶液中,酶对变性的耐受性优于普通蛋白,并能保持活性。在加入酶之前高温加热RapiGest SF溶液可使球蛋白更为完全变性,之后需将酶与样品一起进行37 ° C的孵育。图1 蛋白底物在RapiGest SF溶液中变性􀉼 之后对蛋白酶切更为敏感超过200多家行业内杂志引用了使用RapiGest SF进行样品溶解的案例,大部分为蛋白组学的应用。最近,许多制药实验室使用RapiGest SF用于蛋白药物的确证。因为酶消化的速度的提高并在LC、MS分析前极易清除,RapiGest SF已被多个应用领域广泛接受,其中包括高级序列研究的LC/UV/MS蛋白药物的肽图分析。讨论 什么是RapiGest SF? RapiGest SF是酸性不稳定表面活性剂,在酸性条件下极易水解。1这种独特的性质,在需要的时候,可用于从溶液中清除表面活性剂。RapiGest SF的结构及其水解副产物见图2。酸性不稳定的性质可在pH2条件下,45分钟内达到完全降解。 该表面活性剂可降解为两个产物:dodeca-2-one和3-(2,3-二羟基丙基)丙磺酸钠。前者与水不能互溶,可通过离心清除。后者在水溶液中溶解度很高,而在反相LC模式下不保留。酶消解后的水溶液可直接进行HPLC、LC/MS或MALDI-TOF MS进行分析。消解后的清除 样品分析前无需额外去清除表面活性剂(如透析)。在分析前,酶消解后通常经过酸(如甲酸、三氟乙酸(TFA)或盐酸(HCl))的酸化,降解RapiGest SF。建议降解条件pH &le 2。胰蛋白酶消解的兼容性 胰蛋白酶是最常见的蛋白水解酶,可用于肽图分析和蛋白组学的应用。我们研究了在添加RapiGest SF的情况下胰蛋白酶的活性作用,并与文献中最常见的变性剂的作用做了对比。本检测基于胰蛋白酶诱导N-&alpha -苯甲酰-L-精氨酸乙基乙酯(BAEE)在50 mM重碳酸胺(pH 7.9)中的室温水解。胰蛋白酶活性的变化通过UV 253 nm下测量BAEE水解率进行计算。在选择的变性溶液中,胰蛋白酶活性与对照样品进行对比(非变性剂)。结果见于表1。 表1中的数据说明低浓度下(0.1%) RapiGest SF不抑制胰蛋白酶的活性。这与结构上类似的表面活性剂SDS不同,SDS是很强的变性剂,可会使胰蛋白酶失活。尿素、乙腈或盐酸胍也是胰蛋白酶消化的变性剂。但是乙腈是强洗脱剂会干扰消解样品进行反相LC分析。正如我们所知,尿素可使蛋白共价修饰,盐酸胍也和SDS一样可以使酶失活。 本实验说明蛋白酶的活性受到蛋白溶液中所用变性剂的影响。RapiGest SF在从低到高的浓度下均不改变酶活性,因此,最佳的蛋白消解条件是无需过量酶即可达到酶解的结果。快速蛋白消解 对蛋白酶解存在抗性的蛋白使用RapiGest SF试剂,可在数分钟内消解完全。完全消解球蛋白、马肌红蛋白只需要5分钟内即可完成。该试剂辅助的消解结果与对照见图3。由于肌红蛋白是球蛋白,众所周知,若没有表面活性剂将难以消解。在对照反应中,与胰蛋白酶孵育9小时后只有少量的蛋白可以消化。使用了RapiGest SF试剂,总体的消解的效率显著提升。在蛋白药物肽图中的序列覆盖范围更大 RapiGest SF在蛋白组学的样品前处理中广泛使用,是有效的蛋白溶解变性剂。最近越来越多的生物制药实验室在肽图分析中采用了RapiGest SF。一些发表的论文记录了使用RapiGest SF进行蛋白药物消解的优势。4,5经报导的RapiGest SF浓度范围为0.05 -1%,取决于蛋白疏水性与浓度。 我们发现浓度范围为0.05 -1%的RapiGest SF足以使各种大小的蛋白变性,高浓度RapiGest SF适合全细胞蛋白提取的实验。 单抗(mAbs)肽图分析一直以来都因为难以消解这些大疏水蛋白而难以实现。肽图分析的目的是确认蛋白序列并发现所有存在后翻译修饰(PTMs)的蛋白。图4举例说明了RapiGest SF辅助的人单抗消解的实例。样品制备与分析的参数以UPLC和四级杆Tof质谱分析的参数已列表作为指导。 图4显示实验中总序列覆盖率为98%。数据分析通过BiopharmaLynx&trade v.1.2软件得到。高序列覆盖率(98%)说明单抗完全消解。LC/MS分析中没有发现错误酶切的多肽或完整未被酶切的蛋白。剩下的2%未确认的序列为少数二个氨基酸的肽或单个氨基酸(R或K),而无法在反相柱上保留。样品制备 人单抗样品(10 &mu L, 21 mg/mL)在含有0.1% (w/v) RapiGest SF 的50 &mu L 50 mM重碳酸铵中溶解。将2 &mu L 0.1 M的二流苏糖醇(DTT)加入样品,样品在50 ° C加热30分钟,加入4 &mu L 0.1 M的碘代乙酰胺,在样品冷却至室温后样品在黑暗中静至40分钟。 样品中加入8 &mu g胰蛋白酶(胰蛋白酶浓度= 1 &mu g/&mu L),样品在37 ° C孵育过夜。消解样品与1%甲酸与10%乙腈混合(1:1,v:v)。用Milli-Q水(Millipore)稀释至5 pmol/&mu L后进行LC/MS分析。LC 条件 LC 系统 沃特世 ACQUITY UPLC系统 色谱柱 ACQUITY UPLC BEH 300 C18 肽分离专用柱, 2.1 x 100mm (P/N = 186003686) 柱温 40 ° C 样品进样 2 &mu L (10 pmol) 溶液A 0.1% 甲酸水溶液 溶液B 0.1% 甲酸乙腈溶液 流速 200 &mu L/min 梯度 0-2分钟:2%B 2 &ndash 92分钟:2 -35% B 92 -102分钟:35 - 50% B 102.1 -105 分钟:90% B 105.1-110分钟:2% B MS条件 MS系统 沃特世SYNAPT&trade MS (V型) 毛细管电压 3.2 kV 源温度 120 ° C 去溶剂温度 350 ° C 去溶剂气 700 L/hr MS 扫描速率 1 秒/次 锁定质量通道 100 fmol/&mu L Glu-Fib多肽(m/z 785.8426, z = 2),流速20 &mu L/min 与其他的蛋白酶合用 我们测试了RapiGest SF与多种蛋白酶的适配性,如Asp-N, Lys-C与Glu-C。在酶解前使用RapiGest SF变性蛋白获得了有效的消解结果。 蛋白去糖基化的用途 RapiGest SF也用于测试其它酶,如PNGase F,该酶用于酶切糖蛋白N-连接的糖基。2图6说明了去糖基化鸡蛋卵清蛋白。在RapiGest SF介质中PNGase F消解2小时后观察到了完全的去糖基化反应。 结论  RapiGest SF促进了蛋白酶解的速度与完全程度,能够得到蛋白药物序列覆盖率很高的肽图分析。  RapiGest SF是适用于蛋白组学、糖蛋白与生物制药应用的领域  几乎无需消解后样品处理,简单样品酸化,足以从溶液中去除RapiGest SF。多种情况下LC/MS分析前只需简单稀释。  RapiGest SF简化了样品制备方法,可提高分析通量;使用该方法提高实验室工作效率并提高数据质量。 参考文献 1. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrom- etry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 2003 75: 6023-6028. 2. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC, A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun.Mass Spectrom. 2004 18: 711-715. 3. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometry characterization of N-linked glycans. Rapid Commun. Mass Spectrom. 2005 19: 2331-2336. 4. Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. A platform for high- throughtput molecular characterization of recombinant monoclonal antibodies, J. Chrom. B. 2005 826: 177-187. 5. Huang HZ, Nichols A, Liu DJ. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest SF assisted digestion. Anal. Chem. 2009 81 (4): 1686-1692.
  • 上海打造5000亿未来产业 重点方向:生物安全、合成生物、基因和细胞治疗等
    为了贯彻落实创新驱动发展战略,全力做强创新引擎,培育发展新动能,打造未来产业创新高地、发展壮大未来产业集群,近日,上海市人民政府制定并印发了关于《上海打造未来产业创新高地发展壮大未来产业集群行动方案》的通知。通知中指出,打造未来健康产业集群,包括脑机接口、生物安全、合成生物、基因和细胞治疗四个方向。上海打造未来产业创新高地发展壮大未来产业集群行动方案  为了贯彻落实创新驱动发展战略,全力做强创新引擎,培育发展新动能,打造未来产业创新高地、发展壮大未来产业集群,制定本行动方案。  一、明确总体要求  (一)指导思想  以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届历次全会精神,强化高端产业引领功能,以落实国家重大战略任务为牵引,统筹推进科技和产业融合、当前和长远结合、有为政府和有效市场结合,立足产业基础和生态优势,集中力量、滚动培育,全力打造具有世界影响力的未来产业创新高地。  (二)发展目标  到2030年,在未来健康、未来智能、未来能源、未来空间、未来材料等领域涌现一批具有世界影响力的硬核成果、创新企业和领军人才,未来产业产值达到5000亿元左右。  ——建设核心技术自主创新的未来高地。依托各类社会主体,建设未来产业研究院,成立5家左右未来技术学院,培育15个左右未来产业创新中心,建设一批创新联合体,打通基础研究、应用基础研究到产业化的双向通道。  ——做强未来产业集群发展的未来引擎。打造5个未来产业集群,建设15个左右未来产业先导区,攻关100个左右核心部件,推出100件左右高端产品,形成100项左右中国标准,促进产业集聚引领发展。  ——形成大中小企业融通创新的未来范式。推动10家左右领军企业向未来产业布局,发展20家左右生态主导型企业,打造100家左右企业技术中心,培育1000家左右高新技术企业,促进各类所有制企业相互融合。  ——营造要素集聚、开放包容的未来生态。积极参与国际大科学计划和大科学工程,引进一批高层次战略科学家和企业家,持续优化创新生态。形成50个左右综合性应用场景,形成产学研用高效协同的创新生态。  到2035年,形成若干领跑全球的未来产业集群。  二、布局未来产业,打造未来产业集群  (一)打造未来健康产业集群  在浦东、宝山、闵行、金山、奉贤等区域,提升“张江研发+上海制造”承载能力,打造未来健康产业集群。  1.脑机接口。加速非侵入式脑机接口技术、脑机融合技术、类脑芯片技术、大脑计算神经模型等领域突破。加强脑工程学、脑神经信息学、人工神经网络等基础研究,推动类脑芯片、类脑微纳光电器件、类脑计算机、神经接口、智能假体等研发创新。探索脑机接口技术在肢体运动障碍、慢性意识障碍、精神疾病等医疗康复领域的应用。  2.生物安全。突破新型微生物、病原体快速鉴定和短期规模化检测、科学追踪溯源等关键技术。推动新型疫苗、抗体及分子、免疫诊断等共性技术研发转化,开发具有自主知识产权的重大传染病防治药物,构建生物安全产业体系。支持生产和储备一批重大传染性疾病防治药物、检测试剂和设备。  3.合成生物。推动攻关DNA/RNA底层关键技术,发展基于生物信息学和机器学习的DNA/RNA自动合成系统。聚焦生物体初级和次级代谢间的相互作用,发展代谢科学共性交叉技术。推动合成生物技术在创新药研发、医美产品研制、微生物菌株试验、生物可降解材料等领域的应用转化。  4.基因和细胞治疗。突破加速载体递送、基因编辑等技术,鼓励攻关临床级病毒载体、规模细胞培养工艺等关键技术。加快细胞治疗、基因治疗、溶瘤病毒等相关技术产品的研发转化。支持关键原材料、重要设备耗材等研发创新与产业化应用。  (二)打造未来智能产业集群  在浦东、徐汇、杨浦、宝山、闵行、嘉定、青浦等区域,以场景示范带动产业发展,打造未来智能产业集群。  1.智能计算。推动超大模型智能计算突破,培育智能计算自主框架和算法平台,发展自主智能芯片。协同云边端算力,推动知识增强、跨模态统一建模、提示学习、持续学习等技术在超大模型创新应用。加快超大模型向机器视觉、智能语音语义、自然语言处理、人机交互等领域应用,推动AI普惠化。  2.通用AI。构建具有泛化知识、动态学习和自主规划的通用AI模型,深化模型在城市治理、生物安全预警等领域部署应用。布局AI+药物研发、AI+新材料等应用,推动AI与物理、化学、数学等基础科学深度融合发展,开发为科学服务的基础性工具。攻克柔性感知、自适应迁移、群体智能等关键技术,建设感知、决策、规划和控制一体化的机器智能体,推动在医疗、陪护、养老等场景的应用。  3.扩展现实(XR)。突破XR关键技术,推动近眼显示、感知交互技术、渲染计算技术、云内容制作分享技术等突破。加快XR终端产品和应用软件开发,推动新一代通信网络(NGN)+XR融合创新,发展软硬一体的智能交互设备产业链。构建XR科技应用场景,加快在教育培训、医疗健康、工业制造、体育娱乐等行业应用。  4.量子科技。围绕量子计算、量子通信、量子测量,积极培育量子科技产业。攻关量子材料与器件设计、多自由度量子传感、光电声量子器件等技术,在硅光子、光通讯器件、光子芯片等器件研发应用上取得突破。推动量子技术在金融、大数据计算、医疗健康、资源环境等领域的应用。  5.6G技术。科学有序推进关键核心技术研发、未来网络试验设施和规模化商用。突破空天海一体化、确定性网络等关键技术。聚焦6G智能终端、系统设备、通感算一体化网络以及融合应用等领域,推动产业做大做强。建立6G国家标准与技术推进中心,强化6G标准引领。  (三)打造未来能源产业集群  在浦东、闵行、嘉定等区域,打造未来能源产业集群。  1.先进核能。加快商业化先进核能技术攻关,开展新型小堆、超高温气冷堆装备研制以及新型核工程材料研发应用。攻关小型模块化钍基熔盐堆核能系统及模块化智能装备,研发高温超导可控核聚变实验装置,开展新型核聚变能源系统技术预研,推进核能小型化技术验证,开展多能融合示范应用。  2.新型储能。推动开展战略性储能技术研发,推动压缩空气、液流电池等长时储能技术商业化,促进“光储充”新型储能站落地,加快飞轮储能、钠离子电池等技术试验,推动固态电池电解质技术攻关。推动大功率长寿命氢燃料电池和碳纸、质子交换膜、催化剂等关键材料创新,推动燃料电池热电联供系统、固体氧化物燃料电池等应用研究。  (四)打造未来空间产业集群  在浦东、杨浦、闵行、金山、松江、青浦、崇明等区域,打造未来空间产业集群。  1.深海探采。推动研发深远海和极地船舶与海洋工程装备。发展重型破冰船、高冰级LNG船等极地装备,构建极地科考和资源开发装备体系。研制深远海运维保障、多功能救援等特种船舶,提高应急救援装备能力。研制深水大型浮式生产储卸装置等能源海工装备以及驻留浮式研究设施。研制深海采矿装备,加快海试验证及示范应用。  2.空天利用。突破倾转旋翼、复合翼、智能飞行等技术,研制载人电动垂直起降飞行器,探索空中交通新模式。聚焦智能机载、复合材料、新能源动力创新,研制超音速、翼身融合等新一代商用飞机,推动氢电池、氢涡扇等氢能飞机技术验证示范。研制低成本卫星和可重复使用运载火箭,加快宽带通信卫星发射组网及商业运营,积极利用空间频率和轨道资源,建设陆海空天领域全天候、全球性卫星互联网。  (五)打造未来材料产业集群  在浦东、宝山、金山等区域,提升产业转化承载能力,打造未来材料产业集群。  1.高端膜材料。提升膜材料基础结构设计和原料自主化能力,突破高端分离膜技术,研发攻克燃料电池质子交换膜及专用树脂、体外膜肺氧合器用中空纤维膜、5G/6G天线用液晶高分子聚合物膜、高导热石墨烯薄膜等原材料及成膜技术。持续推进高端锂电池用膜材料、新型显示用光学膜、集成电路离型膜等材料技术迭代和产业化。  2.高性能复合材料。做强高性能纤维产业链,布局极端环境纤维、生物医用纤维、人工智能纤维等方向。加强聚丙烯腈基碳纤维研发,支持粘胶基碳纤维、沥青基碳纤维、芳纶纤维、超高分子量聚烯烃纤维等制备技术与工艺提升,攻关核心催化材料,突破高性能碳纤维及复合材料量产技术。研发能源转化及存储纤维、变色纤维、形状记忆纤维和致动纤维等应用技术。持续攻关航空发动机用高温合金、金属基复合材料和高端医用可降解合金等技术。  3.非硅基芯材料。推动碳化硅、氮化镓等宽禁带半导体化合物发展,持续提升宽禁带半导体化合物晶体制备技术能级和量产规模,积极布局宽禁带半导体晶圆制造工艺技术,增强宽禁带半导体芯片产品设计能力,扩大产品应用领域。积极推动石墨烯、碳纳米管等碳基芯片材料,半导体二维材料等未来非硅基半导体材料技术研究和布局。  三、实施六大计划,竞逐未来赛道  (一)未来技术“筑基计划”  筹划组建一批未来技术学院,加强高校学科建设和人才培养。发挥中国工程院院士专家成果展示与转化中心作用,集聚各类创新资源,建设未来产业研究院。发展创新联合体,组建一批未来产业创新中心,加强前沿技术多路径探索、交叉融合和颠覆性技术供给。完善未来产业全球创新网络,加强国际创新协作,布局一批海外技术转移转化网络节点、国际技术转移和创新合作中心。  (二)未来布局“领跑计划”  谋划未来产业先导区,聚焦临港、张江、紫竹等,集聚创新要素,推动创新链和产业链深度融合。建设未来产业加速园,遴选若干特色产业园区前瞻布局,发挥未来产业科技园作用,建设一批推动创新成果转化的加速器。打造未来产业试验场,建设未来社区、未来工厂、未来医院、未来商业、未来农业等标杆示范场景。  (三)未来伙伴“携手计划”  培育产业生态主导型企业,鼓励国有企业加强未来产业布局,加大企业创新开放力度,纳入企业年度创新考核。引进培育一批创新型企业,发布硬核科技百强榜单,形成一批在细分领域引领的“未来之星”。依托“浦江之星”计划,构建“科学家+企业家+投资家”整合的项目挖掘与甄别机制。  (四)未来场景“开源计划”  发布早期验证场景,研究未来技术可行性,加速“0-1”的创新突破。发布融合试验场景,支持企业和科研院所联合建设中试基地和验证平台,实施跨界融合示范工程,推动“1-100”产业加速孵化。发布综合推广场景,以大规模示范推动“100-100万”的爆发式增长,加速应用迭代与产业化。  (五)未来人才“雁阵计划”  推出一批面向全球的“揭榜挂帅”项目,充分赋予科学家自主权和决策权,营造自由探索的良好氛围。引进全球顶尖人才、科研团队和创新型企业,建立以市场化为导向的利益风险分担机制,推动研发活动产业化。发挥院士(专家)工作站、博士后科研工作站等平台功能,跟踪未来技术创新成果,培育未来产业创新人才,支持申报各类人才计划。  (六)未来生态“雨林计划”  探索设立市场化主导的未来产业引导基金,鼓励金融机构开展产品和服务创新。推动国际性行业组织落户,支持企业参与制定未来产业标准规范。建立未来产业知识产权保护体系,注重数据安全、产业安全和伦理制度建设。放大世界顶尖科学家论坛、世界人工智能大会等溢出效应,搭建未来产业合作交流平台。联动“海聚英才”全球创新创业大赛,举办未来产业大赛。  四、落实保障措施  (一)加强组织推进  依托市制造业高质量发展领导小组,建立健全市级层面未来产业推进工作机制,加强基础研究、技术创新和产业化一体化部署,扩大产业规模,统筹协调未来产业发展。加强部市合作,争取国家重大工程、重大项目、重要平台等落户上海。加强市、区联动,强化区域布局和要素保障。  (二)加强战略研究  依托市产业技术创新战略咨询委员会,成立未来产业战略咨询专家组。编制未来产业发展白皮书,加快完善统计体系。组建未来产业促进平台,促进资源对接、成果转化,优化未来产业发展生态。  (三)加强政策支持  研究制订推动未来产业发展的支持政策,加大产业高质量发展、战略性新兴产业发展和科技创新行动计划等专项的支持力度。落实研发费用加计扣除、装备首台(套)、科技创新券、创新产品推广等政策,鼓励市场开展消费补贴,培育壮大市场需求。强化人才服务保障和融资支持。各区可结合实际出台专项支持政策。  (四)加强改革创新  健全完善适应未来产业技术更迭和产业变革要求的制度规范。按照包容审慎原则,统筹监管和服务,适当放宽新兴领域产品和服务市场准入,深化科研人才减负松绑的机制政策创新。加快要素市场化配置,强化企业创新主体地位,研究未来产业用地模式,推动数据开放和交易。  (五)加强氛围营造  大力营造鼓励创新、宽容失败、尊重人才、尊重创造的社会氛围与创新文化。加强场景建设,加大试点应用、创新示范案例总结和经验推广的力度。深化科普教育,让更多未来科学种子孕育发芽,为未来产业持续发展筑牢基础。图解提供:上海市经济信息化委
  • 国内合成生物学研究阵地,看看你知道几个?
    合成生物学是生物科学在二十一世纪新兴的一个分支学科,本质是构建一个区别于自然生命的人造生命。通过规模化的改造细胞,使其生产出人们需要的物质,如同建立了一个高效的细胞工厂。合成生物学的发展历程1911年,“Synthetic biology”一词最早由法国物理化学家Stephane Leduc在其所著的《生命的机理》(The Mechanism of Life)一书中提出,并归纳为“合成生物学是对形状和结构的合成”,但受制于当时的科学技术水平,“合成生物学”并未得到真正的发展。随着20世纪70年代和80年代分子克隆和PCR技术的发明,为基因设计调控提供了技术手段。到20世纪90年代中期,基因测序技术兴起,这种分子生物学的“放大”产生了系统生物学领域,生物学家和计算机科学家开始将实验和计算结合起来,对细胞网络进行反向工程。2000年,Eric Kool重新定义了“合成生物学”:是基于系统生物学的遗传工程。这标志着这一学科的真正形成。但合成生物学真正受到关注却是在21世纪,一系列颠覆性成就均是在此阶段发布。2000年-2003年是合成生物学的“创建时期”,产生了许多具备领域特征的研究手段和理论,特别是基因线路工程的建立及其在代谢工程中的成功运用,这一时期的典型成果是青蒿素前体在大肠杆菌中的合成;2004年-2007年是合成生物学的“扩张和发展时期”,工程化理念日渐深入、使能技术平台得到重视、工程方法和工具不断积淀,领域有扩大趋势;2008年-2013年是合成生物学的“快速创新和应用转化期”,涌现出的新技术和工程手段使合成生物学研究与应用领域大为拓展;2014年以后进入到了合成生物学的发展新阶段,“DBTL”循环被提出,生物技术与信息技术融合发展的特点愈加明显,2014年6月,世界经合组织(OECD):发表了题为“Emerging Policy Issues in Synthetic Biology”的报告。该篇报告从合成生物学前景说起,并认为该领域前景广阔,建议各国政府把握好机遇,大约20个国家纷纷出台相关政策。今年七月份,由工业和信息化部、国家发展改革委、商务部发布 《三部委关于印发轻工业稳增长工作方案(2023—2024 年)的通知》中也将生物制造作为着重培育壮大的新增长点。由中国科学技术信息研究所、上海市科学研究所联合编撰的《未来产业创新的前沿领域》也将合成生物学列为了未来产业创新的五大前沿领域之一。有数据显示,合成生物学将在未来5-10年呈现高速增长,合成生物学将成为千亿赛道。国内合成生物学主要研究阵地当前我国的合成生物学尚处于起步阶段,除了国家层面的顶层设计,地方各地也在加紧布局合成生物新赛道,北京、深圳、上海、天津等地现已经成为国内合成生物学研究的主要阵地。北京:作为全球科研城市榜首的北京,日渐成为国际前沿科技的重要策源地和全球产业变革的重要驱动地。其中在合成生物学方向,北京化工大学作为北京市内合成生物学重点落地研究团队,承担了北京市合成生物学重大专项。该校的生命科学与技术学院科研实力雄厚,尤其是在绿色生物制造、合成生物学、生物安全和生物医药等研究领域拥有国内领先水平。曾任生命科学与技术学院院长,现任北京化工大学校长的中国工程院院士谭天伟在合成生物学领域贡献颇多。此外,北京化工大学于2020年成功举办了合成生物学前沿论坛。仪器信息网特别邀请当次论坛的主持人——袁其朋老师将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《高效细胞工厂构建及产业应用》的报告分享。(点击报名参会)袁其朋作为当次论坛的主持人,也是教育部长江学者特聘教授,第十一届中国青年科技奖获得者,北京市百名领军人才,化工资源有效利用国家重点实验室副主任。他的主要研究领域为合成生物学及代谢工程、高纯天然产物规模制备及活性研究。近年来承担了科技部重点研发任务、国家自然科学基金重点、面上项目、企业合作等项目。中国工业生化与分子生物学分会副主任委员、中国药学会制药工程专业委员会副主任委员、中国纺织工程学会化纤专业委员会副主任委员、中国生物发酵产业协会微生物育种工程与应用评价分会副理事长等。《合成生物学》副主编,Synthetic Biology and Engineering,Bioresource and Bioprocessing,Advanced Biosystems News、Bioprocess、《食品科学》、《生物工程学报》、《食品安全质量检测学报》等刊物编委。除此之外,田平芳教授也受仪器信息网邀请,将于10月10 日在“合成生物学技术及应用进展”网络会议上进行名为《优化“启动子-RNA聚合酶”以实现目标产物的高产》的报告分享。(点击报名参会)田平芳教授:美国加州大学圣地亚哥分校(UCSD)访问学者,美国佐治亚大学(UGA)高级研究学者。他的研究方向为微生物代谢工程和合成生物学;主持国家自然科学基金面上项目5项,863课题2项,国家重点研发计划课题1项,其他省市和企业课题10多项,参与课题多项;发表SCI和核心刊物文章150多篇,授权专利16项;开展基因组编辑及3-羟基丙酸、1,3-丙二醇、吡咯喹啉醌、阿克拉霉素等化学品的生物合成和代谢调控研究;已培养博士和硕士研究生70多名;研发的生物农药已在全国范围推广;担任Nature Comm, Metab Eng, Appl Envir Microbiol, Biotechnol Adv, Appl Microb Biotechnol等30多个SCI刊物审稿人,以及国家自然科学基金、国家重点研发计划和国际合作项目评审专家。深圳:在政府层面,深圳市是目前国内发布合成生物学相关政策最多的地区,其中《光明区关于支持合成生物学创新链产业链融合发展的若干措施》是国家首个完全针对合成生物学的政策。深圳合成生物学科研实力雄厚,相关合成生物学研究院所共四所, 2017年深圳先进技术研究院成立国内首个合成生物学研究所,以青年“海归”为主,全球聚焦合成生物学领域最大规模的前沿多学科交叉团队,其中,刘陈立任深圳先进技术研究院合成生物学研究所所长。2019 年,深圳先进技术研究院牵头建设成立了深圳合成生物学创新研究院(深圳合成院),聚焦人工生命体系的理解,致力于重塑与扩展这一重大科学挑战,开展合成生物学基本原理、共性方法和医学转化应用研究。仪器信息网特别邀请深圳先进技术研究院合成生物学研究所合成生物化学研究中心执行主任罗小舟,他将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《利用合成生物学方法增加小分子结构多样性》的报告分享。(点击报名参会)罗小舟作为中国科学院深圳先进技术研究院研究员、合成生物学研究所合成生物化学研究中心执行主任,森瑞斯生物科技(深圳)有限公司创始人。同时,也是深圳市微生物药物智能制造重点实验室副主任,深圳市优青,广东省杰青,科技部重点研发计划课题负责人,国家重大人才工程(青年)专家,任《合成生物学》 编委。他主要聚焦于合成生物学领域中生命体内生物化学过程相关研究,主要结合遗传密码扩充技术,酶的定向进化,基因挖掘和代谢工程等多种化学生物学方法,基于大数据机器学习及高通量自动化,深入研究多种不同类别的天然产物及其衍生物的生物全合成的方法,并利用合成生物学方法,将研究成果转化至制药、个性化治疗、新材料等领域。上海:作为国内合成生物学的发源地,上海市产业优势及产学研协同优势较为明显。上海合成生物学科研院所共 3个,以 2008 年成立的中科院合成生物学重点实验室为代表。中科院合成生物学重点实验室是国内第一个合成生物学实验室,依托单位为中国科学院分子植物科学卓越创新中心。实验室以发展合成生物学理论和创新合成生物学技术为主导,建立合成生物学关键工程平台;针对我国在能源、环境、健康等方面的需求及面临的挑战,聚焦若干重要生物学体系,在分子、细胞和微生物菌群等层次上,实施合成生物学创制;并通过转化研究,推动科研成果产业化。现任实验室主任为覃重军研究员,副主任为王勇研究员、杨琛研究员,学术委员会主任为杨胜利院士。其中,副主任王勇受仪器信息网邀请将于第一届“合成生物学技术及应用进展”网络会议(10月10日-11日)上作名为《植物二萜的合成生物学研究》的报告分享。(点击报名参会)王勇博士作为中国科学院合成生物学重点实验室副主任,中科院分子植物科学卓越创新中心特聘研究员、博士生导师。科技部十三五重点研发计划“合成生物学”重大专项项目负责人,首席科学家。入选“中科院百人计划”、“国家万人计划科技创新领军人才”、“上海市优秀学术带头人计划”。现任上海市生物工程学会秘书长、副理事长;中国生物工程学会理事。他所在的课题组主要研究方向为天然产物的合成生物学:通过解析天然产物的生物合成途径,基于工程化的设计和建构,改进复杂天然产物的生物合成效率和其生产方式,开发天然的或非天然的复杂天然产物活性成分。作为项目负责人,先后主持完成了国家科技支撑计划、国家重点研发计划、国家重大新药创制专项、自然科学基金等多项国家或省部级科研项目。近年,申请的专利多项基于合成生物技术的天然产物产品实现了产业化推广,推动了行业进步。天津:在合成生物学领域设有总投资近20个亿的国家合成生物技术创新中心,还对标国家实验室建设了天津合成生物学海河实验室。除了上述提到的科研院所之外,中国农业科学院深圳农业基因组研究所农业合成生物学中心、上海交通大学生命科学院合成生物学实验室、上海农业科学院合成生物学实验室等也具备良好的研究和发展基础。合成生物学正被广泛应用于各种产业,合成生物学技术应用涵盖平台开发、医药、化工、能源、食品和农业等重点领域。在推动科学革命的同时,合成生物学技术正快速向实用化、产业化方向发展。~~~~~"合成生物学技术及应用进展"网络会议开讲啦!~~~~~2023年10月10-11日,由仪器信息网举办的第一届合成生物学技术及应用进展网络会议将在线开播。本次会议聚焦到合成生物学的上、中游技术,众多行业专家将在线分享先进、前沿的使能技术,以及菌株改造、筛选等生物合成技术和工艺开发方案,会议日程详情请点击下方链接,快来报名吧!立即报名 详细日程:https://www.instrument.com.cn/webinar/meetings/syntheticbiology231010.html 扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助联系:仪器信息网 陈编辑:13171925519,chensh@instrument.com.cn
  • PerkinElmer展出用于高级研究和开发的先进试剂、成像系统和检测系统
    PerkinElmer 在神经科学学会年会上展出用于高级研究和开发的先进试剂、成像系统和检测系统 芝加哥,2009 年 10 月 16 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.,今天在 2009 神经科学学会年会上宣布推出几款新工具,旨在促进神经系统疾病(如阿尔兹海默氏症、帕金森氏综合症、多发性硬化症和其它中枢神经系统疾病)研究的速度和效率。 &ldquo PerkinElmer 素有参加神经科学学会年会的传统,今年也不例外,&rdquo PerkinElmer 生物研发业务总裁 Richard M. Eglen 博士说。&ldquo 今年我们推出了几种细胞信号研究的新工具,包括细胞和生物化学检测工具、3D 活细胞成像工具、创新性数据管理软件以及全新的超灵敏度发光微孔板检测仪。这些工具主要用于促进科研人员提高研究的速度和效率。&rdquo 他接着说,&ldquo 在神经科学学会年会上,我们还发布了有关整合最近从GE Healthcare 收购的无形资产的信息,其中包括 3H 和 14C 目录放射化学试剂、SPA 试剂和 CytoStar-TTM 微孔板产品。这些资产充实并加强了我们的研究试剂解决方案,进一步帮助客户推进重点医药项目的研发工作,同时还显示了我们在放射化学试剂领域始终领先的地位。&rdquo PerkinElmer 在神经科学学会年会 1017 号展台展示的新技术包括: - 15 种全新的 已制备 GPCR 冷冻细胞系 - 扩展了该公司针对各种主要病症效果显著的细胞系产品线。 - 7 种全新的 LANCE Ultra 检测产品 - 将可检测的激酶数量增加到 300 多种。 - 全新的 EnSpire(TM) 多标记微孔板检测仪具有超灵敏度的发光检测和温度控制功能 &ndash 经济实用,将提供高性能的检测方案和方便易用的软件,适用于任何规模的实验室。 - 12 种全新的 3H 和 125I 放射性配体 - 将我们的系列产品增加到 1,000 多种 NEN 放射性化学试剂。 - 全新的 NeoLite 报告基因检测 - 能够提高灵敏度,延长发光检测时间。 - 全新的 TSA 增强型生物素试剂盒 - 将免疫检测的灵敏度增加 10 到 20 倍。 - UltraVIEW VoX 3D 活细胞成像系统 &ndash 唯一的 3D 转碟系统,能够针对细胞分析提供集成的图像采集。 - OperettaTM 紧凑型高内涵筛选系统 &ndash 首个具有全部可视化向导式的成像分析流程设计用户界面的高内涵筛选 (HCS) 系统。 - ColumbusTM 图像数据管理系统 &ndash 用于高容量图像数据管理和分析,为细胞研究人员提供导入、导出和管理所有细胞图像数据的高容量高性能图形数据中央服务器。 - MicroBeta2 和 MicroBeta2 LumiJETTM 微孔板检测仪 &ndash 将液体闪烁计数的可靠性和发光检测与微孔板检测仪的简易性相结合,从而节省时间和消耗品并减少浪费。 PerkinElmer 在年会的活动包括下列放射性化学试剂开放式讨论会和细胞成像研讨会,以及两个论文研读会: PerkinElmer 的放射性化学试剂开放式讨论会 10 月 19 日周一,上午 11 时到下午 2 时,Hyatt McCormick Place 的 CC10AB 室 此次开放式讨论会将探讨 PerkinElmer 对 GE 的闪烁近似检测 (SPA) 技术与 3H 和 14C 放射性化学试剂资产的整合。公司将讨论通过并入 SPA 技术试剂产生行业新发展的重要性,这些试剂产品增强了公司在业界领先的 GPCR 和激酶研究产品线,完善了我们&ldquo 一应俱全&rdquo 的研究试剂解决方案。 3D 活细胞成像研讨会 10 月 19 日周一,下午 2 时到 4 时,Hyatt McCormick Place 的 CC10CD 室 在嘉宾科学家和 PerkinElmer 的成像专家进行一系列说明性介绍过程中,探讨活细胞成像,并分析 3D 图像采集和分析的优点。此次研讨会将讨论和展示一些解决当今细胞成像和分析难题的各种新技术。 有关 PerkinElmer 在 2009 神经科学学会年会上全部活动的详细信息,请访问。 来源:PerkinElmer 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。 媒体联络 PerkinElmer, Inc. Kim McCrossen 联络电话︰+781-663-5871 版权所有 美国商业新闻 2009
  • 智能连续化合成加速药物开发!
    “在药物合成领域,新的化学合成技术及先进设备的应用,改变了药物研究者设计和构建分子的思路。合成智能化是所有化学、药物研究者的终极梦想。路漫漫其修远兮,本文将介绍几个近阶段出现的新的合成工具以及理念,以期为大家带来新的思路。” 自动化合成平台2020年SRI International 公司 SRI Biosciences 部门的首席战略官 Nathan Collins 等人报道了一种全自动多步合成平台AutoSyn,在几小时内合成从毫克到克级几乎任何类似药物的小分子[1]。该系统由以下四部分组成:可选择的流动化学单元操作模块和试剂输送系统组成的固定配置合成平台在线分析监测、控制和数据采集设备集成软件控制系统,自动化端到端过程操作和监控合成路线测绘工具,标识多步流路径与控制参数,创建一个完整的电子合成工艺研究者应用该系统成功实现自动合成伊马替尼。合成过程分为4个步序:A.输入合成伊马替尼的标准反应路线;B.自动给出每一步的参数,从设备组成中选出合适的反应器以及各试剂的浓度和流速;C.图形界面展示出工艺流程图、设备以及相关的控制参数;D.给出NMR和LC-MS的分析结果 康宁一体化合成平台真正实现智能化药物合成还有很长的路要走。康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。智能化软件智能化合成离不开基于大数据的人工智能机器学习与药物学、医学和计算化学领域的专业技术的结合与发展。智能化软件的开发与应用也在不断发展:2020年10月Science发布了国格拉斯哥大学Cronin 实验室开发的一个软件,可以将学术论文转化为可执行的程序,即实现了“文献进,产物出(Paper in, product out)”[2]2020年11月默克集团正式宣布将选用某人工智能药物开发软件整合到默克集团药物发现项目中,以实现快速高效的药物设计。[3] 人才储备人才是推动企业乃至整个行业高质量发展的关键。不断加强人才培养,补齐人才短板是推进药物研发与生产实现“智能合成”过程需要解决的重要问题。化学先进技术应用、智能制造装备升级、工业软件使用与维护、工业互联网与云平台技术的人才培养都是智能人才储备的重点 康宁助力智能化合成人才培养连续流技术已经成为智能合成的必备技术手段之一。随着该技术的发展人才短缺的现象也日渐凸显,康宁反应器技术致力于与世界众多院校深入且广泛的合作,开发专门的连续流教学设备康宁星云NebulaTM化学和化工教学平台,并和高校教授一起开发连续流教学课程并取得了显著的效果。综上合成智能化的脚步越来越近,不管是自动化合成平台的建设、软件的开发与应用还是人才的培养和储备都在日新月异地发展着。 康宁反应器技术愿与广大用户和朋友一起迎接合成智能化的到来! Reference:[1] Nathan Collins, David Stout, Jin-Ping Lim, Jeremiah P. Malerich, Jason White, Peter BawdenMadrid, Mario Latendresse, David Krieger, Judy Szeto, Vi-Anh Vu, Kristina Rucker, Michael Deleo, Yonael Gorfu, Markus Krummenacker, Leslie Hokama, Peter Karp, and Sahana Mallya Org. Process Res. Dev., J. Fully Automated Chemical Synthesis: Toward the Universal SynthesizerDOI: 10.1021/acs.oprd.0c00143 • Publication Date (Web): 23 Jun 2020[2] Mehr, S., Craven, M., Leonov, A., Keenan, G. and Cronin, L., 2020. A universal system for digitization and automatic execution of the chemical synthesis literature. Science. https://doi.org/10.1126/science.abc2986[3] 微信公众号36氪 20-11-17
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒新测定方法扩大了 Agilent Seahorse XF 技术的应用范围2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。”他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。”安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。”Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。 关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。 # # #
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    p style="text-align: center "span style="color: rgb(31, 73, 125) "strong新测定方法扩大了 Agilent Seahorse XF 技术的应用范围/strong/span/pp  2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。/pp  Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。/pp  这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。/pp  加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。”/pp  他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。”/pp  安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。”/pp  Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。/pp strong 关于安捷伦科技公司/strong/pp  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 /p
  • 【抗疫药】羟氯喹连续合成和连续分离
    一、背景介绍新冠疫情蔓延全球,急需寻找有效药物。除了瑞德西韦,氯喹与羟氯喹同时被WHO和美国总统点名加入海外抗疫候选药物单用或组合应用的多国多中心临床试验(Solidarity Clinical Trial)。美国选用氯喹/羟氯喹作为新冠治疗候选药物的原因在于这是一种上市多年的老药,因此安全性有保障。如果选用一种全新的(未上市)的药物,其安全性是未知的,也需要花费更多的时间去验证。抛开羟氯喹是否能成为治疗新冠病毒的特效药,世界卫生组织已将羟氯喹(HCQ)确定为基本医疗保健系统的必需抗疟药,但API的高制造成本阻碍了HCQ的全球普及。因此,开发具有成本效益的合成工艺来增加该药物的普及显得至关重要。如今,采用先进技术,开发低成本广谱药物和小批量孤独药是FDA一直致力推动的目标。微反应连续流技术的兴起不光给低成本药物的合成带来可能,还可以快速应对市场的需求。2018年,弗吉尼亚联邦大学化学系和化学与生命科学工程系研究小组,在Beilstein J. Org. Chem. 期刊上发表了抗疟药羟氯喹的高效连续合成报告。小编就带大家来解读,连续流技术如何来助力这场没有硝烟的病毒战! 二、羟氯喹的逆合成分析从羟氯喹的逆合成分析中可以发现化合物(6)是关键中间体。在传统工艺中化合物(6)通常有以下两种合成路径(图2)。反应路径1a中,使用氯酮(3)进行保护-去保护反应是优化工艺的一个关键点。虽然改进路径1b去掉了此步骤,但它使用了一个复杂的过渡金属-催化剂系统 。考虑到这些问题,研究小组通过逆合成分析,发现可以通过α-乙酰基丁内酯(8)的脱羧开环一步生成(10),然后化合物(10)可以不经分离制备化合物(6)。 三、连续流合成研究研究小组首先开发并优化了一条快速连续合成化合物10的方法(表1)。该路线的收率显著高于之前报道的合成路线 。使用55%的氢碘酸,反应温度80°C,转化率可达98%,分离收率为89%。?四、Zaiput在线连续分离由于使用了过量的氢碘酸,在进行下一步反应之前,必须将过量的氢碘酸从反应流中除去。将含有粗品(10)的产物与甲基叔丁基醚(MTBE)和饱和NaHCO3在线混合,然后使用Zaiput连续流分离器进行在线分离。在有机相中,可以得到纯化后的化合物(10)。连续分离简化了后处理步骤,大大节省了人力和时间。Zaiput高效液液分离技术是由美国MIT孵化的一项新技术。以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。 五、中间体(6)(11)的合成化合物(10)与化合物(7)反应可生成化合物(6),化合物(6)无需分离与羟胺反应,通过K2CO3的填充床生成肟(11)。从生成(11)的两步反应中可以看出,反应物的浓度对肟的形成有显著影响。使用1 M浓度的反应物,结果显示温度100°C,停留时间 20 min,转化率为85%,分离收率为78%。六、连续搅拌釜反应器(CSTR)工艺作者选择了连续搅拌釜反应器(CSTR)工艺进行化合物(11)的加氢还原合成化合物(12)。用HPLC泵输送至CSTR中,并通入氢气使其反应。作者优化了化合物(12)的各个步骤后,将各个步骤合为一个连续的反应过程。该过程将化合物(10)转化为化合物(6),再继续转化为化合物(12)(图4)。最终产物化合物(12)的收率达到68%。七、羟氯喹的连续釜式合成为了整个工艺流程的连续化,作者选择使用CSTR 研究最后一步羟氯喹的合成。作者考察了溶剂和碱对HCQ(1)收率的影响。实验总结:• 连续合成工艺大大缩短了反应时间• 减少了步骤并提高了单个反应的收率• 使用了更具成本效益的起始原料和试剂• 连续合成与连续分离技术的完美结合,促使了整个过程的连续化• 具有成本效益的合成工艺来增加该药物在未来的普及新工艺与目前传统的商业工艺相比,总收率提高了52%。连续方法采用连续流反应器、在线连续分离及连续搅拌釜反应器的组合,过程更加安全可靠。参考文献:Beilstein J. Org. Chem. 2018, 14, 583–592. doi:10.3762/bjoc.14.45康宁在中国独家代理:Zaiput 高效液液分离器以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器有一个混合流体入口和两个出口,分别为有机相出口和水相出口,分离器使用过程中不需要任何准备或校准。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。产品特性:• 分离液体不依赖密度差,可分离乳液• 在连续流动过程中,分离器可实现连续在线分离• 非常低的死体积,优异的化学耐受性,可在压力下运行• 可实现实验室规模放大至工业化生产规模• 高效分离降低萃取溶剂消耗• 非常适合活性或不稳定中间体的分离
  • 镁伽:抢占合成生物学自动化领域先机
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大用户及时了解合成生物学的市场概况、解决方案及相关活动,仪器信息网本次特别邀请了苏州镁伽科技有限公司(以下简称“镁伽”)谈一谈他们的看法:仪器信息网:您如何看待当前合成生物学产业及市场发展现状?镁伽:合成生物学,重新定义生物制造。合成生物学是继“DNA双螺旋结构的发现”和“人类基因组计划”之后,以工程化的手段设计合成基因组为标志的第三次生物技术革命。作为一门交叉学科,促进了生命科学从基于观测、描述及经验的科学跃升为可预测、可定量及可工程化的科学,并在医疗、能源、工业、农业、环境、信息等领域的应用日益广泛。合成生物学作为一个战略性新兴产业技术,其本质指人们将“基因”连接成网络,让细胞来完成设计人员设想的各种任务,该领域近年来得益于合成生物技术突破、政策支持等因素取得了快速发展。同时,合成生物学是近年来很热门的一个研究方向,全球范围内,合成生物学受到不同国家的关注和政策支持。2022年,美国发布《国家生物技术和生物制造计划》;同年,中国发改委明确将合成生物学列入《“十四五”生物经济发展规划》;欧盟在《面向生物经济的欧洲化学工业路线图》中,提出在 2030年将生物基产品或可再生原料替代份额增加到25%的发展目标。日、韩、以色列等国家也出台了相关政府报告或指导,推动合成生物学技术及应用快速发展。仪器信息网:合成生物学产业将给科学仪器行业带来哪些市场机会? 镁伽:在高通量和规模化的发展中,合成生物学的未来势必离不开自动化的设备和整体解决方案。如果将合成生物学的产业链按照上、中、下游分类,上游则包含可以驱动产业发展的技术生态系统,如DNA/RNA合成、测序及编辑,以及相关自动化企业的产品与服务;中游产业涉及对生物系统和生物体进行设计、开发的技术平台;下游产业则是涉及多个行业的应用开发和产品落地。如果上中游产业通过不断地技术革新、提高生产效率及构建解决方案,在未来可能会占据产业链的核心位置。合成生物学、人工智能/机器学习和自动化的结合将释放生物科技的力量,帮助解决健康、能源、可持续发展等全球性的挑战,而镁伽科技正是这个新趋势的领导者之一。在合成生物学自动化领域镁伽已嗅到先机,开始利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。仪器信息网:贵单位针对合成生物学领域推出了(或将要推出)哪些解决方案?可以应用到哪些环节?解决了什么样的痛点? 镁伽:镁伽合成生物学方案,通过DBTL(Design-Build-Test-Learn)这一闭环,深入掌握基因线路的设计原理,构建集成的自动化分子克隆工作流程,利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。镁伽全自动质粒构建系统在合成生物学领域,主要针对质粒构建这一实验流程,我们将其中最基础但又非常繁琐的质粒构建工作在我们的自动化系统中去实现全流程自动化操作,提高通量的同时标准化整个流程,为合成生物学领域的前进贡献力量。同时这套系统的落地稳定运行,也很好的代表了镁伽在生命科学自动化方面的能力与经验。仪器信息网:如何看待合成生物学的未来发展前景? 镁伽:随着合成生物技术的快速发展,不断催生出位于产业上、中、下游的工具型、平台型和产品型公司。镁伽依靠鲲鹏实验室的科研能力,持续助力为行业带来高附加值的生产力工具和服务,提供一站式智能化合成生物学解决方案。可根据客户需求搭建高通量、自动化、信息化的合成生物学实验室,包括整体设备、试剂配套方案,及数据验证参数建议等。
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • PerkinElmer最新推出先进试剂、成像系统和检测系统
    圣迭戈,2009 年 12 月 4 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer. Inc.,今天在美国细胞生物学会 2009 年会上宣布推出多种旨在提高生命科学研究的速度与效率的新工具。这些新产品具有更高的灵敏度、精确度和易用性,可以在癌症、炎症和神经退变性疾病等几种病症的研究过程中,获得更加精确的病理结果。  “PerkinElmer 素有参加美国细胞生物学会年会的传统,今年我们将在会上推出各种细胞信号传导解决方案”,PerkinElmer 生物研发业务总裁 Richard M. Eglen 博士说。“今年我们推出了几种用于研究细胞通路的新工具,包括多种新颖的细胞和生物化学检测工具、3D 活细胞成像工具、创新性数据管理软件以及全新的超灵敏度发光微孔板检测仪。这些工具能够帮助科学工作者提高研究的速度和效率。”  PerkinElmer 在美国细胞生物学会年会(1121 号展台)展示的新技术包括:- 22 种全新的 AlphaScreen SureFire 检测 - 可通过“无需洗涤”细胞激酶和信号传导通路试剂盒来检测内源细胞激酶。 - 24 种全新的 AlphaLISA “无需洗涤”免疫测定试剂盒 - 可检测生物标志物,包括用于检测“非人类”靶点的四种全新小鼠专用试剂盒。 - 18 种全新的 已制备 GPCR 冷冻细胞系 - 将该公司针对多种主要病症的经过验证的细胞系产品线扩展到 64 种以上。 - 7 种全新的 LANCE Ultra TR-FRET 检测产品 - 使能够检测的激酶数增加到 300 多种。 - 12 种全新的 3H 和 125I 放射性配体 - 将我们的系列产品增加到 1,000 多种 NEN 放射性化学试剂。 - 全新的 neoliteTM 报告基因检测 - 能够提高灵敏度并延长发光检测时间。 - 全新的 TSATM 增强型生物素试剂盒 - 将组织化学检测和细胞化学检测的灵敏度增加 10 到 20 倍。 - 全新的 Volocity 5.3 - 支持实时 3D 成像,可在采集过程中显示经过充分渲染的 3D 结果。Volocity Acquisition 改进了硬件控制并新增了一些用于实验设计的选项,其功能和灵活性都得到了增强。 - 全新的 EnSpireTM 多标记微孔板检测仪具有超灵敏度的发光和温度控制功能 – 此装置经济实用,能够提供高性能的检测和方便易用的软件,适用于任何规模的实验室。 - JANUS 自动化工作站 - 一个自动化液体处理平台,它所提供的通量、微孔板容量和动态体积范围都能够满足您当前和未来的应用需求。它易于使用,灵活性强,可满足各种应用需求。 - MicroBeta2 TM 微孔板检测仪 - 将液体闪烁计数的可靠性和发光检测与微孔板检测仪的简易性相结合,从而节省时间和消耗品并减少浪费。 - UltraVIEW VoX 3D 活细胞成像系统 - 唯一的能够提供从图像采集到分析的整合型的3D 转碟系统,可针对多种应用分析。 - OperettaTM 紧凑型高内涵筛选系统 – 首个具有全部工作流设计用户界面的高内涵筛选 (HCS) 系统。 - ColumbusTM 图像数据管理系统 - 作为此高容量图像数据管理和分析解决方案的最新版本,可使用户更快地在图像与数据管理之间实现互连,并且由于完全受 Web 支持,无需安装软件即可使用。 PerkinElmer 在年会上的活动包括: PerkinElmer 的参展商展示:“在具体环境中的细胞” 12 月 7 日周一,上午 7 时到 9 时,会议中心 11 A/B 室 让我们一起探讨 PerkinElmer 产品与应用的相关知识、专业技术以及持续的创新,它们将促进细胞信号传导和转导研究不断取得新进展。期间将有一系列的短片演示,向您简要介绍针对“一应俱全”细胞生物学研究未来发展的领先解决方案。 3D 活细胞成像研讨会 12 月 7 日周一,下午 4 时,Omni San Diego Hotel 酒店,B 沙龙 在嘉宾科学家和 PerkinElmer 成像专家进行一系列简短的说明性介绍的过程中,探讨活细胞成像,并分析 3D 图像采集和分析的优点。此次研讨会将讨论和展示一些解决当今细胞成像和分析领域难题的新技术。 超越 ELISA 研讨会 12 月 7 日周一,下午 4:00 到 7:45,Omni San Diego Hotel 酒店,A 沙龙 快来参加!了解领先的研究人员是如何发现新技术对生物标记物和细胞激酶分析产生影响的。在这具有开拓意义的研讨会中,嘉宾将直接从同行那里了解改变他们研究方式的先进方法。 有关 PerkinElmer 在此次年会上所有活动的详细信息,请访问http://www.perkinelmer.com/ASCB2009。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。
  • 达普生物完成亿元级 B1 轮融资,打造生命科学仪器工具平台
    近日,达普生物科技有限公司 ( 以下简称 : 达普生物 ) 宣布已完成亿元级 B1 轮融资。本轮融资由鲁信创投领投,拙朴投资、广州金控基金、道合科技投资、深圳辰沐云科技跟投。据悉,此次融资资金将用于达普生物自主研发的多款液滴微流控平台的全球商业化拓展,打造全球领先的生命科学仪器工具平台。达普生物孵化于香港科技大学,于 2018 年创立,是中国液滴微流控领军企业,致力于提供世界领先的生命科学解决方案。公司在深圳、嘉兴、香港三地设有研发中心,研发团队近百人,聚焦于将液滴微流控技术应用于生物医药与精准医学领域,致力于成为集微流控芯片、仪器、试剂的研发和生产于一体的完整解决方案提供商。目前,公司已商业化多款基于液滴微流控技术的科学仪器,包括高通量筛选系统(Comet High Throughput Sorting System)、星海单细胞测序建库系统(Galaxy Single Cell Analysis System)与星云数字 PCR 系统(Nebula dPCR System),可应用于抗体筛选、酶进化、合成生物学、高通量药物筛选、癌症研究、癌症早期筛查、靶向治疗、无创产前诊断和病毒定量、生物制品质检等领域。自 2022 年商业化以来,达普生物上市的多款创新生命科学工具产品,凭借其优秀的性能和产品定位,在国内市场中获得了客户及业界各方的认可。目前客户群体囊括了国内头部制药及生物技术企业、高校、研究所、医院等科研机构,已服务超过 100 家国内头部生物医药、科研服务商与 IVD 企业,在业内获得广泛的认可。随着产品方案逐渐打磨成熟,达普生物也在启动海外市场的部署。
  • Rigaku收购Emerald Bio结晶试剂和耗材业务
    日前,位于美国伍德兰德斯的理学美国公司(Rigaku Americas Corporation)宣布,公司已经收购了Emerald Bio的结晶试剂和耗材业务,包括结晶筛选工具。Emerald Bio位于华盛顿班布里奇岛。两家公司已经同意共同开发蛋白质科学领域的新产品和解决方案。  &ldquo 收购耗材和筛选工具业务是增加与我们仪器客户更多接触、提高他们工作效率的一个步骤,&rdquo 理学美国公司生命科学部门总裁Catherine Klein说。&ldquo 此外,Emerald Bio成为我们的发展伙伴,将有助于确保我们的新产品位于蛋白质科学研究的最前沿。&rdquo   &ldquo 世界领先的蛋白质结晶学仪器公司Rigaku是Emerald Bio理想的发展伙伴,&rdquo Emerald Bio首席执行官Johan Pontin说。编译:刘丰秋
  • 我国科学家实现二氧化碳到葡萄糖和油脂的人工合成
    此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗? 答案是肯定的! 4月28日,《自然催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)。 这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。 先把二氧化碳变成“食醋” 或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗? 对此,曾杰回应:“经过后续纯化处理,可以食用。” 那么,二氧化碳究竟是如何变成葡萄糖和油脂的? “首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。 至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。 “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。 研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。 不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。 所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。 “我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。 微生物“吃醋”产葡萄糖 得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。 “酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。 “然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。 对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。 “我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。 于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。 于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。 新型催化方式有坚实根基 更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。 同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。 “这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。 对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。 “该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。 同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。 曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。
  • CEM公司微波多肽合成系统新产品推介
    2011年6月27日,全球领先的微波实验室仪器的供应商CEM公司隆重推出新产品 Discover SPS Plus&trade ,成为微波多肽合成系统最畅销产品线的新成员。Discover SPS Plus 是一款很强大的半自动研发工具,使多肽科学家们在微波增强反应的条件下,以极快的速度合成高品质的多肽。此款产品的特点是集成了一个清洗和产品输送系统,能够更轻松地添加关键的脱保护、耦合、裂解试剂。 &ldquo 微波使半自动合成方式更为强大,化学家不必再因为使用传统的方法而等待太长的时间,&rdquo CEM的总裁和首席执行官Michael J.Collins说,&ldquo Discover SPS Plus一个循环小于10分钟,化学家完成10肽的反应小于2个小时。这使许多小的实验室可以在短的时间内以传统的方法合成高纯度的多肽。&rdquo Discover SPS Plus的一个独特的优势就是在任何时间都可以升级到CEM全自动微波多肽合成系统Liberty。Liberty&trade 和Liberty1&trade 微波多肽合成系统已成为当今市场上最畅销的多肽合成仪,在世界范围内有数以百计的实验室都在使用。只有CEM系统拥有专利技术,能够以微波辅助方法完成脱保护和耦合反应。 微波技术是一个发展速度最快的多肽合成方法,科学家可以更快地合成更高质量的多肽。CEM的专利微波多肽合成技术可以合成更长更困难的多肽,这是以往采取传统技术难以实现的。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com网站:www.pynnco.com
  • Horizon Discovery合成业内首个合成型单向导RNA和CRISPR干扰dCas9阻遏物, 扩展基因调控产品组合
    CRISPRi创新技术为从事疾病和药物研究的人员提供了更多的实验选项和更大的灵活性珀金埃尔默公司旗下Horizon Discovery日前宣布,其基因编辑与基因调控产品组合再添新成员,公司已成功研制出新的CRISPR干扰(CRISPRi)的CRISPR调节(CRISPRmod)试剂家族。CRISPRi使科学家能够在转录水平上抑制基因,更好地了解疾病的生物学途径、过程和病理,从而研发出新的治疗方法。这些新试剂包括用于CRISPRi的首个已上市合成单向导RNA,以及具有mRNA和慢病毒形式的dCas9-SALL1-SDS3阻遏物(相应专利正在申请中)。借助这些新技术,研究人员将能够灵活地在任何时间段、从单个基因读数到高通量研究的任何规模下,在几乎所有的细胞系内进行基因抑制。与当前的CRISPRi产品相比,新型dCas9-SALL1-SDS3阻遏物基于大量研究,进行了科学缜密的升级,在更长的时间内显示出更强大、更一致的基因调节。珀金埃尔默全球副总裁兼生命科学事业部总经理Alan Fletcher表示:“ CRISPRi是基因抑制,而不是基因剔除。这是一种无需剪切的CRISPR,为希望模拟小分子药物的细胞效应或进行多重基因询问的研究人员提供了一种理想的具有细微差别的临时方法。利用这些新试剂以及现有的CRISPR选择,我们将协助研究人员在未来的几年中实现更加激动人心的突破。”过去20多年,Horizon Discovery的Dharmacon 产品,以拥有诸多siRNA专利而著名,一直是基因调控领域的领导者,CRISPR基因编辑工具的成功研制让Horizon一直站在技术的前沿,成为行业的先驱,通过提供多种形式的向导RNA和Cas9核酸酶产品,实现精准DIY CRISPR基因剔除和敲入,同时还提供定制基因筛选和细胞株生产服务。通过开发基于CRISPR的新型转录基因调节试剂,CRISPRmod CRISPRi将延续不断创新的优秀传统,为研究人员解答生物学的根本问题,完善治疗方案提供全方位的帮助。有关Horizon Discovery的CRISPRi技术的更多信息,请访问:https://horizondiscovery.com/en/applications/crisprmod/crispri关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有约14000名专业技术人员,服务于190个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2020年,珀金埃尔默年营收达到约38亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cnAbout PerkinElmer PerkinElmer enables scientists, researchers, and clinicians to address their most critical challenges across science and healthcare. With a mission focused on innovating for a healthier world, we deliver unique solutions to serve the diagnostics, life sciences, food, and applied markets. We strategically partner with customers to enable earlier and more accurate insights supported by deep market knowledge and technical expertise. Our dedicated team of about 14,000 employees worldwide is passionate about helping customers work to create healthier families, improve the quality of life, and sustain the well-being and longevity of people globally. The Company reported revenue of approximately $3.8 billion in 2020, serves customers in 190 countries, and is a component of the S&P 500 index. Additional information is available through 1-877-PKI-NYSE, or at www.perkinelmer.com. Media Contact:Jennifer McNeiljennifer.mcneil@perkinelmer.com+1 508.380.2902
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 实验室安全—化学试剂使用与管理绕不过的话题 -----记“第十届全国试剂与应用技术交流会”
    仪器信息网讯 2016年11月1--4日,“第十届全国试剂与应用技术交流会” 在广州广东工业大学召开。本次会议由全国化学试剂信息站主办,《化学试剂》编辑部、广东工业大学轻工化工学院承办。近120位代表出席本届交流会。  化学试剂是科研和生产活动的基础,也是科研和生产活动的必备粮草。鉴于去年发生天津港化学品爆炸事件以及后来多起实验室爆炸事故,本届会议围绕“试剂品类和技术发展与实验室危险化学品管理”的主题,邀请众多专家学者共聚一堂,探讨了我国试剂行业的技术及发展现状与趋势。同时围绕实验室危险化学品事故等热点问题进行讨论,提出危险化学品事故危机的解决方案,力求推进试剂行业的发展。  大会特别邀请到中国工程院院士、中国科学院高能物理研究所柴之芳教授到会致辞并主持上午的主题演讲。针对中国试剂耗材市场上国外厂商占据绝对优势份额的情况,柴院士表达了自己的中国梦:希望有一天,中国企业并购外国企业、化学试剂国企并购默克的案例出现。中国科学院高能物理研究所柴之芳院士  《化学试剂》期刊编委会主任、北京大学医学部王夔院士特别为大会发来致辞,即表示出对大会的关注,也表达出对试剂行业健康发展的殷切期望。  作为大会特邀嘉宾,广东工业大学副校长陈为民先生、国药集团化学试剂有限公司常务副总经理王刚先生、中国化学试剂工业协会理事长南山先生、中国化工学会精细化工专业委员会副秘书长仲晓萍女士、科研用试剂产业技术创新战略联盟秘书长牛刚先生、上海化学试剂产业技术创新战略联盟秘书长马兰凤女士也分别作了热情洋溢的致辞。广东工业大学副校长陈为民致辞国药集团化学试剂有限公司常务副总经理、《化学试剂》期刊编委会副主任王刚致辞中国化学试剂工业协会理事长南山致辞中国化工学会精细化工专业委员会副秘书长仲晓萍致辞科研用试剂产业技术创新战略联盟秘书长牛刚先生致辞上海化学试剂产业技术创新战略联盟秘书长马兰凤女士致辞  大会由《化学试剂》杂志主编何晖女士和广东工业大学轻工化工学院院长方岩雄教授主持。大会特邀中国化学试剂工业协会理事长南山先生宣读了2014-2015年度《中国化学试剂行业十强企业》名单。西陇化工等十家企业获奖,其中既有老牌国家队,也有成立不足十年的后起之秀。获奖企业名单如下:  西陇科学股份有限公司 国药集团化学试剂有限公司 广东光华科技股份有限公司 南京化学试剂股份有限公司 广州化学试剂厂 天津市科密欧化学试剂有限公司 上海阿拉丁生化科技股份有限公司 安徽时联特种溶剂股份有限公司 上海试四赫维化工有限公司 上海三爱思试剂有限公司。柴之芳院士、陈为民副校长为中国化学试剂行业十强企业颁奖  全国化学试剂信息站自2009年起,持续发布双年度《中国试剂发展调研报告》,受到各方关注。报告的编写得到中国化学试剂工业协会、行业内企业的支持与协助,其中企业经营数据部分,来自行业协会年度的数据统计报表,以及全国化学试剂信息站历年来对行业重点企业经营数据的统计汇总。此次评选的行业十强企业是汇集报告统计数据,将近两年来综合实力排名前十的企业评选而成。获奖者代表广东光华科技股份有限公司化学试剂总监杨祖华发表感言  会议同期还发布了《2014-2015年度中国试剂行业发展研究报告》、《2015年度中国试剂品牌影响力报告》,进行了2014-2015年度中国化学试剂优秀品牌颁奖以及企业产品展示等活动。 化学试剂行业由于其产品和用户的特殊性,使得品牌成为反应市场占有率和企业长远发展的具体体现。品牌意味着高质量、高品位、高效益、高竞争力,是企业存在与发展的灵魂,是企业延续的价值支柱。只有重视品牌,构筑自身发展的灵魂,企业才能做大做强。未来的竞争是品牌的竞争,良好的品牌是企业参与竞争制胜的法宝,是中国化学试剂企业走向国际的核心。为了解国内用户对化学试剂的使用状况和需求情况,全国化学试剂信息站连续多年开展用户问卷调查,通过试剂用户参与投票、书面问卷和网上问卷收集等形式,对试剂品牌的认知度和试剂需求情况进行了详细的数据统计分析,撰写了《2015年度中国试剂品牌影响力报告》,评选出2014-2015年度中国化学试剂优秀品牌。2014-2015年度中国化学试剂优秀品牌颁奖仪式由《化学试剂》期刊主编何晖女士主持    大会学术报告会还邀请到日本京都大学Keiji Maruoka教授做了题为“非对称态转移催化:Maruoka催化和工业应用的基本设计”的演讲。Keiji Maruoka教授1980 年于美国夏威夷大学获有机化学博士学位,同年到名古屋大学任教。2000年至今在日本京都大学任职教授。Maruoka 教授在有机催化领域享有盛誉并做出很大贡献,获近20 项日本本土和国际奖项。日本京都大学Keiji Maruoka教授做主题演讲  大会的学术报告还有,广东工业大学方岩雄教授做了题为“农残级高纯试剂产品质量分析”的报告 浙江工业大学李贵杰副教授做了题目为“不对称金属卟啉的合成及应用研究”的报告 中山大学周贤太副教授做了题目为“基于安全环保的化工实验室建设探索”的报告 上海化工研究院高级工程师雷雯博士做了题目为“稳定同位素标记试剂的检测方法开发与应用”的报告 上饶师范学院郑大贵教授做了题为“Vilsmeier试剂在有机合成中的应用”的报告。  国药集团化学试剂有限公司常务副总经理王刚先生的演讲,对国内化学试剂行业创新商业模式进行了探讨。国药集团化学试剂有限公司技术部高级工程师刘征宙先生介绍了“国家基础科研用化学试剂共性关键技术的研发与应用示范”的进展情况。《化学试剂》杂志主编何晖女士发布了“2014-2015年度中国试剂行业发展研究报告”,全国化学试剂信息站项目调查专员孙芳介绍了“中国实验室臭氧层保护和淘汰ODS物质在行动”项目。  特别值得关注的是,中国化学试剂工业协会理事长南山先生的演讲,围绕“化学试剂生产、营销和实验室危险化学品管理”做了一些创新模式探讨。他提出了“实验管家服务工作平台”的概念,围绕实验室需求,建立“电子商务网络销售平台”,“超市采购仓储平台”,“快递式运输平台”,“安全培训教育平台”,“质量检验检测平台”和“再加工生产及废物料处理平台”。南山先生说,这样的平台,单靠一家是做不起来的,甚至单个地方都做不成,因为服务一定是本地化的。所以只有多方合作才能成功。这需要行业内机构组织竭诚合作,才能完成。我们将继续关注这方面的进展。  会议最后还举行了优秀论文评选活动。  参加本届试剂会的部分厂商展位:
  • 安东帕Masterwave BTR公斤级微波放大合成仪新品发布会成功举办
    安东帕在过去的几十年里,一直致力于微波领域的科研与开发,利用微波加热进行化学合成已成为全世界各领域化学家们广泛采用的高效工具。在过去的几十年里,精确微波合成一直局限在研发的小规模应用上。在2010年,奥地利安东帕公司(Anton Paar GmbH)与C. Oliver Kappe教授领导的Christian Doppler实验室(世界级微波化学研究中心)共同研制出Masterwave BTR公斤级微波放大合成仪,第一次使精确微波合成进入到公斤级时代。今年,奥地利安东帕公司与上海高等研究院姜标教授课题组建立了微波联合应用实验室,首次将Masterwave BTR公斤级微波放大合成仪引入中国。2011年10月11日,安东帕在这样的良好契机下,于上海高等研究院举行了Masterwave BTR公斤级微波放大合成仪新品发布会。本次研讨会即是微波联合应用实验室成立的纪念仪式,也是行业内最新的技术交流会。为此,奥地利安东帕公司微波合成产品经理Alexander Stadler博士也特地从安东帕总部赶来作了微波合成的最新进展技术交流会。有来自罗氏研发中心,DSM研发中心,睿智化学,复旦大学,上海交通大学等十几家知名制药企业或科研院所的代表参加此次发布会。发布会开始,首先由上海高等研究院副院长姜标教授致辞,姜教授充分肯定了安东帕公司在微波合成领域的专业优势及技术突破,他相信与安东帕的合作会给他的科研工作带来帮助。 安东帕中国公司微波产品经理程张红也在会上介绍了安东帕公司的一些发展情况。诚如程经理的介绍,安东帕自从进入中国市场,就以高品质的仪器质量及不断的技术创新服务于中国客户,相信在不久的将来,安东帕会有更多新技术及新产品进入中国。 随后是Alexander Stadler博士做微波合成的最新进展技术交流会,Alexander Stadler博士与大家分享了安东帕公司在微波合成方面的一些解决方案以及微波合成最新方法开发和放大研究等内容。参会人员与Alexander Stadler也进行了热烈的交流。 会议最后由高等研究院的黄志刚博士和安东帕公司的Alexander Stadler博士一起为Masterwave BTR公斤级微波放大合成仪揭幕,所有参会人员一起目睹了Masterwave BTR的风采。Alexander Stadler博士也作了现场的实物演示,大家对Masterwave BTR巧妙的细节设计及周到的安全设计留下了很深的印象。 本次的新品发布会将安东帕在微波合成领域的技术作了很好的推广,也给与会的行业内专家留下了深刻印象,安东帕将继续致力于为中国的客户提供更全面的解决方案和最尖端的技术支持。
  • 奥地利安东帕微波合成技术交流会(上海、北京)
    利用微波辐射加热进行化学合成已成为全世界各领域化学家们广泛采用的高效工具。为了让您了解微波化学合成技术(MAOS)的最新技术,安东帕公司特邀著名微波合成专家Alexander Stadler博士来中国进行技术讲座和交流。 Alexander Stadler博士在世界微波化学研究中心之一的Christian Doppler实验室进行过多年的研究,是微波合成第一本权威著作作者之一。 我们将就以下的热点话题和最新技术进展与您进行深入全面的交流: ● 微波合成的超级加热效应和微波效应的争论 ● 如何根据常规电热程序新建微波合成反应程序 ● 如何在微波合成在中实现条件一致的平行合成 ● 如何用微波组合化学技术来加速新药开发的Hit-to-Lead ● 反应的优化:序贯优化和平行优化的比较 ● 微波合成如何解决规模放大问题及工业应用 ● 微波加压合成技术和气体反应试剂的使用 ● 微波技术在绿色化学中的研究进展 安东帕公司在会议现场将展示最新一代智能单模微波合成仪Monowave 300、高通量微波合成反应器、高通量微波组合化学反应器。如果您想现场尝试微波合成反应,那就带上一管反应混合物。 现场同时将展示、交流新一代模块化圆二色旋光仪MCP300,用于合成药,有机物等光学活性物质的特性分析。 上海 会议时间和地点 时间:2009年09月17日(星期四 )  地点:上海静安宾馆 北京 会议时间和地点 时间:2009年09月24日(星期四 )  地点:北京大学化学楼 A717 议程安排: 9:00 ~ 9:30 安东帕公司及产品简介 9:40 ~ 12:00 微波化学合成最新技术及应用交流 12:00 ~ 13:00 午餐 13:30 ~ 15:30 旋光仪的国际标准及应用 参 会 回 执 姓 名 单位名称 职务/部门 电 话 电子邮件 研究领域 为了能按到会人数安排会务,请您尽量准确清晰填写上述信息,并请传真021-62886810或者Email至:yoyo.jiang(at) Anton-paar.com如有任何疑问,请您致电安东帕公司 安东帕公司推出的最新一代 智能型单模微波合成仪 Monowave 300
  • 【赛纳斯】警惕 电子烟中的合成大麻素
    不要以为,只要我不抽烟,电子烟就会离我很远,然而,它早已悄无声息地萦绕在我们身边。不知从何时起,商场内的电子烟店铺竟多了起来。就连走在路上,闻到一阵阵果香味,抬头张望,都会发现有人在抽电子烟。这几年,电子烟悄然火起来,不少人甚至将电子烟当成戒烟的工具,以为抽了电子烟,就能忘了真香烟。但,我们对电子烟真的了解吗?电子烟不燃烧和使用烟叶,它是一种雾化装置,能加热含尼古丁的烟液,达到雾化效果。而雾化后的蒸气可能含化学物质,包括丙二醇、甘油,以及挥发性有机化合物(VOCs)、调味剂等。我们都知道,尼古丁就是那个令人上瘾的始作俑者,尼古丁剂量越高,吸烟者对其产生的依赖就越大。如果得不到尼古丁的满足,吸烟者就会对尼古丁产生强烈渴望,进而出现焦虑、注意力不集中,甚至感到紧张、不安或沮丧。你以为电子烟不含尼古丁,但实际上,电子烟中含有的尼古丁并不亚于传统烟草!世界卫生组织(WHO)将电子烟定义为:电子尼古丁传输系统。没错!就是字面意思。电子烟也是尼古丁的搬运工。电子烟中尼古丁的含量,取决于商家所使用的烟液,可多可少。目前市面上的电子烟烟弹尼古丁含量在3%-5%,也就是说一颗1.8ml的烟弹,尼古丁含量43mg-72mg,相当于2.5包香烟的尼古丁含量。这些还只是普通的电子烟,危害性就那么大,但真正需要引起我们重视的是那些“上头电子烟”,这种“电子烟”被不法分子掺入了四氢大麻酚或合成大麻素类新精神活性物质,对人体危害极大,有的贩卖者通过提供多种味道的烟油,如烟草口味、水果口味、泡泡糖口味、巧克力口味、奶油口味来吸引青少年人群,并通过朋友圈及网络进行销售。这种特殊的电子烟还打着安全合法的旗号误导消费者。不少青少年认为是‘娱乐消遣品’或者是‘俱乐部毒 品’,认为是一种无害的毒 品,由于新型毒 品与传统毒 品成瘾的症状不同,表现的形式不一样,因此,更容易使吸毒者上当受骗,充当毒 品的俘虏。一:四氢大麻酚(THC)这是毒 品大麻的有害成分,吸食后影响中枢神经系统功能,常出现幻视、焦虑、抑郁、情绪突变、妄想狂躁、意识不清等反应,长期吸食会导致免疫力低下,诱发精神错乱和自杀倾向。二:合成大麻素类人工合成大麻素的AMB-FUBINACA(或MDMB-CHMICA)成分比天然大麻植物中的THC成分危害要大得多,同样的剂量下,毒性甚至比海洛因都还大,1克相当于5.5克海洛因,这导致很多大麻滥用者在不知情的情况下,会出现头晕、呕吐、精神恍惚、致幻等反应,过量吸食会出现休克、窒息甚至猝死等情况。赛纳斯基于自有搭建物联网平台,运用大数据、物联网、云端管理、人工智能等技术手段,并结合自主研发拉曼光谱技术光谱快检装备,构建了合成大麻素物联网检测与防控系统,实现合成大麻素的可管可治、严防严控,有效抑制合成大麻素的蔓延。结合拉曼光谱技术完美覆盖合成大麻素检测每一种合成大麻素类化学物质都有其独有的光谱特征谱,它就像人的指纹一样具有唯 一性。赛纳斯合成大麻素类毒 品的快速定性识别提供了以下解决方案。SHINS-P1000手持式拉曼光谱仪解决方案赛纳斯SHINS-P1000手持式拉曼光谱仪有效降低荧光干扰,能够覆盖荧光强的实际样品检测;用于烟油中合成大麻素样品的隔包装定性识别检测;采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,赛纳斯SHINS-P1000手持式拉曼光谱仪可穿透透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采1064nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:合成大麻素,芬太尼、卡芬太尼及衍生物 新型精神药物 安非他命 可卡因 海洛因 管制前体。SHINS-P1000现场快检装备介绍(1)信息特异性强,可透过透明包装直接鉴定(2)GPS定位、身份证识别、拍照取证、智能辅助为执法工作减负(3)本土化数据库,基于中国毒情建立物联网系统 赛纳斯SHINS-P1000手持式拉曼光谱仪因其穿透包装无损检测样品的特性,非常适用于帮助执法人员及海关人员进行疑似样品筛查,获得准确的测试效果。综上所述,赛纳斯SHINS-P1000手持式拉曼光谱仪可为用户进行合成大麻素化合物的定性分析提供快速检测方案。
  • 十四五开局!6亿国拨经费支持科学仪器、试剂
    5月18日,“基础科研条件与重大科学仪器设备研发” 重点专项项目申报指南发布。为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发” 重点专项。根据重点专项实施方案的部署,现发布 2021 年度项目申报指南。本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力;围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。2021 年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持 39 个项目,拟安排国拨经费概算 5.39 亿元。此外,拟支持 16 个青年科学家项目,拟安排国拨经费概算 4800 万元,每个项目 300 万元。科学仪器方向各项目自筹经费与国拨经费比例不低于 1:1。项目统一按指南二级标题(如 1.1)的研究方向申报。同一指南方向下,原则上只支持 1 项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持 2 项,并建立动态调整机制,根据中期评估结果,再择优继续支持。除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为 3~5 年。一般项目下设的课题数不超过 5 个,项目参与单位数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。科研试剂和科学仪器两部分指南方向(除 5.1 外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1983 年 1 月 1 日以后出生,女性应为 1981年 1 月 1 日以后出生,原则上团队其他参与人员年龄要求同上。专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项 2021 年度项目申报指南如下。1 高端通用科学仪器工程化及应用开发1.1辉光放电质谱仪研究内容:针对高纯材料、高温合金、绝缘固体样品等材料中主成分、微量和痕量元素检测需求,以及针对材料剥层分析、材料元素深度分布检测、涂层材料表面分析等需求,突破直流辉光放电离子源、绝缘固体第二阴极系统、高分辨电磁双聚焦质量分析器、法拉第杯与电子倍增管双检测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的辉光放电质谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在半导体、高纯稀土、高温合金等材料科学研究领域的应用。考核指标:质量分析范围(4~250)amu;质量分析稳定性≤25ppm/8h;分辨率 LR300/MR4000/HR10000;平均背景≤0.5cps; 灵敏度≥ 1×109cps ; 丰度灵敏度≤ 20ppb ; 主成分重复性≤ 3%RSD;微量成分重复性≤5%RSD;痕量成分重复性≤10%RSD。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.2 第三代基因测序仪研究内容:针对 DNA 基因测序的无扩增、长读长直接测序、大容量生物特征信息获取等检测需求,突破DNA 精确长读长直接测序、极微弱光或极微弱电信号测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的第三代基因测序仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在基因工程、病毒检测、生物安全检测、体外诊断等领域的应用。考核指标:序列平均读长≥15kb;最长读长≥500kb;DNA直接测序最高准确率≥95%;采样率≥1kHz;单个通道测序速度≥400nt/s;可溯源量值定值和质量评价方法≥3 种;基因组比对一致性≥99%;组装连续度 NG50≥1M 碱基;结构变异检测精度与检出率≥90%(片段长度≥50bp)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.3超高分辨活细胞成像显微镜研究内容:针对实时观察活细胞精细结构动态变化的检测需求,突破超高分辨活细胞成像显微、精密光机电控制、图像实时处理和成像标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超高分辨活细胞成像显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在细胞学、微生物学、生物物理学和药理学等领域的应用。考核指标:视场≥10µm×10µm;横向分辨率≤150nm;纵向分辨率≤350nm;时间分辨率≥15 帧/秒(2D 成像);时间分辨率≥8 帧/秒(3D 成像)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级; 至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.4核磁共振波谱仪研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在化学化工、生命医学、食品制药和环境能源等领域的应用。考核指标:磁场强度≥14T;室温孔径≥50mm;磁场稳定度≤9Hz/h;磁场均匀度≤0.05ppm;支持多核素频谱分析范围1H、13C、15N、31P、129Xe 等;射频带宽 50~650MHz 以上;波谱频率分辨率≤0.003Hz;射频发射通道数≥2 通道;液氦补充时间≥150 天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.5宽频带取样示波器研究内容:针对 5G 移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破 85GHz 采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在光纤通信、5G 移动通信、雷达、卫星通信与卫星导航等领域的应用。考核指标:电采样模块:通道数量 2;测试带宽≥85GHz;采样率≥150kSa/s;抖动≤80fs;采样分辨率 16bit;光采样模块: 波长范围 800~1600nm;光接收灵敏度优于-7dBm;测试带宽≥ 65GHz;采样率≥150kSa/s;抖动≤250fs;采样分辨率 16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.6高灵敏手性物质离子迁移谱与质谱联用仪研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求, 突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪, 开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。考核指标:手性分子纯度检测范围 0.1%~99.9%,离子迁移谱分辨率≥300;手性物质分析检出限≤10-10摩尔/升;质谱质量分辨率≥100000;手性分子分析时间≤10 分钟/样品;建立手性物质数据库 1 套。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。1.7复杂微结构三维光学显微测量仪研究内容:针对光电探测器、MEMS 微系统、半导体集成电路等微小型器件和光学器件表面和亚表面缺陷检测需求,突破高倾斜光滑微结构、深 V 结构、混合材料层叠微结构、层叠结构亚表面等复杂微结构三维几何形状表征、三维几何参数精密测量、亚表面缺陷检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的复杂微结构三维光学显微测量仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在超光滑光学表面损伤、半导体集成电路、光电集成电路等领域的应用。考核指标:显微视场≥100μm×100μm;水平方向表面显微分辨率≤250nm;水平方向亚表面显微分辨率≤400nm;垂直方向 分辨率≤20nm;光滑微结构测倾斜角度≥50°;单一材料台阶高 度测量误差≤5%;多层材料台阶高度测量误差≤10%;亚表面缺陷检测深度≥110μm;缺陷检出灵敏度≤200nm;深度定位精度≤2μm;高能损伤缺陷判定准确率≥80%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2 核心关键部件开发与应用原则上,每个项目下设课题数不超过 4 个,项目参与单位总数不超过 4 个,实施年限不超过 3 年。2.1快速可调谐激光器研究内容:开发波长调谐范围大、调谐速度快的可调谐激光器,突破大范围无跳模腔体设计、高速微腔调制制备、高速数字化激光模块驱动电路设计和模式补偿算法、波长非线性修正等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光学相干层析检测、高精密光谱分析和共焦测量等仪器中的应用。考核指标:中心波长 1060nm 和 1310nm;输出功率≥15mW;波长调谐范围≥110nm;重复频率≥100kHz;相干长度≥15mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.2热场发射电子源研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。考核指标:微尖曲率半径范围 1.2µm~0.4µm(可控),误差≤±0.05µm;阴极温度 1750K~1800K;栅极电压-200~-600V(可调);角电流密度 200µA/sr;引出电压 3~6kV(可调);最大电子束流≥150nA;电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.3侧窗型光电倍增管研究内容:开发高性能多碱阴极侧窗型光电倍增管,突破宽光谱及高灵敏度反射式多碱光电阴极制备、高增益电子倍增极结构设计、高二次电子发射材料制备、低暗计数率等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光谱分析、电子显微分析和X 射线分析等仪器中的应用。考核指标:探测面积≥8mm×24mm;阴极光谱响应范围≥165nm~900nm;阴极积分灵敏度≥250μA/lm;增益≥1×107;暗计数率≤1000cps;暗电流≤10nA(1000V);上升时间2.4磁共振成像低温探头研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。考核指标:通道数≥2;扫描孔径≥2cm;射频探头匹配≤-15dB;探头温度≤30K;前置放大器噪声系数≤1dB;灵敏度提高(低温/常温)≥4 倍。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.5X 射线能谱探测器研究内容:开发 X 射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术;开展工程化开发、应用示范和产业化推广;形成具有自主知识产权、质量稳定可靠的部件产品,实现在X 射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。考核指标:探测器尺寸≥30mm2;能量分辨率≤127eV(MnK);探测元素范围Be~Am;最大输出计数率≥300kcps(最大输入计数率 1000kcps);窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.6高精度哈特曼—夏克波前传感器研究目标:开发高精度哈特曼—夏克波前传感器,突破高质量微透镜阵列制备、微透镜阵列与探测器高精度耦合、超高精度误差标定、快速高精度波前重构等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束质量分析、自适应光学系统和三维测量等仪器中的应用。考核指标:空间分辨率≥128×128;倾斜测量范围≥±3°;倾斜测量精度≤1μrad;相对波前测量精度(RMS)≤λ/150;绝对波前测量精度(RMS)≤λ/100;重复性精度(RMS)≤λ/200; 工作波长范围 400~1100nm;频率≥7Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.7高通量生物样品真空传递装置研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。考核指标:最低存储温度≤-160℃;真空度≤5×10-4Pa;运动精度≤100μm;样品存储数量≥12grids;镀膜真空度≤4Pa;镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地 测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.8深地声学探测器研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。考核指标:单极换能器(长度伸缩):工作频带 5~20kHz,最高耐温≥260℃,最高耐压≥200MPa;偶极换能器(弯曲振动):工作频带 1~4.5kHz,最高耐温≥230℃,最高耐压≥172MPa;多极接收器:工作频带 1~20kHz,最高耐温≥230℃,最高耐压≥ 172MPa;超声换能器:工作频带 250~700kHz,最高耐温≥205℃, 最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.9太赫兹超导混频器研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。考核指标:探测器中心频率 0.1~0.3THz;中频带宽≥5GHz;噪声温度≤7 倍量子噪声;动态范围≥30dB;像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥ 5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权; 形成批量生产能力,经用户试用,满足用户使用要求。2.10分离打拿极电子倍增器研究内容:开发分离打拿极电子倍增器,突破检测器高纯打拿极合金及膜层制备、高精度封装、空气中安全存储、脉冲和模拟双模式检测等关键技术,开发具有自主知识产权、质量稳定可靠的部件产品,开展工程化开发、应用示范和产业化推广,实现在磁质谱仪、四极杆质谱仪上的应用。考核指标:增益≥105(模拟工作状态下),增益≥107(脉冲计数方式下);暗电流≤1pA;暗计数率≤50cps;单离子脉冲宽度/ 半高宽≤7ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.11宽频带同轴探针研究目标:开发宽频带同轴探针,突破弹性件热处理与表面处理工艺、精密微组装、微小零件加工等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微波集成电路在片测试仪、片上天线测试仪、三维封装天线测试仪等仪器中的应用。考核指标:2.92mm 连接器探针:工作频率DC~40GHz,插入损耗≤1.5dB;2.4mm 连接器探针:工作频率DC~50GHz,插入损耗≤1.5dB;1.85mm 连接器探针:工作频率DC~67GHz,插入损耗≤2.0dB。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.12 精密大带宽锁相放大器研究目标:开发精密大带宽锁相放大器,突破大带宽数字调制、高分辨率数模转换和高精度相位解调等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微弱信号探测、光谱测量及分析、电子束测量及能谱分析等仪器中的应用。考核指标:频率范围 0~50MHz;输入电压噪声≤5nV/√Hz;动态储备≥120dB;满量程输入灵敏度≤1nV;A/D≥14bit;相位分辨率≤1μdeg;频率分辨率≤0.7μHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力, 经用户试用,满足用户使用要求。2.13相位型液晶空间光调制器研究目标:开发相位型液晶空间光调制器,突破大相位调制深度、高帧率驱动、高抗激光损伤等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束整形仪、波分复用仪、单色仪、超快激光加工机、激光打标机等仪器设备中的应用。考核指标:像元数≥1920×1080;相位范围≥2π(1064nm);相位灰阶≥8bit;填充因子≥92%;衍射效率≥80%;刷新频率≥ 100Hz;最大输入光功率密度≥50W/cm2。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.14 X 射线椭球聚焦镜研究目标:开发 X 射线椭球聚焦镜,突破 X 射线椭球聚焦镜制作、性能检测、高精度装校等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在 X 射线衍射仪、X 射线散射仪和X 射线成像仪等仪器中的应用。考核指标:工作能段 1~8keV;聚焦斑点≤100μm;口径≥15mm;聚焦镜长度≥30mm;镜面表面粗糙度≤0.5nm(rms);反射率≥70%。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.15双频短相干激光光源研究目标:开发双频短相干激光光源,突破激光线宽调制、高稳定低频差调制、高精度光程匹配与高效率耦合等关键技术, 开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在任意曲面测量、大口径干涉测量和平面干涉测量等仪器中的应用。考核指标:中心波长 633nm;相干长度≤300µm;功率≥1mW(单模光纤输出);双频频差 5Hz 和 10Hz;频差不稳定度≤1%;光程匹配范围≥100mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.16高稳定度高压电源研究目标:开发高稳定度高压电源,突破高电压长时间稳定控制、低纹波噪声抑制和低温度漂移控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在电子显微镜、离子显微镜等科学仪器中的应用。考核指标:加速电压-20V~-35kV(可调),纹波≤20mV,稳定性≤10ppm/15 分钟;抑制级电压-200V~-1kV(可调),纹波≤ 15mV,稳定性≤10ppm/15 分钟;引出级电压:1kV~6kV(可调),纹波≤15mV,稳定性≤10ppm/15 分钟;灯丝电源电流 0~3A(可调)、电压 0~5V(可调),电流稳定性≤0.5mA/1 小时。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.17 多通道可变分辨率数据采集卡研究内容:开发高速数据采集卡,突破高密度多通道隔离设计、多通道同步采集和噪声抑制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在超声检测仪、电子显微镜、扫描探针显微镜等仪器中的应用。考核指标:采集通道单端 16 路/差分 8 路,每通道采样率和分辨率可设置;采样率 50kSa/s,分辨率 24bits,噪声电平 3.4μVrms;采样率 500kSa/s,分辨率 24bits,噪声电平 4.3μVrms;采样率1MSa/s,分辨率 22bits,噪声电平 13μVrms;采样率 5MSa/s,分辨率 20bits,噪声电平 31μVrms;采样率 10MSa/s,分辨率 18bits, 噪声电平 92μVrms;采样率 15MSa/s,分辨率 16bits,噪声电平401μVrms。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。3 高端化学试剂研制3.1高端金属与配体试剂制备关键技术研发研究内容:开展广泛应用于偶联、氧化、还原、加成、聚合反应的金属试剂(钌、铑、钯、铱、铂、铜、镍、铬、锰、铁、钴、锂及其各种价态的金属试剂)的制备方法和批量生产技术研究,研发具有自主知识产权的金属试剂;发展并建立具有重要应用价值的配体,特别是手性配体(含磷、氮、氧、硫配位原子的手性配体、手性烯烃配体和卡宾配体)的高效合成方法和批量制备技术,以及研发基于研究基于上述配体的新型高效金属催化剂, 开展其在化学、化工、医药以及新材料中的应用示范研究。考核指标:建立高端金属试剂、配体试剂自主知识产权体系,申请专利 20 项以上,实现重要金属试剂、催化剂以及配体的批量制备能力,包括 1)建立 50 个以上高纯(≥99%)金属试剂百克级规模的制备技术和质量控制标准;2)建立 100 个以上高纯手性配体和手性催化剂(纯度≥99%,≥99%ee)的克级规模的 制备技术和质量控制标准,形成 5 项以上企业或行业标准,并研发 15 个以上具有自主知识产权的手性配体和手性催化剂。3.2有机氟试剂研制研究内容:利用我国储量丰富的氟资源(萤石),研发新型亲电/亲核氟化、氟烷基化、氟烯基化、氟烷杂基化、[18F]同位素标记氟化试剂,开发具有我国自主知识产权的氟化学试剂,发展经济可行性好的合成工艺,实现原创试剂的批量化制备,并建立高纯氢氟酸的制备方法,把资源优势转化为技术优势,并利用原创性试剂,有力促进催化科学、含氟新材料和药物等方面的创新研究。考核指标:建立系列氟化学试剂的合成方法,形成 40 个以上具有自主知识产权的氟化、氟烷基化、氟烯基化、氟烷杂基化试剂(纯度≥99%)的批量制备技术并实现商品化,研发的试剂 列入国内外知名试剂销售商的产品目录,实现在国内外销售,催生 15~20 项原创性氟化、氟烷基化、氟烯基化、氟烷杂基化新技术;突破 8~10 项基于氟化试剂的[18F]标记探针(丰度≥90%,纯度≥99%)的合成技术;建立氟化学试剂从原料、合成、工艺到产品全流程自主知识产权体系,申请专利 15 项以上,实现高纯氢氟酸和若干重要氟化学试剂的批量制备能力,并制定质量控制标准。4 应用于重大疾病诊断的生物医学试剂创制与应用4.1近红外活体荧光成像诊断试剂体系研究开发研究内容:针对恶性肿瘤、心脑血管等重大疾病的早期精准诊断挑战,根据特异性标志分子、病理微环境特性等,发展高特异性抗体及抗体导向的响应近红外荧光成像试剂,建立高组织穿透深度、高时空分辨率、高灵敏的诊断技术方法,揭示重大疾病的发生发展机制;开发系列诊疗一体化近红外荧光成像试剂,实现在“可视化”药物筛选与评价、光热与光动力治疗、免疫治疗、荧光指导的手术导航等领域的应用;建立红外二区荧光成像试剂的安全性评价方法和标准化、规模化制备方法与流程,推进临床转化。考核指标:建立近红外荧光成像材料的可控制备技术,研发4~6种高性能近红外成像材料(含有机分子、稀土材料、量子点、荧光蛋白等)并实现百克级量产,发光波长达1000~1700纳米, 荧光量子效率20%;研发5~8种重大疾病靶向的特异性抗体,并实现与荧光材料的耦联,发展高性能近红外荧光成像试剂,实现生物组织穿透深度1.8cm;对4.2先进高场磁共振设备高分辨影像试剂研究开发研究内容:拟针对现有磁共振诊断试剂在高场下灵敏度低的难题,研发具有原始创新性的先进高场磁共振影像试剂,发展在体、实时、无创成像的新技术;为国产高端磁共振设备提供具有完全自主知识产权的高分辨率影像试剂,实现高场磁共振影像在生物医学应用的新突破,满足重大疾病微小病灶早期成像以及疾病区域血管等精细组织成像的重大需求;建立评估高场磁共振诊断试剂的生物安全性评价机制,建立试剂量产质控体系和标准品, 推进其向临床转化。考核指标:研发3~5种高性能磁性纳米材料并实现公斤级量产,在7T以上的高场条件下,试剂的横向弛豫率与纵向弛豫率比值(r2/r1)≤2;试剂在水相中保持稳定分散时间不少于1年。作为高场磁共振影像试剂,其在磁共振成像应用中应达到接近组织病理学检测水平的诊断灵敏度,实现接近组织病理学检测水平的诊断灵敏度,对5 同位素试剂典型同位素试剂研发与科研试剂评价技术标准研究研究内容:建立稳定可控的同位素试剂制备流程,开展制备方法标准化和程序化研究,进行产品重现性和稳定性的测试,研究高丰度无机同位素试剂制备和丰度测量技术;研究以13C、2H 同位素标记为代表的系列有机同位素标记物的共性制备、纯化和测量技术,开发2H 和13C 标记同位素标记物;研究基于13C、15N 稳定同位素标记的新型大分子同位素标记物;研制基于核反应堆和回旋加速器的放射性同位素试剂及溶液标准物质;研制高纯试剂、同位素试剂、生化试剂等的质量评价技术体系,包括质量评价共性技术方法、评价用质控物质,和评价规程规范。考核指标:制备无机同位素试剂 8 种,每种至少 1 克,总量不低于 50 克,丰度≥90%,纯度≥99%;开发食品环境检测用2H、13C 取代同位素标记物17~20 种,各1 克,丰度≥98%,纯度≥98%,或不低于进口产品;核设施安全运行监测用 8 种放射性同位素质控物质,不确定度优于 1.5%,单种放射性同位素产能 3.7E11 Bq/ 年,γ放射性不纯度13C、15N 稳定同位素标记大分子同位素标记物 2 种;建立同位素试剂检测方法 12~15 种; 高纯试剂、同位素试剂、生化试剂等共性关键指标评价技术方法20 种、评价用参考物质 30 种、规程规范 8~10 项,建立科研试剂质量评价技术体系 1 套,开展重点领域科研试剂质量评价示范应用 10~15 次。6 人类疾病动物模型创制研究6.1人类重大传染病基因修饰动物模型研发研究内容:针对 SARS-CoV-2、SARS、MERS、H7N9、Zika等病毒感染造成的人类重大传染病,研究以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型的创新技术体系,研发一批适用于对某类(些)疾病发生机制进行多维度解析和新药研发与安全性评价等领域有重要应用价值的系列化基因编辑动物模型。开展基因编辑动物模型表型分析与评价技术平台建设的研究,以及病理学图谱的研究。开发相应疾病动物模型数据库和动物资源库, 为阐明相关疾病发病机制、验证新的药物靶标和新药开发与疫苗评价等提供基础条件。考核指标:建立完整的以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型创新技术。完成 10~15 种符合人类重大传染病临床特征的新型基因修饰动物模型。建立和完善与这些疾病相关的动物生理生化、组织功能、动物行为学及免疫学检测技术和表型分析方法,以及动物模型技术指标体系和评价技术平台。完成描述和绘制新建人类重大传染病动物模型的动态演变规律和靶器官细胞分子演化图谱,以及不同阶段典型的病理学图谱,揭示其生理和病理意义。建立相关疾病动物模型数据库和生物学数据库。完成新建疾病动物模型相关的专利申报,并实现创建的新型疾病动物模型与现有国家实验动物资源库的整合。6.2心血管、代谢性疾病等基因修饰动物模型研发研究内容:针对人类心血管(冠心病、心肌梗死、心力衰竭、高血压、心肌缺血/再灌注损伤等)、代谢性(肥胖、糖尿病、非 酒精性脂肪肝病等)疾病等严重危害人民健康的重大疾病,研究以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型的创新技术体系,研发一批适用于对某类(些)疾病发生机制进行多维度解析和新药研发等领域有重要应用价值的系列化基因编辑动物模型。建立动物模型制备技术体系,开展基因编辑动物模型表型分析与评价技术平台建设的研究。利用所研发的疾病动物模型, 深入研究主要心血管和代谢性疾病的发生机制,开发关键治疗靶点。建立相关疾病动物模型不同阶段典型的病理学图谱,揭示其生理和病理意义。开发相关疾病动物模型数据库、样本资源库和生物数据库。考核指标:建立多位点、多易感动物基因的疾病动物模型和完整的动物模型制备技术体系,完成以小鼠和大鼠等动物为主要实验载体的 50 种人类心血管和代谢性疾病等基因编辑动物模型。完成不少于 50 种疾病动物模型评价流程、技术指标体系及评价技术平台,以及不同阶段典型的病理学图谱,揭示其生理和病理意义。利用新建疾病动物模型研究 30 种以上主要心血管和代谢性疾病的发生机制,发现 20 个以上关键药物靶点。建立疾病动物模型数据库和模型资源库,以及相关疾病动物模型的生物数据库。完成新建疾病动物模型相关的专利申报,实现创建的新型疾病动物模型与现有国家实验动物资源库的整合。6.3基于特色实验动物的人类疾病动物模型创建及关键技术研究研究内容:在已建立的长爪沙鼠、东方田鼠、裸鼹鼠、高原鼠兔、树鼩、非人灵长类等动物的标准化种群基础上,选择已有较好研究基础和重要应用潜质的动物开展人类疾病动物模型的研究。重点支持利用基因编辑、物理干预、化学诱导等技术,研究病因性阿尔茨海默症、帕金森病、代谢性紊乱、辐射损伤、脑缺血、血吸虫病等动物模型。解决利用这些特色动物创制人类疾病动物模型的关键技术难点,建立疾病动物模型评价体系,系统描述和绘制疾病动物模型病理学图谱,开发疾病动物模型数据库。考核指标:根据选定的研究目标、研究技术和特色实验动物种类,完成 4~6 种人类疾病动物模型的制备,建立完善的动物模型的创制技术和评价技术体系。完成相关疾病动物模型不同阶段典型的病理学图谱。完成新建疾病动物模型相关的专利申报或新种鉴定,实现新建疾病动物模型与现有国家实验动物资源库的整合。有关说明:本方向拟支持不超过 6 个项目。7 国家实验动物资源库服务质量提升国家实验动物资源库服务科技创新能力提升关键技术研究与示范研究内容:以国家实验动物资源库已有资源和已建立标准化种群的实验动物新品种新品系为主要对象,开展遗传选育、资源保藏、生物净化、品种品系鉴定等技术,以及相关生物学特性深度挖掘、数字化描述和数据汇交等方面的研究;开展实验动物新资源创建关键核心技术研究,利用具有较好前期研究基础和重要应用潜质的资源动物,采用动物种群生物学和种群基因组学技术培育实验动物新品种新品系。研发符合标准要求的规模化生产关键技术,形成具有一定规模的保藏与供应的实验动物资源平台, 提升国家实验动物资源平台技术能力和资源共享服务水平。考核指标:建立完善的 SPF 级实验动物的遗传育种、资源保藏和生物净化等技术体系、实验动物新品种新品系的鉴定技术体系和技术平台。完成培育不少于 10 种实验动物新品种新品系, 并建立SPF 实验动物种群。完成不少于 20 个实验动物品种品系生物学特性的数字化描述,建立不少于 5000 个生物学特性指标的数据库。国家实验动物资源库与其他资源保藏机构共同构成的资源平台,所保藏与共享服务的实验动物资源种类覆盖我国常用实验动物品种品系 80%以上,供种满足率达到 70%以上。实现不少于 5 种具有自主知识产权的实验动物新品种新品系与现有国家实验动物资源库的整合。8 实验动物质量评价实验动物质量评价关键技术研究(青年科学家项目) 研究内容:参照国际先进的实验动物质量标准,研究实验动物微生物和寄生虫的病原/抗体检测方法;研究常用实验动物 SNP等遗传质量检测技术;建立针对病原微生物和寄生虫的特异、敏感、稳定的病原/抗体检测方法和相关技术规范;研制假病毒库, 建立实验动物免疫后中和抗体评价方法和技术规范;建立达到国际先进水平、适于自动化操作的封闭群和近交系实验动物 SNP 等遗传检测方法体系。所有新建检测方法技术指标(敏感性和特异性等)符合相关标准或技术指南要求。考核指标:由申报单位自主设定。实验动物病原快速检测新技术研究(青年科学家项目) 研究内容:开展实验动物人兽共患病、烈性传染病、新发和再发传染病的分子病原学检测技术,以及高通量筛查与鉴别、基因芯片和快检技术等新技术和新方法研究;建立高通量筛查与鉴别、基因芯片和快检方法及技术规范。所有检测方法技术指标(敏感性和特异性等)符合相关标准或技术指南要求。考核指标:由申报单位自主设定。9 科学数据分析挖掘应用关键技术与软件系统9.1 生物大数据管理和分析关键技术与系统研究内容:面向生物大数据管理、深度挖掘和转化应用等核心技术方面的短板,研发生物大数据汇交质控、发布更新等全生命周期的智能化管理系统;研究基于海量大数据的基因组序列精准定位、生物信息库多源融合及跨库检索等关键方法;建立生物大数据与文献信息关联融合机制,研发海量生物文献关键信息提取及其与数据共享互联的关键技术;优化现有基因组变异演化分析等生物信息学方法,建立对基因组重要功能位点突变的快速自动化监测和基于基因型网络推演重大疾病感染途径及传播路径的实时智能追踪系统;建立人工智能网络模型,开展肿瘤和心脑血管等疾病演变模式分析,实现疾病精准诊断、个体化治疗和健康管理等重大临床需求。考核指标:形成具有PB 级数据处理能力的生物大数据智能化管理系统等应用软件 5 项以上、基于海量大数据的基因组序列精准定位等分析挖掘的关键算法 5 项以上;形成生物信息库多源融合及具有上亿条记录处理能力的跨库检索等关键方法 2 项以上;研发 2~3 种肿瘤和心脑血管疾病全景式演变模式的人工智能分析模型;在国家生物类科学数据中心开展战略生物资源、人类遗传资源方面的应用,部署 100 种以上生物信息软件和流程,关联 100 个以上生物信息数据库,集成不少于 50PB 的组学原始数据等各类生物学数据;形成生物数据管理和分析的专利或软件著作权。9.2 微生物科学数据管理与挖掘关键技术与应用研究内容:研究以微生物科学数据为重点的微生物数字信息管理、汇聚、共享和安全保障的数据治理技术体系,研究微生物菌、毒种标本、样本的图像、图谱、序列等信息数据的高效识别与实时处理技术,建立符合国际标准的新型智能管理软件系统; 研发针对海量微生物相关科学数据的加密与脱敏软件工具;研究微生物表型、基因型、免疫性、形态图谱等数字资源整合与挖掘技术,研发智慧化微生物数据挖掘和分析模型、软件系统;研究面向海量异构微生物资源信息数据的垂直检索、关联整合与可视化技术,结合知识图谱和智能识别技术,实现基于科学数据在食品安全、口岸安全等领域的智慧化多点信息监控和应用示范。考核指标:建立一套符合国际标准的覆盖细菌、真菌、病毒的二十种以上微生物数据的智能化整合挖掘软件系统;建立微生物资源数据治理体系、数据安全分析体系和数据安全保障技术体系,形成 3~5 项微生物科学数据安全与管理标准,开发基于区块链技术的微生物数据隐私计算技术平台,支撑千万级数据的实时分析;整合新建超过 50 亿条微生物科学数据与文献数据的知识图谱,在国门生物安全、食品安全等方向建立应用示范,在金砖、一带一路沿线等不少于 30 个国家进行推广应用;围绕微生物科学数据的智能管理与挖掘应用形成一系列专利与软件著作权。9.3 生态系统大数据智能管理与挖掘关键技术及应用研究内容:面向我国生态文明建设国家战略,依托我国不同类型生态系统野外观测研究台站,研发耦合人工、自动等多源、高频观测数据的多层次的生态系统大数据管理软件系统;建立标准化生态台站监测数据质量控制和数据产品开发体系,研发基于工作流的生态数据产品软件工具;整合联网观测、地面调查、卫星遥感、文献等多源异构生态数据,研究多源生态数据时空挖掘、融合和数据同化技术,发展耦合人工智能和生态过程模型的生态系统质量评估模型与预测技术体系,研发生态系统大数据挖掘与预测软件系统;提高我国生态系统观测研究台站自主的数据处理分析挖掘能力,支撑我国生态文明建设。考核指标:建立一套覆盖农田、森林、草地、湖泊等多种生态系统类型的长期生态监测数据的智能化管理系统软件,在不少于 10 个野外台站以及中亚一带一路沿线国家野外站推广示范应用;整合形成超过 30 个以上野外台站的长序列生态类监测数据产品,建立标准化的生态监测数据质控软件工具和产品开发工具, 生态系统大数据分析挖掘和预测系统 1 套,在科学数据中心部署应用,并在国家生态系统质量评估中开展示范;形成生态系统大数据挖掘与管理方面的软件著作权和专利。9.4 场景驱动的海洋科学大数据挖掘分析关键技术与应用研究内容:针对海洋观测、监测、调查、统计等数据的多源多维异构特征,研究海洋科学大数据存储管理、融合分析、关联挖掘等关键技术,构建大数据在线存储分析引擎;突破多源海洋环境数据的多尺度多要素同化技术,建立自主化高分辨率海洋数值模式,研制多区域、高精度、长时序的海洋环境信息产品;构建集传统统计分析方法和大数据方法于一体的海洋经济与资源环境协调发展分析和预测模型,面向空间资源开发利用、生态环境修复等典型应用场景建立知识图谱;研发集算力—数据—模型— 知识于一体的海洋科学大数据融合分析软件,在沿海地区经济布局优化、产业提质增效、资源集约利用等领域开展示范应用,提升海洋科学数据增值服务能力。考核指标:海洋大数据在线存储分析引擎 1 套,支持超大规模数据的并发在线交互计算分析能力,集成多源要素融合、特征提取、关联分析、可视分析、统计分析、机器学习等方法算法不少于 6 种,典型分析计算响应时间不超过 5 秒;自主化海洋环境大数据超分辨率融合分析模型 1 套,中国海区 1/12°和海区 1/30° 海洋环境要素信息产品各 1 套,海洋资源和生态环境综合数据集各 1 套;建立基于大数据的海洋经济与资源环境融合分析和预测指标体系及模型各 1 套,形成海洋典型应用场景通用知识图谱构建框架,建立海洋空间规划应用、海域海岛管控与开发利用等知识图谱不少于 2 套;海洋科学大数据融合分析软件 1 套,在沿海地区开展示范应用;有关软件系统在科学数据中心得到部署应用, 形成保护相关技术方法、模型和软件的知识产权。9.5 卫生健康科学大数据智能分析与挖掘关键技术与应用研究内容:面向人民生命健康,研发多源卫生健康科学大数据汇聚管理、多维特征刻画、深度整合、大规模智能语义搜索和可视化关键技术,研究多病种及人群特征数据智能筛选、抽取和建模方法,研发集成疾病危险因素分析、病例跨时空分析、疾病风险预测等多种智能挖掘算法和功能的协同分析系统和系列工具;研究卫生健康科学大数据跨域、跨机构共享机制及隐私感知与计算、关联识别、自动分类和智能自适应脱敏算法以及卫生健康科学大数据安全态势感知与监测预警关键技术;研究医学影像辅助判读、临床病历智能提取和标注、多病种知识图谱自动构建关键技术,在疾病风险预测、临床辅助决策、药物不良反应监测、健康管理等领域开展应用示范。考核指标:研发一套面向PB 级卫生健康科学大数据的智能语义搜索、高效融合、特征抽取、深度挖掘的一体化、智能化数据管理和协同分析平台,具备万级用户并发访问能力;研发大数据应用所急需的具备高扩展性、高性能的智能人群分层、特征识别、疾病风险因素挖掘分析等工具软件不少于 10 个;研发可与国际主流产品可比的卫生健康科学大数据跨域共享和隐私保护、安全多方计算、安全感知预警等工具软件不少于 10 个;研发医学影像辅助判读、临床电子病历智能化提取和标注等软件工具不少于 10 个;研发融合多源异构卫生健康大数据的知识图谱自动构建工具 1 套,并建立融合不少于 20 个病种的具有高可更新性、可迁移性的知识图谱,有效支撑医学语义搜索、智能问答以及临床决策。研发的软件工具可独立发布部署,形成系列相关专利和软件著作权,并在国家科学数据中心应用部署,在临床、教育、科研等机构推广应用,应用示范单位不少于 20 家。9.6 面向国家科学数据中心的基础软件栈及系统研究内容:面向国家科学数据中心实现科学数据的发现、获取、分析、利用等需求,研发自主的科学数据中心基础软件栈及系统;面向科学数据全局可发现和可信共享需求,研究科学数据标识、建模方法和互操作、可信存证技术,支持数据确权和流转追溯;研究面向分析的科学数据加工处理流水线技术,研发面向领域的大数据处理流水线管理调度系统;研发面向多学科跨领域数据的融合管理系统和搜索引擎,支持结构化/非结构化数据的融合存储与查询;面向大数据集成分析需求,研发安全隔离的交互式云分析服务引擎,形成面向领域应用多编程语言、多算法环境、多适配版本的大数据分析环境,为科研人员提供在线编程和在线工作流交互分析服务。考核指标:构建科学数据与分析软件共享社区,在科学数据的标识、可信存证、跨中心互操作等方面形成一套自主的关键技术与软件体系。标识系统支持国家标准与国际主流科学数据标识的双标识注册解析与服务,系统存证的吞吐能力10 万TPS;数据处理系统具备完整、可追溯的数据汇聚、清洗功能,具备跨中心调度能力,处理性能优于 1000 万行/秒;融合管理系统支持 100 亿级实体和关系、1000 亿级非结构化数据对象的融合存储,提供标准的统一查询语言,科学数据搜索引擎可检索的科学数据集不少于 500 万个,覆盖生物、生态、农业等领域,实体数据量不低于 1PB;软件体系在不少于 5 个国家科学数据中心进行示范应用;在核心技术方向申请专利或软件著作权。10 科学数据自主应用软件科学数据自主应用软件研发(青年科学家项目)研究内容:针对大规模文本、图像、图谱、序列、遥感影像、数值等具有典型特征且在多个领域广泛普适的科学数据类型,面向海量科学数据分析的应用场景,发展数据分析和挖掘技术,开展智能分析挖掘方法的研究,研发具有自主知识产权的软件或软件系统,并在科学数据中心示范应用。考核指标:由申报单位自主设定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制