织物耐磨仪

仪器信息网织物耐磨仪专题为您提供2024年最新织物耐磨仪价格报价、厂家品牌的相关信息, 包括织物耐磨仪参数、型号等,不管是国产,还是进口品牌的织物耐磨仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合织物耐磨仪相关的耗材配件、试剂标物,还有织物耐磨仪相关的最新资讯、资料,以及织物耐磨仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

织物耐磨仪相关的仪器

  • Martndale 马丁代尔耐磨及起球性测试仪,Martndale abrasion testerMartndale 马丁代尔耐磨及起球性测试仪,Martndale abrasion tester用途:用于测试纺织品,鞋类的外层、衬底和类似织物――等马丁代尔耐磨法的耐磨性Martndale 马丁代尔耐磨及起球性测试仪,Martndale abrasion tester符合标准:BS 3424, EN 388, ASTM D4966, DIN 53863, SATRA TM 31, ISO 20344, GB/T20991,GB/T4802.2 AQ 6102等标准要求Martndale 马丁代尔耐磨及起球性测试仪,Martndale abrasion tester产品技术规格产品型号:HY-752摩擦锤转速:47.5± 2r/min 可同时测试样品数:6个(6工位分别独立计数,可在不同时间置入样品,并在规定时间到达后鸣迪自动停止) 大屏幕触摸屏中文菜单控制器,PLC可编程逻辑控制器 内外锤传动比:30:32;平行度(试样夹与磨台间距):0.04mm 摩擦尺寸:(60± 0.5)mm 荷重:(595± 7)g(9Kpa压重)六组,(795± 7)g(12Kpa压重) 试样夹衬垫的表面直径:(28.65± 0.25)mm 摩擦基面直径:(138~141)mm 圆形裁刀,裁切直径38mm、140mm压盘一个:质量(2.5± 0.5)kg;直径(120± 10)mmMartndale 马丁代尔耐磨及起球性测试仪,Martndale abrasion tester产品配置试样夹六套9Kpa压重、12Kpa压重组件各六套可选:38mm、140mm圆形取样器一台(包含备用手术刀片二套)可选:英国产SM25标准磨料,羊毛毡垫,评级箱,EMPA评级图卡仪器校准计量报告书:&ldquo CNAS&rdquo 实验室国际认可校准报告书一份
    留言咨询
  • 用于各种纺织品、皮革、地毯、橡胶、塑料薄片等材料的耐磨试验。
    留言咨询
  • DRK128C 9工位马丁代尔耐磨仪 可测机织物和针织物,设备适用标准:GB/T4802.2、GB/T21196.1~4、GB8690、ASTMD4966、ASTMD4970、ISO12945.2,用于测定机织物和针织物的耐磨损性能,也可适用于非织造物。不适用于长绒毛织物。可用于测定毛织物在轻微压力下的起毛球性能。不适用于厚度超过3mm的毛织物。DRK128C 9工位马丁代尔耐磨仪 可测机织物和针织物,仪器主要规格和技术特征:1、磨擦头位数:9个2、试样夹直径:Φ38mm和Φ90mm3、磨台直径:Φ120mm4、直径38mm试样夹和导向杆总重量为:(198±2)g 直径90mm试样夹、导向杆和O型橡胶圈总重量为:(155±1)g 直径90mm试样夹、导向杆、O型橡胶圈和加载块总重量为:(415±2)g 重锤:395g±2g、594g±2g 加载块和试样夹具组件的总质量应为: 大块(795±7)g即施加在试样上的名义压力为12 kPa 小块(595±7)g即施加在试样上的名义压力为9 kPa5、记数范围:预置计数1~990000次6、试验速度(磨头转速):47.5±2.5r.p.m注:标配只带47.5±2.5r.p.m,其余25r.p.m、75r.p.m均需选配。7、电源:220V±10%、50Hz8、电机功率:120W9、外形尺寸:850×600×400mm10、重量:仪器120kg  附件箱22kgDRK128C 9工位马丁代尔耐磨仪,仪器结构特征: 1、本机由仪器主体和电气两部分组成,是台式结构。金属构件是仪器的主体,它通过电控系统来进行试验工作。其动作由电机驱动,经过减速器、导板等驱动磨头运动,磨头运动的轨迹与织物的实际磨损过程相似。2、当预置次数完成后,仪器自动停机。3、人机界面操作简单方便,显示直观。注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
    留言咨询

织物耐磨仪相关的方案

织物耐磨仪相关的论坛

  • 【分享】织物的耐磨性测定

    织物耐磨性是指织物抵抗与另一物体摩擦而磨损的性能。在服用过程中,织物磨损的受力一般都较小,但作用频繁,而且受磨损的方式与部位因人而异。因此,进行织物耐磨试验时,磨料类型以及磨损方式的选择尤为重要。常用的磨料有砂纸、炭化砂轮、钝刃刀片及特制的橡胶板等。磨损的方式有平磨、曲磨、折边磨、动态磨、翻动磨(更适合针织等)。本试验采用织物平磨仪。1、仪器的结构和工作原理将织物试样在一定条件下与磨料(砂轮)接触并做相对运动,使试样受到多方向的磨损。通过对比织物磨损前后的变化来评价其耐磨性。圆盘式织物平磨仪的结构如图所示:http://www.e-dyer.com/userfiles/image/aaW%2825%29.jpg1——试样 2——工作圆盘 3——左方支架 4——右方支架5——左方砂轮磨盘 6——右方砂轮磨盘 7——计数器 8——开关 9——吸尘装置其工作原理如下:织物试样1 固定在工作圆盘2 上,圆盘以70r/min 做等速回转运动。圆盘上方有两个支架3、4,其上分别装有2个砂轮磨盘5,6,它们可在自身轴上回转。试验时,工作圆盘上的试样与2个砂轮磨盘接触并做相对运动,试样受到多个方向磨损后形成一个磨损圆环。磨盘对试样的压力可通过改变支架上的加压重锤来调节(支架本身的质量为250g)。砂轮有多种类型供选择。此外,还可用吸尘装置9 来自动清除试样表面的磨屑。

  • 影响织物耐磨性的因素有以下几方面?

    影响织物耐磨性的因素有以下几方面:(一)、纤维的性状(1)纤维的几何特征 纤维长时,纤维间抱合力大,织物耐磨性好。(2)纤维的力学性质 断裂伸长率、弹性回复率及断裂比功是影响织物耐磨性的决定性因素。断裂伸长率、弹性回复率及断裂比功大的,耐磨性一般较好。(3)合成纤维的软化点 合成纤维到达软化点时,由于纤维弹性急速变差,会使织物耐磨性明显变差,故软化点越低,耐磨性越好。(二)、纱线性状(1)纱线的捻度 纱线捻度要适中。捻度过大,纤维应力过大,纤维片断可移性,并且纱线变硬,局部受力,耐磨性差;捻度过小,纤维束缚小易从纱线中抽出,耐磨性差。(2)纱线的条干 纱线条干差,粗处结构较松,摩擦时纤维易抽出,耐磨差。(3)单纱与股线 线织物的耐磨性优于纱织物。 4)混纺沙的径向分布 耐磨的纤维分布在纱的外层,耐磨性较好。(三)、织物几何结构(1)织物厚度 织物厚些,耐平磨性较好;反之,耐屈曲磨及折边磨性较好。(2)织物组织 当经纬密较低时,平纹织物较为耐磨;当经纬密较高时,缎纹织物较为耐磨;当经纬密适中时,斜纹织物较为耐磨。(3)织物中经、纬纱线密度 经、纬纱线密度适当大些,耐平磨性好。(4)经、纬密 在中等经、纬范围内,随经、纬密增加,摩擦时纤维不易抽搐,有利于织物耐磨,尤其是耐平磨性。但随经、纬密增大,刚硬度增大,纤维可移性变差,耐磨性变差。(5)织物单位面积的重量 耐磨性随织物单位面积的重量增加线性增大。(6)织物表观密度 织物表观密度达0.6g/cm 时,耐折边性明显变差。(7)织物结构相和支持面 经、纬纱屈曲波高相近,构成等支持面,耐磨好。 (四)、试验条件 湿温度、摩擦方向及压力等对织物耐磨性有影响。(五)、后整理 棉粘织物经非热熔性树脂整理后,当压力较大、而且摩擦较为剧烈时,整理后的织物耐磨性明显下降

  • 织物耐磨性

    织物耐磨性第2部分,磨了20000次都没有磨坏,是要磨多少次?棉的面料。

织物耐磨仪相关的耗材

  • James Heal 马丁代尔耐磨测试用羊毛磨布 SM25羊毛毡
    James Heal 马丁代尔耐磨色牢度测试用羊毛布 SM25Martindale摩擦布SM25 1.6m宽(5/25/50m),用于James Heal Martindale***和起球测试仪 将SM25布放在机织/非织造毛毡垫上,与织物摩擦。JAMES heal 羊毛毡 马丁代尔羊毛毡 非机织 机织毛毡垫 1. JH714-601马丁代尔耐磨测试用羊毛毡,非机织 Non-Woven Felt Pads,直径 90mm Diameter ,每盒 20片; 2. JH714-602马丁代尔耐磨测试用羊毛毡,非机织 Non-Woven Felt Pads,直径 140mm Diameter ,每盒 20片; 3. JH714-611马丁代尔耐磨测试用羊毛毡, 机织 Woven Felt Pads,直径 90mm Diameter ,每盒 20片; 3. JH714-612马丁代尔耐磨测试用羊毛毡, 机织 Woven Felt Pads,直径 140mm Diameter ,每盒 20片;
  • 酒精耐磨试验机
    仪器概述:本机适用於各种非导体涂膜层之耐磨耗试验机可使用橡皮擦或酒精磨擦布料之耐磨耗试验机主要技术参数:磨擦频率: 无段式可调整转速频率;磨擦计数器: 可调整 0~999999 次;往返行程: 0~60 次 (可调);磨擦距离: 10mm~50mm 可自由调整;测试杆可上下高低调整需要的距离;尺寸大小: 63x45x37 (LxWxH) cm。电源:AC220V 50Hz.标准配件: 测试杆75克±1 2支;酒精磨擦头 11∮ 2支;砝码:500克,200克,100克,50克,25克,20克,10克各两只;砂纸 2片,毛刷 1只,工具一组。
  • 204202代尔塔牛皮手套 电焊手套 防刺耐磨
    204202代尔塔牛皮手套 电焊手套 防刺耐磨由上海书培实验设备有限公司提供,产品规格齐全,量多从优,欢迎客户来电咨询选购产品介绍:代尔塔 204202 防护手套 牛皮手套 电焊手套 劳保手套 防刺耐磨,手套牛皮掌面,优异的耐磨损、防刺穿性能,有效保护手掌,适合搬运与普通强度劳动工作。全棉帆布掌背和袖口,手感舒适,提高手套耐磨性,吸汗透气,可以缓解双手长时间劳作后的疲劳感,提升效率。手套掌面、拇指和食指均加强保护,人性化设计,有效保护主要部位不受损伤,增强抓握力,经久耐用,适用范围广。产品特点:第一:手套牛皮掌面,优异的耐磨损、防刺穿性能,有效保护手掌,适合搬运与普通强度劳动工作。第二:全棉帆布掌背和袖口,手感舒适,提高手套耐磨性,吸汗透气,可以缓解双手长时间劳作后的疲劳感,提升效率。第三:手套掌面、拇指和食指均加强保护,人性化设计,有效保护主要部位不受损伤,增强抓握力,经久耐用,适用范围广。产品技术参数:名称:优质牛皮缝线手套材质:牛皮颜色:灰色/蓝色尺寸:尺码10,长度235/1.1

织物耐磨仪相关的资料

织物耐磨仪相关的资讯

  • 皮革内饰材料的耐磨性能可以怎么检测?
    对于车用皮革耐磨性测试方法,上海千实工程师认为,STROLL 耐磨法、TABER 耐磨法和马丁代尔耐磨法都能适用。  1、TABER 耐磨法  美国标准 ASTM D 3884-2009《Standard test method for abrasion resistance of textile fabrics (TABER apparatus)》对TABER 耐磨法进行了规定。TABER 耐磨法的试验原理为:被测试样放置在一个旋转平台上,通过其上方的两个滚动的摩擦轮在一定负荷下与试样进行旋转摩擦运动来磨损试样。一个摩擦轮朝外,另一个摩擦轮朝内摩擦试样,形成一个圆环形的磨损痕迹。经过规定的摩擦次数后通过外观评估试样的磨损程度。  操作过程:将试样正面朝上固定于旋转平台上,并将选定的砂轮安装在支撑压杆上。选择合适的负荷后,将支撑压杆放下使砂轮与试样表面接触,连接并打开吸尘装置。启动仪器,按计数器设定的旋转次数进行测试。测试结束后,取下试样,检查并记录试样的磨损情况,并用灰色样卡按 GB/T 250-2008《纺织品色牢度试验 评定变色用灰色样卡》。  2、马丁代尔耐磨法  马丁代尔耐磨法经常用于纺织品的耐磨性试验和起毛起球评价,我国国家标准 GB/T3903.16-2008《鞋类 帮面、衬里和内垫试验方法 耐磨性能》规定了采用马丁代尔法测试鞋面的测试方法,同时也适用于车用皮革耐磨耗性能的测试。  采用马丁代尔耐磨法,在恒定压力下用标准摩擦织物摩擦试样。摩擦织物和试样之间进行李莎茹图形的相对运动,产生所有方向上的摩擦。完成规定的摩擦次数后评定试样损坏程度。  3、STROLL 耐磨法  依据ASTM D 3886-1999 《Standard testmethod for abrasion resistance of textile fabrics  (inflated diaphragm apparatus)》,STROLL 耐磨法的试验原理为被测试样放置在具有恒定气压的充气橡胶膜片上,使用具有指定表面特征的砂纸对试样进行摩擦。经过规定的摩擦次数后通过外观评估试样的磨损程度。  操作步骤:将试样在平整状态下放置在橡皮膜上,再将砂纸放置在磨料板上,并使砂纸连接的接触头与砂纸的表面平齐。然后在膜片下方施加 28 kPa 的气压,在磨料板上方施加 454 g 的压力,并确保气压的控制以及已充气样品与有负载的砂纸间的接触处于稳定和平衡状态。启动仪器,按计数器设定的旋转次数进行测试。测试结束后,取下试样,检查并记录试样的磨损情况,并用灰色样卡按 GB/T 250-2008《纺织品色牢度试验 评定变色用灰色样卡》 评定试验区域内的颜色变化。  操作时,在试样背面平垫一块厚度为(3±1)mm、 密度为(30±3)kg/m3 的聚氨酯泡沫塑料,并用夹环将试样固定在磨头上,再将桌毛毡放置到磨台上,然后将摩擦织物放置在桌毛毡上,并将产生(2±0.2)kPa 压力的重物放在摩擦织物上,再将摩擦织物固定。最后将磨头装在耐磨试验机上,并对磨头施加(12±0.2)kPa 的压力,启动仪器,按计数器设定的旋转次数进行测试。测试结束后,取下试样,检查并记录试样的磨损情况,并用灰色样卡按 GB/T 250-2008《纺织品色牢度试验 评定变色用灰色样卡》 评定试验区域内的颜色变化。  资料转载自:http://www.qcnscsy.com/jslist/list-8-1.html  标准集团(香港)有限公司
  • 创想仪器携直读光谱仪参加2020全国创新耐磨材料专题论坛
    2020年11月8日,创想分析仪器有限公司带上直读光谱仪及X荧光光谱仪抵达云南昆明,到此参加“2020年全国创新耐磨材料及陶瓷金属复合磨辊专题高峰论坛”。参会代表对于创想仪器的直读光谱仪及台式X荧光分析仪都进行咨询及详细了解。此次会议以“提高超耐磨材料共性关键技术、推动抗磨工程的学术繁荣、技术创新与产业进步”为主题,广邀专家及学者到场,做专题报告,技术交流及问题解答。把脉我国耐磨材料行业的新标准、新技术、新工艺和新产品,交流超耐磨材料领域的科技创新和应用成果,推动超耐磨材料的学术繁荣、技术创新与产业进步;解决陶瓷金属复合磨辊疑难杂症。此次大会主要是为了促进先进耐磨材料创新发展,提高关键耐磨件的耐磨性能,切实解决电力、矿山、建材、砂石、冶金等行业耐磨材料不耐磨的问题;推动耐磨材料科技创新与产业发展,解析现状,启发思维,引领耐磨材料及抗磨技术的发展方向,加强政产学研用合作及企业间的经验共享。那同样的,为了加强会议的能效,此次会议举办方也邀请到行业内的学者、专家、企业领导来分享各自的理念及企业经营经验,同时开展丰富的交流讨论,为切实的将我国抗磨工程事业向前快速发展。耐磨,一方面与材质的物理性能有关,但是更多的也和铸造材料的元素成分相关。为切实贴合陶瓷金属复合辊专题,创想仪器带来了X荧光光谱分析仪,展示给与会代表,X荧光光谱仪利用X荧光技术,能检测非金属材质,满足客户的检测需求。GLMY创想仪器所生产销售的系列直读光谱仪,X荧光光谱仪系列,系列碳硫仪等分析检测仪器,都可谓企业的生产提供了高效的检测分析。公司将持续努力,为企业的生产检测提供着自己的力量。文章来源:创想仪器
  • 高性能金属基润滑耐磨损材料制备有了新思路
    7月30日,科技日报记者从中国科学院兰州化学物理研究所了解到,该所固体润滑国家重点实验室高温摩擦学课题组在新型润滑耐磨损高熵/中熵合金设计制备和性能调控等方面进行了系统研究,取得了系列进展。给出一种构筑多级纳米异质结构和成分波动特征来实现合金低磨损的新方法,相关研究成果近日发表于综合性学术期刊《研究》。新型高熵/中熵合金具有诸多新奇特性,为设计制备高性能金属基润滑耐磨损材料提供了新启发,是目前材料学和摩擦学研究的热点和前沿。在解决高温润滑与磨损方面具有重要应用价值传统合金往往是由一种或两种主要金属元素构成,其他合金化元素的比例相对很低。高熵/中熵合金是近年来发展起来的有别于传统合金的新型合金。高熵合金和中熵合金是由多种主要金属元素构成的合金,二者只是在主要金属元素的种类和数量上有差异。一般而言,高熵合金包含5个或5个以上等原子比的金属元素,而中熵合金则包含3个金属元素。高熵/中熵合金展现出许多优异的力学和物理性能。“高熵/中熵合金有几个明显的特点,主要包括组织结构表现出复杂异质性、成分表现出多组元特征,具有‘质剂不分’的浓缩固溶体结构、晶体结构表现出连续畸变性。”中国科学院兰州化学物理研究所研究员程军介绍,基于其独特的异质结构、成分波动、多级纳米析出相等微观组织结构和多组元特征,高熵/中熵合金展现出卓越的强度—塑性组合、高温结构稳定性、摩擦界面自保护、高温抗氧化等新奇特性。与传统合金相比,高熵/中熵合金具有非常广阔的成分调控空间,通过对高熵/中熵合金中的元素进行替换或增减,能获得一些具有特殊性能的微观组织结构和异质相,为设计制备高性能金属基润滑耐磨损材料提供了新思路。程军告诉记者,针对高熵/中熵合金体系开展润滑耐磨损成分设计,采用熔炼、粉末冶金或喷涂等工艺即可制备出具有润滑与耐磨损性能的高熵/中熵合金材料。“这类新型材料在解决航空航天、轨道交通、核能等领域高端装备运动与传动部件的高温润滑与磨损难题方面具有重要的应用价值和应用前景。”程军介绍。强度、塑性、热稳定性和耐磨性优于传统合金中低温下,金属材料摩擦表界面会发生严重的弹塑性变形、局部断裂和磨粒磨损,而高温下则会发生材料黏着、软化变形和氧化磨损,这些因素导致金属材料在宽温度范围内表现出严重的摩擦磨损。针对上述问题,晶粒细化和复合润滑相/抗磨相是目前提高金属材料耐磨损性能的主要手段。“但是,这两类方法通常会引发新的问题,如当晶粒细化至纳米尺度时,可能会在摩擦过程中引发严重的纳米晶不均匀塑性变形,增加磨损;复合润滑相/抗磨相和基体相之间的错配界面可能会使摩擦界面在磨损过程中发生脆性断裂。”程军说。研究表明,如果在摩擦副界面之间引入一个能够逐级释放摩擦应力的界面层,可极大减小摩擦过程中不均匀塑性变形和界面错配导致的磨损问题。然而,这种特殊的界面层难以通过常规的制备或加工手段获得。基于这个问题,研究人员考虑是否可通过调控合金的成分和结构设计制备一种新型金属材料,使其能在中低温摩擦过程中原位形成逐级释放应力的梯度界面耐磨层,高温摩擦过程中形成耐磨损釉质层,从而在宽温度范围内保持稳定的低磨损性能。高熵/中熵合金独特的浓缩固溶体结构使其表现出优于传统合金的强度、塑性、热稳定性和耐磨性等性能。因此,研究人员以镍元素为溶剂,引入等摩尔比的铝、铌、钛和钒4种元素作为合金化元素,通过将合金化浓度从25 at.%(原子百分数)提高至50 at.%,制备了一种具有纳米分级结构和成分波动特征的新型镍铝铌钛钒中熵合金。为了使溶质元素之间形成高混合熵的过饱和固溶体结构,元素粉末需经历32小时的机械合金化过程,形成面心立方结构和体心立方结构的混合固溶体粉末。研究人员通过放电等离子烧结使粉末在1050℃发生异质相分离,并在冷却后固结成型,最终形成高体积分数的纳米耦合晶粒相和分级纳米沉淀相,其呈现纳米分级结构和成分波动特征。纳米分级结构异质相的形成将使合金可在磨损诱导的变形过程中沿深度方向原位形成梯度界面层,选用高浓度的易氧化的铝和铌会促进合金在高温摩擦过程中快速形成保护性氧化釉质层。此外,高浓度的钛可显著提升合金体系的晶格畸变效应,从而提高摩擦界面层的屈服强度。“与传统合金相比,该合金的结构由分级纳米耦合晶粒组成,表现出纳米尺度的成分波动特征,这种独特的异质性结构使合金在室温至800℃宽温度范围内的磨损过程中自发激活自适应摩擦界面保护行为,形成耐磨损纳米梯度摩擦层或釉质层。该材料作为高温抗磨材料具有重要的应用价值。”程军说。他认为该合金成分可调、可采用热压、喷涂等多种工艺固化成型,有望实现产业化应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制