当前位置: 仪器信息网 > 行业主题 > >

脉冲信号发生器

仪器信息网脉冲信号发生器专题为您提供2024年最新脉冲信号发生器价格报价、厂家品牌的相关信息, 包括脉冲信号发生器参数、型号等,不管是国产,还是进口品牌的脉冲信号发生器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脉冲信号发生器相关的耗材配件、试剂标物,还有脉冲信号发生器相关的最新资讯、资料,以及脉冲信号发生器相关的解决方案。

脉冲信号发生器相关的论坛

  • 脉冲信号发生器

    脉冲信号发生器QA2系列函数信号发生器拥有比传统函数发生器更杰出的性能。稳定的输出频率,低失真度和微小的频率解析度都是这个系列产品的优秀特性。QA2系列系列包含有QA212D和QA206D产品两种,其中QA212D标准输出120MHz正弦波,25MHz脉冲波和方波,其他波形均为1MHz;QA206D标准输出60MHz正弦波,12MHz脉冲波和方波,其他波形均为0.5MHz。1. 采用DDS和可编程逻辑器件技术,双通道,实时500MSa/s采样率,16bits垂直分辨率,独特功能可以提高测试效率和测量置信度。2. 晶体振荡基准,频率精度高,分辨率高,任意模拟标量调制信号,矢量调制信号,逻辑信号产生。3. 多种内置函数信号产生(包括正弦,三角,锯齿, 方波,脉冲, 噪声, 直流等)。4. 优越的小失真,方便的存贮调用功能,可以设置精确的方波占空比及斜波对称度。5. 1ppm信号频率高度稳定,-120dBc/Hz相位噪声低达,波形失真小。6. 波形存储深度达56K样本/通道。7. USB连接PC端GUI界面,操控简洁自如。8.具备扫描和猝发脉冲模式,可调整扫描时间和扫描宽度。9.丰富的模拟和数字调制能力,以及图形显示功能。(AM,MASK,FM,MFSK,PM,MPSK调制和外部计频功能。) 10. 体积小(20*12.8*4.4CM),重量轻(0.9KG),方便携带。支持的波形有如下所示:非调制波形:周期波:正弦波,方波,三角波,脉冲波,斜波,直流,伪随机二进制序列,高斯白噪声,任意波:高斯脉冲,心电图,指数下降,指数上升,半正失曲线,D洛伦兹曲线,洛伦兹曲线,Sinc函数,负斜波,用户自定义波形调制波形:AM调幅,MASK幅移键控,FM调频,MFSK 频移键控,PM 调相,MPSK相移键控[/s

  • 群脉冲发生器使用注意事项

    群脉冲发生器使用注意事项:  群脉冲发生器是精密高压仪器,为确保您的人身安全及预防对我们测试装备的破坏,请在使用时遵守群脉冲发生器使用注意事项下预防措施:  (1) 在存放爆炸物区及禁火区请勿使用该设备,否则可能引起爆炸或火灾;  (2) 佩带人工心脏起搏器的人员请勿使用该设备或在该设备运行时靠近本设备操作区,以免造成危险;  (3) 本机为高压设备,进行被试品摆放、接线及改变试验配置时,请务必注意应在高压断开及切断试品电源的情况下进行,防止因电源外露带来的触电危险;  (4) 相对湿度超过75%时,请停止使用群脉冲发生器设备进行试验。  (5) 注意使用群脉冲发生器时应保证设备接地状况良好,严格按照IEC61000-4-4或GB/T17626.6标准要求进行试验配置,以保证试验结果的一致性和可重复性。  群脉冲发生器设备内部存在高压,未经厂方同意或指导请勿随意拆卸或敞开机壳工作,防止对设备和人员造成不必要的伤害。

  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”

    [b]导读:[/b]中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。[b]正文:[/b]在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。[b][color=#ff0000]以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:[/color][/b][color=#ff6428][/color][align=center][img]https://5-img.bokecc.com/comimage/D9180EE599D5BD46/2024-02-26/80AAE928A6F7E3C83F35109F9F77F2A8-1.jpg[/img][/align][back=url(&][/back][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]00:00[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]/[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]05:50[/color][/size][/font][back=url(&]B[/back][font=web][size=24px][color=#ffffff]T[/color][/size][/font][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]高清[/back][/color][/size][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]正常[/back][/color][/size][font=&]以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6601160.html]STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][font=&]以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6795239.html]STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][b]结论[/b]:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • USB信号发生器,也OK

    [font=Arial] 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。[/font][font=Arial][font=Arial] 信号发生器用于提供各种仿真和激励测试信号,广泛分布于[/font]5G、半导体、人工智能、新能源、航空航天和国防等行业,该等行业高速发展持续推动信号发生器产品的市场需求。[/font][font=Arial]信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用[/font][font=Arial]。[/font][font=Arial]信号发生器又称信号源或振荡器,是用来产生各种电子信号的仪器。是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。[/font][font=Arial] 说起USB信号源,可能大家都很陌生,从字面的意思其实很好理解,我们把产生和发出信号的物体,称为信号源,即信号的源头。[/font][font=Arial]如果把信号源看做是一个物理实体,我们就可以称之为信号发生器;反之,如果我们把信号源看成是一个抽象概念,那它也可以是键盘上输入的指令等。[/font][font=Arial][font=Arial]是一个具有超高性价的[/font]USB矢量信号发生器,它的功能可媲美常规全尺寸射频矢量信号发生器的基本功能。 VSG[/font][font=Arial]6[/font][font=Arial]G1[/font][font=Arial]C[/font][font=Arial]是[url=https://www.bjutc.com/USBwxspxhy.html]USB信号发生器[/url]设备,但它具有普通全尺寸射频信号发生器的特性和功能。频率范围高达[/font][font=Arial]6[/font][font=Arial].2GHz,频率扫描,使用I&Q调制产生任意调频信号。[/font][font=Arial]★ [/font][font=Arial]zui[/font][font=Arial][font=Arial]高频率[/font]6.1 GHz[/font][font=Arial]★[/font][font=Arial]zui[/font][font=Arial][font=Arial]大输出电平[/font]10dbm[/font][font=Arial]★工作模式:CW、sweeping、hopping[/font][font=Arial]★内置脉冲发生器产生脉冲调制[/font][font=Arial]★ 内置任意函数发生器产生I&Q调制信号[/font][font=Arial]★AM、FM、PM调制以及更多的模拟调制[/font][font=Arial]★FSK、, QPSK、MSK、, GMSK、FKS以及更多的数字调制[/font][font=Arial]★QPSK、8PSK、 16QAM以及更多的相位调制[/font][font=Arial]★CDMA、TMDA、, GSM和更多系统物理层数据帧[/font][font=Arial]★内置I&Q引擎产生任意种类调制信号[/font][font=Arial]★ 任意函数发生器产生LF输出[/font][font=Arial]★ 脉冲发生器产生脉冲输出[/font][font=Arial]★ 超低价格、超低重量、最佳性价比[/font][font=Arial]★ 可扩展的结构[/font][font=Arial]★ 外部I&Q输入,可达500MHz带宽[/font][font=Arial]★ 参考时钟输入和输出[/font][font=Arial]★ 内部高速I&Q调制单元可选,I&Q信号带宽可达500MHz[/font][font=Arial]★USB供电,无需额外配电池组[/font][font=Arial] [/font][font=Arial]可以产生很多调制方式的射频信号,以满足不同测试功能,可以定制以满足或其他非标准无线协议测试需求,[/font][font=Arial][font=Arial]非常适合现场试验使用,因为它体积非常小,携带方便。同时也可以作为[/font]ATE系统的模块,能够模拟很多射频测试系统的射频信号。[/font]

  • AG203D信号发生器工作原理

    信号发生器又称信号源或振荡器,是一种能提供各种频率、波形和输出电平电信号,常用作测试的信号源或激励源的设备,在生产实践和科技领域中有着广泛的应用。信号发生器是指产生所需参数的电测试信号的仪器,按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器 AG203D的工作原理:其用来产生频率为20Hz~200kHz的正弦信号(低频),除具有电压输出外,有的还有功率输出。信号发生器 AG203D的主要特点: ·频率范围:10Hz-1MHz(5档) ·频率精度:±(3%±1KHz) ·输出电压: 正弦波7Vrms(开路时),方波10VP-P(开路时) ·输出电压偏差:0.5dB ·失真:0.1%或更小(400Hz-20KHz时) ·输出阻抗:600Ω ·外部同步:最小1%Vrms 信号发生器 AG203D用途:用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。另外,在校准电子电压表时,信号发生器AG203D可提供交流信号电压。

  • Agilent安捷伦N5181A信号发生器进口特惠

    Agilent安捷伦N5181A信号发生器进口特惠=========仪器详情:=========N5181A信号特性;频率范围:250 kHz 到 1, 3 or 6 GHz。输出功率:标准-110至+13 dBm,选件1EQ可达-127至+13 dBm。频谱纯度:-121 dBc/Hz 相位噪声1 GHz ,20 kHz 频偏切换速度:频率切换≤5 ms,列表/步进扫描模式;选件UNZ≤900us幅度切换≤5 ms,列表/步进扫描模式;选件UNZ≤500us具有AM, FM, ?M和脉冲调制能力频率和功率同时切换时的数字步进和列表扫描系统特性标配LAN、USB、GPIB接口,符合LXI C类标准SCPI驱动后向兼容ESG, PSG, 8648等安捷伦信号分析仪编码和其他厂商的信号分析仪在两个机架单元中,Agilent MXG提供了可扩展的性能,可以通过定制满足蜂窝通信和无线网络中使用元器件和设备的严格测试要求。您可以通过大量频率范围、调制、增强的动态范围选件,以及高达125MSa/s的内置基带发生器来配置Agilent MXG.主要特性与技术指标 信号特征9 kHz ~ 3 或 6 GHz在 3 GHz 时提供 +24 dBm 指定功率,带有电子衰减器1 GHz 和 20 kHz 偏置时,相位噪声为 -146 dBc偏置为 1 GHz 和高于 10kHz 时,无谐波为 - 96 dBc调制和扫描AM、FM、?M、脉冲和窄脉冲脉冲串发生器10 MHz 多功能发生器和低频输出数字步进和列表扫描模式自动和通信接口1000BaseT LAN、LXI、USB 2.0 和 GPIBSCPI、IVI-COM、MATLAB 驱动器向后兼容 ESG、MXG、PSG 和 8648x 信号发生器Agilent USB 功率探头可以兼容嵌入式显示和 SCPI 控制描述 纯净、精密的 MXG无论您想要更高的动态范围还是经过优化的接收机抑制,MXG 都能满足您的需求:相位噪声、无谐波、输出功率等。利用 MXG 最大程度地提升您的器件和设计性能。利用优异的硬件性能生成您所需的信号利用无与伦比的相位噪声和杂散性能,以测试雷达接收机的灵敏度或表征 ADC 或混频器信噪比利用业界领先的输出功率,驱动接收机前端以获得带外抑制使用集成的多功能发生器来仿真多通道复合模拟调制使用集成的脉冲串发生器生成可变 RADAR PRI 和脉宽利用低拥有成本实现资源最大化以第一代 MXG 的高平均故障间隔时间(MTBF)为基础,增加正常运行时间自我维护策略和低成本维修可把停机时间和费用降至最低温馨提示:深圳承恒电子仪器公司长期承接仪器销售、回收、租凭、维修、计量等业务!!附注:本公司专业经营各类二手进口仪器(销售.租赁业务),承接HP .爱德万等各种高档仪器维修,长期销售、收购频谱分析仪,音频分析仪,网络分析仪,信号源,GPIB卡等等二手高档仪器,如有兴趣,请和我们联系!

  • BNC 835-6微波射频信号发生器

    [url=https://www.ldteq.com/brand/90.html]Berkeley Nucleonic[/url] 的 835 型是一款低噪声、快速开关模拟射频信号发生器,频率范围为 9 kHz 至 6.1 GHz。[align=center][img=BNC835-6型微波射频信号发生器,436,351]https://www.ldteq.com/public/ueditor/upload/image/20240219/1708321782526707.png[/img][/align]  835-6 型提供完整的射频信号发生器功能,包括稳定的 OCXO、具有亚赫兹频率分辨率的低相位噪声信号、宽而精确的电平输出功率范围、广泛的调制功能和快速开关。它是一款射频信号发生器,适用于需要高质量模拟信号的广泛应用,为昂贵的高端射频信号发生器提供了一种出色、经济高效的替代方案,具有小尺寸和出色的射频性能。  835 型信号发生器采用极其紧凑、坚固的设计,可在非常低的直流功耗(仅 12 瓦)下运行,散热很小。此外,低功耗设计允许使用可选的内部电池模块,使其成为真正的便携式仪器,非常适合现场测试、安装和维护。[b]特征:[/b][list][*]频率切换时间仅为 400 μs[*]出色的SSB相位噪声[*]综合AM,低失真[*]宽带 FM 和 PM 以及高速脉冲[*]用于测试所有类型接收机的调制[*]LAN/USB/GPIB(可选)遥控器[*]USB功率传感器输入[*]强大的触发和扫描模式[/list][b]规格参数:[/b][table=1074][tr=rgb(249, 249, 249)][td=1,1,220][b]频率范围[/b][/td][td=1,1,600][b]835-4:[/b]9 kHz 至 4.0 GHz [b]835-6[/b]:9 kHz 至 6.1 GHz[b]分辨率:[/b]0.001 Hz[/td][/tr][tr][td=1,1,191][b]输出功率范围[/b][/td][td=1,1,268]-30 至 +17 dBm [ -120 至 +16 dBm(带选件 PE3)][b]分辨率[/b]:0.01 dB [b]精度:[/b] 0.8dB[/td][/tr][tr=rgb(249, 249, 249)][td=1,1,191][b]开关速度[/b][/td][td=1,1,268][b] [/b]400微秒[/td][/tr][tr][td=1,1,191][b]相位噪声 (1 GHz)[/b][/td][td=1,1,268]10 赫兹:[b]-80 dBc[/b]/赫兹 1 k赫兹:-117 dBc/赫兹 20 赫兹:-128 dBc/赫兹 100 kHz:-130 dBc/赫兹 1 MHz:-135 dBc/赫兹 10 MHz:[b]-150 dBc/赫兹[/b][/td][/tr][tr=rgb(249, 249, 249)][td=1,1,191][b]远程控制 [/b](SCPI v1999)[/td][td=1,1,268]以太网,USBGPIB(带选件 GPIB)[/td][/tr][tr][td=1,1,191][b]调制[/b][/td][td=1,1,268][b] [/b]AM、FM、PM、脉冲、啁啾[/td][/tr][tr=rgb(249, 249, 249)][td=1,1,191][b]席卷[/b][/td][td=1,1,268][b] [/b]列表、频率、功率[/td][/tr][tr][td=1,1,191][b]尺寸(宽 x 长 x 高)重量[/b][/td][td=1,1,268][b] [/b]6.77 x 10.63 x 4.21 英寸 [172 x 250 x 106 毫米]5.5 磅(2.5 千克)[/td][/tr][/table][table=837][tr=rgb(249, 249, 249)][td=1,1,221][b]运输尺寸[/b][/td][td=1,1,599]18x12x9 英寸[/td][/tr][tr][td=1,1,221][b]装运重量[/b][/td][td=1,1,599]10 千克[/td][/tr][/table][size=14px][b]相关推荐:[/b][/size][url=https://www.ldteq.com/article/3139.html]BNC 855B-54多通道射频/微波信号发生器[/url][size=14px][color=#0070c0] [/color][/size][url=https://www.ldteq.com/article/3169.html]Berkeley Nucleonics (BNC)脉冲和延迟发生器产品介绍[/url][size=14px] [/size][url=https://www.ldteq.com/article/3245.html]BNC525六通道数字延迟/脉冲发生器[/url][size=14px][color=#222222][/color][/size][size=14px]更多[/size][url=https://www.ldteq.com/brand/90.html]Berkeley Nucleonics (BNC)[/url][size=14px]相关产品信息可咨询[/size][url=https://www.ldteq.com/]立维创展[/url][size=14px]。[/size]

  • 现货出售keysight是德 E857D/E8247C 模拟信号发生器

    东莞市欧诺谊电子仪器有限公司联系人:肖经理 13560813766地址:东莞市塘厦镇宏业北路148号升联大厦508室现货出售keysight是德 E857D/E8247C 模拟信号发生器主要特性和功能蒋 计量级频率和电平精度以及出众的失真和杂散特性,满足您zui严格的要求1 W 输出功率,支持大功率器件测试,并且能够克服测试系统损耗PSG 超低的相位噪声能够满足多普勒雷达、ADC 和接收机阻塞测试的严格要求可以为信号添加 AM、FM、PM 和脉冲调制,以支持器件和电路表征借助频率扩展模块可以满足高达 1.1 THz 的测试系统频率需求频率 67 GHz, Exernal source modules to 1.1 THz性能水平 ◆◆◆◆◆◇1 GHz 时的输出功率 -135 dBm 至 +21 dBm1 GHz 时,20 kHz 频偏处的相位噪声 -143 dBc/Hz频率转换 7 ms1 GHz 时的谐波 ≤ -55 dBcIQ 内部/外部调制带宽 无1 GHz 时的非谐波 ≤ -80 dBc扫描模式列表步进斜波基带发生器模式无软件——通用脉冲AM, FM, PM软件——蜂窝/无线连通性 无软件——音频/视频广播 无软件——检测/定位/跟踪/导航 无波形回放存储器无1 GHz 时的频率调制zui大偏移 2 MHz100 kHz 频偏时的频率调制率 DC to 10 MHz普通模式下的相位调制zui大偏移 10 rad 至 1280 rad高带宽模式下的相位调制zui大偏移 1 rad 至 128 rad幅度调制zui大深度 90%幅度调制率0 to 100 kHz可用应用 是模拟 是本公司主要供求的二手电子仪器仪表:示波器,信号发生器, 网络分析仪。频谱分析仪, 综合测试仪 ,蓝牙测试仪。直流电源供应器, 交流变频电源,交直流电子负载,,耐压测试仪,绝缘阻抗测试仪,功率表,LCR电桥,阻抗测试仪,变压器综合测试仪,视频分析仪,音频信号发生器,测光表,静电手腕测试仪,恒温恒湿箱,高低温试验箱,逻辑分析仪,等..,二手电子仪器仪表。本公司长期办理二手仪器的销售/出租/维修/回收等业务/欢迎来电咨询!!/手机:13560813766 肖经理

  • 安捷伦81110A脉冲信号源

    品牌: 安捷伦 | Agilent | 与外部时钟同步(固定和可变延迟) · 2ns可变跃变时间,在50Ω上达10Vpp(开路为20Vpp) · 达500ps(ECL)的快速跃变 · 2ps定时分辨率 · 0.01%的频率准确度 · 任何定时参数变化时无毛刺和陷落 · 脉冲、脉冲列、模式(数据)工作方式,数据序列 · 可增加模拟或数字通道 · 1或2个通道 · 4种型号的软件100%兼容 Agilent 81100脉冲/数据发生器家族使用同样的工作方式(前面板和程序),并与广为使用的8110A兼容,以保护您当前和未来的投资。81110A[/c

  • InstaVie技术在函数发生器上的应用

    InstaView™ 技术在函数发生器上的应用 现如今,工程师和科研人员需要生成越来越复杂的测试信号,用于调试、排障、表征和验证被测器件。他们面临的问题是:被测器件的阻抗与函数发生器(AFG)不匹配,因而导致AFG上设置的波形与被测器件上的信号不一致。每当这时,工程师和科研人员往往需要另外运用仪器进行下一步的波形捕获,在波形捕捉准确性和及时性上大打折扣。此次,我们就要来介绍一个InstaView™ 技术在AFG上运用,进而简化工作的实例。 采用InstaView™ 技术的AFG31000系列为内置波形发生应用程序、具有已获专利的实时波形监测功能并采用智能用户界面的首款高性能任意波函数发生器。 传统AFG假设器件的阻抗是50 Ω,但大多数被测器件(DUTs)的阻抗不是50 Ω。这种阻抗不匹配,会导致AFG上设置的波形与DUT上的信号并不一致。AFG31000系列的新专利InstaView全新功能通过在DUT上监测和显示波形,智能的波形序列功能轻松实现复杂波形的创建,解决了这个问题,而无需额外的电缆或仪器。显示屏上显示的波形可立即响应频率、幅度、波形形状及DUT阻抗的变化,从而节省时间并提高可信度。 与此同时,AFG31000系列搭配9英寸容性触摸屏,结合ArbBuilder设计实现智能化的任意波形生成方式。智能友好的用户界面设计,轻松实现多台AFG同步。参数方面,运用InstaView™ 技术的AFG31000系列带宽高达250Mhz、采样率高达2GSa/S、记录长度16M点/通道(标准)128M点/通道(选配)、垂直分辨率也达到了14位。 运用InstaView™ 技术的AFG31000系列在模拟电路检定、真实场景信号复制、函数验证和性能检定、系统与时钟或脉冲同步、驱动电源设备的脉冲、高级研究和教育等领域都可进行有效应用,可以满足当今工程师和科研人员生成复杂测试信号的需要,进而大大简化工作,提升效率。涉及产品链接:[url]https://www.tek.com.cn/signal-generator/afg31000-function-generator[/url][url]https://www.tek.com.cn/arbitrary-function-generator[/url]场景链接:[url]https://www.tek.com.cn/automotive[/url]

  • 【求助】怎样针对脉冲信号测量发光光谱??

    [size=4]我的实验过程中,样品需要用一个连续激光和一个脉冲激光同时辐照,测量其发光光谱,因为脉冲激光的强度相对较弱,因此为了得到比较好的光谱信号,我想测量样品的发光光谱时,只对脉冲激光的那个时间段测量。我用的脉冲激光的长度大概几个纳秒,如果能在这个范围,或者几百纳秒的范围内记录光谱就会得到比较好的信号,也就是说和光谱的测量和脉冲激光的脉冲同时进行。我现在有一个oceanoptics的HR4000光纤光谱仪,有什么办法可以实现我想要的测量要求哪??[/size]

  • 函数/任意波形发生器

    采用DDS直接数字合成技术,输出频率最高20MHz,10种内建波形,具有调频FM、调幅AM、调相PM、频移键控FSK、扫频Sweep、突发Burst多种调制功能,满足用户各种应用,内嵌6位宽频带频率计,最高测量带宽200MHz。DG1000是函数发生器低端市场唯一的一个带有任意波的产品,满足了高校教学方面的需求以及某些低端应用,有效地降低了用户的使用成本。1. 采用DDS直接数字合成技术,输出信号精确、稳定、低失真 2. 100 MSa/s采样率,14位垂直分辨率,4 k采样点存储深度 3. 直观的图形界面,无需研读说明书即可轻松上手 4. 输出十种标准波形: 正弦波、方波、锯齿波、脉冲波、噪声、指数上升、指数下降、Sinc波、心电图波、直流 5. 直观、简单地生成用户自行定义的任意波形 6. 具有丰富的调制功能,输出各种调制波形: 调幅(AM)、调频(FM)、调相(PM)、频移键控(FSK)、扫频 (SWEEP)、突发(BURST) 7. 丰富的输入输出: 外接调制源,外接基准10 MHz时钟源,外触发输入,波形输出,数字同步信号输出,内部10 MHz时钟输出 8. 高精度、宽频带频率计,频率范围高达200 MHz 9. USB Host插槽,支持U盘存储 10. 与DS系列示波器无缝互联,直接获取示波器中存储的波形并无损地重现 11. 多种语言用户界面,嵌入式帮助系统/ 型号 DG1021 DG1011 波形 正弦波、方波、锯齿波、脉冲、噪声、指数上升、指数下降、Sinc波、心电图波、直流 正弦波

  • keysight E8257D (520)PSG 模拟信号发生器

    keysight E8257D (520)PSG 模拟信号发生器主要特性和功能蒋计量级频率和电平精度以及出众的失真和杂散特性,满足您zui严格的要求1 W 输出功率,支持大功率器件测试,并且能够克服测试系统损耗PSG 超低的相位噪声能够满足多普勒雷达、ADC 和接收机阻塞测试的严格要求可以为信号添加 AM、FM、PM 和脉冲调制,以支持器件和电路表征E8257D-UK6 包含测试数据的商业校准证书E8257D-A6J ANSI Z540-1-1994 校准E8257D-1A7 校准 + 不确定度 + 保护频段E8257D-AMG 校准 + 不确定度 + 保护频段(认证)借助频率扩展模块可以满足高达 1.1 THz 的测试系统频率需求频率 67 GHz, Exernal source modules to 1.1 THz性能水平 ◆◆◆◆◆◇1 GHz 时的输出功率 -135 dBm 至 +21 dBm1 GHz 时,20 kHz 频偏处的相位噪声 -143 dBc/Hz频率转换 7 ms1 GHz 时的谐波 ≤ -55 dBcIQ 内部/外部调制带宽 无1 GHz 时的非谐波 ≤ -80 dBc扫描模式列表步进斜波基带发生器模式无软件——通用脉冲AM, FM, PM软件——蜂窝/无线连通性 无软件——音频/视频广播 无软件——检测/定位/跟踪/导航 无波形回放存储器无1 GHz 时的频率调制zui大偏移 2 MHz100 kHz 频偏时的频率调制率 DC to 10 MHz普通模式下的相位调制zui大偏移 10 rad 至 1280 rad高带宽模式下的相位调制zui大偏移 1 rad 至 128 rad幅度调制zui大深度 90%幅度调制率0 to 100 kHz可用应用 是模拟 是Frequency rangeE8257D-513 Frequency Range, 250 kHz to 13 GHzE8257D-520 250 kHz 至 20 GHz 频率范围E8257D-521 10 MHz 至 20 GHz 频率范围,超高输出功率E8257D-532 250 kHz 至 31.8 GHz 频率范围E8257D-540 250 kHz 至 40 GHz 频率范围E8257D-550 250 kHz 至 50 GHz 频率范围E8257D-567 250 kHz 至 67 GHz 频率范围Output powerE8257D-1EU 大输出功率AttenuatorE8257D-1E1 步进衰减器Spectral purityE8257D-UNX 超低相位噪声性能E8257D-UNY 增强的超低相位噪声性能E8257D-HY2 Enhanced Ultra Low Phase Noise Level 2Analog modulationE8257D-UNT AM、FM、相位调制和低频输出E8257D-1SM E8257D-1SM 扫描调制Pulse modulationE8257D-UNU 脉冲调制E8257D-UNW 窄脉冲调制E8257D-HNS Narrow pulse modulation to 31.8 GHzHardware optionsE8257D-007 全合成化模拟频率和功率斜波扫描E8257D-1EH 改善的 2 GHz 以下谐波性能E8257D-008 可拆卸闪存,8 GBConnector typeE8257D-1ED N 型(阴头)射频输出连接器Connector configurationE8257D-1EM 将所有连接器移至后面板Custom solutionsE8257D-HCC Provides 250MHz - 10GHz In and Out on the rear panelE8257D-H1S Provides 1 GHz in and out on rear panel to improve Phase Noise performanceE8257D-C09 Moves all connectors to rear panel except for RF outputE8257D-H5K Provides inverted EXT1 input with 5000-ohm input impedance instead of 600 ohmsE8257D-H1K Frequency extension 100 kHz (Requires Frequency Range Option)[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181638193085_4082_6412468_3.jpg!w690x690.jpg[/img]

  • InstaView™ 技术在函数发生器上的应用

    InstaView™ 技术在函数发生器上的应用 现如今,工程师和科研人员需要生成越来越复杂的测试信号,用于调试、排障、表征和验证被测器件。他们面临的问题是:被测器件的阻抗与函数发生器(AFG)不匹配,因而导致AFG上设置的波形与被测器件上的信号不一致。每当这时,工程师和科研人员往往需要另外运用仪器进行下一步的波形捕获,在波形捕捉准确性和及时性上大打折扣。此次,我们就要来介绍一个InstaView™ 技术在AFG上运用,进而简化工作的实例。 采用InstaView™ 技术的AFG31000系列为内置波形发生应用程序、具有已获专利的实时波形监测功能并采用智能用户界面的首款高性能任意波函数发生器。 传统AFG假设器件的阻抗是50 Ω,但大多数被测器件(DUTs)的阻抗不是50 Ω。这种阻抗不匹配,会导致AFG上设置的波形与DUT上的信号并不一致。AFG31000系列的新专利InstaView全新功能通过在DUT上监测和显示波形,智能的波形序列功能轻松实现复杂波形的创建,解决了这个问题,而无需额外的电缆或仪器。显示屏上显示的波形可立即响应频率、幅度、波形形状及DUT阻抗的变化,从而节省时间并提高可信度。 与此同时,AFG31000系列搭配9英寸容性触摸屏,结合ArbBuilder设计实现智能化的任意波形生成方式。智能友好的用户界面设计,轻松实现多台AFG同步。参数方面,运用InstaView™ 技术的AFG31000系列带宽高达250Mhz、采样率高达2GSa/S、记录长度16M点/通道(标准)128M点/通道(选配)、垂直分辨率也达到了14位。 运用InstaView™ 技术的AFG31000系列在模拟电路检定、真实场景信号复制、函数验证和性能检定、系统与时钟或脉冲同步、驱动电源设备的脉冲、高级研究和教育等领域都可进行有效应用,可以满足当今工程师和科研人员生成复杂测试信号的需要,进而大大简化工作,提升效率。涉及产品链接:https://www.tek.com.cn/signal-generator/afg31000-function-generator

  • 【白皮书】数字信号与脉冲序列调理

    【白皮书】数字信号与脉冲序列调理

    数字信号与脉冲序列调理数字IO接口数字信号采用数字信号进行通信是计算机和外设、仪器以及其他电子设备之间最常见的通信方式,因为这是计算机工作的基本元素。任何信号,都必须转换为数字信号之后,才能输入计算机,并进行处理。数字信号流入或流出系统时,或是单个信号,或是一串脉冲,可以只经过单一端口,也可以经过多个并行端口,并行端口上每根信号线代表字符中的一个bit。计算机的数字输出信号线往往用于控制继电器,以间接控制其他设备的开关。类似地,数字输入信号线可以代表某个传感器或开关的两种状态之一,而一串脉冲序列可以指示某个设备的当前位置或瞬时速度。输入信号可能来自继电器或其他固态设备。大电流、高电压数字IO通过继电器,可控制超出计算机内部处理范围的电压或电流,但信号或状态的响应速度受限于线圈的频率响应和触点移动。同时,当电感负载由闭合切换至断开时,两端的反向自感电动势必须被抑制,可将续流二极管反接在负载两端,为脉冲电流提供通路,以释放能量。如果没有这个二极管,继电器两端的电弧会缩短自身使用寿命(见图11.01)。[img=,315,349]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514034446_4291_3859729_3.jpg!w315x349.jpg[/img]TTL和CMOS设备通常用于连接高速低压信号,例如速度或位置传感器的输出信号。但是在需要用计算机去激励继电器线圈的应用中,TTL或CMOS设备也许无法满足电压和电流需求。因此需要在TTL信号和继电器之间接入一级缓冲,以提供30V,100mA的驱动能力。 [img=,315,323]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514151811_8384_3859729_3.jpg!w315x323.jpg[/img]这种系统的一个例子是用于数字IO仪器的板卡,板载放大/衰减单元,由一个PNP晶体管、一个续流二极管和一个电阻组成(见图11.02)。为了控制标准的24V继电器,需要从外部引入24V电源。内部TTL输出高电平时,三极管导通,输出低电平(约0.7V);TTL输出低电平时,三极管进入截止区,输出被拉到24V。因为继电器线圈是感性负载,所以需要反接一个续流二极管,用于在开关切换时保护继电器。图11.03演示了高压数字输入的降压电路。这使得TTL电路可以处理高达48V的电压。高压信号接入电阻分压电路,得到衰减。选取一个阻值适当的电阻R,用于处理不同程度的高压信号。图11.04中的表格提供一些常用方案。[img=,368,288]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517039909_4386_3859729_3.jpg!w368x288.jpg[/img][img=,351,168]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517036364_4408_3859729_3.jpg!w351x168.jpg[/img]数字输入计算机处理数字输入的方法各种各样,有难有易。这一章节简要讨论软件触发,单字节读取;硬件控速,数字输入;外部触发,数字输入。数字输入的异步读取当计算机周期性的采样数字引脚时,需要使用软件触发的异步读取方式。有时,读取数字输入的速度和时机至关重要,但是采用软件触发的单字节读取方式,读取间隔很难保持稳定,尤其是当应用程序运行在多任务操作系统下的时候,例如在PC机上运行。原因是读取间隔受计算机的运行速度和其他并发任务的影响。读取间隔的不稳定可用软件定时器进行补偿,但是小于10ms的时间分辨率在PC上很难得到保证。数字输入的同步读取有些系统提供硬件控速的数字输入读取方式,用户可以设置数字输入端口的读取频率。例如,某系统能够以100kHz的频率读取16位IO口,某些系统可以达到1MHz的速度。硬件控制的读取,最大优点就是可以做到比软件快得多的速度。最后,此类设备可以在读取模拟输入的同时读取数字输入,使得模拟输入和数字输入的数据具有紧密的关联性。数字输入的外部触发读取某些外部设备以独立于数据采集系统的速率,产生以比特、字节或字为单位的数据。只有当新数据可读时才进行读数,并非以预先设置好的速率读数。因此,这些外部设备通常采用信号交换技术进行数据传输。当新的事件发生,例如外部数据就绪或门控信号输入时,外部设备在单独一根信号线上产生电平翻转。为了与这些设备交互,数据采集系统必须具备可被外部信号控制的输入锁存功能。这样,一个逻辑信号会提交到主控计算机,提示新数据准备就绪,可从锁存器中读取。举例来说,一个以此方式工作的设备,在其6根控制信号线中有一根线用来通知外部设备主机正在读取输入锁存器中的数据。这个动作使外部设备能够保持住新数据,直到本次读取完成。数字隔离由于多种原因,数字信号往往需要被隔离,比如保护系统一端免受另一端随时可能出现的高压信号的损害、使得不共地的两个设备之间正常通信或保证医学应用中用户的安全。常见的隔离方案是光耦。光耦包含一个用于发射数字信号的LED或激光二极管,和一个用于接收信号的光电二极管或光电三极管(见图11.05)。光耦体积虽小,但可以隔离500V高压,这种技术还可以用于控制并监控不共地的设备。[img=,554,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517178877_2957_3859729_3.jpg!w554x221.jpg[/img]脉冲序列信号调理在许多测量频率的应用中,脉冲信号被计数或与某个固定的时基单元做比较。脉冲也可作为一种数字信号,因为只有上升沿或下降沿会被计数。在很多情况下,脉冲序列甚至可能来自模拟信号源,比如电磁拾波器(magnetic pickup)。举例来说,数据采集系统中应用广泛的频率采集卡,提供4路频率输入通道,并包含2个独立的前端电路,一个用于数字信号输入,另一个用于模拟信号输入。采集卡将数字输入划分为不同逻辑状态,将模拟输入转换成一个随时间变化的纯净的数字脉冲序列。图11.06演示了原理框图:总共模拟输入和信号调理两部分。前端RC网络提供交流耦合,允许高于25Hz的信号通过。衰减比例可调的衰减器降低了波形的整体幅度,削弱了不必要的低压噪声的影响。当需要使用来自继电器闭合时的脉冲序列时,此电路单元为用户提供了软件可配置去抖时间的功能。数字电路监控着被调节的脉冲序列,保持高电平或低电平。如果没有去抖动环节,信号中额外的边沿将导致过高的、不稳定的频率读数。[img=,378,240]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517366706_1103_3859729_3.jpg!w378x240.jpg[/img]大量传感器输出调频信号,而不是调幅信号。比如用于测量转动和流体流速的传感器,通常属于这一类。光电倍增管(photomultiplier tubes)和带电粒子探测器(charged-particle detectors)常用于测量领域,并输出频率信号。原则上,这些信号也可以用AD采集,但这个方法将产生大量冗余数据,使得分析工作难以进行。直接进行频率测量效率则高得多。频率 - 电压转换数据采集系统可通过多种途径测量频率:对连续的AC信号或脉冲序列做积分,产生与频率成比例关系的DC电压,或用AD将交流电压转换成二进制的数字信号,或对数字脉冲计数。[img=,382,294]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517493299_2073_3859729_3.jpg!w382x294.jpg[/img]脉冲序列积分一种常见的用于单通道的转换技术,模块化的信号调节:对输入脉冲做积分,并输出与频率成比例的电压信号。首先, AC信号经过一系列电容耦合,滤除超低频和DC分量,此输入信号每次经过零点,比较器产生一个恒定宽度的脉冲,脉冲再经过积分电路,如低通滤波器,然后输出一个变化缓慢的信号,信号电压将正比于输入信号频率(见图11.08)。[img=,387,297]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518092778_237_3859729_3.jpg!w387x297.jpg[/img]频压转换器的响应时间比较慢,约为低通滤波器截止频率的倒数。截止频率必须远低于待测信号频率,又要足够高,以保证所需的响应时间。若待测信号频率接近于截止频率,明显的纹波将会成为一个严重的问题,如图11.09所示。[img=,379,238]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518237403_2408_3859729_3.jpg!w379x238.jpg[/img]外部电容决定了专用频压转换的IC时间常数,使得电路可测量较宽频率范围内的信号,但频率改变时,电容也必须随之改变。不幸的是,这种频压转换器在频率低于100Hz时,表现得很差,因为截止频率低于10Hz的低通滤波器需要超级电容器。数字脉冲计数另一种用于测量数字脉冲或AC耦合模拟信号频率的技术。可输出正比于输入信号频率的DC电压,类似上面提到的积分法,只不过这里的DC电压来源于DAC。前端电路将输入的模拟或数字信号转换成纯净的脉冲序列,使其在进入DAC之前,不会带有来自继电器的毛刺,高频噪声以及其他多余信号(见图11.10)。[img=,554,257]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518331462_5120_3859729_3.jpg!w554x257.jpg[/img]举例来说,一个标准的带有频率输入的数据采集卡,模拟输入通道前置低通滤波器,截止频率可设置为100kHz、300Hz或30Hz,测频范围1Hz至100kHz,信号峰峰值50mV至80V。数字输入部分直流耦合至TTL电平的施密特触发器,可测量0.001Hz至950kHz,±15VDC的信号。采集卡通常具有上拉电阻,用于继电器或开关应用。微控制器准确测量几个脉冲的周期之和,频率分辨率取决于用户可配置的最小脉冲宽度。从测得的周期数据中可换算出频率,再根据频率值,控制DAC向数据采集系统输出相应的模拟信号,信号流入DC调理电路,最后,软件再将此电压转换成频率值。这种方法可以测量幅值和频率范围很宽的信号,且响应迅速。程序可控的频率量程可以最佳匹配ADC的量程,提高测量性能。DAC输出范围±5V,用户配置的最低频率对应-5V,最高频率对应+5V。实际上,用户可任意配置频带范围,如500Hz-10kHz、59.5Hz-60.5Hz。但ADC固定为12位分辨率,不管频宽如何,-5V至+5V的电压都会被按比例划分为4096个等级,所以设置的频宽越窄,频率分辨率越高。例如1Hz的频宽划分为4096份,分辨率高达1/4096Hz(0.00244Hz),而100Hz的频宽,分辨率则降至24.41Hz。虽然不同量程下,分辨率都是固定的12位,但测量速度却有所不同。从1Hz至自定义的频率上限,电压转换时间2至4ms,最长不超过输入信号的周期。0至10kHz范围内的信号,更新速率2至4ms;0至60Hz,则需要16.6ms。随着输入量程越来越窄,例如49至51Hz,12位分辨率去处理2Hz的带宽,消耗时间越来越长,转换时间大约59ms。除了低通滤波器,内置的迟滞功能也可防止由于高频噪声导致的错误计数。去抖时间可被软件配置为0.6ms至10ms,用于处理机电设备,如开关、继电器等切换状态时会产生毛刺的设备。基于门控脉冲计数的频率测量门控脉冲计数相对于频压转换法精准度更高。门控脉冲计数法记录在指定时间内出现的脉冲个数,除以计数时间即频率值,频率误差可以低至计数时间的倒数,例如以2s作为计数时间,频率误差低至0.5Hz。许多数据采集系统包含TTL电平兼容的计数器/定时器IC,可以产生门控脉冲、测量数字输入,然而并不适用于未经调理的模拟信号。所幸多数频率输出设备可以输出TTL电平。有些产品上的一个计数器/定时器IC,包含了5个计数器/定时器,而且通常使用数据采集系统的内部晶振,或外部晶振。这些IC通常使用多个通道配合完成计数功能,每路通道都包含一个输入部分,一个门控部分和一个输出部分。最简单的计数只需使用输入部分,PC以一定的周期读取计数值并复位计数器,这种方法的不足之处是读取周期不确定,函数执行过程中突然出现的情况可能随时启动或停止计数。另外,延时函数,例如延时50ms,依赖于不精确的软件定时器。这两点原因致使计数时间较短的频率测量毫无意义,但是,这种技术足以应对计数时间超过1秒的频率测量。门控信号控制着计数时间,所以改变门控信号可以获得更高的精准度。这样,频率测量就变得与软件方面的时间问题无关。可以配置门控信号,在其高电平时才进行脉冲计数。同样的,也可以配置成在检测到一个脉冲时开始计数,检测到另一个脉冲时停止计数。这种方法的一个缺点是需要额外的计数器用于控制。但在多通道频率采集的应用中,一个计数器可以控制多个通道。例如在5个通道的系统中,4通道用于计数,1通道用于控制。计时应用计数器/定时器同样可用于需要计时/定时的应用场合。将连接至输入通道的时钟信号作为门控信号是不错的选择,当信号为高电平时,使能计数。同样的方法可用于测量两个脉冲之间的时间间隔,只需配置成在第一个脉冲到来时开始计数,下一个脉冲到来时停止计数。由于16位计数器在计数到65535时,即将发生溢出,所以以1MHz的时钟频率计数时,可测脉宽不超过65.535ms,更宽的脉冲将会导致计数器溢出,除非降低时钟频率。如需了解更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等,并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 超声脉冲功率放大及接收模块

    超声脉冲功率放大及接收模块

    该模块是一个由脉冲功率发射电路和信号接收滤波放大电路高度集成的超声收发共用应用模块,它能够为高精度超声波检测系统的优化应用提供解决方案。本模块的脉冲功率发射电路主要集成了超声传感器的前置放大及功率驱动电路,它与匹配变压器相连后可直接驱动超声换能器产生超声波。通过改变MCU输出脉冲的频率,该驱动模块可以产生从20KHz~2MHz的频率,这个频段基本涵盖了目前常见的超声波应用频段。模块的供电范围为12V~24V,工作温度为工业级-40~+85oC,输出脉冲功率可调,最高可达300w,输出阻抗为25mΩ。本模块中的超声脉冲驱动电路基本可以满足目前国内所有超声脉冲功率发射的常规应用要求。接收部分电路主要提供的对接收到的信号进行滤波放大,可根据不同的应用需要调整接收部分的滤波频带和放大倍数,它的输入噪声在输入信号频率为500kHz的时候可低至50uV,对于接收信号特别微弱的应用场合,如超声波气体流量计中有良好的表现。本模块可满足超声波常见的工业上的应用,如超声测距、超声测流量计量、超声探伤、超声测厚等。可应用于双探头的单发单收方案中,也可以应用于收发共同的单探头系统中。模块的设计采用规范的设计方法和封装方式,并且该模块经过多种应用环境的可靠性测试,具有良好的稳定性,能够应用于复杂(如电磁干扰严重)的环境。选用该模块,研发人员可以在不需要对超声波产生和驱动电路有深刻的理解的条件下开发出超声波应用系统,开发的系统技术指标能够达到同类产品的先进水平。http://ng1.17img.cn/bbsfiles/images/2011/07/201107051107_303156_2333795_3.jpg

  • 【求助】求助/关于脉冲信号采集模块

    做实验要求购买一个多路脉冲信号采集模块,用途采集脉冲流量计的输出信号(用于模拟海水的流量采集)具体要求:1,适用于笔记本,可以和ADAM_6017(研华)合用HUB2,人机交换软件可以合研华的连用在本周四前要确定下来,还请各位知情人士多多帮忙,告诉小弟去哪家公司购买!!可在此留言或者发本人邮箱jiayaorui@gmail.com,小弟不胜感激。

  • 购买氮气发生器?买大的好小的好?

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]因为之前没配氮气发生器,用的液氮,非常麻烦,这次想买氮气发生器。但是之后会再买两台[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],这次买大点的一拖二或者三好,还是小的够用就好,气体用量在20L/min 一台,一般在15L左右

  • RF发生器介绍

    网上看到,分享给大家:RF发生器介绍RF发生器通过工作线圈给等离子体输送能量,维持ICP光源稳定放电,目前ICP的RF发生器主要有两种震荡类型,即自激式和它激式。自激式RF发生器自激式RF发生器又称自由振式RF发生器,它有整流电源、振荡回路和电子管功率放大器三部分组成。整流电源是由三相电源经升压、三相全波整流及L、C滤波提供电子管功率放大器所需的直流高压(3千伏)。其振荡回路是由一个电容和一个电感组成的并联回路,当有外加电源时,回路内将产生振荡信号,回路能量交替地储存在电容和电感上。当回路中电阻很小时,即 R 2(L/C)1/2,其振荡频率为:f=1/。由于回路电阻的存在,每次振荡总要消耗部分能量,使振荡受到阻尼,为了维持等辐振荡,并保持一定的输出功率,使用电子管功率放大器,把L-C振荡回路的信号正反馈一部分供给放大器的栅极,经功放后再输出给L-C回路,这样L-C回路不断地从放大器取得能量,除反馈一部分外,大部分能量用电感耦合方式供给等离子体,从而维持稳定的等辐振荡和功率输出。信号正反馈的形式国外多采用电容反馈型,而国内生产的则多采用电感反馈型。自激式振荡器的主要特点是结构简单、价格低廉、制造调试比较容易,在技术指标上能基本满足光谱分析要求,但其主要的缺点是频率稳定性及功率稳定性较差,这主要是由于等离子体负载是作为振荡回路的一部分,负载的改变将影响L-C振荡器的频率及回路的工作状态。它激式RF发生器它激式RF发生器又称晶体控制型RF发生器,它与自激式不同,它是利用石英晶体的压电效应构成振荡器也取代L-C振荡回路的电容、电感元件。将石英晶体按一定方位角切制成一块正方形(或长方形或圆形)簿片,在晶片的两个对应表面上喷涂金属板,就可构成石英晶体振荡器。当晶体片上加上一个电场,就会使晶片发生机械形变,相反,在晶体片上加一个机械力又会在相应的方向上产生电场,这种现象称石英晶体的压电效应。若在晶片上下的金属板上施加变电压,就会产生相应的机械形变,即机械振动,通常情况下,这种形变振幅很小,当外加交变电压为某一特定频率时,振幅会突然啬,这种现象为压电谐振,这一频率称为晶体的谐振频率,它和晶体的尺寸有关。在它激式振荡器中,常应用一个频率为27.12MHz或40.68MHz的石英晶体振荡器作为振源,经过两级功率放大,就可得到27.12MHz或40.68MHz,2.0Kw的输出信号。通过匹配网络和同轴电缆传输到负载线圈上。这类发生器频率稳定度高,耦合效率好,功率输出易于自动控制,但放电回路的电学特性的任何微小变化,会导致阻抗失配,需调节至最佳匹配,仪器线路比较复杂,成本较高,但性能较好。ThermoElemental公司的的ICP均采用晶体控制型RF发生器晶体控制型RF发生器的高功率输出采用多级放大后才获得,它包括:1) RF源放大:由石英晶体振荡器(27.12MHz)和放大电路组成,受来自AGC(自动增益控制)的反馈电压和计算机给定的控制,其输出是稳定的、最大功率为3w的高频信号。2) RF驱动放大:它介于源放大和功率放大之间,其作用是放大RF源放大级的高频信号,以驱动功率放大器,并隔绝源振荡器以改善稳定性,驱动放大级的最大输出功率为65w。3) RF功率放大:它主要由大功率电子管(3cx1500A)来实现高频信号的进一步放大,并通过工作线圈把RF功率耦合到等离子体上。功率放大级的最大输出功率可达2Kw。4) 匹配网络:在以上各级放大器之间均存在阻抗匹配网络,是为RF功率在各级间传输中获得最高的效率。其中功率放大级的输入、输出匹配网络十分重要,输入匹配采用Л型匹配电路,如右图调整匹配电容Cl和C2,使输入功率放大级的反射功率几乎为零。输出匹配为自动匹配(Auto-Turning),自动跟踪等离子体负截的变化,使等离子体始终获得最高的功率传输效率。5) 自动增益控制(AGC):它的作用是自动调整整个RF发生器的放大倍数,不管等离子体的阻抗以及等离子体与负载线圈耦合有何变化,始终保证等离子体的功率恒定不变。AGC同时又受计算机控制,以实现RF功率的计算机控制。6) 工作线圈:工作线圈的作用是把RF发生器的高频能量,耦合到等离子体。由于高频电流倾向于在导体表面流动(即趋肤效应),工作线圈是由2.5圈镀银外层的空心铜管制成,内通冷却水冷却。为了防止其表面腐蚀或匝间高压放电,工作线圈外套一层四氟乙烯。7) 电源系统(POWER UNIT):为RF发生器提供各种电源,包括:+5V、+12V、±15V、+48V、+3800V和120V AC。 其中+48V提供给RF驱动放大, +3800V提供给RF功率放大。该电源系统具有各种保护,并通过其电源控制单元(Power Unit Control)实现与整个仪器的通讯和控制。固态式RF发生器固态式RF发生器是用一组固态场效应管(一般是十几只配对)来替代经典RF发生器中的大功率电子管,以获得大功率高频能量输出。固态式RF发生器具有更小的体积,有利于仪器的小型化。1) RF功率:几乎所有的谱线强度都随功率的增加而增加。但功率过大也会带来背景辐射增强,信背比变差,检出限反而不能降低。对于水溶液样品,一般选用的功率为950w-1350w,对于溶液中含有机试剂或有机溶剂的样品,为使有机物充分分解,一般选用1350w-1550w的功率。在测定易激发又易电离的碱金属元素时,可选用更低的功率(750w-950w),而在测定较难激发的As、Sb、Bi等元素时,可选用1350w的功率。2) 雾化气流量(压力):雾化气的作用已如上述,其大小直接影响雾化器提升量、雾化效率、雾滴粒烃、气溶胶在通道中的停留时间等。因此要根据每个具体的雾化器精心选择并在分析过程中保持一致。对于目前广泛使用的Menhard和GE同心型雾化器,雾化压力通常在22-35psi间选择(最常用的是26-30psi),对于“较难”激发元素如As、Sb、Se、Cd等元素的测定可选用较小的雾化压力(24-26psi),使气溶胶在通道中停留较长的时间,更有利于激发发射,对于K、Na等易激发又易电离的元素的测定,可选用较高雾化压力(32-35psi),使气溶胶在通道中停留时间较短,且雾化得更好,以获得更低的检出限。3) 观察高度:在炬管垂直放置的情况下,采用侧向采光,各种元素的最佳激发区因元素而异。具有较难激发的原子谱线的元素如As、Sb、Se等,它们的最佳激发区在ICP通道偏低的位置。而具有较易激发的离子谱线的元素如碱土族元素,周期表的第三、四副族元素,其最佳激发区则应在ICP通道偏高的位置。易激发又易电离的碱金属元素,在通道较低位置则绝大部分成为很难激发的离子状态。只有在通道的较高位置为最佳观察区域。所谓的观察离度是指工作线圈的顶部作为起点向上计算(如图所示)。而原子发射光谱分析的一个重大优势是多元素同时分析,因此曝光高度与其他参数一样,很难仅考虑个别元素的最佳观察高度,必须兼顾一次采样分析所有待测元素,所以一般采用折中的观察高度。在调试仪器时,一般以1ppm的Cd元素来选择最佳的观察高度(通常在15mm左右)。另可通过辅助气的改变可使观察高度在13-17mm间调整。4) 频率:在一般情况下ICP的频率并不认为是重要的参数,目前常用的频率为27.12MHz与40.68MHz,这是为了避免与广播通讯相干涉而专门留给工业部门使用的频率,也比较适合于产生ICP,所以正规的ICP发生器都采用这个指定的频率

  • [分享]RF发生器

    RF发生器RF发生器通过工作线圈给等离子体输送能量,维持ICP光源稳定放电,目前ICP的RF发生器主要有两种震荡类型,即自激式和它激式。自激式RF发生器自激式RF发生器又称自由振式RF发生器,它有整流电源、振荡回路和电子管功率放大器三部分组成。整流电源是由三相电源经升压、三相全波整流及L、C滤波提供电子管功率放大器所需的直流高压(3千伏)。其振荡回路是由一个电容和一个电感组成的并联回路,当有外加电源时,回路内将产生振荡信号,回路能量交替地储存在电容和电感上。当回路中电阻很小时,即 R 2(L/C)1/2,其振荡频率为:f=1/{2((L/C)1/2 }。由于回路电阻的存在,每次振荡总要消耗部分能量,使振荡受到阻尼,为了维持等辐振荡,并保持一定的输出功率,使用电子管功率放大器,把L-C振荡回路的信号正反馈一部分供给放大器的栅极,经功放后再输出给L-C回路,这样L-C回路不断地从放大器取得能量,除反馈一部分外,大部分能量用电感耦合方式供给等离子体,从而维持稳定的等辐振荡和功率输出。信号正反馈的形式国外多采用电容反馈型,而国内生产的则多采用电感反馈型。自激式振荡器的主要特点是结构简单、价格低廉、制造调试比较容易,在技术指标上能基本满足光谱分析要求,但其主要的缺点是频率稳定性及功率稳定性较差,这主要是由于等离子体负载是作为振荡回路的一部分,负载的改变将影响L-C振荡器的频率及回路的工作状态。

  • 用发生器好呢,还是直接买氮气瓶好呢??

    关于购置气相色谱仪的一些问题朋友的公司想进一台气相,由于资金问题,想进一台国产的,请问国内气相哪些品牌的比较靠谱?,价钱方面如何;液相国产的哪些品牌还不错?另弱弱地问两个小白问题:1 与气相配套的电脑有特殊要求吗? 2气相的氮气, 有氮气发生器这一说吧! 是用发生器好呢,还是直接买氮气瓶好呢,纯度以及价格方面如何?谢谢各位大侠!

  • 【原创大赛】SG3525在ARL直读光谱负高压发生器中的应用(十一月)

    【原创大赛】SG3525在ARL直读光谱负高压发生器中的应用(十一月)

    SG3525在ARL直读光谱负高压发生器中的应用 前 言 ARL 2460/3460/4460直读光谱仪在进行样品分析和测试时,光电传感器PMT(光电倍增管)没有负高压是无法工作的,因此负高压发生器是直读光谱必不可少关键器件之一。SG3525又是负高压发生器的关键元件,在负高压发生器的故障中,SG3525的损坏率较高,为此本文就SG32525在ARL直读光谱负高压发生器中的应用做一个简单介绍,以给予ARL直读光谱使用者和自行维修负高压发生器时得到一定的参考和帮助。一、SG3525功能简介1、SG3525脉宽调制型控制器是美国通用电气公司的产品。它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。SG3525采用16端双列直插DIP封装(图一)https://ng1.17img.cn/bbsfiles/images/2011/11/201111270106_333289_1841897_3.jpg图一 SG3525(注:KA3525为韩国产品型号) 外形封装实物图

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

  • 【求助】关于空气发生器的一个问题

    请教各位高人,关于空气发生器的问题,我用的是GC14C,空气源用的是空气发生器,它同时供氮气发生器产生氮气,和助燃气,但在使用时发现,在工作一段时间后空气泵会再次启动,直到压力正常,就在这一过程中,会在工作站采集的信号中发现有相应的基线波动,[img]http://simg.instrument.com.cn/bbs/images/brow/em09509.gif[/img]请指教问题在哪????????

  • 认识高频发生器

    高频发生器是ICP-OES的基础核心部件,是为等离子体提供能量的,要求其具有高度的稳定性和不受外界电磁场干扰。从功率输出方式上可以分为自激和它激式两类,自激式高频发生器(瓦里安、PE、GBC、JY、LEEMAN、斯派克、岛津及国内厂家生产的ICP-OES均使用这个)能将稳定的直流电流变成具有一定周期的交流电流后,不需要外加交变信号控制就可以产生交变输出.该RF线路简单,造价低廉,调试容易,当震荡电路参数变化时能自动补偿阻抗的少量变化等优点.缺点是功率输出效率低,震荡频率稳定度不高。它激式发生器(目前仪器我掌握的资料只有热电公司的)是由石英晶体控制频率,必须外加交换信号才能产生交变输出,具有功率输出效率高,振荡频率稳定,易实现频率自动控制等优点,缺点是线路复杂,成本高。目前商品化的仪器的振荡频率主要使用27.12MHz 和40.68MHz的,理论上讲震荡频率大的,维持等离子体的功率相对就小点,冷却气用量相对少点,产生的趋肤效应也强,便于形成等离子体中心进样通道(一般不会引起等离子体的熄灭),但在实际使用商品化仪器分析时27.12MHz 和40.68MHz其分析性能并没有特别明显的差别,特别是在检出限和测定精度方面几乎没有差异。高频发生器的另一个指标就是其功率,因为功率是影响发射线强度和背景强度的主要因素,采购时主要考虑其大小可调性和分析样品的性质,一般范围至少也在800-1500W,对于普通水样品类一般采用800-1200W基本可以满足正常分析需要,而有机物基体样品的分析一般需要较高的功率来维持等离子体的正常运行,其实作为各种ICP-OES的光源,目前的发展技术应该是比较成熟的,在采购时主要考虑一下下列指标就可以了:反射功率至少要小于10W,功率波动不能大于0.1%(假如输出功率有0.1%的飘逸,发射强度就能产生超过1%的变化,目前高档仪器的这个方面做的是比较好的,有的可以低1-2个数量级的),频率稳定性要优于0.1%。

  • 【资料】空心阴极灯脉冲供电常用的词汇-占空比

    [size=6][b]占空比 [/b][/size]   [url=http://baike.baidu.com/image/9f1011b3e418a5b4d9335af5][img]http://imgsrc.baidu.com/baike/abpic/item/9f1011b3e418a5b4d9335af5.jpg[/img][/url] [size=4][b]占空比的图例[/b][/size]  占空比(Duty Cycle)在电信领域中有如下含义:   在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。   例如:[url=http://baike.baidu.com/view/2069836.htm]脉冲宽度[/url]1μs,信号周期4μs的脉冲序列占空比为0.25。   在一段连续工作时间内脉冲占用的时间与总时间的比值。   在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。   在周期型的现象中,现象发生的时间与总时间的比。   负载周期在中文成语中有句话可以形容:「三天打渔,两天晒网」,则负载周期为0.6。   占空比是高电平所占周期时间与整个周期时间的比值。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制