当前位置: 仪器信息网 > 行业主题 > >

沼气气体探测

仪器信息网沼气气体探测专题为您提供2024年最新沼气气体探测价格报价、厂家品牌的相关信息, 包括沼气气体探测参数、型号等,不管是国产,还是进口品牌的沼气气体探测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合沼气气体探测相关的耗材配件、试剂标物,还有沼气气体探测相关的最新资讯、资料,以及沼气气体探测相关的解决方案。

沼气气体探测相关的论坛

  • 探测器气体压力

    VENUS 200探测器气体压力控制在什么范围?探测器气体压力不稳定的原因?

  • 特种气体探测系统

    特种气体探测系统

    [b]特种气体探测系统[/b]储存、输送、使用特种气体的区域应设置特种气体探测装置。自燃性、可燃性、毒性、腐蚀性、氧化性气体的使用场所、技术夹层等可能发生气体泄露处,气体设备间、气瓶柜和阀门箱的排风管口处,生产工艺设备的可燃性、自燃性、毒性、腐蚀性、氧化性气体接入阀门箱及排风管内。生产工艺设备的特种气体的废气处理设备排风口处、惰性气瓶间等,均需要设置探测装置。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2019/09/201909190943102333_5444_3989203_3.jpg!w690x690.jpg[/img][b]特气泄露报警装置设定:[/b]1. 可燃、自燃气体、有毒气体检测装置应设置一级报警或二级报警,其中常规的检测报警仅需一级报警,当需要联动控制时,检测装置应具有一级报警和二级报警。在二级报警的同时,输出接点信号至一级报警联动控制系统。2. 自燃、可燃性、毒性气体的一级报警设定值应小于或等于25%可燃性气体爆炸浓度下限值,二级报警设定值应小于或等于50%可燃性气体爆炸浓度下限值。毒性气体的一级报警设定值应小于或等于50%空气中有害物质的最高允许浓度值,二级报警设定值应小于或等于100%空气中有害物质的最高允许浓度值。3. 自燃性、可燃性气体检测报警响应时间应符合:扩散式应小于20s,吸入式应小于15s。毒性气体检测报警:扩散式应小于40s,吸入式应小于20s。4. 配有 PLC 的气瓶柜、气瓶架、阀门箱、阀门盘宜通过通讯接口与气体管理控制系统通信。5. 特种气体相对密度小于或等于0.75时,特种气体探测器应同时设置在释放源上方和厂房最高点易积气处。特种气体相对密度大于0.75时,特种气体探测器应设置在释放源下方离地面0.5m处。

  • 烃类气体探测仪

    哪里有卖“烃类气体探测仪”的?要求有20cm探测管。我们计量认证时储油库检测要用。什么牌子的比较好,常用的是哪个厂家的?

  • 烃类气体探测器

    急需一台便携式烃类气体探测器,要求分辨率不低于0.01%探测管不小于200mm,有CMC标识,求推荐

  • 【我们不一YOUNG】+温室气体监测技术应用之机载探测

    温室气体的机载高空探测主要是利用飞机、无人机或气球搭载气体测量仪器,在空中每个层高上对气体进行检测或对每个层高的气体采样后到实验室进行测量,具有灵活性高、机动性强、监测面积大等优点。机载温室气体探测是对温室气体垂直廓线的直接测量,结果具有更高的垂直分辨率与检测精度。通过近地面机载观测不仅能够精准稳定获取空间信息,而且能够弥补野外站点观测在空间连续性、区域一致性以及观测精度上的不足,解决卫星遥感时空分辨率过低以及与地面监测校准尺度不匹配的问题,成为温室气体监测的一项重要辅助手段。温室气体机载高空探测主要包含机载DIAL技术、机载FTIR技术、机载/球载TDLAS技术、机载/球载CRDS技术。美国NASA的研究人员在飞机上搭载一套DIAL系统,实现了10km高空处的CO2柱浓度检测。中国科学院安徽光机所采用一架Y-12型飞机,飞行高度保持在1km,在山东半岛地区开展了机载FTIR高空CO2、CO以及N2O的观测,飞行路线覆盖了裸土、沙滩、植被、海水以及居民区等多种地表类型。同样是中国科学院安徽光机所,将研制的小型化TDLAS系统和CRDS系统,通过球载探测方式分别实现了锡林郭勒草原和青藏高原地区高空温室气体垂直廓线探测。

  • 【我们不一YOUNG】+温室气体监测技术应用之地基探测

    地面探测可以实现温室气体浓度的高精度在线测量,但测量结果容易受到地表、下垫面地形以及垂直气团传输的影响,并且无法获取大气痕量气体垂直廓线分布数据。地基遥感利用地基仪器实时采集直射太阳光,对采集的太阳光谱进行反演,进而获得自地表到大气层顶的温室气体垂直柱浓度。与地面探测不同的是,地基遥感测量得到的诸如CO2等温室气体垂直柱浓度对气团的垂直传输不敏感。地基遥感监测结果能够为温室气体时空分布、变化特征、区域排放等的研究提供可靠的观测数据。温室气体地基遥感探测的典型方法是高分辨率的FTIR技术,监测波段主要位于近红外4000~11000cm-1波段,光谱分辨率可高达0.0095cm-1,它具有高精度、高准确性以及连续测量等优势,但高分辨的地基FTIR也具有相对较大的设备体积,建设成本较高。地基高分辨率FTIR光谱仪,简称FTS。目前,全球碳柱总量观测网(TCCON),就是基于FTS观测平台,探测多种大气温室气体的柱总量和垂直廓线,主要组分包括CO2、CH4、N2O、CO、H2O、HDO。该网络建立了严格的数据采集与反演标准,可用于研究全球的碳循环,也可为卫星的校准提供标准数据库。目前TCCON在全球已有二十多个站点。

  • 气瓶室要安装相应的气体泄漏探测装置吗?

    我们的气瓶室主要是氧气、氩气、氦气三种气体,没有易燃易爆气体。因工作需要平时气体的数量较多,40L的氧气瓶日常维持在15瓶左右,40L氦气在12瓶左右,40L气态氩气10瓶,两个180L液氩瓶。早期有安装两个可燃气泄漏探测装置,不过早已经坏了,而且这两个装置是探测可燃气体的,对我们实验室的气瓶室也不太适用,所以一直没有更换新的。像我们实验室的气瓶室需要安装相应的泄漏探测装置吗? 装什么类型的探测器,以前的那种肯定是不适用的,有没有类似的提供点参考意见,谢谢!

  • 光纤器件在气体探测方面的应用

    光纤器件在气体探测传感器方面目前应用并不多,这里讲的光纤气室作为传感的探测端可以实现测温、测干湿度、测气体浓度,更是有很多传统的传感头所无法取代的优点:响应速度快,响应速率可达到毫秒级,与传统电子、化学等方案对比提高了近1000倍,能够最及时的对待测气体浓度进行监控。特别是有害气体泄露监控方面,大大缩短响应时间,大幅提高安全系数。不受背景气体影响,不会影响待测气体的组分和形态光学非接触测量,可直接测量高温、强腐蚀性气体可远距离多点布控,采用分布式测试方案,网络化集中显示和控制,可实现远程监控。能大幅降低成本安全性高,本产品属非电系列产品,具有本征安全的极大优势。适用于易燃易爆等环境。 受电磁干扰、腐蚀性等方面影响小,光纤本身非金属,敏感元件也均采用非金属类元件,所以不会有任何电磁与化学腐蚀方面的影响。可在线监测,测量精度高可应用于环境监测油田、煤矿气体监测排放气体监测 仓库气体监测 工业生产过程在线监控 食品、药品生产过程在线监控工程用便携式气体监测

  • 【我们不一YOUNG】+温室气体监测技术应用之地面探测

    在人为温室气体排放中,地面点源排放占比最高。典型的点源排放主要包括火电、钢铁、石化、化工等重点行业固定点源及高架点源等工业点源排放。此外,城市也是二氧化碳排放的主要来源,包括地面交通、城市餐饮集中区等典型城市点源排放,废弃物处理行业的废弃物填埋场和污水处理过程点源排放,以及农林畜牧养殖业点源排放等。针对地面点源温室气体监测,又分为原位点式探测和开放光路区域式探测两种方式,代表性检测技术有NDIR、TDLAS、CRDS、OA-ICOS和FTIR。原位点式探测仪器,其内部设计有密封式或开放式吸收池,面向的是环境中特定位置处或密闭舱室内的温室气体监测,仪器便携性好,可以通过移动监测仪器实现不同点位的温室气体原位探测,适用于小范围区域的气体排放监测,代表性检测仪器包括美国Licor公司生产的NDIR便携式CO2分析仪、Picarro公司生产的CRDS高精度CO2/CH4/N2O分析仪、中国科学院安徽光机所研制的OA-ICOS高精度CO2/CH4分析仪等。开放光路区域式探测仪器,利用一对收发光学端,面向开放区域下的温室气体监测,适用于几十米至几百米范围的较大空间尺度监测,代表性检测仪器包括安徽蓝盾光电子股份有限公司生产的TDLAS开放光路长光程CO2/CH4分析仪和中国科学院安徽光机所研制的FTIR开放光路CO2/CH4分析仪。

  • 【我们不一YOUNG】+温室气体监测技术应用之卫星荷载探测

    星载大气温室气体探测指的是利用卫星搭载的光谱检测仪器来获取大气中气体分子的吸收光谱信息,从而反演出目标气体的浓度参数。星载探测具备全球覆盖和高采样频率的特点,可在全球尺度上对大气温室气体开展广范围、长时间的持续监测,因此星载探测可以促进全球温室气体源汇分布的研究。目前国内外已有多颗用于温室气体探测的卫星,主要包括日本的GOSAT、美国的OCO-2、中国的TanSat和高分GF-5等。温室气体卫星遥感观测所采用的光谱检测技术主要包括FTIR技术、DIAL技术、LHS技术和SHS技术等。日本GOSAT卫星上搭载的FTIR光谱仪的光谱分辨率达到0.2cm-1,能够实现CO2、CH4以及H2O等温室气体成分的柱浓度和垂直廓线探测。搭载于GF-5上的温室气体探测仪GMI,采用新型的观测技术—SHS技术获取最高达0.035nm的高分辨率光谱,能够实现CO2和CH4的全球观测,是国际上首台基于该体制的星载温室气体遥感设备。此外,美国NASA发展了全光纤近红外LHS技术,实现了大气CO2、CH4柱浓度测量,并研制了星载LHS探测系统,用于测量平流层大气CO2、CH4浓度,不过卫星目前尚未发射。

  • 中国2016年将发射两颗具备温室气体探测能力卫星

    中 国气象局国家卫星气象中心将在2016年发射的风云三号气象卫星D星上将搭载温室气体探测仪器;同时,由国家科技部立项研制的中国二氧化碳监测卫星已于去年7月转入初样研制阶段,也计划于2016年发射。  这就意味着,2016年,中国将发射两颗具备温室气体探测能力的卫星。  国家卫星气象中心主任杨军日前向新华社记者透露了这一信息。  “国家气象卫星中心完成了地面应用系统初步设计,正着力开展相关产品的科学算法研究。”杨军说,与此同时,风云三号气象卫星温室气体监测仪和二氧化碳监测卫星的研制工作也在有序推进中。  综合利用风云气象卫星和国内外其他卫星开展气候变化监测和分析,被列入2014年中国气象局应对气候变化重点工作。  23日在纽约举办的联合国气候峰会上,中国国务院副总理张高丽以中国国家主席习近平特使身份与会。他在讲话中指出,中国将尽快提出2020年后应对气候变化行动目标,碳排放强度要显著下降,非化石能源比重要显著提高,森林蓄积量要显著增加,努力争取二氧化碳排放总量尽早达到峰值。  如何减少碳排放,承担起共同而有区别的责任,成为中国政府致力目标。中国在发展中国家中最早制定实施应对气候变化国家方案,近期又出台《国家应对气候变化规划》,确保实现2020年碳排放强度比2005年下降40%-45%的目标。  2007年开始,国家卫星气象中心卫星气象研究所副所长张兴赢在国内率先着手研究卫星温室气体探测仪的指标。当时全球尚未有任何一颗专门用于温室气体探测的卫星在轨运行,但美国和日本已经在立项研制专门的温室气体探测卫星。  2010年,中国气象局推动论证立项了风云三号气象卫星温室气体探测仪器,计划搭载在中国风云三号气象卫星的第四颗星上。  “目前我们已经发射了风云三号的A、B、C三颗卫星,计划第四颗卫星,也就是风云三号D星搭载温室气体监测仪器,预计2016年发射。”张兴赢说。  国际上,日本于2009年初在全球率先发射成功第一颗专门的温室气体观测卫星,同期美国发射专门的二氧化碳观测卫星失败。  “日本温室气体卫星上天后,其实还存在不少问题,探测的精度一开始还达不到要求。”张兴赢指出,目前大气中的二氧化碳含量大约是400ppm,必须把探测精度误差控制在1%以内,也就是4ppm以内才有科学探索的价值。  中国第四颗风云三号气象卫星上即将搭载的温室气体探测仪器,与日本的温室气体卫星比较相似,但对一些细节的技术指标进行了优化,将实现100公里探测一个点,并且增设一个一氧化碳的探测通道。  “因为碳循环中除了二氧化碳和甲烷,一氧化碳也是非常重要的成分。”张兴赢说,目前,日本正在规划的第二颗温室气体观测卫星,指标里也增加了一氧化碳探测通道。  今年7月,美国再次发射碳观测卫星,目前正在在轨测试阶段。张兴赢指出,其观测目标与日本温室气体卫星不完全一样。  “美国的卫星只有一个专门的二氧化碳探测仪器,是个小卫星,这个仪器可以把观测点做得很小,1-2公里,但是全球的覆盖需要半年左右;卫星具备灵活的姿态调整,可以实现对某个热点地区长时间的驻足观测,因此对热点地区的碳排放研究很有意义。”他说。  中国将于2016年发射的二氧化碳监测卫星,基本目标与美国的碳卫星一致。  “2016年,中国两颗具备温室气体探测能力的卫星都将发射升空,可以实现全球覆盖和高精度热点探测的互补。”张兴赢指出,此举对中国未来开展碳排放研究和应对气候变化至关重要,也将大大增强中国在国际气候变化谈判中的话语权。

  • 【分享】RB-TZY智能有毒有害气体探测器

    【分享】RB-TZY智能有毒有害气体探测器

    RB-TZY系列智能气体报警器可将现场监测到的有毒有害气体浓度转换成标准4-20mA电流信号输出,并具有在线免停机数字自由组态、带背光多参数LCD现场显示、现场声光报警、传感器更换即插即用、全量程温度自动跟踪补偿等特点,是完全国际标准智能化的有毒有害气体探测器。 RB-TZY系列智能气体探测器具有性能卓越、运行稳定可靠、安装维护方便、测量气体种类齐全等特点,极大地满足了工业现场安全监测对设备高可靠性稳定运行和测量气体种类多样化的要求,可已广泛应用于石油、化工、冶金、炼化、燃气输配、生化医药及水处理等行业。技术特点·标准两线制 4-20mA 电流信号输出,兼容现有显示报警控制单元或 DCS(集散控制系统)·带背光大屏幕多参数 LCD 显示,直观显示气体浓度、类型、单位、百分比条棒以及工作状态等·现场声光报警,报警点全量程可调, PC 机或标准 PDA现场报警设置·可独立构成气体检测报警装置,实现气体检测显示和报警功能·即插即用(Plug and Play!)国际标准智能化传感器·更换智能化传感器无须现场标定,关键参数自动识别·传感器故障自动识别并现场显示,同时输出相应故障电流信号·全量程范围温度数字自动跟踪补偿,保证测量准确性·本机标准三按键实现单人单点现场维护·标准 PDA 智能用户软件实现单人单点设置维护·现场、远程设置维护不影响控制单元·配置防爆接线盒,探测器调试、接线均可在接线盒中实现,无需打开机器外壳http://ng1.17img.cn/bbsfiles/images/2012/04/201204261101_363466_2522805_3.jpg土豆:删除掉广告部分,勉强算个分享,但楼主发其他广告贴,我可要删除了。

  • 【分享】半导体探测器

    【分享】半导体探测器

    半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,晶体管电子学的发展促进了半导体技术的发展。半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型(下图由左至右)。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291643_192752_1615922_3.jpg[/img]

  • 探测器气体流量不稳定是咋回事

    帕钠科Axios 最近出现一个问题:探测器气体流量一直很稳定,但是现在突然会出现较大波动(从0.6突然降到0.45),然后很快又变回原来的正常值了,大家有没有遇到过这样的问题啊,这是哪出现问题了吗?http://simg.instrument.com.cn/bbs/images/default/em09512.gif

  • 智能气体传感器探测化学药品更灵敏

    报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管,第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当“接线员”,当一个试管正“忙”时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子“热线”,可以探测某些特殊分子。范旭东说:“如果怀疑某地有化学武器泄露,我们就送一批这种专用分子‘热线’过去,能极灵敏地识别出这些成分。” 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。

  • 【分享】RB-TZ型红外CO2气体探测器

    【分享】RB-TZ型红外CO2气体探测器

    用途及特点 RB-TZ型红外CO2气体探测器采用英国进口红外CO2气体传感器,可用于连续检测工业生产、尾气排放等环境下的CO2气体,也可以用于检测生产运行中的管道、设备等的CO2气体泄露检测。 本产品可广泛用于轻工、化工、造纸、食品、冶金、焦化、生物制药、化肥、石油化工、公用事业等行业的CO2气体的检测与报警。RB-TZ型气体探测器主要由红外CO2气体传感器、变送电路、防爆外壳以及其他安装配件组成。其中气体传感器采用英国原装进口红外CO2气体传感器,具有精度高、响应快、选择性好、重量轻、体积小、性能稳定可靠、使用寿命长等特点。 技术指标 型号规格:RB-TZ 检测气体:CO2 检测范围:0 to5000ppm,5%,10%,20%,65%,100% 输出信号:4-20mA DC 防爆等级:EXdIICT6 工作温度:-20℃―+50℃ 重 复 性:≤2%F.S 示值误差:±5%F.S 响应时间:T90≤30s 工作湿度:15%RH-95%RH 检测原理:单波非色散红外原理(NDIR LED),具有厂家专利的自校准技术 检测方式:扩散式 显示方式:现场数显 工作时间:连续 电源电压:21-27V DC 接线方式:三线制 电源损耗:最大工作电流≤200mA 传感器寿命:≥5年(正常使用下) 外形尺寸:(179×147×120)mm 重 量:1.90kg http://ng1.17img.cn/bbsfiles/images/2012/04/201204261100_363465_2522805_3.jpg土豆:不要在资料分享贴里放联系方式,广告贴会被处理的。

  • 中国气象局气象探测中心:聚力攻坚温室气体观测关键技术研发及应用

    自主可控,观测精密——中国气象局“温室气体观测关键技术研发及应用”青年创新团队(以下简称“创新团队”)为推动我国温室气体观测事业的发展而努力。紧紧围绕《气象高质量发展纲要(2022—2035年)》的统筹规划,面向气象高质量发展对温室气体站网建设、能力提升和质量加强的业务服务要求,针对国家双碳战略的重要决策部署,为精确评估我国减排成效并“摸清家底”,在精密观测和技术自主创新方面狠下功夫。创新团队由来自青海、浙江、广东、黑龙江等省气象局、中国气象局广州热带海洋气象研究所以及复旦大学的20名青年组成。汇集了各单位的业务专业知识以及来自科研、高校、企业等优势资源,致力于温室气体观测关键技术的研发和应用,以推动我国温室气体观测事业发展。该团队从我国温室气体观测面临的主要问题出发,包括由于观测装备国产化不足限制大规模开展、二氧化碳/甲烷缺乏国家计量基准、观测主要在近地面垂直观测资料缺乏、温室气体浓度时空变化机制研究不够深入等,设立了四个方面共计12项任务,努力推动装备自主、计量可控、观测立体、数据可靠、服务有效。这些任务旨在解决现有观测体系存在的瓶颈,推动温室气体观测技术的创新和进步。为确保研发工作的顺利进行,创新团队依托于中国气象局大气探测中心,并根据《联合国气候变化框架公约》等对温室气体基础设施和数据产品的要求,建立了高精度温室气体装备测试平台、运行监控和数据质控平台、标气管理和标准平台等业务信息化平台,为团队的工作提供了强有力的支持,保障了观测装备的精确性和可靠性。该团队在温室气体观测的立体化方法和技术上重点着力。为了弥补垂直观测资料相对较少这一不足,创新团队利用高山观测站和气象探空等平台,开展了大规模的垂直观测。以此成功获取了不同高度上的温室气体浓度和变化趋势数据,为气候模型和减排政策提供了重要依据。针对观测装备的需求,该团队进行了深入研究和探索,在光腔衰荡法国产高精度温室气体分析主机噪声降低技术取得新进展。针对国产光腔衰荡法国产高精度温室气体分析主机艾伦方差所示低频噪声较大的问题,使用多手段降低衰荡时间不确定度。采用三角环形腔极大提升有效光程,进而提升整体精度;通过抑制高阶模引入的拍频噪声,利用稳频技术压窄激光线宽等方法降低背景噪声,提升信噪比,降低探测不确定度。目前,已在两个大气本底站国产光腔衰荡法国产高精度温室气体分析主机开展观测试验。该团队完成了低干扰进气除水系统的集成、测试和应用示范。结合大气本底站业务运行和维修维护经验,采用低露点无尘压缩气源、无损渗透除湿干燥管、集成组装式电磁阀组、定制低泄率无油隔膜泵、小型化气体流量计、压力传感器等多项新技术、新装置,优化了气路结构设计,形成集成紧凑的预处理系统。目前,已在浙江省多个温室气体观测站开展应用示范。此外,该团队还完成基于小型无人机的园区观测试验预研工作。10月,在上海东滩湿地公园完成两个航次500米以下的温室气体垂直廓线研究,获得初步的甲烷浓度廓线。针对超级排放源园区,确定大致羽流分布和羽流横截面浓度分布,制定观测实验方法。该团队非常注重成果的应用与推广,将研究成果及时转化为实际应用,为温室气体减排和环境保护提供技术支持。在温室气体观测关键技术的研发和应用方面取得了重要的进展。这些成果不仅推动了我国温室气体观测事业的发展,还为温室气体减排和环境保护作出了重要贡献。[来源:中国气象报社][align=right][/align]

  • 浅谈沼气分析仪使用前的脱硫工艺

    谈沼气分析仪使用前的脱硫工艺沼气在使用前的必须要进行脱硫处理,脱硫工艺一般有三种:1.湿法脱硫  湿法脱硫可以归纳分为物理吸收法、化学吸收法和氧化法三种。物理和化学方法存在硫化氢再处理问题,氧化法是以碱性溶液为吸收剂,并加入载氧体为催化剂,吸收H2S,并将其氧化成单质硫,湿法氧化法是把脱硫剂溶解在水中,液体进入设备,与沼气混合,沼气中的硫化氢与液体产生氧化反应,生成单质硫吸收硫化氢的液体有氢氧化钠、氢氧化钙、碳酸钠、硫酸亚铁等。成熟的氧化脱硫法,脱硫效率可达99.5%以上。  在大型的脱硫工程中,一般采用先用湿法进行粗脱硫,之后再通过干法进行精脱硫。2干法脱硫  干法脱除沼气气体中硫化氢的设备基本原理是以O2使H2S 氧化成硫或硫氧化物的一种方法,也可称为干式氧化法。干法设备的构成是,在一个容器内放入填料,填料层有活性炭、氧化铁等。气体以低流速从一端经过容器内填料层,硫化氢氧化成硫或硫氧化物后,余留在填料层中,净化后气体从容器另一端排出。3.生物脱硫  生物脱硫技术包括生物过滤法、生物吸附法和生物滴滤法,三种系统均属开放系统,其微生物种群随环境改变而变化。在生物脱硫过程中,氧化态的含硫污染物必须先经生物还原作用生成硫化物或H2S然后再经生物氧化过程生成单质硫,才能去除。在大多数生物反应器中,微生物种类以细菌为主,真菌为次,极少有酵母菌。常用的细菌是硫杆菌属的氧化亚铁硫杆菌,脱氮硫杆菌及排硫杆菌。最成功的代表是氧化亚铁硫杆菌,其生长的最佳pH值为2.0~2.2。转载的

  • 沼气中各组分气体的含量标准

    污泥厌氧消化的厌氧罐所产生的沼气,它的各气体组分含量的标准什么,例如:氧气在控制在什么范围内,硫化氢?一氧化碳?等

  • 【分享】正比计数管探测器

    正比计数器proportional counter  用气体作为工作物质,输出脉冲幅度与初始电离有正比关系的粒子探测器,可以用来计数单个粒子,并根据输出信号的脉冲高度来确定入射辐射的能量。这种探测器的结构大多采用圆柱形,中心是阳极细丝,圆柱筒外壳是阴极,工作气体一般是隋性气体和少量负电性气体的混合物。入射粒子与筒内气体原子碰撞使原子电离,产生电子和正离子。在电场作用下,电子向中心阳极丝运动,正离子以比电子慢得多的速度向阴极漂移。电子在阳极丝附近受强电场作用加速获得能量可使原子再电离。从阳极丝引出的输出脉冲幅度较大,且与初始电离成正比。正比计数器具有较好的能量分辨率和能量线性响应,探测效率高,寿命长,广泛应用于核物理和粒子物理实验。  1-50keV的X射线经常用正比计数器进行探测。要求是具有较薄的入射窗口,以获得较低的低能端探测下限,较大的观测面积,以及良好的气密性。常用的是铍窗正比计数器。当代X射线探测器多采用正比计数器阵列和装有多根阳极丝和阴极丝的多丝正比室,以获得更大的有效观测面积。  近年来制作的气体闪烁正比计数器,能量分辨率比一般气态正比计数器约高一倍。为了观测较弱的X射线源,需要高灵敏度的探测器,为此制作了大面积窗口正比计数器,如小型天文卫星-A携带的窗口面积为840厘米的铍窗正比计数器,采用的是正比计数器组合的方法。此外,确定X射线源的位置需要有高分辨率的探测器;而为了制造这种探测器,就相应地需要制作对测定位置灵敏度高的正比计数器。

  • 气体检测仪表的发展现状

    作为仪器仪表的一个重要分支]气体检测仪器仪表(也称“气体探测器”)应用领域广泛,覆盖了工业、农业、交通、科技、环保、国防、航天航空及日常生活等各方面。通常,工业过程气体监控分析仪器划归分析仪器领域,常见的气体检测仪器仪表通常小型化、便携或固定式、独立工作或联成网络,广泛适用于石油、化工、冶金、采矿、制药、半导体加工、喷涂包装等工业现场和家庭、商场、液化气站、煤气站、加油站等民用/商用需防火防爆、预防中毒、空气污染的场所,以及农业温室气体检测、沼气分析和沼气安全监控和环保应急事故、恐怖袭击、危险品储运等方面。  近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达28.5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。  科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。  从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。[color=#ffffff]本文来自: 泰纳科技][/color]

  • 大气科学之气象观测==气象火箭探测

    气象火箭探测    用火箭携带仪器对中高层大气进行探测。探测高度主要在30公里以上,80公里以下自由气球所达不到的高度。探测项目包括温度、密度、气压、风向和风速等气象要素,以及大气成份和太阳紫外辐射等。当火箭达到顶端时,抛射出探空仪, 利用丝绸或尼龙制成的降落伞使仪器阻尼下落,可探测20─70公里高度的气象要素,如果火箭上升到顶端,放出金属化尼龙充气气球或尼龙条带或其它轻质材料,用精密雷达跟踪,可探测30─100公里上空风、密度,再推算出温度、气压等气象要素。此外,还有用取样火箭测定大气成份和臭氧含量等,以及用火箭来研究电离层、太阳紫外辐射等。 由于火箭飞行的高度,一般可达100公里以上,因此延伸了无线电探空仪的探测高度。气象火箭的探测资料可供研究中层大气以及宇航和导弹发射等方面使用。虽然利用气象火箭探测大气的工作从第二次世界大战末期才开始,但到1968年已发展成了全球性的火箭探测协作网,其中许多测站都定期发射火箭,交换探测资料,对比探测仪器。  气象火箭一般可分箭锥(箭头)、设备舱和尾段3部分。箭锥内部安装探测仪器,设备舱内安装阻尼降落伞和电路抛射系统,尾段安装有火箭发动机和燃料舱,火箭后部还装有尾翼,用以稳定火箭的姿态。

  • 【分享】“凤凰号”火星探测器携带七种探测仪器

    “凤凰号”火星探测器携带七种探测仪器 “凤凰号”探测器是一个由3条腿支持的平台,平台直径1.5米,高约2.2米,其中心是一个多面体仪器舱,舱左右两侧各展开一面正八边形太阳能电池阵,跨度5.52米。与“火星极地着陆器”相比,“凤凰号”探测器的最大变化是提高了太阳能电池的性能。 “凤凰号”探测器将携带7种科学探测仪器,分别是: (1)机械臂(RA) 它是“凤凰号”探测器上最重要的设备,用以挖取火星表面及表面下层的土壤样品。它将挖得的样品送入着陆器搭载的“显微镜电化学与传导性分析仪”和“热与气体分析仪”中进行化验分析。 机械臂长2.35米,有4个自由度,末端装有锯齿形刀片和波纹状尖锥,能在坚硬的极区冻土表面,挖掘1米的深坑。机械臂还可为装在臂上的相机调整指向,引导测量热与电传导性的探测器插入土壤。 (2)显微镜电化学与传导性分析仪(MECA) 它是在“火星勘探者”计划中用的仪器基础上略加改进而成,包括湿化学实验室、光学显微镜、原子力显微镜和热与电传导性探测器4台仪器,用以检测土壤的元素成分以及给土壤样品拍摄成像。 (3)热与气体分析仪(TEGA) 它包括微分扫描热量计和质谱仪两部分,用以对土壤样品的吸热和散热过程进行观测记录,并对加热后释放出的挥发物进行分析。 (4)表面立体成像仪(SSI) 用以测绘高分辨率的地质图和机械臂作业区地图,进行多光谱分析和大气观测。 (5)机械臂相机(RAC) 用以拍摄机械臂采集的土壤样品的高分辨率图像,分析土壤颗粒的类型和大小。 (6)火星下降成像仪(MARDI) 用以在“凤凰号”下降过程中拍摄火星表面,堪察着陆点附近的地质情况。 (7)气象站(MS) 这是为“凤凰号”着陆器惟一专门研制的新仪器。它由激光雷达和温度压力测量装置两部分组成,用以了解当地大气的特性。

  • 氢气气体发生器

    为什么氢气气体发生器SGH-300流量有读数360,而拧上密封阀后压力没有,用皂液测试没有漏,管路没有阻塞,压力表能坏么?/:$ 小女子刚刚接触色谱请多指教

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制