沼气在线浓度检测仪

仪器信息网沼气在线浓度检测仪专题为您提供2024年最新沼气在线浓度检测仪价格报价、厂家品牌的相关信息, 包括沼气在线浓度检测仪参数、型号等,不管是国产,还是进口品牌的沼气在线浓度检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合沼气在线浓度检测仪相关的耗材配件、试剂标物,还有沼气在线浓度检测仪相关的最新资讯、资料,以及沼气在线浓度检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

沼气在线浓度检测仪相关的仪器

  • 产品概述EXPEC 2000 NH3固定污染源氨气在线监测系统采用半导体激光吸收光谱技术(TDLAS)和Herriott腔增强技术,广泛应用于微量氨气的在线监测。该系统采用一体化壁挂式设计,烟气取样气路全程高温伴热,防止被测气体在管路中吸附损失,可用于测量ppb级氨,是烟气排放连续在线监测微量氨的最佳方案。产品特点1、创新Herriott腔增强技术,有效光程数十米,检测灵敏度高,实现ppb级NH3浓度测量;2、体积小,一体化壁挂式设计,可安装在烟囱的高空平台上,缩短取样距离,减少样品损失;3、流路集成化设计,实现全程高温无冷点,减少被测物质损失;4、可调谐半导体激光吸收光谱技术(TDLAS)避免H2O、CO2等背景气体交叉干扰,测量精度高;5、中央显示单元可选配,用于接地面监控和调试,方便日常的巡检和维护;应用领域可广泛应用于石油化工、医药行业、电子工业、包装印刷、工业涂装、水泥工业等企业的脱硝工艺后端、以及尾气排口NH3的监测。
    留言咨询
  • 烟气在线监测仪ZWIN-CEMS06简介:烟气在线监测仪ZWIN-CEMS06由颗粒物测量子系统、气态污染物测量子系统、烟气参数测量子系统、数据采集与分析子系统组成。通过直接测量分析(颗粒物)和抽取采样方式(气态污染物),测定烟气中污染物浓度,同时测定烟气温度、烟气压力、烟气流速、烟气含氧量,排放量;显示各监测参数的报表。系统组成:1、颗粒物测量子系统:烟尘测定仪;测定烟尘含量。包括:? 主机、探头。? 信号输出: 4-20mA2、气态污染物测量子系统:1)气体分析仪,具有校准功能。校准时间及周期根据现场情况确定。2)取样探头,具有自加热及温控功能。3)温控伴热取样管线,取样管材质为聚四氟乙稀。4)预处理系统包括:制冷器、排水泵、防腐取样泵、精密过滤器、电磁阀等。3、烟气参数测量子系统:1)温度、压力、流速等在线监测仪器。4、系统控制、数据采集及数据处理系统:1)数据采集与处理系统硬件2)烟气排放连续监测系统软件 特点:u 准确度高:产品采用紫外光谱分析技术,水分的影响小,精度和灵敏度高;u 方便实用:产品的显示存储单元、预处理单元集成于一体,安装简单,操作方便;u 稳定性强:关键器件,如差压、反吹单元,温控单元均选用世界一liu产品,保证了整体设备的稳定性。
    留言咨询
  • ITRANS 氧气在线监测仪(双传感器)iTrans固定气体检测仪采用智能电子平台,可从单头提供一或两个检测点,实现最大的灵活性、超卓的性能和更低的安装成本。iTrans 采用经行业认可的“智能”传感器技术以及安全功能,包括自动识别传感器、安全密码访问、以及调零和校准故障保护(检测仪集成在隔爆铝制或不锈钢机壳内),能够在特定环境中监控任何气体化合物。微处理器控制的发送器能够独立运行或采用多点系统配置。配备板载继电器(选配)后,该监控器还可独立运行、激活报警、喇叭或风扇,也可在无需回线至中央控制面板的情况下关闭系统。
    留言咨询

沼气在线浓度检测仪相关的方案

沼气在线浓度检测仪相关的论坛

  • 矿井气在线监测气相色谱仪的技术对比?

    我想了解矿井气在线监测气相色谱仪的技术原理,和各个公司之间的对比。各家原理都不同,求专业资深人士给个指导和评价!GC-4085型矿井气体多点参数色谱自动分析仪煤矿井气体分析专用气相色谱仪 南京科捷SP-2120矿井气分析专用气相色谱仪 北分。。。。。。求各家对同时处理低浓度CO(ppm)、高浓度CO2(%)怎么设计的?有用过的大侠请给个建议,他们的痕量和常量线性如何?

沼气在线浓度检测仪相关的耗材

  • 便携式臭氧比色计/(0.00~2.50mg/L)臭氧浓度检测仪/臭氧检测仪
    便携式臭氧比色计/(0.00~2.50mg/L)臭氧浓度检测仪/臭氧检测仪由上海书培实验设备有限公司为您提供,水质监测试剂盒和便携式仪器,产品型号齐全,量多从优,欢迎客户来电咨询选购。 产品介绍: 臭氧检测仪是专门用于测定水样中的臭氧浓度,其浓度变化范围为0~2.50mg/L,液晶显示屏以mg/L来直接显示臭氧浓度。产品优点:体积小,便于携带,降低对使用人员的要求,并能提供可靠的检测结果。 产品技术参数:测定范围:0.00~2.50mg/L光源:硅光二极管波长:510nm精度:±0.05mg/L(测量值<1.00 mg/L )±0.10mg/L(测量值>1.00 mg/L)方法:采用国标DPD方法,臭氧与DPD试剂反应,使样品溶液呈红色。使用环境:温度0~40℃,相对湿度0~90%(无冷凝)电池寿命:1×9V,40小时以上。关机:用完比色计后,按“开/关"关机。尺寸:170×70×30mm重量:200g(含电池) 每套包括:主机一台,比色皿2个,配套试剂100次配套试剂可以单独购买,包装规格为100次/包本产品广泛应用于食品饮料加工、医疗卫生、环保等行业
  • 美国赛默飞 热电i系列 颗粒物浓度检测仪 扬尘检测仪 纸带 滤纸
    美国赛默飞 热电i系列 颗粒物浓度检测仪 扬尘检测仪 纸带 滤纸 专为β射线自动监测 PM2.5/PM10 而开发,根据《空气总悬浮颗粒物技术标准》自主生产的空气监测纸带,通过与国外同类产品进行对比,采用进口GF10玻璃纤维滤纸,玻纤滤纸具有各向同性好、孔径分布均匀、定量偏差小,耐热、阻燃、耐水、纳污量大、过滤精度高、数据准确的特点。达到了国际技术水平,现已应用到全国各地环境保护局环境监测站和国内外空气自动监测仪器厂家,得到了用户高度认可。产品特点:(1)流速非常快,疏水设计,对0.3-0.5um标准粒子截留度大于99.995%,非特异性吸附很低,重量稳定性和机械稳定性好,可耐高温达180℃。(2)优质不易断,从原料精选到产品出厂、全过程质量管控、打造质量过硬不易断纸带。(3)环保无纸屑精选优质玻璃纤维+先进生产工艺,缠的紧,用的久、造就非凡品质。(4)数据平稳免追责,劣质纸带易断且容易造成数据忽高忽低,纸带数据平稳,检测PM10/PM2.5过滤效率达99.995%。(5)进口的GF10玻纤滤纸具有各向同性好、孔径分布均匀、定量偏差小,耐热、阻燃、耐水、纳污量大等特点。
  • 油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪
    油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪,中文操作说明书,售后维修服务,水肼过滤器,主要特点:华瑞的光离子技术的卓越表现响应时间短、检测范围宽、分辨率高,检测误差小超宽的检测范围可以实时检测0.1~15000ppm的VOC气体自清洗专利技术紫外灯的自清洁技术保持灯的能量在一个稳定状态无线技术在气体检测中的完美应用内置蓝牙或无线模块,实现实时数据传输内置强力采样泵可外接长达30m的采样管路,检测数据一样准确无误智能的温度和零点补偿算法内置温度湿度压力传感器,自动进行补偿,保证检测的准确性友好的人机操作界面大屏幕图文液晶显示,多国语言,支持中文可检测数千种气体广谱性检测,内置气体数据库,方便使用者选择油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪,中文操作说明书,售后维修服务,水肼过滤器,技术参数:

沼气在线浓度检测仪相关的资料

沼气在线浓度检测仪相关的资讯

  • CIOAE2017之大气在线监测
    p    strong 仪器信息网讯 /strong 2017年11月7-8日,为期两天的“第十届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2017)”精彩继续,各分会报告精彩不断。“大气在线监测技术”仍单独设立分会场,众多专家为我们介绍了大气监测在环境、计量、煤矿等领域的应用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/48fbeeb1-2f21-46ab-a2e1-e08ab89a9ac5.jpg" title=" DSC04829_副本.jpg" / br/ /p p style=" text-align: center " strong 会议现场 /strong    /p p   环境行业气体监测仍然是此次分会报告最主要内容,主要涉及的内容包括环境空气、挥发性有机物、二氧化硫/二氧化氮等。 /p p   现阶段,我国对环境空气监测高度重视,实行党政同责、领导干部自然资源资产离任审计、党政领导干部生态环境损害责任追究、自然资源资产负债表试点、生态环境损害赔偿制度改革试点等制度,要求以环境空气质量改善为核心。目前我国已建成以城市空气、背景空气、区域空气、温室气体、酸雨、沙尘暴为主要内容的空气质量监测体系,但是仍然存在很多问题。如PM切割效率准确度差的问题,对于达标城市,未来将适当开展手工监测 对于组分分析、VOCs监测仪器、温室气体监测仪器以及QA/QC仪器设备(气体发生器、传递装置、便携装置等)还需要有很大的技术提升 虽然我国目前的主要污染物为颗粒物,但是后期臭氧的问题会逐渐暴露出来。 /p p   目前,VOCs是环境监测行业最受关注的污染物之一,而VOCs混标更是从业人员急需的,中国测试技术研究院研发出来多种VOCs标准物质,包括满足美国TO-14A和我国HJ644-2013规定的42组分VOCs标准气体、满足HJ759-2015规定的67组分VOCs标准气体和56组分臭氧前体物。不同分析方法的比对也是标准制定者和用户关心的热点,便携式FID检测器、气袋采样-气相色谱分析方法与在线式VOCs分析仪比对结果显示:便携式仪器与实验室分析相比,对丙烷与异丁烯单标气体的响应值一致,两种方法的系统误差约为10%,对于混合气体标气TO-15,便携式仪器检测结果明显高于实验室方法,但响应值仍然低于混标气体的非甲烷总烃浓度。便携式仪器与在线式仪器相比,在不同的非甲烷总烃浓度范围下,监测结果随时间的变化具有一致的响应趋势。总体来说,便携式FID检测数据大于在线监测数据大于实验室分析方法。便携式FID的进气管路较在线监测设备更短,管路中VOCs浓度的损耗更低,而气袋法采用由于从采样到分析的延迟时间较长,会造成VOCs浓度的偏低。除此之外,目前市场上大多数非甲烷总烃在线监测设备采用瞬时采样,所得非甲烷总烃浓度数据为采样时刻的瞬时浓度,监测数据与手工监测采样方法获得的浓度值得本质区别。 /p p   车载DOAS技术,通过测量天顶散射光谱来研究整层大气中痕量气体的柱浓度和空间分布情况,能够再移动平台对各类污染源排放污染气体(二氧化硫、二氧化氮)柱浓度进行连续遥测,结合气象参数后获得排放信息,可用于大气污染物分布于输送监测、污染源排放通道获取及校验以及重大活动空气质量保障与管控措施效果评估。 /p p   计量溯源是保证测量数据质量的基础,我国的计量体系要求在环境、安全等领域的气体测量要有溯源性,气体标准物质是实现气体计量溯源性的重要载体,气体标准物质在研制过程中广泛使用了在线光谱测量仪器,在线光谱测量仪器具有实时性、便捷性稳定性和直观性等优点。 /p
  • 赛默飞:全面大气在线监测解决方案 助力精准治污
    p   大气污染是世界各国都面临的严峻环境问题,如何防止大气污染已被各国政府高度重视。在我国,随着经济社会的快速发展,大气环境问题也日益凸显。日益复杂的大气污染状况对传统的大气污染监测方式提出了新的挑战。 /p p   大气在线监测技术能够准确、全面地反映出大气环境目标污染物的浓度及其变化趋势,从而实现全时段、全方位、动态监测大气要素的目的。在线监测技术因具备精准、科学、有效提升雾霾治理工作效率的能力,已成为一种发展趋势。 /p p   为了帮助相关用户学习、了解大气在线监测最新技术进展及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/dqzxjcjs2020" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " “大气在线监测技术”专题 /span /a ,并邀请赛默飞环境行业经理胡忠阳共同讨论了大气在线监测技术相关的问题。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8dafec48-54dc-4011-9929-508a004d3e7b.jpg" title=" 图.png" alt=" 图.png" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 赛默飞环境行业经理& nbsp 胡忠阳 /span /strong /p p   2013年,我国颁布实施《大气污染防治行动计划》,标志着我国大气污染防治进入新阶段。2013年以来,我国大气污染防治取得显著成就。据权威统计:“十三五”以来我国空气质量总体改善明显,但臭氧污染持续反弹。全国337个地级及以上城市,颗粒物超标城市大幅减少,PM2.5浓度超标城市占比从68.5%下降到47.2%。与此同时,臭氧浓度超标城市大幅增加,2019年达到30.6%。 /p p   在2020中国生态环境产业高峰论坛上,贺克斌院士指出“2017年到2019年3年时间,PM2.5浓度持续下降、臭氧污染开始上升的态势,越来越明显。所以对‘十四五’的工作,中央领导有明确指示,要针对PM2.5和臭氧的协同控制开展工作。” /p p   臭氧作为典型的二次污染物,是大气中的NOx和VOCs,在紫外线照射下发生光化学反应的产物。针对PM2.5和臭氧的协同控制将是现阶段大气污染治理的重点 。 /p p   今年下半年,我们也注意到为落实《打赢蓝天保卫战三年行动计划》,生态环境部研究起草的“重点地区2020-2021大气治理攻坚行动方案征求意见稿”相继印发, 涉及京津冀及周边地区、汾渭平原和长三角等重点地区。在完善监测监控体系方面,文件中指出各地要加强秋冬季 strong 颗粒物组分监测 /strong 和 strong VOCs监测 /strong 。特别是要 strong 科学布设VOCs监测点位 /strong ,提升VOCs监测能力,各地级及以上城市要在现有VOCs监测站点基础上,进一步增加VOCs自动监测站点建设。也反映了以上这一趋势。 /p p   目前针对颗粒物组分监测和VOCs监测均有在线的色谱、质谱等手段,并得到越来越多的应用。传统手工监测,一般需要通过滤膜采集颗粒物或吸附管采集气体,通过保存然后送至实验室,再经过复杂的样品处理后进行分析和数据处理。这一方式存在采样误差大、样品存储易损失、费时费力、不能反映大气组分的高频变化规律等缺点。而在线监测技术24 × 7 全天候运行,具备实验室检测仪器的高精确性及在线监测仪器的连续自动化可操作性,从而实现对大气组分实时、高频变化的监测,可为精准治污提供强大的精确数据支撑。 /p p   针对当前重点关注的颗粒物组分监测和VOCs监测,赛默飞能提供完整的在线监测方案: a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG 9000D /span /a 实现细颗粒物及气体组分中水溶性离子的在线监测。 针对大气中金属元素监测,目前除了XRF 方法作为间断性的在线监测技术外,均为实验室手工监测手段,而赛默飞GED-ICPMS 方案率先填补这一空白,实现实时大气颗粒物重金属的在线精确监测。基于ISQ7000 GCMS的方案则可实现对VOCs的全自动在线监测。 /p p   下面分别简要介绍以上在线监测产品的特点。 /p p    a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D大气在线离子色谱监测系统 /span /a /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/48b7dc9e-5b3d-4f12-817d-52e890ee857f.jpg" title=" urg-9000-series.png" alt=" urg-9000-series.png" / /p p   系统采样管、气体溶蚀器和颗粒物溶蚀器等主要气体流路方向均为竖直方向,消除颗粒物管道中沉积 通过湿式平行板溶蚀器,以气体选择性透过膜技术分离气体和颗粒物,杜绝气体和颗粒物之间相互接触导致的结果不准确问题,确保气体和颗粒物的完全分离 通过气体和颗粒物的分别独立采集和储存,杜绝样品吸收液转移过程中存在的淋洗液交叉污染问题,且兼容大体积浓缩技术,提供较高仪器灵敏度。 /p p   集成了只加水体系离子色谱,实时制备高纯无污染淋洗液,提供零污染空白和较低仪器噪音 兼容梯度分析,获得更高的色谱峰分离度 兼容小粒径填料离子交换分析柱,提供更高的色谱峰分辨率和色谱峰峰容量 仪器只需提供纯水即实现自动在线监测,免维护,自动化程度高,操作维护简便。 /p p    span style=" color: rgb(0, 112, 192) " GED-ICPMS 大气颗粒物重金属实时测定 /span /p p   GED (Gas Exchange Device)气体交换装置实现在线气体样品直接导入系统。 ICPMS 是氩气电离产生的等子体,空气直接导入会使等离子体不稳定,甚至熄灭。即便低流量的空气与氩混合导入,空气中的氮和氧会增加等离子体负载,而影响金属元素电离,使其灵敏度降低,GED成功解决空气直接导入ICP的问题。 将ICPMS 和GED 等采样设备集成化,充分发挥出 ICP -MS 灵敏度高、多元素快速测定以及 GED设备无需任何样品富集及其他前处理的特点,从而也实现了大气金属元素的实时连续监测。 /p p    span style=" color: rgb(0, 112, 192) " 全新ISQ7000GCMS在线VOCs监测系统 /span /p p   赛默飞环境空气挥发性有机物(PAMS、TO14、TO15)自动监测系统,采用赛默飞气质联用仪,英国 Markes 公司全自动在线预浓缩仪,搭配其独有的 Kori-Xr 水汽管理装置,定制化云系统软件进行数据处理和上传,实现环境空气中 VOCs 的在线自动监测。本系统灵敏度高、运行成本低、适用于复杂的采样环境,对挥发性有机物有较优异的检出限。该系统适用于环境空气中 PAMS、TO-15、醛酮类化合物等 117 种挥发性有机物的监测。 /p p   Thermo Scientific& #8482 ISQ& #8482 7000 采用了全新水平的可用性设计,允许操作者在数分钟内无需工具切换即时连接进样口和检测器,实现前所未有的灵活性。其简化的用户界面几次击键便可完成任务,还能保留完整的可编程性。可提高生产率、加速响应时间和降低持有总成本,用于气体、液体和固体样品中微量和痕量挥发性和半挥发性有机物的定性和定量分析,可用于有机物的确认。 /p p   正如前面所介绍的,我们针对大气成分中水溶性离子、金属元素和有机污染物等能提供全面的在线监测方案。这也为大气PM2.5和臭氧协同治理提供了坚实的监测解决方案。 /p p    a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D大气在线离子色谱监测系统 /span /a ,针对大气气溶胶中水溶性离子成分分析,可扩展至16种无机阴离子、含氧酸、有机酸和12种无机阳离子、氨氮、有机胺类的准确分离分析。 /p p   正是基于以上优势, a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D /span /a 得到国家海洋局第三研究所青睐,曾伴随着“雪龙号”的走航轨迹,以“小时”为单位时间分辨率,准确且完整记录北极科考途经海域气溶胶中27种无机阴阳离子、有机羧酸、有机胺类化合物的浓度及分布特征。为解析极地环境大气中气溶胶的组成及成因提供重要基础资料。 /p p   在线PM2.5 无机元素监测设备 GED- ICP RQ 系列用于大气颗粒物中重金属实时测定。另外,车载ICP-RQ 系列不仅仅是一个可移动实验室,更可实现移动在线大气重金属监测,将ICPMS 和GED 等采样设备集成化,充分发挥出 ICP -MS 灵敏度高、多元素快速测定以及 GED 设备无需任何样品富集及其他前处理的特点。 /p p   针对大气VOCs在线监测系统,可以同时满足117种VOCs检测(包括PAMS,TO-15和醛酮等)的需求。同时该系统还可以使用苏玛罐,气袋以及吸附管进样,可以拓展至环境大气离线方案分析和室内空气分析,例如HJ759,HJ644,HJ73等VOCs测定的标准方法。 /p
  • 【干货】火电厂超低排放烟气在线监测技术探讨
    p   火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更高要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的 a title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02005-T000-1-1-1.html" strong 烟气 /strong /a 在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。 /p p   1引言 /p p   自《煤电节能减排升级与改造行动计划(2014-2020年)》(发改能源[2014]2093号)发布后,国家出台了一系列文件、措施和鼓励性政策支持火电厂实施超低排放改造,并在东部地区进行了试点。经过试点后,“十三五”期间将在全国范围内实施火电厂超低排放改造,改造后烟气排放限值执行标准为烟尘 10mg/m3、二氧化硫35 mg/m3、氮氧化物50 mg/m3。 /p p   火电厂实施超低排放改造后,烟气污染物浓度大幅降低,烟气水分含量增大,烟气特性发生了较大改变,对污染物在线监测的精确性提出了更高要求。因此,在现阶段总结超低排放试点电厂烟气在线监测系统(CEMS)的运行情况,分析对比各种烟气监测技术的性能特点,对于“十三五”火电厂超低排放改造中CEMS的选型具有积极作用。 /p p   2 火电厂烟气在线监测技术现状 /p p   2.1 非分散红外/紫外吸收法SO2和NOX监测技术 /p p   “十一五”和“十二五”期间,国内在脱硫和脱硝上应用最为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔 (Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。即: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/ba5ac4a7-c3d8-4993-9dac-f4185deda181.jpg" title=" 11.jpg" / /p p   式中:I—光被介质吸收后的辐射强度 /p p   I0—光通过介质前的辐射强度 /p p   K—待分析组分对辐射波段的吸收系数 /p p   C—待分析组分的气体浓度 /p p   L—气室长度(待测气体层的厚度)。 /p p   2.2 紫外荧光法SO2监测技术 /p p   紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330 nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0f3e27d-62a0-4250-ba79-e190032bf99c.jpg" title=" 22.jpg" / /p p   2.3 化学发光法NOX监测技术 /p p   化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/79153f86-4b97-4e01-a90b-e0dcc5971bfa.jpg" title=" 33.jpg" / /p p   2.4 烟尘监测技术 /p p   2.4.1 光透射法烟尘监测技术 /p p   光透射法技术基于朗伯-比尔定律,即光穿过含尘烟气时透过率与烟尘浓度呈指数下降关系。在实际应用中有单光程和双光程两种类型的仪器,光透射法的准确性受颗粒物粒径分布影响较大,且灵敏度不高,一般用于烟尘浓度高(大于300mg/m3)、烟道直径大且烟气湿度低的工况。 /p p   2.4.2 光散射法烟尘监测技术 /p p   光照射在烟尘上时会被烟尘吸收和散射,散射光偏离光入射的路径,散射光强度与烟尘粒径和入射光波长有关,光散射法就是采用测量散射光强度来监测烟尘浓度的。在实际应用中有前向散射、后向散射和边向散射三种类型。该技术灵敏度高,能够测量低至0.1mg/m3的烟尘浓度,最低量程可达到0-5mg/m3,适用于烟尘浓度低、烟道直径小的情况。但该技术同样容易受水汽影响,不适宜烟气湿度高的工况。 /p p   2.4.3电荷法烟尘监测技术 /p p   所有烟尘颗粒均带有电荷,颗粒物接触或摩擦时将产生电荷交换,电荷法就是用电绝缘传感探针测量探头和附近气流或直接与探头碰撞的颗粒物之间的电荷交换来测量烟尘浓度的。该技术除受烟尘粒径变化、组分变化和烟气湿度影响外,还受烟气流速影响,主要用于布袋除尘的泄漏检测和报警等定性测量,少在CEMS中应用 。 /p p   2.4.4 贝塔射线吸收法烟尘监测技术 /p p   & amp #946 射线具有一定穿透力,当它穿过一定厚度的吸收物质时,其强度随吸收物质厚度的增加逐渐减弱,通过测量穿过物质前后的& amp #946 射线强度,即可得出吸收物质的浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/70107fe8-94e7-475f-826f-0bc4e290f1ef.jpg" title=" 44.jpg" / /p p   式中:I—通过吸收物质后的射线强度 /p p   I0—未通过吸收物质的射线强度 /p p   & amp #956 —待测吸收物质对射线的质量吸收系数 /p p   x—待测吸收物质的质量浓度。 /p p   该技术基于抽取式测量方式,不受烟尘粒径分布、折射系数、组分变化、烟气湿度等影响,可用于烟尘浓度低、烟气湿度大的工况。但抽取式测量属于点测量,不适合烟气流速变化大、烟尘浓度分层的场所。 /p p   2.5 烟气预处理技术 /p p   基于非分散红外/紫外吸收法技术的CEMS系统多数采用直抽法取样,为防止系统堵塞和水分对测量的干扰,需要对烟气进行除尘和除水处理。预处理装置的效果直接影响CMES的整体性能,通常以处理后的烟气露点作为重要指标来判定预处理的性能。 /p p   在实际应用中,“过滤+冷凝”的预处理方式较为广泛。其中烟气过滤除尘技术较为成熟,常用的有金属滤芯、陶瓷烧结滤芯和膜式过滤器。在采样探头处初步过滤,样气进分析仪前深度过滤,至少过滤掉0.5-1微克粒径以上的颗粒物。 /p p   烟气冷凝除水技术较为常用的有压缩机冷凝和半导体冷凝,可将烟气露点干燥至5℃。新兴技术中有高分子膜式渗透除水技术,采用高分子聚合亲水材料,具有高选择性除水性能,不改变烟气中SO2和NOX污染物因子成份,可将烟气露点干燥至-5℃以下。 /p p   3 几种烟气在线监测技术的性能比较 /p p   国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中最小量程指的是最小物理量程,而非软件迁移的量程。 /p p   3.1 SO2和NOX监测技术的比较 /p p   几种主要SO2测量技术的简单参数对比表见表1。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/0a6a0a06-ef1a-4c64-9c06-8ef7296c45d7.jpg" title=" 55.jpg" / /p p   几种主要NOX测量技术的简单参数对比表见表2。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/9a723c58-4207-4427-9a0b-c88d4ca6bf09.jpg" title=" 66.jpg" / /p p   根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于 175mg/m3和250mg/m3。 从表1和表2可以看出,传统非分散红外吸收法分析仪SO2和NOX的最小量程分别为286mg/m3和308mg/m3,不能满足超低排放污染物在线监测的要求。 /p p   非分散紫外吸收/差分法分析仪的最小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。预处理部分的比较将在后文专题论述。 /p p   从表1和表2还可看出,紫外荧光法和化学发光法测SO2和NOX的最小量程可达到0.1mg/m3,检出下限极低。紫外荧光法和化学发光法是分子发光气体分析技术,属于ppb级的气体分析技术。该种技术以分子发光作为检测手段,具有灵敏度高、选择性好、试样量少、操作简便等优点,已在生物医学、药学以及环境科学等方面广泛应用,也是EPA(美国环境保护署)认证中明确推荐的SO2和NOX浓度监测技术。该技术采用抽取稀释法(常用稀释比为100:1)对烟气进行预处理,避免了烟气水分、烟尘对测量的影响,在超低排放烟气监测上具有较好的适应性。 /p p   3.2 烟尘监测技术的比较 /p p   几种主要烟尘测量技术的简单对比表见表3。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0168a55-67d8-413e-84b8-0eb3052375e4.jpg" title=" 77.jpg" / /p p   在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量 另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。 /p p   3.3 烟气预处理技术的比较 /p p   火电厂实施超低放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS 的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HJ/T76标准的技术要求。表4为不同水分含量下不同预处理方式对SO2测量影响的实验对比表。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/2a5c2e14-a1a8-4109-8997-00c3fa7c0203.jpg" title=" 88.jpg" / /p p   注:标气SO2浓度500ppm,样气温度120℃,测量数值单位ppm。 /p p   从表4可看出,水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其它除水技术,其除水效果优于其他技术。也可由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。 /p p   在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。 /p p   4 结论与建议 /p p   (1)超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。 /p p   (2)在超低排放改造中,脱硫脱硝入口CEMS仍可采用常规的预处理装置和非分散红外技术测量SO2和NOX浓度,除尘器前可采用光透射法测量烟尘浓度。 /p p   (3)在脱硫脱硝出口特别是湿式除尘后,SO2和NOX的测量优先采用紫外荧光法和化学发光法技术 若采用直抽法非分散紫外吸收/差分法分析仪时,应同时配备除水性能更优越的膜渗透烟气预处理技术。 /p p   (4)在脱硫出口特别是湿式除尘后,优先采用抽取高温光散射法测量烟尘浓度。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制