当前位置: 仪器信息网 > 行业主题 > >

环境模拟实验箱

仪器信息网环境模拟实验箱专题为您提供2024年最新环境模拟实验箱价格报价、厂家品牌的相关信息, 包括环境模拟实验箱参数、型号等,不管是国产,还是进口品牌的环境模拟实验箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境模拟实验箱相关的耗材配件、试剂标物,还有环境模拟实验箱相关的最新资讯、资料,以及环境模拟实验箱相关的解决方案。

环境模拟实验箱相关的资讯

  • 珠海汽车环境试验室(舱),环境试验舱 汽车排放室 环境模拟实验机
    http://www.oven.cc环境试验舱 汽车排放室 环境模拟实验室,汽车环境试验室(舱),广东宏展科技有限公司为汽车生产厂家以及科研院所提供汽车各项性能试验的环境.可模拟汽车在道路上行驶时的各种气候条件(风速、温度、湿度、日照)和汽车运行状态(车速、行驶阻力等),以测定汽车在一定条件下运行的性能及与汽车工作的相容性。本试验室是汽车测试的重要研究手段,可大大缩短汽车的研发周期。环境模拟参数 空气温度控制范围:-40~60℃ 温度精度 ± 0.5℃ 风速范围控制范围:0.5m/s~10m/s 风速精度± 0.1m/s空气湿度控制范围:-30~95%RH 湿度精度± 5%RH 大气压力控制范围:0.03~0.1Mpa 排废气量和新风处理排废气量:2000m3/h新风处理量:约2000m3/h,有调节室内外压力平衡的系统日照强度控制范围:0-100000LUX 降水量控制范围:0~10 mm/h 降水精度± 0.2 mm/h www.oven.cc
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • 德国宾得Binder环境模拟箱促销信息
    BINDER是完美的模拟生物、化学和物理环境条件领域的领导者。多年来,其气候测试箱被认为是世界最好的。因其提供的产品品种齐全,使之不仅适用于常规的用途,也能满足非常特殊项目的应用要求。 BINDER闻名于世的是,在研发、制造和品质保证等各方面,一直保持着最高水准,在加热和制冷技术、气体测定和控制技术、照明技术、真空技术和气体模拟始终坚持做到最好。东南科仪与BINDER公司的长期合作,将最先进的环境模拟箱引进国内,推动着生命科学各个领域的加速发展。 即日起,购买如下相关产品: KMF系列 MK系列 MKF系列 MKT系列 MKFT系列KMF全系列产品MK 全系列产品MKF全系列产品MKT全系列产品MKFT全系列产品都将标准配置单机版集中管理软件(APT.COM)一套。欢迎广大用户登录www.sinoinstrument.com或拨打全国免费电话400-113-3003了解详情!!联系我们
  • 1010万!四川省生态环境科学研究院省级“环境模拟与污染控制重点实验室”标准化建设项目
    一、项目基本情况项目编号:N5100012023002697项目名称:省级“环境模拟与污染控制重点实验室”标准化建设项目(2023年)采购方式:公开招标预算金额:10,100,000.00元采购需求:详见采购需求附件合同履行期限:采购包1:中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)。采购包2:(1)中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)。采购包3:(1)中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)。采购包4:合同签订之日起90日以内;本项目是否接受联合体投标:采购包1:不接受联合体投标采购包2:不接受联合体投标采购包3:不接受联合体投标采购包4:不接受联合体投标二、获取招标文件时间:2023年10月16日至2023年10月23日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间)途径:项目电子化交易系统-投标(响应)管理-未获取采购文件中选择本项目获取招标文件方式:在线获取售价:0元三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:四川省生态环境科学研究院地址:四川省成都市武侯区人民南路四段18号联系方式:赵老师,028-855300902.采购代理机构信息名称:四川国际招标有限责任公司地址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号联系方式:张女士、代女士,13111881792、131118825533.项目联系方式项目联系人:张女士、代女士电话:13111881792、13111882553采购需求.docx
  • 1010万!四川省生态环境科学研究院省级“环境模拟与污染控制重点实验室”标准化建设项目
    一、项目基本情况项目编号:N5100012023002697项目名称:省级“环境模拟与污染控制重点实验室”标准化建设项目(2023年)(二次)采购方式:公开招标预算金额:10,100,000.00元采购需求:详见采购需求附件合同履行期限:采购包1:中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)。采购包2:中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)采购包3:中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)采购包4:中标人交货期限为合同签订生效后的90日内,在合同签订生效之日起90天内交货到采购人指定地点,随即在14日内全部完成安装调试验收合格交付使用,(如由于采购人的原因造成合同延迟签订或验收的,时间顺延)本项目是否接受联合体投标:采购包1:不接受联合体投标采购包2:不接受联合体投标采购包3:不接受联合体投标采购包4:不接受联合体投标二、获取招标文件时间:2023年10月25日至2023年11月01日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间)途径:项目电子化交易系统-投标(响应)管理-未获取采购文件中选择本项目获取招标文件方式:在线获取售价:0元三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:四川省生态环境科学研究院地址:四川省成都市武侯区人民南路四段18号联系方式:赵老师,028-855300902.采购代理机构信息名称:四川国际招标有限责任公司地址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号联系方式:张女士/代女士,13111881792/131118825533.项目联系方式项目联系人:张女士/代女士电话:13111881792/13111882553采购需求.docx
  • 我国航天领域首个大科学装置正式运行!可在地面模拟太空环境做实验
    综合央视新闻客户端、新华社报道,2月27日,由哈尔滨工业大学和中国航天科技集团联合建造的“空间环境地面模拟装置”国家重大科技基础设施项目正式通过国家验收,这是我国航天领域首个大科学装置,可以综合模拟低温、真空、电磁辐射等九大类空间环境因素,也被称为“地面空间站”。“空间环境地面模拟装置”国家重大科技基础设施项目,聚焦航天领域的重大基础性科学技术问题,构建我国首个空间综合环境与航天器、生命体和等离子体作用科学领域的大型研究基地,形成国际领先水平的空间环境耦合效应试验研究平台。相较于把实验仪器设备搬到太空,“地面空间站”既能节省成本、减少安全隐患,又可以根据科学问题和工程需要,设置特定的环境因素,不受时空限制进行多次重复验证,从而打造更加安全便捷的实验条件和科研手段。“这意味着未来许多需要抵达太空才能进行的实验,在地面上就能完成。”空间环境地面模拟装置常务副总指挥、哈尔滨工业大学空间环境与物质科学研究院院长李立毅说,项目建设坚持自主创新,突破了一系列关键技术,各系统已全部投入试运行和开放共享,服务于国内外多家用户单位,支撑了我国一系列国家重大航天任务的实施,取得了多项标志性成果。由中国工程院院士、苏州实验室主任徐南平等担任联合主任的国家验收委员会认为,该项目突破了空间环境模拟及其与物质作用领域的系列关键技术,项目总体建设指标处于国际先进水平,部分关键技术指标处于国际领先水平,装置运行成效突出,科技与社会效益显著,同意其通过国家验收。中国科学院院士、哈尔滨工业大学校长韩杰才说,该装置对我国重大科技创新突破、产业转型升级、高端人才培育等具有重要意义。未来学校将不断优化装置技术指标,持续提高装置科学水平,加速形成更多自主知识产权技术,为我国实现从航天大国向航天强国的重大跨越作出新的贡献。据了解,“空间环境地面模拟装置”从2005年开始论证,到正式通过验收,历时18年,去年试运行以来,已经服务了国内外多家用户单位,支撑了我国多款宇航电子元器件的研发和一系列国家重大航天任务的实施,取得了多项标志性成果。验收委员会认为,这一项目突破了空间环境模拟及其与物质作用领域的系列关键技术,项目总体建设指标处于国际先进水平,部分关键技术指标处于国际领先水平。
  • 环保部同意建设国家环境保护大气物理模拟与污染控制重点实验室
    近日,环保部发布了关于同意国电环境保护研究院建设国家环境保护大气物理模拟与污染控制重点实验室的复函,复函全文如下:  国电环境保护研究院:  你单位报送的《国家环境保护大气物理模拟与污染控制重点实验室建设计划任务书》(以下简称《计划任务书》)收悉。依据我部组织专家论证的结果,经研究,现同意以你单位为依托单位,建设国家环境保护大气物理模拟与污染控制重点实验室。  重点实验室建设任务:面向国家环境保护战略需求,围绕大气环境物理模拟与污染控制,服务于区域大气污染防治,以大气污染迁移转化规律与污染控制技术为研究对象,利用风洞模拟实验室与污染控制技术研发基地,开展污染物在大气中的化学转化、物理输送规律和污染源的合理空间布局、区域大气环境预警与调控等应用基础研究,进行烟气多污染物协同控制技术研发和成果转化,培养一批优秀的创新性骨干人才和领军人才,努力建设产学研联盟,建成国际一流水平的重点实验室和开放性交流服务平台,为我国大气环境管理与决策提供技术支撑。以重点实验室为学术交流与合作平台,促进国内相关领域优势单位和人员的合作交流,培养优秀创新性骨干人才和领军人才。  重点实验室建设期两年。请你单位按照《国家环境保护重点实验室管理办法》的有关规定,围绕《计划任务书》中提出的建设目标和建设内容,建立&ldquo 开放、流动、联合、竞争&rdquo 的运行模式,落实资金投入,按期完成重点实验室的各项建设任务。在建设期间,若遇重大事项,及时向我部汇报,并按时提交《重点实验室建设情况年度报告》。  特此函复。  环境保护部  2013年9月3日  抄送:科技部、中国国电集团公司,各省、自治区、直辖市环境保护厅(局),中国环境科学研究院、中国环境监测总站、中日友好环境保护中心、核与辐射安全中心、南京环境科学研究所、华南环境科学研究所、环境规划院、环境工程评估中心、卫星环境应用中心,各国家环境保护重点实验室。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • 河海大学订购宏展步入式模拟环境高低温恒温恒湿淋雨综合实验室
    河海大学订购宏展步入式模拟环境高低温恒温恒湿淋雨综合实验室我公司在河海大学关于"步入式模拟环境高低温恒温恒湿淋雨综合实验室"的招标活动中,以886分的高票中标。通过现场9位评委公平、公证、公开的评比方式,能够在众多的同行中夺的标魁,一方面取决于公司自身的技术实力和资本实力,另一方面源自于公司的技术成熟度和自身生产加工实力带来的成本优势。我们在竟标过程中不论专业技术分、质量分、售后服务分、价格分等各方面都领先于通行**的优势。招标会从上午9点开始,经过**轮的开标价格公布、公司资格审查 ,独立的技术方案讲解问答,再到第二轮的**终报价以及主持人公开宣布中标单位,整个招标会直到中午12点结束耗时近三个小时."步入式模拟环境高低温恒温恒湿淋雨综合实验室"不是一个普通的实验室,它主要是解决客户产品在不同的气候环境下[包括高原气候反应低压缺氧等]进行的吹风角度、风速、模拟大气压力、换气、霜冻及一氧化碳含量等综合性能工况实验。要解决这些综合条件下的工况环境实验,我们必须要将所有的结构和系统进行综合数据采集及分析处理,这集中了空气力学、自动化控制、气体分析、数据采集、机械结构、气候环境等各种原理21世纪,随着地球村的成型,终端用户对产品的工况品质要求越来越高。他**不是在一个固定的气候或机械环境条件下来进行一个简单的模拟实验,它直接模拟终端用户的操作动作、当地的海拔高度所带来的气压变化及温湿度条件来进行各种工况实验。所以,此类实验室的需求,一定是以后的环境测试大势所趋。我们也将集中全厂的技术力量,来制造一间满足客户要求的高品质实验室。
  • 中国拟建全球最大雾霾实验室 初步预算5亿
    欧洲的Euphore photoeactor烟雾箱  近日,有媒体报道称,中国科学家欲在北京怀柔建设世界最大的&ldquo 烟雾箱&rdquo 以模拟灰霾的形成和治理,项目并已得到批准。  昨日(3月1日),该项目筹备负责人对记者表示,的确有建设此项目的意图,但其作为一庞大的大气环境模拟系统研究计划的组成部分,目前尚未得到发改委批复。  建&ldquo 烟雾箱&rdquo 初步预算5亿元  媒体近日报道,中科院将在北京怀柔建设世界最大的&ldquo 烟雾箱&rdquo 以解决污染难题,该项目已得到发改委批准。  3月1日,该项目方案的筹备负责人、中科院生态环境研究中心研究员贺泓对记者表示,中科院的确已就此项目计划制定了方案,并上报发改委,但截至目前,尚未收到项目得到批准的消息。  贺泓表示,&ldquo 烟雾箱&rdquo 只是一个庞大的大气环境模拟系统研究计划的组成部分之一,其在2010年便依据&ldquo 十二五规划&rdquo 提出建设申报,但此后至今一直仅被列为备选项目。  &ldquo 中科院这边已经论证好几回了,内部已经通过了,但我们并没有得到发改委批准的答复,不知道哪年建,不知道方案能不能通过,也不知道预算能批准多少。&rdquo 贺泓说。  他表示,整个大气环境模拟系统的计划比较庞大,目前初步预计需要5亿元预算。  若建成将向各国科学家开放  在当前研究大气污染的科学界,基本有两种研究方式,一种是直接对现实中的大气污染进行研究,如2008年期间,因为减排措施而污染物骤然下降的这个过程,成为了全球大气物理科学家重点研究的&ldquo 天然实验室&rdquo 。  另一种方式则是在封闭的空间进行模拟实验,这被称为&ldquo 烟雾箱&rdquo ,即在一个密闭的容器内,通过注入不同的污染气体,研究其在日照作用下的各种化学反应。  贺泓表示,如果能得到批复的话,将可以通过这个项目做很多的模拟实验,如颗粒物的形成,光化学烟雾和灰霾的产生原因等。  贺泓表示,如果能得到批复,并得以建成系统,到时候会向全世界科学家开放,&ldquo 不光是我国科学家,也欢迎全世界科学家都来做实验。&rdquo   &ldquo 烟雾箱&rdquo 不是越大越好  科学家预想中设在怀柔的新的&ldquo 大气环境模拟系统&rdquo ,其中最大的两个&ldquo 箱子&rdquo 都是300立方米,贺泓表示,如建成,将是具有世界先进水平的大气环境模拟实验室,优先用于灰霾模拟与控制研究。他说,我国已有一些&ldquo 烟雾箱&rdquo 用于科学研究,比较大的有环科院和中科院的两个烟雾箱。目前世界上主要的大型室外环境烟雾箱分别在德国地质化学和动力学研究所(370立方米),欧洲光化学实验室(204立方米)和美国北卡罗来纳州立大学(300立方米)。  贺泓说,大气是开放体系,在一个较大的封闭系统中,可模拟各种大气中发生的反应,&ldquo 箱子是用来模拟大气的,箱子越大,墙壁效应越小,&rdquo 他说,&ldquo 但大也有大的不方便,也不是越大越好。&rdquo   治霾不能坐等研究  北京一位高校研究大气污染的科学家对新京报记者表示,烟雾箱可以模拟环境空气中发生的化学反应过程,而且和现实中的大气环境不同,可以人为对压入的污染气体进行控制,对于研究来讲是很好的手段,而且,理论上,烟雾箱越大,模拟效果越好。  但是,这位科学家同时表示,对于政府来说,不能等到烟雾箱这样的科研设备出来再寻找治理空气污染的答案。&ldquo 我们身边的大气环境就是一个大的烟雾箱,而且我们已经做了很多天然的实验。&rdquo
  • 大型铸锻件模拟国家级工程实验室在成都启用
    中国二重集团公司技术中心(成都)总部工程项目指挥部副总指挥孙唯林近日接受媒体采访表示:作为国家级工程实验室之一的大型铸锻件模拟实验室已在成都投入使用,届时,像大型船舶、大飞机铸件等“高精尖”装备的重要组件,将先在成都实验室模拟铸造成功之后,才送往生产基地,加工制造。  孙唯林说,诸如大型船舶、大飞机等大型铸件,需要几十吨至上千吨的钢铁铸造,而且要求高,出现一点差错就要报废,显然不可能用实物来实践,因此模拟实验室就显得特别重要。  据了解,二重集团国家级工程实验室是国家认定的全国唯一、世界第三大型铸锻件工程实验室,主要是解决国家受制于人的大型铸锻件的数值模拟及成形过程模拟,制定出成功的大型铸锻件制造工艺,保证大型核电、水电、火电、风电等产品所用的大型铸锻件100%的制造成功。
  • THERMECMASTOR高性能热模拟试验机在燕山大学签约
    THERMECMASTOR高性能热模拟试验机在燕山大学签约 由世界老牌热模拟试验机制造厂商富士电波工机株式会社生产制造的THERMECMASTOR高性能热模拟试验机近日在燕山大学签约。随着材料研发与测试科研人员对测试设备的精度和自动化程度要求的不断提高,科研人员希望能获得一款有着更高测试性能和自动化程度的热模拟试验机设备。燕山大学的科研人员对当前市场上的热模拟设备进行考察和比较后,认为具备感应通电双加热及光学自动跟踪相变测量和全自动智能淬火冷却系统的热模拟试验机设备,在热压缩、热拉伸、CCT/TTT、焊接模拟、铸造模拟、淬火热处理,多向变形和大样品(30x30x150mm)大变形等材料测试和物理模拟实验方面,能满足更高的实验精度和自动化人机交互操作要求。由此可见,随着材料测试科技的不断进步,选择一款更好的热模拟试验机设备以满足科研实验要求已经逐渐成为业界共识。
  • 国内首个自主研发的地球模拟器正式投入使用
    p  记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。/pp  207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。/pp  据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。/pp  后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。/p
  • 紫外线试验箱 模拟环境试验箱 紫外线耐气候试验箱
    Q8/UV紫外光加速老化试验机Q8/UV紫外光加速老化试验机主要用于模拟对阳光、潮湿和温度对材料的破坏作用;材料老化包括褪色、失光、强度降低、开裂、剥落、粉化和氧化等。紫外光加速老化试验机通过模拟阳光、冷凝、模仿自然潮湿,试样在模拟的环境中试验几天或几周的时间,可再现户外可能几个月或几年发生的损坏。Q8/UV紫外光加速老化试验机中,紫外灯的荧光紫外等可以再现阳光的影响,冷凝和水喷淋系统可以再现雨水和露水的影响。整个的测试循环中,温度都是可控的。典型的测试循环通常是高温下的紫外光照射和相对湿度在100%的黑暗潮湿冷凝周期;典型应用在油漆涂料、汽车工业、塑胶制品、木制品、胶水等。 模拟阳光阳光中的紫外线是造成大多数材料耐久性能破坏的主要因素。我们使用紫外灯来模拟阳光中的短波紫外部分,它产生很少的可见光或红外光谱能量。我们可以根据不同的测试要求选择不同波长的UV紫外灯,因为每种灯在总的紫外线辐照能量和波长都不一样。通常,UV灯管可分为UVA和UVB两种。Q8/UV灯管UVA-340灯管:UVA-340 灯管可极好地模拟太阳光中的短波紫外光,即从365 纳米到太阳光截止点 295 纳米的波长范围。UVB-313灯管:UVB-313 灯管发出的短波紫外光比通常照射在地球表面的太阳紫外线强烈,从而可以**程度的加速材料老化。然而,该灯管可能会对某些材料造成不符合实际的破坏。UVB-313 灯管主要用于质量控制和研究开发,或对耐候性极强的材料运行测试。UVA-351灯管:模拟透过窗玻璃的阳光紫外光,它对于测试室内材料的老化**为有效。潮湿冷凝环境在很多户外环境中,材料每天的潮湿时间可长达12小时。研究表明造成这种户外潮湿的主要因素是露水,而不是雨水。Q8/UV通过独特的冷凝功能来模拟户外的潮湿侵蚀。在试验过程中的冷凝循环中,测试室底部蓄水池中的水被加热以产生热蒸气,并充满整个测试室,热蒸汽使测试室内的相对湿度维持在100%,并保持一个相对高温。试样被固定在测试室的侧壁,从而试样的测试面曝露在测试室内的环境空气中。试样向外的一面暴露在自然环境中具有冷却效果,导致试样内外表面具备温差,这一温差的出现导致试样在整个冷凝循环过程中,其测试面始终有冷凝生成的液态水。由于户外曝晒接触潮湿的时间每天可以长达十几小时,因此典型的冷凝循环一般持续几个小时。Q8/UV提供两种潮湿模拟方法。应用**多的是冷凝方法,它是模拟户外潮湿侵蚀的**方法。所有的Q8/UV型号都可运行冷凝循环。因为有些应用条件也要求使用水喷淋以达到实际的效果,所以有些Q8/UV型号既可运行冷凝循环又可运行水喷淋循环。温度控制在每个循环中,温度都可控制在一个设定值。同时黑板温度计可以监控温度。温度的提高可以加速老化的进程,同时,温度的控制对于测试的可再现性也是很重要的。水喷淋系统对于某些应用而言,水喷淋能更好地模拟**终使用的环境条件。水喷淋在模拟由于温度剧变和由于雨水冲刷所造成的热冲击或机械侵蚀是非常有效的。在某些实际应用条件下,例如阳光下,聚集的热量由于突降的阵雨而迅速消散时,材料的温度就会发生急剧变化,产生热冲击,这种热冲击对于许多材料而言是一种考验。Q8/UV的水喷淋可以模拟热冲击和/或应力腐蚀。喷淋系统有12个喷嘴,在测试室的每一边各有6个;喷淋系统可运行几分钟然后关闭。这短时间的喷水可快速冷却样品,营造热冲击的条件。照射强度控制:可选选配照射强度控制选件可得到**型和重复性好的测试结果;光强控制系统允许用户根据不同的测试要求设置不同的光照强度。通过其反馈回路装置**控制照射强度;同时也可以延长荧光灯的使用寿命 Q8/UV紫外光加速老化试验机主要技术指标型号 ModelQ8/UV3Q8/UV2 Q8/UV1UV 照射 Exposure●●●冷凝 Condensation●●●光照控制 Irradiancs Control●● 可调光线 Adjustable irradiance●● 喷水 Water Spray● 热冲击 Thermal Shock● 自动侦路 Self-diagnostics●●●灯泡数量 Lamp Q' ty紫外线灯管 8 支,备品 4 支 Ultravloiet lamp 6pcs, spares 4 pcs (美国Q-LAB,Q-Panel,美国ATLAS,UVA340,UVB313,UVC351)记录器 Recorder选配 (Optional)辐射计 Q8-CR Calibration Radiometer选配 (Optional)机器辐射强度:1.0W/m2/340nm以内可调1.1W/m2/313nm以内可调UV 温度 Temp50 ℃ -75 ℃冷凝温度 Condensation Temp40 ℃ -60 ℃测试容量 Test Capacity48pcs 片/se spray( 75 x 150m m )50pcs片/basic ( 75 x 150m m )水凉及耗量 Water蒸馏水每分钟 蒸馏水每日 8 公升体积 Dimension(W x D x H)137 x 53 x 136cm重量 Weight136kg电源 Power1 &psi , 120V/60Hz,16A or 230V/50Hz, 9A,1800W(max)Q8/UV紫外光加速老化试验机测试方法通用&bull ISO 4892-1 Plastics- Methods of exposure to laboratory light sources-Part 1: General Guidance&bull ASTM G-151, Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources&bull ASTM G-154, Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Non-Metallic Materials&bull British Standard BS 2782: Part 5, Method 540B (Methods of Exposure to Lab Light Sources)&bull SAE J2020, Accelerated Exp. of Automotive Exterior Materials Using a Fluorescent UV/Condensation Apparatus&bull JIS D 0205, Test Method of Weatherability for Automotive Parts (Japan)&bull GB/T 16422.1,塑料实验室光源暴露试验方法 第1部分:总则________________________________________涂料&bull ISO 11507, Paints & varnishes-Exposure of coatings to artificial weathering-Exposure to fluorescent UV and water&bull ISO 20340, Paints & varnishes &ndash Performance requirements for protective paint systems for offshore andrelated structures&bull ASTM D-3794, Standard Guide for Testing Coil Coatings&bull ASTM D-4587, Standard Practice for Light/Water Exposure of Paint&bull US Government, FED-STD-141B&bull US Govt., Federal Specification TT-E-489H, Enamel, Alkyd, Gloss, Low VOC Content&bull US Govt., Federal Specification TT-E-527D, Enamel, Alkyd, Lusterless, Low VOC Content&bull US Govt., Federal Specification TT-E-529G, Enamel, Alkyd, Semigloss, Low VOC Content&bull US Govt., Federal Specification TT-P-19D Paint, Latex, Acrylic Emulsion, Ext. Wood & Masonry&bull NACE Standard TM-01-84 Procedures for Screening Atmospheric Surfaced coatings&bull GM4367M Topcoat Materials - Exterior&bull GM 9125P Laboratory Accelerated Exposure of Automotive Material&bull Korean Standard M5982-1990, Test Method for Accelerated Weathering&bull Spanish Std, UNE 104-281-88 Accelerated Testing of Paints and Adhesives with Fluorescent UV Lamps&bull Israeli Standard No. 330, Steel Windows&bull Israeli Standard No. 385, Plastic Windows&bull Israeli Standard No. 935, Road Marking Paint&bull Israeli Standard No. 1086, Aluminum Windows&bull NISSAN M0007, Fluorescent UV/Condensation Test&bull JIS K 5600-7-8, Testing Methods for Paints&bull MS 133: Part F16, Methods of Test for Paints and Varnishes: Part F16: Exposure of Coatings to Artificial Weathering- Exposure to Fluorescent UV and Water (ISO 11507)&bull NBR-15.380 Paints for buildings&ndash Methods for performance evaluation of paints for non-industrial buildings &ndash Resistance to UV irradiation/water vapor condensation, by accelerated test&bull prEN 927-6 Paints & varnishes&ndash Coating materials and coating systems for exterior wood &ndash Pt. 6: Exposure of wood coatings to artificial weathering using fluorescent UV and water&bull GB/T 12967.4,铝及铝合金阳极氧化 着色阳极 氧化膜耐紫外光性能的测定________________________________________纺织品&bull AATCC Test Method 186, Weather Resistance: UV Light and Moisture Exposure&bull ACFFA Test Method for Colorfastness of Vinyl Coated Polyester Fabrics________________________________________印刷油墨&bull ASTM F1945, Lightfastness of Ink Jet Prints Exposed to Indoor Fluorescent Lighting ________________________________________橡胶&bull GB/T 16585,硫化橡胶人工气候老化(荧光紫外灯)试验方法________________________________________电工电子产品&bull GB/T 19394,光伏(PV)组件紫外试验type the link here________________________________________粘合剂和密封剂&bull ASTM C 1501, Standard Test Method For Color Stability of Building Construction Sealants as Determined byLaboratory Accelerated Weathering Procedures&bull ASTM C-1184, Specification for Structural Silicone Sealants&bull ASTM C-1442, Standard Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus&bull ASTM D-904, Standard Practice for Exposure of Adhesive Specimens to Artificial Light&bull ASTM D-5215, Standard Test Method for Instrumental Evaluation of Staining of Vinyl Flooring by Adhesives&bull American Plywood Assn., Approval Procedures for Synthetic Patching Materials, Section 6&bull Spanish Std, UNE 104-281-88 Accelerated Testing of Paints and Adhesives with Fluorescent UV Lamps________________________________________塑料&bull ISO 4892 Plastics - Methods of Exposure to Laboratory Light Sources-Part 3: Fluorescent UV Lamps&bull DIN 53 384, Testing of plastics, Artificial Weathering and Exposure to Artificial Light&bull Spanish Standard UNE 53.104 (Stability of Plastics Materials Exposed to Simulated Sunlight)&bull Israeli Standard No. 385, Plastic Windows&bull JIS K 7350, Plastics - Methods of Exposure to Laboratory Light Sources-Part 3: Fluorescent UV Lamps&bull ASTM D-1248, Standard Specification for Polyethylene Plastics Extrusion Materials for Wire and Cable&bull ASTM D-4329, Standard Practice for Light/Water Exposure of Plastics&bull ASTM D-4674, Test Method for Accelerated Testing for Color Stability of Plastics Exposed to IndoorFluorescent Lighting and Window-Filtered Daylight&bull ASTM D-5208, Standard Practice for Exposure of Photodegradable Plastics&bull ASTM D-6662, Standard Specification for Plastic Lumber Decking Boards&bull ANSI C57.12.28 Specification for Accelerated Weathering of Padmounted Equipment Enclosure Integrity&bull ANSI, A14.5 Specification for Accelerated Weathering of Portable Reinforced Plastic Ladders&bull Edison Electrical Inst. Specification for Accelerated Weathering of Padmounted Equip. Enclosure Integrity&bull Wisconsin Electric Power Specification for Polyethylene Signs&bull GB/T 18950,橡胶和塑料软管 静态下耐紫外线性能测定&bull GB/T 16422.3,塑料实验室光源暴露试验方法 第3部分:荧光紫外灯________________________________________屋顶材料&bull ASTM D-4799, Test Method for Accelerated Weathering of Bituminous Roofing Materials&bull ASTM D-4811, Standard Specification for Nonvulcanized Rubber Sheet Used as Roof Flashing&bull ASTM D-3105, List of Test Methods for Elastomeric and Plastomeric Roofing & Waterproofing&bull ASTM D-4434, Standard Specification for PVC Sheet Roofing&bull ASTM D-5019, Standard Specification for Reinforced Non-Vulcanized Polymeric Sheet Used in Roofing Membrane&bull ANSI/RMA IPR-1-1990 Req. for Non-Reinforced Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-2-1990 Req. for Fabric-Reinforced Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-5-1990 Req. for Non-Reinforced Non-Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-6-1990 Req. for Fabric-Reinforced Non-Black EPDM Sheet for Roofing Membrane&bull British Standard BS 903: Part A54 Annex A & D, Methods of Testing Vulcanized Rubber&bull CGSB-37.54-M, Canadian General Standards Board Spec. for PVC Roofing & Waterproofing Membrane&bull DIN EN 534, Corrugated bitumen sheets&bull EOTA TR 010, Exposure procedure for artificial weathering&bull RMA Specification for Reinforced Non-Vulcanized Chlorosulfonated Polyethylene Sheet for Roofing Membrane________________________________________复合材料&bull Israeli Standard No. 385, Anodic Coatings on Aluminum________________________________________ 广东宏展科技有限公司Guangdong Hongzhan Technology Co.,Ltd.地址:广东省东莞市常平镇土塘长城聚怡工业园蹇小东 Jian Xiao DongPhone:13688992830Tel:0769-82204676 400-0000-217Fax:0769-83730860E-mail:jxd@oven.cc http://www.oven.cc-广东- -昆山- -北京- -重庆- -长沙- -香港- 您的产品能否适应万变的气候?模拟环境试验,宏展可以做到!Your Product to adapt to a changing climate?Simulation environment testing, hongzhan can be done!
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。  前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。  “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。  据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。  据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 韩模拟中国核电站爆炸 称辐射将遍布韩全境
    据韩国媒体报道,韩国核能安全技术院于近期进行了一次“中国中西部地区核电站爆炸”的模拟实验。该实验结果显示,如果类似的事故真的发生,由此产生的放射性物质将会在3天内抵达朝鲜半岛,并在4天内遍布韩国全境。  据韩联社3月29日消息,韩国核能安全技术院29日提交了这篇题为《有关东亚长距离大气扩散模型的研发先行研究》的报告。据该院进行的“中国核电站爆炸”模拟试验显示,若放射性碘131在中国银川泄漏12小时以上,在偏西风的影响下,这些放射性物质会在3天内抵达朝鲜半岛西海岸。  该报告还称,在模拟实验中,碘131在泄漏第4天起,会覆盖韩国全境。第6天之后则会扩散至中国的首都北京和日本的北海道等地区。
  • 浅谈国际模拟环境试验设备发展趋势
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px "环境试验设备经历了由单一环境因素模拟向多环境因素模拟,从静态模拟到动态模拟,由简单控制到微机全自动控制的发展过程。目前的发展方向是“更快、更好、更省”,并呈现以下特点:/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(1)试件尺寸:从小尺寸向大尺寸、全尺寸方向发展,试样从材料向构件、整机发展;/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(2)提高环境因素模拟精度:如目前模拟太阳辐射的光源主要是氙灯,尽管氙灯的光谱与太阳光谱接近,但光谱上某些点段相差较大。实践表明这些差别对有些材料样品的试验结果有影响,国外一些厂家在积极寻找新的光源。另外对氙灯光强的控制正在由点段控制向全光谱段控制方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(3)自然环境试验从典型环境向严酷与极端环境发展,向自然环境加速试验发展,向实验室模拟自然环境加速试验发展,并开始应用计算机数字仿真技术。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(4)采用新的控制技术:大量采用计算机领域内的新技术,如显示触摸屏技术、span style="font-size: 16px font-family: " times="" new=""PLC/span技术、现场总线技术等。试验过程的检监测技术已向现场连续观察与检测方向发展,并对观察与检测结果实现远程传输。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(5)更接近于实际环境的综合箱:如振动试验箱已经发展成为三综合(温度、湿度、振动)、四综合(温度、湿度、低气压、振动)试验箱,并且出现了多维振动试验箱;腐蚀试验箱由单一腐蚀试验向循环腐蚀试验(腐蚀-湿热-干燥-腐蚀)箱方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(6)大型综合专用设备:为适应各行各业的需要,研发制作大型综合专用的环境试验设施,如美国陆军阿伯丁靶场的兵器环境试验设备能让车辆在行驶道路条件下,模拟低温、高温、湿热、低气压等多参数组合环境。该设备有span style="font-size: 16px font-family: " times new roman" "1000msup3/sup/span、span style="font-size: 16px font-family: " times new roman" "145msup3/sup/span和span style="font-size: 16px font-family: " times new roman" "45msup3/sup/span三个环境试验室,采用一套空气制冷系统和各自独立的电加热设备。在大型环模设备中首次成功采用了空气制冷。该设备最大试验室空间尺寸为span style="font-size: 16px font-family: " times new roman" "16m× 8m× 8m/span(长× 宽× 高),温度范围为常温span style="font-size: 16px font-family: " times new roman" "~50℃/span,相对湿度可到span style="font-size: 16px font-family: " times new roman" "85× (1± 0.05)%RH(≤40℃)/span,模拟的最大太阳辐射强度为span style="font-size: 16px font-family: " times new roman" "1kW/msup2/sup/span,模拟的最大风速为span style="font-size: 16px font-family: " times new roman" "35m/s/span。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(7)重视各种试验数据的管理和应用:发达国家以数据库、数据手册、标准规范等集成性成果作为其共享与保护的手段,同时为研究、设计和技术改进提供了科学依据,避免了设计的盲目性。美军在自然环境试验中,经过长期系统的环境试验数据积累,出版了腐蚀手册,开发了新的耐候材料和产品,并制定了大量的材料生产、产品设计、工程设计等一系列标准和规范。美国制定的各类环境试验方法标准,为世界各国普遍采用,其中不少已成为国际标准。如美国著名的《尤利格腐蚀手册》、《军工材料与构件环境适应性数据汇编》等集成性成果已在全世界推广应用,形成了一种独立的知识产权,实现了材料与产品环境试验数据面向全社会的共享与服务。日本也十分重视自然环境适应性数据共享与保护。他们大约有span style="font-size: 16px font-family: " times new roman" "40/span个大气环境试验站,并形成网络体系,通过对原始数据的分析处理,建立共享服务数据库,面向社会为国家重点工程、项目研究、材料生产与应用部门提供数据服务。英国共有各类大气暴露场span style="font-size: 16px font-family: " times new roman" "40/span个左右,仅钢铁研究协会就有span style="font-size: 16px font-family: " times new roman" "8/span个,其中最大的是卡林顿暴露场。对于各试验站产生的环境试验数据,他们通过环境数据采集自动化、测试数据数字化和数据汇交格式标准化,建立完善的国家试验站网计算机网络。以关键材料、通用零部件、核心元器件等基础产品为对象,系统积累它们在各类环境中的环境因素及环境适应性数据,研究其与这些环境相互作用、性能演变及失效机理。为环境严酷度评估、装备产品环境适应性评价、实验室加速试验方法研究、环境试验标准制定、数据共享等提供技术支撑和服务。如英国皇家化学会数据库span style="font-size: 16px font-family: " times new roman" "(RCS)/span等,都通过大型数据库实现数据资源的有偿使用,有力促进了数据资源的推广与应用。/span/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "img style="max-width: 100% max-height: 100% width: 280px height: 250px " src="https://img1.17img.cn/17img/images/201908/uepic/07635131-5027-48ed-a1c9-48fd8d31b2ed.jpg" title="试验箱.jpg" alt="试验箱.jpg" width="280" height="250" border="0" vspace="0"//span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em " /spanspan style="text-indent: 2em "环境试验设备发展趋势/span/strong/pp style="text-align: justify text-indent: 2em "1. 提高加速性和相关性/pp style="text-align: justify text-indent: 2em "加速性和相关性本身是相互矛盾的,提高加速性一般会牺牲相关性。从试验技术的角度来看,提高加速性并不难,难就难在同时提高加速性和相关性。不管从客户要求或技术发展方面看,提高加速性和相关性是气候环境试验技术的重要发展方向。/pp style="text-align: justify text-indent: 2em "2. 开发多因素综合试验/pp style="text-align: justify text-indent: 2em "由于材料在自然环境中受到多种复杂因素的综合作用,因而要更真实地再现材料在自然环境中的腐蚀和老化,必须尽可能综合考虑多种自然环境因素。近几年,模拟海洋性气候环境的加速试验方法向多因素试验方向发展。多因素模拟加速试验方法分为多因素组合循环模拟加速试验方法和多因素模拟加速试验方法。多因素模拟加速试验方法由于考虑两个或两个以上主要环境因素的同时作用,能更真实地模拟多种环境因素的协同效应。/pp style="text-align: justify text-indent: 2em "3. 开发环境适应性仿真/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "1992/span年span style="font-family: " times new roman" "7/span月,美国国防部研究与工程署在《美国国防部核心技术计划》中,将“环境影响”列为112项核心技术之一,span style="font-family: " times new roman" "2005/span年的技术目标是对大气、海洋、地球和空间环境在自然和人工平台(如飞机、导弹、舰船等)两方面的影响进行研究、建模和仿真。在建模和仿真的研究方面,美国陆军在阿伯丁试验场、红石试验中心、达格威试验场和尤马试验场,开展自然环境和诱发环境对装备及其材料性能影响的虚拟试验场研究。在环境适应性规律分析和建立数学模型方面,我国学者创造了灰色理论,并在环境影响规律方面得到成功的应用;神经网络仿真模型理论被成功地应用于环境行为规律的建模和仿真。在积累大量可靠基础数据的基础上,实现对装备环境适应性进行仿真是装备环境工程的发展方向和目标。/ppbr//p
  • 环保部批准建设国家环保环境规划与政策模拟重点实验室
    关于同意建设国家环境保护环境规划与政策模拟重点实验室的通知  环境保护部环境规划院:  你院报送的《国家环境保护环境规划与政策模拟重点实验室建设计划任务书》(以下简称《计划任务书》)收悉。经审核,该实验室建设目标明确,思路清晰,建设内容符合我部环保科技发展需求。经研究,现同意以你院为依托单位,建设国家环境保护环境规划与政策模拟重点实验室(以下简称“重点实验室”)。  重点实验室建设任务:面向国家环境规划与政策的重大需求,围绕环境形势分析与预测、环境规划情景模拟分析和环境规划政策模拟分析等方向开展研究,创新环境规划与政策制定基础理论方法,发展环境规划与政策制定若干关键技术,构建国家、流域、地区等“数据—模型—系统—成果”一体化的环境规划与政策模型平台。以重点实验室为学术交流与合作平台,促进国内相关领域优势单位和人员的合作交流,培养优秀创新型骨干人才和领军人才。  重点实验室建设期两年。请你院按照《国家环境保护重点实验室管理办法》的有关规定,围绕《计划任务书》中提出的建设目标和建设内容,建立“开放、流动、联合、竞争”的运行模式,落实资金投入,按期完成重点实验室的各项建设任务。在建设期间,若遇重大事项,及时向我部报告,并按时提交《重点实验室建设情况年度报告》。  二○一二年三月二十八日
  • 中机认检拟5.81亿投建智能应急装备检测产业园,将购置大批仪器设备
    6月17日,中机寰宇认证检验股份有限公司(以下简称“中机认检”)发布关于使用超募资金和自筹资金增资全资子公司暨对外投资建设智能应急装备检测产业园项目的公告。公告显示,中机认检全资子公司中机科(北京)车辆检测工程研究院有限公司(以下简称“中机检测”)拟使用不超过58,119万元投资建设智能应急装备检测产业园项目。其中,公司拟增资15,000万元(拟增加中机检测注册资本10,000万元,其余5,000万元计入资本公积)至中机检测用于建设该项目,剩余资金由中机检测以自有和自筹方式投入。公司向中机检测增资的15,000万元中,拟使用超募资金13,488.23万元人民币,剩余1,511.77万元由公司以自有资金的方式解决。 智能应急装备检测产业园项目详情 项目名称:智能应急装备检测产业园项目项目实施主体:中机科(北京)车辆检测工程研究院有限公司项目实施地点:北京市延庆区中关村延庆园康顺路3号项目建设内容:打造国内领先的智能应急装备检测产业园,包含:实验楼、极限环境综合模拟实验室(高低温湿热温冲模拟实验室、高原环境模拟实验室、盐雾实验室、吹尘实验室、吹砂实验室、风压实验室)、软件与芯片实验室、智能与无人装备实验室、应急救援装备实验室、车辆安全性能实验室及其他配套设施,用地面积约28178.38 ㎡(以有关部门批复为准)。项目资金使用计划:序号工程项目预计投资投资比例1建筑安装工程费18,218万元31.35%2设备购置及安装费30,000万元51.62%3工程建设其他费用4,879万元8.39%4基本预备费2,655万元4.57%5建设期利息1,718万元2.96%6流动资金649万元1.12%总计58,119万元100.00%该项目所需资金共分七年投入,建设投资在2024年10月至2027年9月期间根据工程建设进度按比例投入;项目流动资金根据各年生产负荷情况在计算期第一至七年分批投入。中机认检表示,智能应急装备检测产业园项目建设,能满足军用车辆、方舱、无人装备等军用装备、应急救援装备极限环境模拟试验、软件测评、无人装备性能及可靠性试验的需求,打造多品类、高水平、一站式的试验服务体系,进一步完善公司对于军品业务及应急装备的检测能力,抓住机遇、拓宽军品服务品类,促进公司军品和应急装备业务全面升级,提高公司综合检测服务能力。
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 阿泰可发布阿泰可整车综合性能环境试验舱(转毂+红外线阳光模拟)新品
    该套环境舱主要用于整车高低温存放试验、整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。该产品主要由气候模拟试验室主体、升降温装置、新风/尾排系统、阳光模拟系统、仓内温度采集系统、电气控制系统构成。采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠 一. 主要技术指标1 温度指标温度范围:-40℃~+60℃;温度均匀度:≤±2℃(空载);温度偏差:≤±2℃(空载);温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)升温速度:≥1℃/min(带载,发动机不启动,全程平均);降温速度:≥0.7℃/min (带载,发动机不启动,全程平均);负载:汽车,重量≤6吨;依据标准序号试验项目依据标准1汽车起动性能试验方法GB/T12535-20072除霜除雾试验GB11556-20093电机性能试验GB/T 18297-2001(参考)4太阳辐射试验GB /T 2423.24-19955恒定湿热试验方法GB/T2423.3-20066汽车采暖性能要求和试验方法GB/T 12782-20077汽车空调整车性能试验方法QC/T658-2000 创新点:采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠
  • 环科院将成立国家环境保护地下水污染模拟与控制重点实验室
    近日,本网从环保部网站获悉,中国环境科学研究院将建设国家环境保护地下水污染模拟与控制重点实验室(以下简称重点实验室)。  重点实验室建设期为两年,此重点实验室建设任务为:面向我国地下水污染防控与管理的重大需求,以地下水饮用水水源地水质目标保障和风险防控为目标,开展地下水污染源识别与风险评估技术方法、污染过程模拟理论与技术、污染分类防控理论与修复技术原理、环境系统调控原理与优化管理研究 通过揭示地下水中污染物迁移转化规律、地下水风险防控理论和修复技术原理,攻克地下水污染修复的关键技术瓶颈,为地下水环境管理提供科技支撑 同时,以重点实验室为学术交流与合作平台,培养一批优秀的创新型骨干人才和领军人才,通过地下水污染修复技术研发、示范与转化,最终建成地下水调查、监测与修复一体化的研究平台和人才培养基地。
  • 世界最大雾霾实验室总体规划揭秘
    中科院大气环境模拟系统  随着不断侵袭而来的灰霾,中国科学技术最高学术机构中国科学院的科学家也在不断努力寻找研究的方法、方式。&ldquo 应加快建设大型大气环境模拟舱,为我国大气环境研究和灰霾治理提供重要平台,&rdquo 中科院&ldquo 大气灰霾追因与控制&rdquo 课题组首席研究员贺泓屡次提出呼吁,建议推进大型烟雾箱的建设。  事实上,贺泓提出的大型烟雾箱建设只是庞大的&ldquo 大气环境模拟系统研究计划&rdquo 一个组成部分。按照规划,包括两个大型烟雾箱在内,&ldquo 大气环境模拟系统研究计划&rdquo 一共由六大系统及其辅助设施构成,总投资5亿元,规划占地50亩。  日前,华西都市报记者在北京举行的&ldquo 大气灰霾追因与控制&rdquo 科学与技术前沿论坛上,首次看到该系统的总体规划图。  雾霾实验室什么样?  总占地约50亩 六大系统模拟大气环境  此前,有外媒报道称,中国科学家计划在北京怀柔建设世界最大的&ldquo 烟雾箱&rdquo 以模拟灰霾的形成和治理,报道称项目并已得到批准。  但是该项目的筹备负责人、中科院生态研究中心研究员贺泓对此明确否认。贺泓说,&ldquo 烟雾箱&rdquo 只是中科院一项庞大的大气环境模拟系统研究计划的一个组成部分,目前尚未得到发改委批复。  今年三月初,在北京举行的&ldquo 大气灰霾追因与控制&rdquo 科学与技术前沿论坛上,贺泓首次公开展示了大气环境模拟系统的总示意图。  华西都市报记者从这幅总示意图发现,系统内的核心建筑群呈扇形分布,根据规划大气环境模拟系统总占地约有50亩,其中共包括六大子系统,分别为大气光化学模拟舱、大气气溶胶模拟舱、检测系统、数值模拟系统、超级观测站、预模拟及辅助设施。  贺泓说,大气光化学模拟舱和大气气溶胶模拟舱俗称就是&ldquo 烟雾箱&rdquo 系统。  据介绍,早在2008年中科院就已对大气环境模拟系统的建设提出规划设想,在2010年依据&ldquo 十二五规划&rdquo 提出申请建设国家重大科技基础设施&ldquo 大气环境模拟系统&rdquo ,虽然未通过发改委评审,但之后至今该系统一直被列为备选项目。  雾霾实验室什么用?  初步预算5亿元 研究中国灰霾治理策略  那么这个庞大的大气环境模拟系统项目需要多少钱才能完成?  贺泓说,整个项目目前初步预算需要5亿元。据一位业内人士向华西都市报记者透露,该项目之所以迟迟未获批复,一个重要原因就是耗资巨大,在评审层面存在分歧。  不过该人士认为,随着治理雾霾的紧迫性越来越强,而该项目的计划和目标又相对非常完备,因此&ldquo 在当下这个时期很有可能会获得批复或者部分批复。&rdquo   此前,贺泓在多个场合呼吁,应加快建设大型大气环境模拟舱,为我国大气环境研究和灰霾治理提供重要平台。  贺泓介绍,目前以欧美为代表的发达国家已建成了多个大型大气环境模拟舱。例如,德国SAPHIR大气模拟反应室(370立方米)、西班牙EUPHORE烟雾箱(204立方米)、美国加州UNC烟雾箱(150立方米)等。  贺泓说,这些国家都发展出了适合本地大气污染状况下的空气质量诊断和预测模型。其中,欧洲的烟雾箱主要进行单一的大气化学过程研究,并验证了多个大气化学机制 美国、澳大利亚的烟雾箱则主要用于复合大气污染过程模拟和健康效应的研究。  &ldquo 由于雾霾污染具有明显的区域性特征,国外已有研究成果并不适用于我国的具体情况。&rdquo 贺泓强调,&ldquo 灰霾研究和控制需要根据我国的污染状况和不同区域的经济水平制定不同策略。&rdquo   按照贺泓的设想,大气环境模拟系统中的两个烟雾箱都是300立方米,如过建成,将是具有世界先进水平的大气环境模拟实验室。也将是世界最大的烟雾箱,&ldquo 箱子是用来模拟大气的,箱子越大,墙壁效应越小。&rdquo   雾霾实验室咋运转?  研究二次颗粒形成 建预测及控制模型  据介绍,烟雾箱常用由塑料膜、玻璃、不锈钢等惰性材料制成的容器来模拟大气层。  目前我国仅有为数不多的中小型模拟舱。在中科院广州地球化学研究所建有30立方米室内烟雾箱、中国环境科学研究院大气所建有50立方米的光化学烟雾箱、中科院生态环境研究中心在北京奥运会期间建设的4个6立方米室外烟雾箱,此外,在清华大学环境科学与工程系也拥有目前国内较完备的烟雾箱。  贺泓说,我国中小型模拟舱研究存在诸多局限,受容量、规模所限,小型烟雾箱无法真实再现大气光化学反应过程。  贺泓说,从目前的情况来看,我国亟待建设符合国情的大型大气模拟舱。  据贺泓介绍,大气是开放体系,而大型烟雾箱是一个较大的封闭系统,在里面可模拟各种大气中发生的反应。中国的这两个大型烟雾箱在建成后,将重点研究大气二次污染颗粒的形成机制,为评估污染控制技术和措施效果、有效控制灰霾污染提供理论依据。  现阶段,气态前体污染物如何在大气中快速转化形成二次细颗粒物是我国大气雾霾研究的前沿和挑战性科学问题,其中很多转化过程现在还没有完全研究清楚。  因此,贺泓乃至中科院也对这条他们设计的大气环境模拟系统寄予了很高的期望,并制订了一系列的科研目标:拟建大气环境模拟系统,以大气光化学模拟舱和大气气溶胶模拟舱为核心,可模拟我国实际大气污染状况下的二次污染物形成过程,揭示大气二次污染形成机制,获得评价气溶胶的气候和环境效应,并于外场观察和数值模拟耦合,形成闭合实验体系,建立具有我国自主知识产权的大气污染预测、诊断及控制决策模型。形成具有国际一流水平,集重大科学问题研究、区域大气污染控制决策服务、新兴产业带动于一体的大型综合平台。  全国布网 追踪大气灰霾  中国科学院在2012年启动成立了&ldquo 大气灰霾追因与控制&rdquo 课题组,由中科院生态环境中心研究院贺泓担任首席研究员。  该专项计划用5年的时间,以环渤海、长三角、珠三角为研究区域,阐明区域灰霾形成的机制,研发致霾关键污染物的控制技术,为控制灰霾污染提供科学可行的技术和政策解决方案。  污染元凶:燃煤和机动车  中科院大气物理研究所研究员王跃思是&ldquo 大气灰霾追因与控制&rdquo 专项组之&ldquo 大气灰霾溯源&rdquo 项目负责人。去年,王跃思的课题组首次发布报告&ldquo 京津冀灰霾中检出大量危险有机化合物&rdquo ,并引起广泛关注。  王跃思说,当时席卷中国中东部地区的强霾污染物化学组成,是英国伦敦1952年烟雾事件和上世纪40-50年代开始的美国洛杉矶光化学烟雾事件污染物的混合体,并叠加了中国特色的沙尘气溶胶。他认为,中国雾霾出现的大量含氮有机颗粒物,这就是&ldquo 洛杉矶上世纪光化学烟雾的主要成分之一&rdquo ,并指出这一&ldquo 危险的信号&rdquo 。  王跃思介绍,中科院在全国布设了由40个站(点)组成的大气质量联合观测网,覆盖了京津冀、长三角、珠三角等重点区域,为我国大气质量开展长期、定位和联网观测提供精确的科学数据。  通过多年对污染较重的京津冀地区PM2.5的跟踪调查,王跃思发现这些地区PM2.5主要的来源均为燃煤、机动车、工业和餐饮。其中,河北城市燃煤、机动车、工业和餐饮所占份额分别约为44%、14%、9%和8%,天津分别约为25%、21%、18%和6%,北京的则为30%、22%、12%和13%。  王跃思说,从数据上看,燃煤和机动车排放是两大主要污染源,二者在重污染时段所发生的作用占到70%以上。  污染颗粒:60%为二次生成  作为&ldquo 大气灰霾追因与控制&rdquo 课题组的首席研究员,贺泓研究的主要领域是二次颗粒物的形成。贺泓说,研究发现在成霾污染过程中,二次生成细颗粒物可占PM2.5的60%~70%以上。  PM2.5来源可分为一次源(直接排放)和二次源(二次生成)。一次源是指污染源直接向大气中排放颗粒物 二次源则是指污染源排放的气态污染物在大气中经过复杂的物理化学反应产生颗粒物。  贺泓说,硫酸盐在成霾的过程中起到了非常重要的作用。监测数据显示,通常硫酸盐在大气PM2.5颗粒中的占比在15%至20%之间。而二次污染生成过程中,燃煤、重化工、机动车排放的二氧化硫和氮氧化物等气体经过大气氧化作用,也变成硫酸盐和硝酸盐颗粒,从而加剧雾霾的发生。  贺泓说,截至目前仍不太清楚某些二次粒子究竟是如何形成的。目前正根据现有的大气模拟环境试验和外场的观察和数值模拟进行交互验证,形成闭合试验体系。  贺泓表示:&ldquo 今后,我们要加强大气新粒子成核机制,二次粒子形成、增长和老化机制的研究,特别是霾形成机制中的关键过程。&rdquo
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户:只需单击鼠标,即可模拟其他 (U)HPLC 仪器。运行现有 (U)HPLC 方法,无需修改方法或系统。与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 实现对生物、化学和物理环境条件的完美模拟——BINDER携多款创新产品亮相BCEIA2017
    p span style="font-family: 楷体,楷体_GB2312, SimKai " 2017年10月10日,第十七届北京分析测试学术报告会及展览会(BCEIA 2017)在北京国家会议中心隆重开幕,吸引了来自世界各地的500家仪器企业参展。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  全球著名科学和工业实验室用模拟箱制造公司——BINDER携多款创新产品亮相本次展会。BINDER 亚洲区主管Karyo Ariizumi先生接受了仪器信息网(以下简称“Instrument”)的现场采访,就广大实验室用户关心的问题作了解答。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/b12263cd-8553-458a-83a2-0a173c601d82.jpg"//pp style="text-align: center "strongBINDER亚洲区主管 Karyo Ariizumi/strong/pp  strongInstrument/strong:与市场上同类产品相比,BINDER的产品有何特点?/pp strong Karyo Ariizumi/strong:BINDER作为家族企业全身心专注于模拟箱。我们是全球最大的科学和工业实验室用模拟箱制造公司之一。我们已推出的 BINDER 设备系列包括培养箱、植物培养箱、超低温冰箱、干燥箱和烘箱以及各类人工气候箱,可满足行业与市场的众多需求。成熟的尖端技术、独具前瞻的创新以及绝对的精确性铸就了 BINDER 高端的品牌形象。我们致力于为众多行业实现对生物、化学和物理环境条件的完美模拟。BINDER 模拟箱具有绝对的可靠性,完全胜任复杂的实验室任务。BINDER 产品的开发和制造均在位于德国南部高科技地区的图特林根市总部基地完成。从精密的冲压、弯曲、焊接工艺到隔离处理,再到仔细的装配工作,我们所有的生产步骤都是在我们的德国工厂完成,从而保证整条生产线的质量。我们严格的质量检查工作确保达到严苛的 BINDER 标准,而且我们每年向全球供应约 22,000 套优质设备。/pp  本次展会我们带来了全新一代恒温恒湿箱、高温烘箱等产品。恒温恒湿箱作为宾德的明星产品,进入中国市场多年,积累了广大的用户基础并享有极高的声誉。全新一代恒温恒湿箱搭载超大触摸式控制面板,方便用户调整及实时监测实验数据。出于对数据信息安全的考虑,还设置了密码锁及分级管理等一系列安全设置。同时亮相的还有广受好评的宾德高温烘箱及二氧化碳培养箱。高温烘箱采用全新一代APT Line技术,高效的热循环系统较上一代产品可有效节能约30%。二氧化碳培养箱则采用一体式无缝内腔、高温灭菌、独特的双盘加湿等方式大大降低了污染风险,帮助用户轻松完成细胞培养。/pp  strongInstrument/strong:BINDER在全球及中国分别有怎样的市场和产品策略?/pp  strongKaryo Ariizumi/strong:“为您的成功创造最好的条件”是BINDER的理念,我们致力于为客户提供卓越的产品、一流的服务以及专业的咨询。我们的市场策略是根据不同市场的具体情况向用户重点推介具体产品。比如,在中国我们的恒温恒湿箱一直受到广大用户的青睐,恒温恒湿箱的销售额占BINDER中国总销售额的50%,在中国一度到达80%的市场占有率。但我们在全球获得广泛成功的二氧化碳培养箱产品在中国的销量相对还有提升空间,那么接下来我们希望在中国市场投入更多的资源来让客户了解我们的产品,最终购买并使用我们的二氧化碳培养箱及其他尖端设备。/pp  在产品策略方面,BINDER一直是高端的品牌形象,但现在我们也希望赢得广泛的客户群。比如,我们在制药市场一直处于领导地位,制药行业对恒温恒湿箱的产品要求最为严格,而针对食品、电子电器、汽车等其他的行业不同要求,我们之后会将恒温恒湿箱的产品线再扩宽一点,推出覆盖高、中、低端市场的产品,以满足不同用户需求。/pp  strongInstrument/strong:BINDER在中国的用户群体和市场有什么特点?/pp  strongKaryo Ariizumi/strong:就具体产品而言,中国的恒温恒湿箱用户比较偏向于选择外国的品牌,原因是中国的很多本土品牌的产品不满足ICH、PIC/S等国际标准的要求。比如制药企业,假如他们的产品出口,他们就必须使用符合国际标准的恒温恒湿箱,因此他们会倾向购买BINDER的产品。假如中国用户的产品不需要出口,那他们在购买时第一看重的是价格。其实很多用户只考虑产品单价,而忽略了使用寿命、能源消耗、操作便利性、技术创新等方面的考量。事实上,我们的产品虽然在单价上要较本土品牌贵一些,但我们的性价比更好。比如我们的超低温冰箱在噪音控制和能耗方面做得都非常出色。超低温冰箱一般使用寿命在10年左右,前五年节省的电费就可以抹平差价了,而后五年的使用事实上是帮用户节省了成本。BINDER成立于1983年,我见过有很多客户还在使用我们1983年推出的产品,这足以说明我们卓越的产品品质。/pp  此外,以前中国的采购流程相对不够透明,但是现在已经变得越来越透明了。我相信采购透明化会给用户带去更多更好的产品。/pp  strongInstrument/strong:今后BINDER会注重哪些新的应用领域的拓展?/pp  strongKaryo Ariizumi/strong:我们的产品广泛应用于汽车、生物科技、化工、电子/半导体、人类诊断、试管受精、美妆品、航空航天、食品/饮品、医学研究和制药等领域。我们也注重新市场的拓展。恒温恒湿箱的应用领域较为广泛,用户只要做稳定性测试就会需要恒温恒湿箱。但也有一些新的行业需要用到二氧化碳培养箱,比如细胞制药行业是我们正在积极开拓的领域。/pp strong Instrument/strong:请介绍BINDER有怎样的价值观?/pp  strongKaryo Ariizumi/strong:我们认为自己是社会的一份子。作为一家家族企业,通过国际化核心业务,不断完善的产品,在人类健康和安全方面,我们为世界各个地区与人们做出了积极贡献。/pp  strongInstrument/strong:2017年截止到目前,BINDER的产品在中国的市场表现如何?/pp  strongKaryo Ariizumi/strong:今年到目前为止已经迎来了破纪录的增长,超过了2016年全年的销售额,预期今年可达到最少10%以上的增长。在过去几年中,我们整体上都有很不错的增长。BINDER80%的市场在海外,而中国更是BINDER海外单一国家市场中最大的,且仅次于德国本土的全球第二大市场。我们的产品进入中国超过二十年,在稳健拓展中,中国本土市场销售量及销售额呈逐年稳步增长的态势。/p
  • 英斯特朗 -- 【案例分享】采埃孚6自由度轴耦合道路模拟试验台
    采埃孚“底盘系统”业务部的轴耦合车桥试验台以其优异的特性被广泛应用于多种车辆类型的试验,从小型车辆,如大众Polo,到SUV,如戴姆勒M级,宝马X5,以及厢型车辆,如戴姆勒Sprinter,大众Crafter等车型车桥的测试中。轴耦合试验台对于车桥道路数据的模拟试验使设计人员能够在台架试验中获得实际路况条件下载荷时间函数。车轴的耐久性测试有两种方式:一种是在汽车制造商指定的放行试验试验场进行的道路试验,另外一种是轴耦合试验台进行的车桥道路谱模拟试验(车桥试验台简称“SSP”=道路模拟试验台),道路谱是利用记录在汽车制造商指定的测试路段上的实际采集数据。道路模拟试验可以代替驾驶试验,并且具备以下几个重要优势:1.节省试验时间 (因为24小时连续试验,使得测试时间减少到20%以下) 2.试验不受天气影响3.可过滤掉不会造成损伤的测试路段,以缩短测试时间4.载荷试验的可重复性精度提高轴耦合试验台由两个对称的加载单元组成,分别布置在静压支撑旋转平台上,这样的设计使得车桥在试验中可以转向。纵向、横向、垂直作用力以及制动、转向、外倾和动力输入等力矩可以被导入到车桥结构当中。方向盘的旋转由伺服控制液压马达完成。同时试验台也可以进行不带转向的试验。
  • 网络直播:默克为您解读《无菌工艺模拟试验指南》要点
    默克为您解读《无菌工艺模拟试验指南》时间:2017年7月21日 13:30-14:30 本次课堂针对《无菌工艺模拟试验指南》中相关内容,您可以了解到: 无菌制剂生产工艺及模拟范围 培养基的灭菌与除菌风险 最差条件的选择与干预设计 过往缺陷案例展开分析与讨论我们邀请您共同探讨,加深对无菌工艺模拟试验及指南的理解。相关法规无菌工艺模拟试验,培养基模拟灌装的相关要求GMP附录1 无菌药品 第十章第四十七条 无菌生产工艺验证要求培养基模拟灌装试验首次验证应连续进行3次合格试验。之后每班次半年进行1次,每次至少一批。《无菌工艺模拟试验指南》(无菌制剂)和(无菌原料药)国家食品药品监管总局食品药品审核查验中心组织起草了该指南,结合近年来在无菌药品生产企业GMP认证检查和跟踪检查中发现的无菌工艺模拟试验缺陷情况,以指导和规范无菌药品生产企业开展无菌工艺模拟试验。 日期: 2017年7月21日 下午: 13:30 - 14:30 主讲人: 韩璐璐 默克微生物监控市场部参与该《无菌工艺模拟试验指南》的编写工作,专注于微生物检测的应用与研究,先后就职于制药及医疗器械质量控制行业,从事微生物实验室及厂房设计及验证,质量管理,微生物检测等工作。熟悉食品药品微生物检测,生产过程环境监控,GMP管理。扫描以下二维码,报名赢取精美礼品!根据用户参与课堂的活跃度抽取:一等奖 象印保温杯 3名二等奖 充电宝 6名三等奖 魔方插座 10名根据用户参与课堂的时长抽取:时间达人奖 不倒杯 、笔记本 共30名
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制