当前位置: 仪器信息网 > 行业主题 > >

环境温度检测器

仪器信息网环境温度检测器专题为您提供2024年最新环境温度检测器价格报价、厂家品牌的相关信息, 包括环境温度检测器参数、型号等,不管是国产,还是进口品牌的环境温度检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境温度检测器相关的耗材配件、试剂标物,还有环境温度检测器相关的最新资讯、资料,以及环境温度检测器相关的解决方案。

环境温度检测器相关的论坛

  • 温度对检测器的影响

    温度对检测器的影响 温度对检测器的影响很大,绝大多数检测器都有很大的影响。一般温度升高,检测器的灵敏度会增加,温度降低检测器的灵敏度会降低。这个温度有环境温度,也有检测器自身发热部件产生的,其中灯源的可能性很大。其中示差检测器的影响是非常大的,使用示差检测器时控制温度是非常必要的。 温度的变化会带来基线的波动,有时有一定得规律性,有时也没有。其中空调对着仪器吹,经常会产生这种结果。当然像马弗炉等影响环境温度的器件也会有较大影响的,最好是远离我们的仪器。 为了避免温度这种不稳定因素对我们的分析结果的影响,我们最好是采用控温的检测器(主要是检测池控温),或为检测器采取控温措施。当然环境温度我们也是要控制的,尤其的环境温度不稳定时。常采用的方法是通风、散热、保温、隔热等措施。这个控温、保温系统主要包括检测池和检测池的连接管路。 为了提高检测灵敏度有时我们会适当升高温度,但这个前提一定是温度的温度。但当我们不需要那么高的温度时,温度升高了会对我们检测结果有影响的,尤其的温度变化比较大时。 当然仪器(尤其是高效液相色谱仪)全系统控温是最好的,包括高压恒流泵,进样器、混合器、色谱柱等。这样流速、温度、分离、定性、定量分析等指标都会好一些。尤其的对我们最关心的分析结果效果更为明显,当然对仪器的寿命等也是有正面作用的。

  • ICP测样时,环境温度的高低对仪器和检测结果有什么影响。

    ICP测样时,环境温度的高低对仪器和检测结果有什么影响。

    最近仪器室的一台空调不能制冷,但每天还是需要测样,仪器点火后,室温从23度升到31度左右。版友们的ICP测样时,环境温度是多少?环境温度的高低对仪器有伤害吗?检测结果有什么影响?http://ng1.17img.cn/bbsfiles/images/2013/05/201305171343_440497_1827064_3.jpg

  • 环境温度的时时监测

    环境温度的时时监测

    [img=,380,353]http://ng1.17img.cn/bbsfiles/images/2016/09/201609051724_608401_3139774_3.png[/img][img=,378,284]http://ng1.17img.cn/bbsfiles/images/2016/09/201609051724_608403_3139774_3.png[/img][img=,378,370]http://ng1.17img.cn/bbsfiles/images/2016/09/201609051724_608402_3139774_3.png[/img]PCsensor最新研发PDF温湿度记录仪,让您随时随地关注温度。温度记录仪的应用分析 温度记录仪是将温度参数进行测量并按照预定的时间间隔将其储存在内部存储器中,在完成记录功能后将其联接到计算机,利用适配软件将存储的数据提出并按其数值、时间进行分析的仪器。利用该仪器可确定储运过程、实验过程等相关过程没有任何危及产品安全的事件发生。PCsensor的PDF温度记录仪功能简介 1、实时数据采集,记录,历史测量数据查询(数据无法更改确保客户权益)。 2、图文显示,表现丰富。实时数据、历史数据都采用曲线显示。 3、上下限报警,报警状态指示(上限-红灯,正常-绿灯,下限蓝灯)。 4、温度数据储存。体积小,方便携带手机也能查看,过往数据一目了然。 5、数据采用非易失性存储器存储,掉电后之前数据仍可保存。可以连续记录温度持续6-120天。目前PCsensor(阿鼎科技)PDF温度记录仪成功应用各个领域行业中,适用奶制品,冷冻食品,海鲜类,鱼苗,药品,血液,疫苗,高科技敏感产品, 冷链运输、野外环境温度检测等。

  • 【求助】SPD-10A检测器报警!温度过高?

    我用的是岛津LC-10A的高效液相色谱仪,做了第二次样的时候就开始报警了报警代码是:【004B】 DETA : Dectector temperature has exceeded 63 C,好像是在说检测器温度超过63度。我这边环境温度33度,那个散热风扇还是在出风。请问我台检测器有问题没有?怎么解决?我过了10多分钟又开了一次,运行了一会又报警了。请问各位大大?岛津的仪器规定的的工作环境温度是不是25摄氏度左右?湿度70%?

  • 【求助】2414检测器温度不稳定

    各位老大好 我有一台waters 2414检测器,最近发现的问题 我日常设定的温度为40(检测器和色谱柱),但是1个月来发现:有时温度会从40度缓慢降到37.3-5度左右,耗时30-35分钟,然后再3-5分钟内升温到40度,之后不会反复(1天内) 问waters,居然说我设定有问题,不知大家认为怎样 特此请教各位,问题应该处在哪儿,有没有解决的办法 请注意:降温的时候环境温度稳定,没有人为破坏等干扰因素,指教,谢谢

  • 【原创】环境温度和压力对红外线气体分析仪会产生哪些影响?

    红外线气体分析仪检测过程需要在恒定的温度下进行。环境温度发生变化将直接影响红外光源的稳定,影响红外辐射的强度,影响测量气室连续流动的气样密度,还将直接影响检测器的正常工作。如果温度大大超过正常状态,检测器的输出阻抗下降,导致仪器不能正常工作,甚至损坏检测器。红外分析仪内部一般有问孔装置及超温保护电路,即使如此,有的仪器示值特别是微量分析仪器,亦可观察出环境温度变化对检测的影响,在夏季环境温度较高时尤为明显。在这种情况下,需改变环境温度,设置空调是一种解决办法。大气压力即使在同一个地区、同一天内也是有变化的。若天气骤变时,变化的幅度较大。大气压力的这种变化,对气样放空流速有直接影响。经测量气室后直接放空的气样,会随大气压力的变化使气室中气样的密度发生变化,从而造成附加误差。

  • 你的检测报告上环境温度写到那位数?

    前两天我们省院的一位老师,到我所考核一项计量标时说到:近期来他们院考核黄素的专家,要求他们检校证书上的环境温度要写到小数点后一位,如19.1℃。版友们:你们觉得有必要吗?你的检测报告上环境温度写到那位数?是写到个位数,还是写到小数点后一位?

  • 示差折光检测器6

    2.2:检测器温度,大部分的示差检测器是带有控温功能的,用于控制检测器内部的温度保持稳定以减小由于温度变化造成的基线噪音,比较高级的RID的温度是可调的,通常我们建议把这个温度设置在比室温高5度的温度,以保证控制的稳定性,另外色谱柱的出口温度也应该尽量接近这个温度。2.3:环境温度,通常环境温度不会导致RID的基线噪音变大,但是,会导致基线的漂移,因为环境温度不会剧烈快速的上下波动,而且由于仪器的控温功能,也能抵消绝大部分的剧烈的温度变化,但是如果仪器处在一个温度会缓慢变化的地方,由于控温功能是有一定滞后的,这个时候就会体现出基线漂移的问题。比如,仪器放在空调正对的地方,阳光充足的窗边,暖气附近,都可能到这这种不正常的漂移,应当尽量避免这种“风水”问题...

  • 环境温度对仪器的影响?

    夏天马上就到了,说说环境温度对自家仪器的影响?我家的仪器只要环境温度稍微高点,仪器的荧光值和浓度就会比平常高好多。

  • 示差折光检测器5

    2温度控制:温度控制对RID基线噪音的影响,非常非常大,温度的控制涉及到柱温,检测器温度和环境温度2.1柱温:对于常规的分析,控制柱温有助于得到稳定的保留时间;对于使用RID的方法,还有一个额外的用处—得到更平稳的基线,流动相从色谱柱流入检测器的时候,对于检测器内的温度是有改变的(色谱柱温度和检测器温度设置不同的时候),稳定的控温可以保证这种对于检测器温度变化的影响是一致的,可以说是个“系统误差”,但这本身不减小噪音,只能让噪音水平维持在一个稳定范围上,要减小噪音,就要设置柱温箱的温度让它和检测器的温度尽量接近,以尽可能的减小由于不同温度流动相进入检测器产生的噪音。有些分析方法使用到一些特殊的色谱柱,需要在较高的温度下使用(80摄氏度以上),这个时候使用柱温箱的柱后降温功能就非常重要了,因为示差检测器通常不能维持这么高的工作温度,如果柱温箱不具备降温功能,或者色谱柱长度太大,降温功能会造成色谱柱温度不均匀的时候,可以考虑使用一根比较长的不锈钢管线连接色谱柱出口和检测器并使它尽可能多的暴露在室温下,以充分冷却过热的流动相。

  • 浅谈示差检测器流通吃的温度控制问题

    浅谈示差检测器流通池恒温 示差折光检测器是根据折射原理,利用不同物质的折射率不同设计的,属偏转式类型。通过连续检测样品流路与参比流路间液体折光指数差值而对样品浓度进行检测。只要样品组分与流动相的折光指数不同,就可被检测,且二者相差愈大,灵敏度就愈高,在一定浓度范围内检测器的输出与溶质浓度成正比。 示差折光检测器的光路由光源、凸镜、检测池、反射镜、平板玻璃、双光敏电阻等主要部件组成。检测池有参比池和样品池两个池室,它们对光路来说是串联的。光源通过聚光镜和夹缝在光栏前成像,并作为检测池的入射光,出射光照在反射镜上,光被反射,又入射到检测池上,出射光再经过透射镜照到双光敏电阻上形成夹缝像。双光敏电阻是测量电桥的两个桥臂,当参比池和测量池流过相同的溶剂时,使照在双光敏电阻的光量相同,此时桥路平衡,输出为零。当测量池中流过被测样品时,引起折射率变化使照在双光电阻上的光束发生偏转,使双光敏电阻阻值发生变化,此时由电桥输出讯号,即反映了样品浓度的变化情况。 示差折光检测器作为通用型检测器,其稳定性是至关重要的。稳定性直接影响检测结果和检出限。影响其稳定性的因素有:环境温度的变化、流速精度、试剂纯度等,但最重要的还是仪器本身的设计和制造水平的高低。 物质的折光率随温度的变化而变化,为保证参比池和样品池的温差尽可能的小,有的公司为其产品加装了流通池恒温装置。也就是说加装流通池恒温装置是为了仪器的稳定;从另一个角度讲如果仪器本身的设计及加工水平够高的话,也就不需要加装流通池恒温装置同样能够保证仪器的稳定性以及检出限。 目前市场上的示差折光检测器主要分为两类。一类是对示差检测器的流通池加装了控温系统,这类检测器使用时一般设定检测器的温度高于室温5℃,流通池温度一般设定在40℃,以减少室温波动的影响。另一类仪器不配流通控温装置,而是在检测器内部设有自动温度补偿功能,比如LabAlliance生产的示差折光检测器。在检测池内,参比池和样品池之间仅一膜之隔,参比池常处于静态模式,而从柱子流出流经样品池的液体不断地从参比池边流过,通过热传递将所带热量不断的传给参比池,直到两池液体温度相同,同时仪器内部的温度补偿功能,可以使温度变化对参比池和样品池的影响相同,减少了室温变化对输出信号的影响。这类示差检测器可实现短时间内基线平稳,如LabAlliance RI2001型示差折光检测器,20 min左右基线即可平稳。 为避免销售人员对用户的误导(其误导主要表现在:通过流通池能给流动相加热,减小温差,能够提升分离度以及检出限…..),下面简单地从色谱的原理加以说明 一. 流通池加热对分离度的影响 任何液相色谱都是有五个部分组成的,这五个部分是:1.输液系统(泵系统);2.进样系统;3.分离系统;4.检测系统;5.数据处理系统(工作站)。起分离作用的是分离系统,也就是说样品在进入流通池之前的已经被分离了,分离度的好坏受色谱条件的制约,比如柱效的高低、柱温、流动相的组成等。流通池对分离度是不起作用的。 二.流通池加热对降低温差的影响 如果说流通池可以给流动相加热,其效果是微乎其微的。仪器流通池的池体积通常为5-12 uL,日常分析常用的流速为1 mL/min,流通池的池体积按10 ul计,那么流动相流过10 uL流通池所需的时间为0.6 s。按目前仪器的设计流通池给流动相增加的热量远小于色谱柱出口到检测器入口管路的热量损失。如果在0.6 s内能将流动相的温度加热,那将需要多大的加热功率?! 结论 检测器流通池加热恒温只是为了仪器本身的稳定而已,对分离度及检出限没有任何帮助。 敬请指正!

  • 大家说说环境温度对原子荧光测定的影响大不大

    我觉得环境温度对原子荧光测定的影响挺大的,环境温度改变硼氢化钾溶液、载流及待测样品的温度,而环境温度因仪器工作会逐渐升高,出现结果的漂移。冬天使用空调时,温度没有升到恒定时,就进行测试定标,随着室温升高,漂移也在所难免。还有,短时间保存硼氢化钾溶液时,总喜欢放在冰箱里,取出后使用时温度逐渐升高,也会引起结果不稳定。各位有这样的现象吗?

  • 迅速平稳高低温试验箱环境温度的小窍门

    迅速平稳高低温试验箱环境温度的小窍门

    高低温试验箱工作的时候,因为试品必须高温加热和低温环境的变换才会得到有关性能结论。在这个过程中,环境温度很有可能需要长期才能实现平衡状态,那有什么办法迅速平稳机器设备温度呢?[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2023/08/202308021511592303_8716_5295056_3.jpg!w348x348.jpg[/img][/align]  [b][url=http://www.linpin.com/]高低温试验箱[/url][/b]温度有一定的容时容差,一般在2~3中间,综合考虑湿度的迟缓转变、检测的相对误差及设备区域的气温变化。假如机器的空气湿度维持在规定容时容差内,机器设备一切两点间的温度差都要在比较小的范围之内。湿度的起伏应在短期内维持在0.5℃,试样温度应尽量维持在三度中间。迅速平稳环境温度有两种方式:  ①将试样放进箱里后,需在机器设备环境温度调整至25度,直到试样做到环境温度并平稳。  ②在把试样放进箱里以前,将试件放进另一个箱里,待环境温度平稳之后再进行下一步工作。不管选用什么样的方法平稳环境温度,机器的空气湿度都必须要在规定规范限制值内。试件温度是箱里恢复后,机器设备箱里的空气湿度应超过95%,机器设备工作温度应是25度。  以上就是平稳高低温试验箱环境温度方式的讲解,倘若你还想要了解更多热烈欢迎密切关注大家。

  • 【资料】红外检测器

    【资料】红外检测器

    红外检测就是利用红外辐射原理对设备或材料及其它物体的表面进行检验和测量的专门技术,也是采集物体表面温度信息的一种手段。 红外检测的原理 红外线检测物体表面温度分布的变化如图1所示。 [img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807231651_99712_1604460_3.jpg[/img]图1 红外检测物体表面温度变化示意 从图中可见,热流注入是均匀的,对无缺陷的物体,正面和背面的温度场分布基本上是均匀的,如果物体内部存在缺陷,在缺陷处温度分布将发生变化,对于隔热性的缺陷,正面检测方式,缺陷处因热量堆积呈“热点”,背面检测时,缺陷处则是低温点;而对于导热性的缺陷,正面检测时,缺陷处的温度是低温点,背面检测到缺陷处的温度是“热点”。可见,采用红外检测技术,可以形象地检测出材料表层与浅层缺陷和范围。 当一个物体本身具有不同于周围环境的温度时,不论物体的温度高于环境温度,还是低于环境温度;也不论物体的高温来自外部热量的注入,还是由于在其内部产生的热量造成,都会在该物体内部产生热量的流动。热流在物体内部扩散和传递的路径中,将会由于材料或投射的热物理性质不同,或受阻堆积,或通畅无阻传递,最终会在物体表面形成相应的“热区”和“冷区”,这种由里及表出现的温差现象,就是红外检测的基本原理。 红外检测器的分类 红外的检测器是红外分光光度计的重要组成部分,红外的检测器也有多种。 红外检测器分为热电检测器和光检测器两类。热电检测器是将红外的辐射热能转化为电能,从而检测电信号来测量红外线的强弱。光检测器则是利用红外线的热能使得检测器的温度发生改变,从而导电性发生变化,此时通过测量电阻来衡量红外信号的强弱。 热电检测器有:DTGS(氘化硫三肽)、LiTaPO3(钽酸锂)等。 光检测器有:MCT(汞铬碲)、InTe(锑化铟)等。 红外检测的基本方法 红外检测的基本方法分为两大类型,即被动式和主动式。被动式的红外检测在设备的红外检测诊断技术中应用比较多;主动式的红外检测又可分为单面法和双面法 红外检测中对被测目标的加热方式也分为稳态加热和非稳态加热。 红外检测仪器的安装和运载方式有固定式、便携式、车载式和机载式(直升机装载)等多种。 (1)被动式红外检测 所谓被动式系指进行红外检测时不对被测目标加热,仅仅利用被测目标的温度不同于周围环境温度的条件,在被测目标与环境的热交换过程中进行红外检测的方式。被动式红外检测应用于运行中的设备、元器件和科学试验中。由于它不需要附加热源,在生产现场基本都采用这种方式。 (2)主动式红外检测 主动式红外检测是在进行红外检测之前对被测目标主动加热,加热源可来自被测目标的外部或在其内部,加热的方式有稳态和非稳态两种,红外检测根据不同情况可在加热过程当中进行,也可在停止加热有一定时间后进行。 1)单面法:对被测目标的加热和红外检测在被测目标的同一侧面进行。 2)双面法:相对于上述的单面法而言,双面法是把对被测目标的加热和红外检测分别 在目标的正、反两个侧面进行。 (3)加热方式 1)稳态加热:将被测目标加热到其内部温度达到均匀稳定的状态时,再把它置放于一个低于(或高于)该恒定温度的环境中进行红外检测。 这种方式多用于材料的质量检测,如被测物内部有裂纹、孔洞或脱粘等缺陷时,则被测物与环境的热交换中热流将受到缺陷的阻碍,其相应的外表面就会产生温度的变化,与没有缺陷的表面相比则会出现温差。 2)非稳态加热:对被测目标加热,不需要使其内部温度达到均匀稳定状态,而在它的内部温度尚不均匀、具有导热的过程中即进行红外检测。 3)如将热量均匀地注入被测目标,热流进入内部的速度要由它的内部状况决定,若内部有缺陷,则会成为阻档热流的热阻,经一定时间会产生热量堆积,在其相应的表面会产生热的异常。缺陷造成的热流变化取决于缺陷的位置、走向、几何尺寸和材料的热物理性能。 红外检测仪器的安装和运转方式 (1)固定式:用于对旋转型设备故障的监测、关键设备的监测和生产在线产品工艺、质量的监测。 (2)便携式:便携式的红外检测仪器应用十分广泛,在日常巡检、定期普测、配合设备检修和跟踪监测中都要使用(主要使用或配合使用)便携式仪器。 (3)车载式:在进行设备的定期普测时,由于被测设备数量多、检测路线长,必须采用车载式检测。车载式是把热像仪装载在汽车(或其它车辆)上,可以使用两组测距不同的镜头摄取远、近两处设备的红外图像;对于汽车不能到达的目标,则步行到位检测;车内有图像监视器显示,操作者发现异常(包括需要立即检修和进一步调查监测两种情况),则立即在车上纪录并打印,及时向主管人员递交红外检测报告;遇有紧急情况需要及时处理,可采用无线电电话取得联系。 (4)机载式:对于需要在上空检测的目标,特别是极长距离、人员和车辆都不便到达的高山峻岭处的设备检测,应该采用直升机机装载热像仪进行。 红外检测的优势 红外检测作为非破坏检测众多方法中的一个,它们的功能在相比之下是各有特色,但红外检测却有其独到之处,形成了它的检测优势,可完成X射线、超音波、声发射及激光全息检测等技术无法担任的检测。 (1)非接触性:红外检测的实施是不需要接触被检目标的,被检物体可静可动,可以是具有高达数千摄氏度的热体,也可以是温度很低的冷体。所以,红外检测的应用范围极为宽广,且便于在生产现场进行对设备、材料和产品的检验和测量。 (2)安全性极强:由于红外检测本身是探测自然界无处不在的红外辐射,所以它的检测过程对人员和设备材料都不会构成任何危害;而它的检测方式又是不接触被检目标,因而被检目标即使是有害于人类健康的物体,也将由于红外技术的遥控检测而避免了危险。 (3)检测准确:红外检测的温度分辨率和空间分辨率都可以达到相当高的水平,检测结果准确率很高。例如,它能检测出0.1℃,甚至0.01℃的温差;它也能在数毫米大小的目标上检测出其温度场的分布;红外显微检测甚至还可以检测小到0.025mm左右的物体表面,这在线路板的诊断上十分有用。在某种意义上说,只要设备或材料的故障缺陷能够影响热流在其内部传递,红外检测方法就不受该物体的结构限制而能够探测出来。 (4)操作便捷:由于红外检测设备与其它相比是比较简单的,但其检测速度却很高,如红外探测系统的响应时间都是以μs或ms计,扫描一个物体只需要数秒或数分钟即可完成,特别是在红外设备诊断技术的应用中,往往是在设备的运行当中就已进行完了红外检测,对其他方面很少带来麻烦,而检测结果的控制和处理保存也相当简便。

  • 工作环境温度

    ARL4460 工作环境温度 温控是多少? 如果温度高了对仪器有什么影响?

  • 示差检测器的知识——7月加2钻石币

    示差检测器,此物全称示差折光检测器,洋名Refractive Index Detector,简称RID,它的工作原理,就是检测折光率的变化,所以,更有逻辑的名字应该叫做“示折光差检测器”...既然是这样,大家应该可以理解这个检测器的工作原理了,流动相的携带样品,当样品经过检测器的时候,由于样品的折光率和流动相不同,使得检测器检测到样品的存在。这类检测器的优点是,通用性很广,可以说是所有液相色谱能用的检测器里面通用性最广的检测器,所有的东西只要能进液相的,基本都可以被它检测;但是它的缺点也是很明显的,第一是灵敏度及其低下,检出/定量限通常都要在mg/mL浓度级别,比起大家喜闻乐见的紫外类检测器要差上几个数量级;另外一个致命的缺点是这货不能用梯度方法...随着技术的发展,示差检测器的应用范围越来越小,但是对于某些特别的化合物类型,它还是很有用武之地的,比如糖的分析。接下来,我们要讲造成RID基线噪音波动的原因和解决它们的办法:首先,要搞明白RID的基线噪音来自哪里,刚才我们说过RID是检测折光率变化的检测器,所以,任何导致折光率变化的原因都是噪音可能的来源,那么,除了样品的引入之外,还有什么能影响到折光率的变化呢?折光率是物质的一个物理特性,取决于物质本身和一些外界因素:本身的原因,任何的液体(透明的固体也会折光,不过和液相色谱没什么关系,就不讨论了)都有一个折光率值,而且是很独特的,就像每个人长的都不同一样,那么当不同的液体混合在一起的时候,混合溶液的折光率就和纯的两种液体不同,而且混合的比例不同,折光率也会不同,这就是为什么RID不能运行梯度方法的原因。外界因素,对于折光率影响最大的因素是温度,液体在不同温度下折光率也会有显著的不同,所以温度稳定对于RID检测器很重要。下面我们开始正式讨论如何减小RID的基线噪音:1溶液输送部分,其实就是泵:1.1压力脉动:液相泵的输液脉动会使大部分的检测器(紫外,荧光,示差)产生一定的基线噪音,但是通常这种影响不会很致命,我们只要观察液相色谱系统的压力波动小于2%,那么压力波动产生的基线波动通常都是可以接受的;1.2混合问题:虽然RID不会使用梯度方法,但还是不排除会有使用混合溶剂的情况,在这种情况下,泵的混合精度和效率会对RID的基线噪音有致命的影响,因为混合不均匀会导致每时每刻经过检测器的液体的折光率都在变化!通常我们应该使用预混好并进行脱气过的流动相进行试验,并且只使用仪器的单一流路进行输液,对于单元泵和二元泵,只要使用一个泵进行输液即可,对于四元泵,我们需要做些改造工作—短接四元比例阀—即把从脱气机出来的溶液管线直接接到泵的入口阀上,以保证彻底摆脱混合问题;1.3脱气问题:虽然进行了溶液的预混,但是仍旧不能保证在实验过程中会有少量气体溶解在流动相中,而这些气体很可能以气泡的形式干扰RID的基线,气体和液体的折光率差异大的无法比较,所以在线脱气机对保持RID基线稳定非常重要;2温度控制:温度控制对RID基线噪音的影响,非常非常大,温度的控制涉及到柱温,检测器温度和环境温度2.1柱温:对于常规的分析,控制柱温有助于得到稳定的保留时间;对于使用RID的方法,还有一个额外的用处—得到更平稳的基线,流动相从色谱柱流入检测器的时候,对于检测器内的温度是有改变的(色谱柱温度和检测器温度设置不同的时候),稳定的控温可以保证这种对于检测器温度变化的影响是一致的,可以说是个“系统误差”,但这本身不减小噪音,只能让噪音水平维持在一个稳定范围上,要减小噪音,就要设置柱温箱的温度让它和检测器的温度尽量接近,以尽可能的减小由于不同温度流动相进入检测器产生的噪音。有些分析方法使用到一些特殊的色谱柱,需要在较高的温度下使用(80摄氏度以上),这个时候使用柱温箱的柱后降温功能就非常重要了,因为示差检测器通常不能维持这么高的工作温度,如果柱温箱不具备降温功能,或者色谱柱长度太大,降温功能会造成色谱柱温度不均匀的时候,可以考虑使用一根比较长的不锈钢管线连接色谱柱出口和检测器并使它尽可能多的暴露在室温下,以充分冷却过热的流动相。2.2:检测器温度,大部分的示差检测器是带有控温功能的,用于控制检测器内部的温度保持稳定以减小由于温度变化造成的基线噪音,比较高级的RID的温度是可调的,通常我们建议把这个温度设置在比室温高5度的温度,以保证控制的稳定性,另外色谱柱的出口温度也应该尽量接近这个温度。2.3:环境温度,通常环境温度不会导致RID的基线噪音变大,但是,会导致基线的漂移,因为环境温度不会剧烈快速的上下波动,而且由于仪器的控温功能,也能抵消绝大部分的剧烈的温度变化,但是如果仪器处在一个温度会缓慢变化的地方,由于控温功能是有一定滞后的,这个时候就会体现出基线漂移的问题。比如,仪器放在空调正对的地方,阳光充足的窗边,暖气附近,都可能到这这种不正常的漂移,应当尽量避免这种“风水”问题...3系统冲洗:通常RID的系统冲洗平衡是个很好使的过程,要保证流路中流动相的完全替换,仪器环境温度的完全稳定,需要几个小时的时间,在RID内,有两个流通池,一个叫做检测池,另一个叫做参比池,顾名思义,检测池就是用来检测信号的,参比池的作用是实时比对检测池中折光率的变化,一旦检测池中的折光信号与参比吃中不同,检测器就会记录出色谱峰,就好象是一台天平,参比池中放的是标准砝码,一旦检测池中的东西与参比池中不同,天平就会倾斜,所以,对于参比池的冲洗是至关重要的,一旦开始实验,参比池中的流动相将不再流动,所以冲洗系统要保证参比池中的流动相与流路中的流动相完全一致,所以我们在配好流动相后,通常要先对参比池进行长时间的冲洗,这个过程通常会持续1,2个小时甚至更长,之后切换流路到检测池,继续冲洗,直到基线噪音在合理水平以内,如果冲洗检测池很长时间也无法得到很好的基线,可以考虑继续冲洗参比池,所以,冲洗参比池除了耗费时间之外,对流动相的消耗也很大,有些厂商的设计考虑到这一点,在检测器上加了一个“循环阀”可以让冲洗参比池的流动相循环利用,如果仪器上没有这个功能,我们也可以自己把示差检测器的出口废液管插回到溶剂瓶里手动循环。如果经过几个小时冲洗仍旧不能得到良好的基线,就要考虑其他模块的不当因素可能带来的影响了。

  • 【转帖】各种检测器介绍

    紫外吸收检测器 ultraviolet absorption detector紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。它不仅有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。其检测灵敏度在mg/L至mg/L范围。可见光检测器 visible light detector可见光检测器 visible light detector 又称分光光度检测器,是基于溶质分子吸收可见光的原理设计的检测器。能够直接采用可见光检测的溶质不是很多,而且多数灵敏度也不高,但采用具有高摩尔吸光系数的有机试剂(配位体和螯合剂)作为衍生化试剂进行柱前或柱后衍生操作的衍生化光度检测法是相当有用的,特别是在金属离子配合物液相色谱中的应用是相当成功的。

  • 野外环境检测器四气二尘自动监测

    野外环境检测器四气二尘自动监测

    野外环境检测器四气二尘自动监测野外环境检测器为了保证其本身监测数据的准确性和稳定性,对于安装和布局要求比较严格,为了方便观测场内的仪器设备布置为了不相互影响,便于观测,野外环境检测器的安装主要有以下几点。1、安装野外环境检测器,周围要尽量避开较高的建筑物,以及高磁场的物体,场地必须尽量开阔,并要求对天空和周围地区有开阔的视野。2、对雨量计而言,风会减少截获的降水,故一定程度的屏障是需要的3、仪器之间的应该一东西排列成行,南北布设成列,相互间东西间隔不小于4m,南北间隔不小于3m,仪器距观测场边缘护栏不小于3m,仪器安置在紧靠东西向小路的南面,观测员从背面接近仪器,高一点的仪器布置在北面,低一点的仪器放置在南面。4、因为条件的限制不能安装在观测场内的观测仪器:总辐射、直接辐射、散射辐射、日照以及风观测仪器可安装在天空条件符合要求的屋顶平台上,反射辐射和净辐射仪器安装在符合条件的有代表性下垫面的地方。[img=野外环境检测器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207140920355117_9764_4136176_3.jpg!w690x690.jpg[/img]野外环境检测器数据是通过 GPRS 无线传输, 原理是通过无线传输模块上的里面的流量传输数据。可用于测量风速、风向、气温、气湿、气压、全辐射、雨量、蒸发、土壤温度、土壤水份等各类气象数据,配套多种户内户外型显示屏,显示屏可选单色、双色、全彩屏。野外环境检测器配置传感器:风速、风向、空气温度、空气湿度、土壤温度、土壤湿度、雨量、总辐射、气压、蒸发等传感器(可根据用户需求配置)野外环境检测器用户可根据使用需求自定义搭配要素,风速风向传感等传感器为气象传感器,具有高精度高可靠性的特点。野外环境检测器数据采集仪具有气象数据采集、标准通信功能。[img=野外环境检测器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207140920508365_8139_4136176_3.jpg!w690x690.jpg[/img]

  • 示差检测器基线波动大是什么原因造成的

    示差检测器基线波动大是什么原因造成的

    [img=,352,125]http://ng1.17img.cn/bbsfiles/images/2017/05/201705191758_01_3214098_3.jpg[/img][color=#3e3e3e]示差检测器,此物全称示差折光检测器([/color]Refractive Index Detector[color=#3e3e3e],简称RID),它的工作原理,就是检测折光率的变化,所以,更有逻辑的名字应该叫做“示折光差检测器”...既然是这样,大家应该可以理解这个检测器的工作原理了,流动相的携带样品,当样品经过检测器的时候,由于样品的折光率和流动相不同,使得检测器检测到样品的存在。[/color][color=#3e3e3e][color=#3e3e3e]这类检测器的[b]优点[/b]是,通用性很广,可以说是所有液相色谱能用的检测器里面通用性最广的检测器,所有的东西只要能进液相的,基本都可以被它检测;[/color][/color][color=#3e3e3e][color=#3e3e3e]但是它的[b]缺点[/b]也是很明显的,第一是灵敏度及其低下,检出/定量限通常都要在mg/mL浓度级别,比起大家喜闻乐见的紫外类检测器要差上几个数量级;另外一个致命的[b]缺点[/b]是这货不能用梯度方法...随着技术的发展,示差检测器的应用范围越来越小,但是对于某些特别的化合物类型,它还是很有用武之地的,比如糖的分析。[/color][/color][color=#3e3e3e][color=#3e3e3e][b]接下来,我们要讲造成RID基线噪音波动的原因和解决它们的办法:[/b]首先,要搞明白RID的基线噪音来自哪里,刚才我们说过RID是检测折光率变化的检测器,所以,任何导致折光率变化的原因都是噪音可能的来源,那么,除了样品的引入之外,还有什么能影响到折光率的变化呢?折光率是物质的一个物理特性,取决于物质本身和一些外界因素:本身的原因,任何的液体(透明的固体也会折光,不过和液相色谱没什么关系,就不讨论了)都有一个折光率值,而且是很独特的,就像每个人长的都不同一样,那么当不同的液体混合在一起的时候,混合溶液的折光率就和纯的两种液体不同,而且混合的比例不同,折光率也会不同,这就是为什么RID不能运行梯度方法的原因。外界因素,对于折光率影响最大的因素是温度,液体在不同温度下折光率也会有显著的不同,所以温度稳定对于RID检测器很重要。[/color][/color][color=#3e3e3e][color=#3e3e3e][b]下面我们开始正式讨论如何减小RID的基线噪音:[/b][/color][/color][color=#3e3e3e][color=#3e3e3e][b]1溶液输送部分,其实就是泵:[/b][/color][/color][color=#3e3e3e][color=#3e3e3e]1.1压力脉动:液相泵的输液脉动会使大部分的检测器(紫外,荧光,示差)产生一定的基线噪音,但是通常这种影响不会很致命,我们只要观察液相色谱系统的压力波动小于2%,那么压力波动产生的基线波动通常都是可以接受的;1.2混合问题:虽然RID不会使用梯度方法,但还是不排除会有使用混合溶剂的情况,在这种情况下,泵的混合精度和效率会对RID的基线噪音有致命的影响,因为混合不均匀会导致每时每刻经过检测器的液体的折光率都在变化!通常我们应该使用预混好并进行脱气过的流动相进行试验,并且只使用仪器的单一流路进行输液,对于单元泵和二元泵,只要使用一个泵进行输液即可,对于四元泵,我们需要做些改造工作—短接四元比例阀—即把从脱气机出来的溶液管线直接接到泵的入口阀上,以保证彻底摆脱混合问题;[/color][/color][color=#3e3e3e][color=#3e3e3e]1.3脱气问题:虽然进行了溶液的预混,但是仍旧不能保证在实验过程中会有少量气体溶解在流动相中,而这些气体很可能以气泡的形式干扰RID的基线,气体和液体的折光率差异大的无法比较,所以在线脱气机对保持RID基线稳定非常重要;[/color][/color][color=#3e3e3e][color=#3e3e3e][b]2温度控制:[/b][/color][/color][color=#3e3e3e][color=#3e3e3e]温度控制对RID基线噪音的影响,非常非常大,温度的控制涉及到柱温,检测器温度和环境温度2.1柱温:对于常规的分析,控制柱温有助于得到稳定的保留时间;对于使用RID的方法,还有一个额外的用处—得到更平稳的基线,流动相从色谱柱流入检测器的时候,对于检测器内的温度是有改变的(色谱柱温度和检测器温度设置不同的时候),稳定的控温可以保证这种对于检测器温度变化的影响是一致的,可以说是个“系统误差”,但这本身不减小噪音,只能让噪音水平维持在一个稳定范围上,要减小噪音,就要设置柱温箱的温度让它和检测器的温度尽量接近,以尽可能的减小由于不同温度流动相进入检测器产生的噪音。有些分析方法使用到一些特殊的色谱柱,需要在较高的温度下使用(80摄氏度以上),这个时候使用柱温箱的柱后降温功能就非常重要了,因为示差检测器通常不能维持这么高的工作温度,如果柱温箱不具备降温功能,或者色谱柱长度太大,降温功能会造成色谱柱温度不均匀的时候,可以考虑使用一根比较长的不锈钢管线连接色谱柱出口和检测器并使它尽可能多的暴露在室温下,以充分冷却过热的流动相。2.2:检测器温度,大部分的示差检测器是带有控温功能的,用于控制检测器内部的温度保持稳定以减小由于温度变化造成的基线噪音,比较高级的RID的温度是可调的,通常我们建议把这个温度设置在比室温高5度的温度,以保证控制的稳定性,另外色谱柱的出口温度也应该尽量接近这个温度。[/color][/color][color=#3e3e3e][color=#3e3e3e]2.3:环境温度,通常环境温度不会导致RID的基线噪音变大,但是,会导致基线的漂移,因为环境温度不会剧烈快速的上下波动,而且由于仪器的控温功能,也能抵消绝大部分的剧烈的温度变化,但是如果仪器处在一个温度会缓慢变化的地方,由于控温功能是有一定滞后的,这个时候就会体现出基线漂移的问题。比如,仪器放在空调正对的地方,阳光充足的窗边,暖气附近,都可能到这这种不正常的漂移,应当尽量避免这种“风水”问题...[/color][/color][color=#3e3e3e][color=#3e3e3e][b]3系统冲洗:[/b][/color][/color][color=#3e3e3e]通常RID的系统冲洗平衡是个很好使的过程,要保证流路中流动相的完全替换,仪器环境温度的完全稳定,需要几个小时的时间,在RID内,有两个流通池,一个叫做检测池,另一个叫做参比池,顾名思义,检测池就是用来检测信号的,参比池的作用是实时比对检测池中折光率的变化,一旦检测池中的折光信号与参比吃中不同,检测器就会记录出色谱峰,就好象是一台天平,参比池中放的是标准砝码,一旦检测池中的东西与参比池中不同,天平就会倾斜,所以,对于参比池的冲洗是至关重要的,一旦开始实验,参比池中的流动相将不再流动,所以冲洗系统要保证参比池中的流动相与流路中的流动相完全一致,所以我们在配好流动相后,通常要先对参比池进行长时间的冲洗,这个过程通常会持续1,2个小时甚至更长,之后切换流路到检测池,继续冲洗,直到基线噪音在合理水平以内,如果冲洗检测池很长时间也无法得到很好的基线,可以考虑继续冲洗参比池,所以,冲洗参比池除了耗费时间之外,对流动相的消耗也很大,有些厂商的设计考虑到这一点,在检测器上加了一个“循环阀”可以让冲洗参比池的流动相循环利用,如果仪器上没有这个功能,我们也可以自己把示差检测器的出口废液管插回到溶剂瓶里手动循环。如果经过几个小时冲洗仍旧不能得到良好的基线,就要考虑其他模块的不当因素可能带来的影响了。[/color][color=#3e3e3e](转载于:液相达人馆)[/color]

  • 示差折光检测器使用注意事项

    示差折光检测器是通过连续测定色谱柱流出液折射率的变化而对样品浓度进行检测的。检测器的灵敏度与溶剂和溶质的性质都有关系,溶有样品的流动相和流动相本身之间折射率之差反映了样品在流动相中的浓度。示差折光检测器主要受温度、流速以及流动相的种类等因素的影响,示差折光检测器是较难稳定,一般平衡时间较长,我们可以在实验过程中注意以下几点,改善情况: (1)流动相一定要混匀,而且要充分脱气,最好不使用梯度。  (2)有条件的话将溶剂瓶、柱温箱、检测器的光学单元温度控制在同一个温度,且最好高于室温5~10℃。不要将检测器放置在通风橱或是空调出风口处。环境温度不要变化太大,实验室最好门窗关闭,如果没有柱温箱那就把检测器温度调低一点。  (3)要把废液瓶和溶剂瓶放在示差检测器与泵以上位置,这样可以使样品池略有压力,有助于优化检测器性能。  (4)在安装示差检测器时,由于其流通池的耐压较小,所以示差检测器在流路系统里必须放在最后。如果还要在系统里增加一个检测器,必须放在示差检测器的前面,以防压力增大时损坏。示差检测器的流通池。同时建议在运输或搬迁示差检测器到其他场所时,流通池里最好装有异丙醇,这是为避免在周围环境温度降低时使流通池破裂。

  • 示差折光检测器7

    3系统冲洗:通常RID的系统冲洗平衡是个很好使的过程,要保证流路中流动相的完全替换,仪器环境温度的完全稳定,需要几个小时的时间,在RID内,有两个流通池,一个叫做检测池,另一个叫做参比池,顾名思义,检测池就是用来检测信号的,参比池的作用是实时比对检测池中折光率的变化,一旦检测池中的折光信号与参比吃中不同,检测器就会记录出色谱峰,就好象是一台天平,参比池中放的是标准砝码,一旦检测池中的东西与参比池中不同,天平就会倾斜,所以,对于参比池的冲洗是至关重要的,一旦开始实验,参比池中的流动相将不再流动,所以冲洗系统要保证参比池中的流动相与流路中的流动相完全一致,所以我们在配好流动相后,通常要先对参比池进行长时间的冲洗,这个过程通常会持续1,2个小时甚至更长,之后切换流路到检测池,继续冲洗,直到基线噪音在合理水平以内,如果冲洗检测池很长时间也无法得到很好的基线,可以考虑继续冲洗参比池,所以,冲洗参比池除了耗费时间之外,对流动相的消耗也很大,有些厂商的设计考虑到这一点,在检测器上加了一个“循环阀”可以让冲洗参比池的流动相循环利用,如果仪器上没有这个功能,我们也可以自己把示差检测器的出口废液管插回到溶剂瓶里手动循环。如果经过几个小时冲洗仍旧不能得到良好的基线,就要考虑其他模块的不当因素可能带来的影响了。

  • 示差检测器基线波动大是什么原因造成的

    检测糖类物质不得不提到氨基柱和示差检测器,有时候明明是一根新的氨基柱,使用没有问题的情况下,老是感觉基线很难走平,今天咱们就来讨论下关于示差检测器的种种吧~~首先说一说示差检测器,此物全称示差折光检测器,洋名Refractive Index Detector,简称RID,它的工作原理,就是检测折光率的变化,所以,更有逻辑的名字应该叫做“示折光差检测器”...既然是这样,大家应该可以理解这个检测器的工作原理了,流动相的携带样品,当样品经过检测器的时候,由于样品的折光率和流动相不同,使得检测器检测到样品的存在。这类检测器的优点是,通用性很广,可以说是所有液相色谱能用的检测器里面通用性最广的检测器,所有的东西只要能进液相的,基本都可以被它检测;但是它的缺点也是很明显的,第一是灵敏度及其低下,检出/定量限通常都要在mg/mL浓度级别,比起大家喜闻乐见的紫外类检测器要差上几个数量级;另外一个致命的缺点是这货不能用梯度方法...随着技术的发展,示差检测器的应用范围越来越小,但是对于某些特别的化合物类型,它还是很有用武之地的,比如糖的分析。接下来,我们要讲造成RID基线噪音波动的原因和解决它们的办法:首先,要搞明白RID的基线噪音来自哪里,刚才我们说过RID是检测折光率变化的检测器,所以,任何导致折光率变化的原因都是噪音可能的来源,那么,除了样品的引入之外,还有什么能影响到折光率的变化呢?折光率是物质的一个物理特性,取决于物质本身和一些外界因素:本身的原因,任何的液体(透明的固体也会折光,不过和液相色谱没什么关系,就不讨论了)都有一个折光率值,而且是很独特的,就像每个人长的都不同一样,那么当不同的液体混合在一起的时候,混合溶液的折光率就和纯的两种液体不同,而且混合的比例不同,折光率也会不同,这就是为什么RID不能运行梯度方法的原因。外界因素,对于折光率影响最大的因素是温度,液体在不同温度下折光率也会有显著的不同,所以温度稳定对于RID检测器很重要。下面我们开始正式讨论如何减小RID的基线噪音:1溶液输送部分,其实就是泵:1.1压力脉动:液相泵的输液脉动会使大部分的检测器(紫外,荧光,示差)产生一定的基线噪音,但是通常这种影响不会很致命,我们只要观察液相色谱系统的压力波动小于2%,那么压力波动产生的基线波动通常都是可以接受的;1.2混合问题:虽然RID不会使用梯度方法,但还是不排除会有使用混合溶剂的情况,在这种情况下,泵的混合精度和效率会对RID的基线噪音有致命的影响,因为混合不均匀会导致每时每刻经过检测器的液体的折光率都在变化!通常我们应该使用预混好并进行脱气过的流动相进行试验,并且只使用仪器的单一流路进行输液,对于单元泵和二元泵,只要使用一个泵进行输液即可,对于四元泵,我们需要做些改造工作—短接四元比例阀—即把从脱气机出来的溶液管线直接接到泵的入口阀上,以保证彻底摆脱混合问题;1.3脱气问题:虽然进行了溶液的预混,但是仍旧不能保证在实验过程中会有少量气体溶解在流动相中,而这些气体很可能以气泡的形式干扰RID的基线,气体和液体的折光率差异大的无法比较,所以在线脱气机对保持RID基线稳定非常重要;2温度控制:温度控制对RID基线噪音的影响,非常非常大,温度的控制涉及到柱温,检测器温度和环境温度2.1柱温:对于常规的分析,控制柱温有助于得到稳定的保留时间;对于使用RID的方法,还有一个额外的用处—得到更平稳的基线,流动相从色谱柱流入检测器的时候,对于检测器内的温度是有改变的(色谱柱温度和检测器温度设置不同的时候),稳定的控温可以保证这种对于检测器温度变化的影响是一致的,可以说是个“系统误差”,但这本身不减小噪音,只能让噪音水平维持在一个稳定范围上,要减小噪音,就要设置柱温箱的温度让它和检测器的温度尽量接近,以尽可能的减小由于不同温度流动相进入检测器产生的噪音。有些分析方法使用到一些特殊的色谱柱,需要在较高的温度下使用(80摄氏度以上),这个时候使用柱温箱的柱后降温功能就非常重要了,因为示差检测器通常不能维持这么高的工作温度,如果柱温箱不具备降温功能,或者色谱柱长度太大,降温功能会造成色谱柱温度不均匀的时候,可以考虑使用一根比较长的不锈钢管线连接色谱柱出口和检测器并使它尽可能多的暴露在室温下,以充分冷却过热的流动相。2.2:检测器温度,大部分的示差检测器是带有控温功能的,用于控制检测器内部的温度保持稳定以减小由于温度变化造成的基线噪音,比较高级的RID的温度是可调的,通常我们建议把这个温度设置在比室温高5度的温度,以保证控制的稳定性,另外色谱柱的出口温度也应该尽量接近这个温度。2.3:环境温度,通常环境温度不会导致RID的基线噪音变大,但是,会导致基线的漂移,因为环境温度不会剧烈快速的上下波动,而且由于仪器的控温功能,也能抵消绝大部分的剧烈的温度变化,但是如果仪器处在一个温度会缓慢变化的地方,由于控温功能是有一定滞后的,这个时候就会体现出基线漂移的问题。比如,仪器放在空调正对的地方,阳光充足的窗边,暖气附近,都可能到这这种不正常的漂移,应当尽量避免这种“风水”问题...3系统冲洗:通常RID的系统冲洗平衡是个很好使的过程,要保证流路中流动相的完全替换,仪器环境温度的完全稳定,需要几个小时的时间,在RID内,有两个流通池,一个叫做检测池,另一个叫做参比池,顾名思义,检测池就是用来检测信号的,参比池的作用是实时比对检测池中折光率的变化,一旦检测池中的折光信号与参比池中不同,检测器就会记录出色谱峰,就好象是一台天平,参比池中放的是标准砝码,一旦检测池中的东西与参比池中不同,天平就会倾斜,所以,对于参比池的冲洗是至关重要的,一旦开始实验,参比池中的流动相将不再流动,所以冲洗系统要保证参比池中的流动相与流通池的流动相完全一致,所以我们在配好流动相后,通常要先对参比池进行长时间的冲洗,这个过程通常会持续1,2个小时甚至更长,之后切换流路到检测池,继续冲洗,直到基线噪音在合理水平以内,如果冲洗检测池很长时间也无法得到很好的基线,可以考虑继续冲洗参比池,所以,冲洗参比池除了耗费时间之外,对流动相的消耗也很大,有些厂商的设计考虑到这一点,在检测器上加了一个“循环阀”可以让冲洗参比池的流动相循环利用,如果仪器上没有这个功能,我们也可以自己把示差检测器的出口废液管插回到溶剂瓶里手动循环。如果经过几个小时冲洗仍旧不能得到良好的基线,就要考虑其他模块的不当因素可能带来的影响了。以上就是示差检测器使用中可能产生的关于基线噪音的问题和一些解决办法,希望对大家的工作有帮助!来源:液相达人馆

  • 关于环境温度、湿度和排风?

    经过数年的维修统计发现,潮湿和高温的实验室环境造成的仪器故障比率很大。建议用户将仪器维修成本与实验室环境因素综合考虑,保证合理的环境条件可以最大限度地减少仪器故障。关于环境温度、湿度和排风您怎么看?

  • 环境温度超。。。

    环境温度超过多少度,用乙炔就用危险了?我们这里温度高了一点(这两天)。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制