当前位置: 仪器信息网 > 行业主题 > >

萃取蒸馏器

仪器信息网萃取蒸馏器专题为您提供2024年最新萃取蒸馏器价格报价、厂家品牌的相关信息, 包括萃取蒸馏器参数、型号等,不管是国产,还是进口品牌的萃取蒸馏器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合萃取蒸馏器相关的耗材配件、试剂标物,还有萃取蒸馏器相关的最新资讯、资料,以及萃取蒸馏器相关的解决方案。

萃取蒸馏器相关的资讯

  • 传承 GFL 科技的LAUDA Puridest蒸馏器
    LAUDA Puridest 蒸馏器采用 “ GFL Technology ”质量标志 LAUDA Puridest 蒸馏器的预期寿命超过 15 年,是可靠、耐用的实验室水处理设备之一。LAUDA Puridest 蒸馏器由 LAUDA-GFL 开发和制造,共计 14款不同型号。该公司以可靠的实验室技术作为优质制造商而享誉全球,自 2018 年 12 月 31 日起加入 LAUDA 集团。 “ GFL Technology ”质量标志意味着 LAUDA 延续了 GFL 品牌传统,该品牌在 20 多年来一直以其质量和可靠性在全球实验室行业中享有盛誉。 产品特点 Ÿ 高品质蒸馏物LAUDA Puridest 蒸馏器提供超纯、低气体、无菌和无热原的蒸馏物,用于稀释试剂及样品组等。LAUDA Puridests 可净化任何原水,以产生电导率低至 1.6 µS/cm 以下的馏出物。它符合 DAB 规定和国际药典要求。 Ÿ 多种型号,适配不同需求LAUDA Puridest 蒸馏器有多种型号可供选择 - 每小时可生产 2 升至 12 升,内部储罐可选配。无论是具有手动或全自动清洁循环功能的单级不锈钢蒸馏器、双级不锈钢/玻璃蒸馏器还是全玻璃蒸馏器 - LAUDA Puridest 是可理想适配于任何应用场景。 Ÿ 极易上手的操作流程,符合人体工程学 蒸馏器的调试和操作极其简单。提取超纯水非常简单。连接原水和电源后,可直接提取超纯水。唯一需要的维护是清除蒸馏器中的污染物。LAUDA Puridest 的维修与清洁工作简单,且无需重复采购耗材,是理想适配任何地点的可靠解决方案。 由 4 个组别的 14 个型号组成的系列2 和 4 升/小时的单蒸馏器- 不锈钢热水炉- 直接出水(无储水罐)- 出水电导率2.3 µS/cm2,4,8 和 12 升/小时的单蒸馏器- 不锈钢热水炉- 从储水罐出水- 出水电导率 2.3 µS/cm2,4 和 8 升/小时的双蒸馏器- 不锈钢(1)和玻璃(2)热水炉- 直接出水(无储水罐)- 双出口出水电导率:2.2 和 1.6 µS/cm2,4 和 8 升/小时的双蒸馏器- 全玻璃热水炉- 直接出水(无储水罐)- 双出口出水电导率:2.2 和 1.6µS/cm (1) 不锈钢热水炉进行第一次蒸馏(2) 玻璃热水炉再进行第二次蒸馏常见应用领域 Ÿ 细菌和医学样品制备Ÿ 细胞和组织培养物的制备Ÿ 清洁和灭菌过程Ÿ 在质量、开发和研究实验室中生产缓冲溶液Ÿ 微生物和分析应用 适用于任何应用:Puridest PD 4 R 带有内部储罐和 PD 2 用于直接馏出物提取 我们的准则是简单:标配运行状态显示和清洁要求的 LED 指示灯 关于 LAUDA 我们是 LAUDA——精确温度控制领域的专家。我们的温度控制设备和加热/冷却系统是许多应用的核心。作为全方位服务供应商,我们在研究、生产和质量控制中保证最佳温度。我们是值得信赖的合作伙伴,特别是在汽车、化学/制药、半导体和实验室/医疗技术行业。65 多年来,我们每天都以崭新面貌在全球范围内提供我们专业咨询和创新的环保设计方案,满足我们的客户。
  • 智能蒸馏和自动液液萃取的动漫宣传
    蒸馏和萃取是实验室预处理操作中非常重要的两组实验,但传统的手工方法繁琐笨重且费时费力,有害试剂极易造成对人体的污染。我公司发明的两项专利产品可以完美替代传统手工操作,详细了解可查看本动漫视频。
  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
  • 中药工艺优化 | 关于分子蒸馏技术在中药分离中的应用
    1月2日,国务院联防联控机制综合组印发了《关于在新型冠状病毒感染医疗救治中进一步发挥中医药特色优势》的通知,确实,经过三年的疫情经验总结,中药对于新冠症状的抑制作用有目共睹。 因此,尽管在1月8日,国家对新型冠状病毒感染已由”防感染”转向实施“乙类乙管”,中医药仍然将在接下来的“保健康、防重症”阶段扮演重要角色。不仅如此,我国对于中医药其实一直保持着相对的关注,这一点从2021-2023年一系列的支持政策也可以看到。 来源:国务院办公厅,国家卫健委,国家药监局等并且,2022年国家药监局就发布了《中药品种保护条例(修订草案征求意见稿)》,明确“一级保护给予十年市场独占,二级保护给予五年市场独占”。天时地利人和,在新的一年,我国中医药的市场预计总规模可能会达到万亿规模。中药新药的研发已成为大势所趋,如何加快中医药研发抢先争取市场份额?这将会成为未来2023年药企需要直面的一个点。中药有效成分提取工艺想要了解如何加快中医药制剂研发,必须从源头出发,深挖工艺环节。本文将先围绕如何优化“从中药中提取有效成分”这一过程,展开讨论。中药有效成分提取 Step1利用有机溶剂进行抽提,得到的是初步的中药精油,纯度很低,含有溶剂、水和杂质,此时需要进一步精制和提纯。Tips:● 目前比较好的方法有CO2超临界萃取技术,利用温度和压力略超过临界的、介于气体和液体之间的流体作为萃取剂,从固体或液体萃取某种高沸点和热敏性成分,介质为CO2。● 像艾草、五味子、川芳、蛇床子等中药都可以通过有机溶剂抽提或者超临界萃取的方式做*步的预处理。中药有效成分提取 Step2利用分子蒸馏技术,根据样品中各组分分子的平均自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,从而达到提纯的目的,因此特别适合高沸点、热敏性的天然药物。 分子蒸馏技术 分子蒸馏又称短程蒸馏,是近年来新兴的并广泛应用的一种在高真空条件下进行高效分离纯化的技术。分子蒸馏由于操作温度低、受热时间短、分离程度高等特点,解决了热敏性、高沸点或高相对分子质量、高黏度、易氧化物料难分离纯化的问题,目前已被广泛应用于制药、石油化工、食品工业、香料香精等方面,具有广阔的发展前景。中药有效成分提取 Step3用GC/MS检测处理后的样品纯度,要求主含量至少在95%以上。气质联用作为表征未知物组成和含量有着很广泛的应用,可以结合红外色谱仪来判断官能团的特征峰,从而再次确定这一组分的真实性。中药有效成分提取 Step4目前中成药制剂大多数以颗粒等固体制剂为主,当然也有类似于精油的剂型,只是储存和运输不便,所以中成药的挥发油一般是单独提取出来,用β-环糊精包合再和其他提取物一起制成固体制剂。 在中药有效成分提取工艺中,我们发现分子蒸馏这一技术,较常规蒸馏具备更显著的优势,如果能不断提升这一技术应用,就能大大提升分离度及效率。——Pilodist团队 分子蒸馏技术基本原理常规蒸馏是利用样品各组分沸点的不同进行分离,而分子蒸馏是在高真空下分离操作的非平衡蒸馏,通过将液体加热,依托混合物组分中不同分子平均分子自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,故分子蒸馏其实质是分子蒸发,是一种特殊的液-液分离技术。分子蒸馏基本原理:把分子连续两次碰撞之间通过的路程称为自由程,分子自由程的平均值称为分子平均自由程。由分子的平均自由程公式可知,不同物质分子由于运动速度和有效分子直径不同,平均分子自由程也不相同,重分子的平均自由程小,轻分子的平均自由程大。在液面上方小于轻分子平均自由程而大于重分子平均自由程处设置冷凝面,使得轻分子不断地落在冷凝面上被冷凝,进而破坏轻分子的动态平衡,而重分子因为到达不了冷凝面就会发生碰撞返回溶液中,*使混合液中的不同成分分离。如下图所示: 在中药分离中的现代化应用随着中药现代化发展,中药有效成分的提取与分离技术朝着高效率且环境友好的方向发展。中药现代化就是指在中药的传统特色优势与现代化的科学技术相结合的基础上研发现代中药。将新兴的分子蒸馏技术应用于中药有效成分提取分离过程中,特别适合含有热敏性、高沸点及易被氧化物质的分离纯化,有利于促进中药有效成分分离技术的现代化。挥发油是中药发挥药效的重要物质基础之一。目前,我国已知有 56 个科 136 种植物含有挥发油。传统的蒸馏加工过程由于受热时间长、温度高等会使得挥发性成分受损,因此,在中药挥发油的分离与精制中引入分子蒸馏技术十分必要。应用一:贵州传统苗药米槁米槁作为贵州传统苗药,其有效成分存在于精油中,采用分子蒸馏技术对米槁精油进行提取分离并系统研究其化学成分,结果表明该技术具有明显的优势,各馏分富集程度高,并可成功保护全部组分。应用二:姜黄挥发油姜黄烯和姜黄酮是姜黄挥发油的主要有效成分,传统蒸馏会使其加热时间较长而氧化,影响产品质量,采用多级分子蒸馏技术对姜黄挥发油进行精制,经5次蒸馏,姜黄挥发油中的姜黄酮与姜黄烯的体积分数提高到80%以上,总得率为 30.29%,有效提高产品附加值。应用三:纯化广藿香挥发油采用正交试验法优化分子蒸馏技术在纯化广藿香挥发油中的应用,以广藿香醇为评价指标,所得产物优于传统水蒸气蒸馏法。通过分子蒸馏技术对苍术油进行精制,得到易挥发的苍术素,体积分数达到 52.17%以上。分子蒸馏技术应用于对高良姜、广藿香、香附、川芎等有效成分的分离,含量测定均达到有效成分用药的要求。随着技术发展,目前的一些分子蒸馏设备已经能够较为成熟的应用这项新兴技术,使蒸发速率更快、分离效率更好。 Pilodist分子蒸馏仪在中药分离中有什么优势? 德国Pilodist分子蒸馏仪SP10001、真空度高SP1000*可到10^(-5)mbar的真空度。Tips:分子蒸馏装置必须保证体系达到高真空,分子蒸馏装置内部压力越低,获得更好的真空度,分离度越好)2、加热温度低,受热时间短SP1000配备了用于操作短程蒸发器的恒温器,加热能力2kW,最高工作温度200°C,配有循环泵和隔离管,模块化的数字PID控制器和高温管。而且分子蒸馏器中蒸发面到冷凝面的距离小于轻分子的平均自由程,轻分子从液面蒸发几乎不发生任何碰撞直接飞射到冷凝面,物料受热的时间较短,在很大程度上能够有效地使液料原本的物质得以保护,即保障物料的原始状态,降低了热损伤。3、Hybrid技术的混合蒸发器蒸发面积1000cm² ,结合了玻璃和不锈钢的所有优点,即可以保证可视化的操作流程,又能保证装置的结实耐用。配备了加热的入口和出口管线,以及用于油浴加热的双层套管,设计紧凑,物料滞留时间短,分离速度快。4、三种刮膜器类型可供选择,适合不同物料 a.通过离心力旋转的PTFE和玻璃刮膜器b.带螺旋传动装置的PTFE刮膜器c.卷筒式PTFE刮膜器5、模块化精密控制单元 集成高精度的数字真空控制器、加热恒温器、真空调节旋钮、刮膜器驱动于一体的控制单元,操作简单,控制精度高。 德国 PILODIST是一家专业从事实验室蒸馏、精馏技术和设备的公司,由原德国 Fischer 公司的主力人员及 Fischer 先生本人一起组建的全新的公司。Pilodist 全面继承了原 Fischer 公司的技术资源,为全球客户提供高品质的实验室蒸馏、精馏技术和设备,产品范围包括蒸馏仪、精馏仪、薄膜蒸发器、溶剂回收、气液相平衡仪及航煤润滑性测试仪等。PILODIST实验室工艺技术在世界范围内被享有盛誉的公司广为应用——德国制药实验室,西班牙香精香料研究实验室,中国精细化工企业及伊朗炼油企业等。在德国波恩总部, 我们为客户量身定做设备,并由经销商销往世界各地,并提供现场服务。我们的员工具有多年的从业经验、引领潮流的理念和丰富的技术知识,是行业内公认的专家。就这方面而言,PILODIST是世界上非常有能力的供应商之一。为了保证产品*的质量和性能,在我们的室内玻璃吹制、电子、软件及机械加工室, PILODIST制造了绝大部分重要的主件和零部件。每一套设备在运往客户之前都经过我们完 整的组装及详尽的测试。我们能提供的让客户满意的实验室生产/研究用产品范围包括: PILODIST产品还包括备件供应及现场为您竭诚服务。参考文献:[1]雷 玲,徐 辉.基于分子蒸馏技术的生物油分离与提取研究[J].化工管理,2018(8):54+56[2]颉东妹,代云云,郭亚菲,魏晗婷,郭 玫.分子蒸馏技术及其在多领域中的应用[J].中兽医医药杂志,2021,40(5)[3]李天祥.米槁精油提取与分离及其化学成分的研究[D].天津:天津大学,2004.[4]韩金历.多级分子蒸馏提取五味子精油控制系统研究[D].长春:长春工业大学,2013[5]陈 慧,张金巍,朱合伟,等.分子蒸馏法纯化广藿香挥发油中广藿香醇[J].中草药,2009,40(1):60-63.[6]高 英,李卫民,倪 晨,等.分子蒸馏技术在分离苍术油有效部位中的应用[J].广州中医药大学学报,2004(6):476-478.
  • 【瑞士步琦】通过旋转蒸发仪高效萃取脂肪
    通过旋转蒸发仪高效萃取脂肪脂肪含量检测作为食品检测里经常出现的项目之一,需要结合许多不同的设备来完成。瑞士步琦于 2019 年推出的 E-500/E-800 萃取仪是检测流程中萃取步骤的得力助手,也获得了很多客户的认可。▲E-500/E-800萃取仪作为一家发明旋转蒸发仪的设备制造商,我们也一直致力于把旋转蒸发仪的功能多样化,这样可以通过新增的配件来完成更多的应用,提升空间利用率和设备的附加值。今天给大家带来的脂肪萃取应用就是通过添加索氏提取附件的 R-300 实验室旋转蒸发仪,以及 R-220 Pro Extraction 萃取型工业级旋转蒸发仪来进行高效的萃取和浓缩。▲R-300 旋转蒸发仪(索氏提取版) 1设备Rotavapor R-300 索氏提取套装(包含真空泵 V-300 和冷却循环水机 F-314)Rotavapor R-220 Pro Extraction 系统(包含真空泵 V-600 和冷却循环水机 F-325)实验室电子天平1(最大重量 3200g, 精度 ± 0.01 g)实验室电子天平2(最大重量 7000g, 精度 ± 1 g)实验室研钵和研杵滤纸筒 48X200mm(R-300 专用)大号滤袋 2试剂和样品正庚烷 10L(工业级)超市购买的饼干1000g(外包装标注 10g脂肪/100g 产品)3实验过程一、准备工作将样品小批量放入研钵中,然后用研杵捣碎,直至得到均匀的颗粒,然后转移到同一个容器内。称取蒸发瓶的重量。二、提取脂肪100g 左右的样品转移至滤纸筒内放入 R-300 索氏萃取器内,800g 左右的样品转移到大号滤袋内放入 R-220 Pro Extraction 萃取池内。设定旋转蒸发仪参数如下:上样方式R-300 SystemR-220 Pro System转速 [rpm]280150加热温度 [°C] 6060冷却温度 [°C] 1010真空度 [mbar] 170170萃取过程的持续时间取决于馏出物中的黄色物质(脂肪)。一旦蒸馏液通过萃取室是完全透明的,则该过程终止。在 R-300 上,实验在 9 个循环(每次 4 分钟)后终止,总时长为 45 分钟,包含初期的浸泡时间。▲图1:在 R-300 上的提取过程,第 1,2,3 次循环在 R-220 Pro Extraction 上,实验在 1 小时 30 分钟后终止,这包括了样品被溶剂完全浸泡的时间(15分钟)。我们在第 30 分钟和第 60 分钟手动切换至浓缩模式,这样可以把萃取池的液体完全抽入蒸发瓶,从而提高萃取效率。▲图2:在 R-220 Pro Extraction 上的提取过程,分别是第 15 分钟和第 21 分钟三、移除溶剂实验结束后,按照下述步骤,移除蒸发瓶内的溶剂。R-300 系统:在最后一次萃取后,拆下索氏附件,打开回流阀,使溶剂按设定的参数蒸发。溶剂去除后,再次关闭回流阀,将压力调至10mbar,确保蒸发烧瓶内无溶剂残留。一旦实际压力值接近设定值,它表明系统中没有溶剂残留,准备称重蒸发瓶。R-220 Pro Extraction 系统:将系统切换至浓缩模式,排空萃取池的溶剂,打开接收瓶阀门,使溶剂能够被除去。溶剂去除后,再次切换至萃取模式,将压力调至10mbar,确保蒸发烧瓶内无溶剂残留。一旦实际压力值接近设定值,它表明系统中没有溶剂残留,准备称重蒸发瓶。四、称重提取物将含有提取物的蒸发瓶放在实验室天平上称重。将结果减去空瓶重量从而得到萃取物的重量。▲图3:蒸发瓶内萃取的脂肪4实验结果_R-300 系统R-220 Pro Extraction 系统初始样品量[g]100.64873.86萃取的脂肪量 [g]9.6980.1萃取率 [%]9.639.17平均蒸馏速度 [mL/min]58.3141总时长[min]4590 5结论实验表明,使用步琦的实验室或工业级旋转蒸发仪提取系统可以从初始样品中提取接近所有的脂肪。结果的小偏差可能来自提取时间过短、仪器偏差和蒸馏过程中的样品损失。相比传统的索氏提取仪,R-220 Pro Extraction 系统可以一次萃取大量的样品,这得益于其独有的 4L 萃取池与循环萃取系统。而 R-300 配合索氏萃取配件,可以在原有基础上以较低的成本实现额外萃取功能。
  • 本草奇遇记——萃取浓缩之旅
    2本草奇遇记萃取浓缩之旅”在上一期的本草奇遇记中 ,我们简单地展示了一下步琦的中药解决方案,希望能通过丰富的产品线和经验助力“十四五”中医药的发展。这次,我们将带大家详细了解奇遇记中出现的固液萃取和蒸发浓缩,领略这两个在步琦产品线中发展了超过 35 年的解决方案。萃取千里之行,始于足下。萃取作为分离中药原料和目标组分的第一步,同时也决定了最终能获取的化合物总量,可谓是至关重要的一步。根据中药原料的特性,选择不同的溶剂、压力、温度等等参数都会对萃取率产生不同的结果。步琦拥有全频固液萃取仪和快速溶剂萃取仪,可以满足多数中药原料萃取的需求。全频固液萃取仪 E-800功能强大,多任务处理的理想之选全频固液萃取仪 E-800 功能强大,尤其适合各种高要求萃取任务。提供 6 个独立的萃取位置,可进行平行萃取,也可同时运行不同的萃取方法,实现快速、高度可重现的萃取过程,分析物保护功能与惰性气体条件更好的保护样品。应用:食物、环境样品、聚合物或天然产物的萃取萃取方法:索氏、索氏温热、热萃取、连续流动、连续萃取溶剂:有机溶剂(沸点 150 °C)推荐配件:LSV 玻璃组件LSV 玻璃组件配有更大的萃取腔和烧杯,可加入更多样品以实现分析物检测极限主要玻璃部件的容量均增大 60%对于易起泡的样品,能有效防止喷溅推荐配件:转换组件通过转换不同的玻璃组件(SOX,HE,ECE)即可改变萃取方法玻璃组件易于拆卸组装,便于清洁应用实例标准索氏提取石蒜中加兰他敏和力可拉敏运用全频固液萃取仪 E-800 提取石蒜样品中的加兰他敏和力免拉敏,采用 SHIMADZU VPO 色谱柱 (250mm×4.6 mm,5μm) 对石蒜中2种生物碱进行 HPLC 测定。温度和提取溶剂体积一定时,经 3 h 索氏抽提后,石蒜试样中的加兰他敏和力可拉敏基本上提取完全。因此,选择 80 mL 甲醇回流下索氏抽提 3 h。传统方法采用溶剂加热回流法提取石蒜中生物碱,耗时长,效率低,溶剂消耗大,且杂质多不易提纯。本文采用经典的索氏提取技术对石蒜中力可拉敏和加兰他敏 2 种生物碱进行了提取,方法简便、快速,重现性好,并对 15 个不同品种石蒜中 2 种生物碱的含量进行定量分析,取得了满意的结果。快速溶剂萃取仪 E-914 / E-916最快速度和最大样品处理量的结合快速溶剂萃取仪 E-914 / E-916 结合了快速和大量的特点,是快速加压溶剂萃取 (PSE) 的最佳解决方案。通过并行处理更多样品、轻松加载样品和快速收集萃取物,提高生产率。应用:环境样品、食品、聚合物和天然产品的萃取萃取条件:在高温(30-200℃)和高压(50-150bar)下萃取萃取方法:加压溶剂萃取推荐配件:萃取池不同的萃取池适用于不同的样品量,萃取池的配件少,装样操作更加简单。(E-916/ 10,20,40 mL)(E-914/ 60,80和120mL)浓缩萃取中药原料往往需要使用大量的溶剂,因此在进一步的处理前需要浓缩萃取液。步琦作为旋转蒸发仪的发明者,在真空蒸发解决方案上已经累积了超过 60 年的经验,深知浓缩时,萃取液的量和性质决定了所需要的工艺和参数。因此,我们不仅提供实验室级和工业级的旋转蒸发仪,还有多位平行浓缩仪,可以满足大量萃取液的浓缩,或者纯化分离后的多样品平行浓缩。平行浓缩仪 SyncorePlus平行处理样品的解决方案我们的平行蒸发仪器以两种配置提供平行处理样品的解决方案:SyncorePlus Analyst 可将样品定量浓缩到指定的体积, SyncorePlus Polyvap 可以同时蒸发最多96管样品。能够满足中药萃取液纯化分离后的平行浓缩需求。浓缩至最终体积:0.3 mL、1.0 mL、3.0 mL 同时处理样品数量:4-96 个转速:60 – 400 rpm温度范围:20 – 100 ℃推荐配件:冷凝回流模块高效冷凝区域,形成回流,提高样品蒸发的回收率尺寸范围:6/12 位与仪器完美配合工业级旋转蒸发仪 R-220/R-250 Pro高性能的大规模蒸发解决方案如果您想在放大工艺中蒸馏大量的中药萃取液,那么工业级旋转蒸发仪 R-220/R-250 Pro 就是您最好的选择。得益于强大的加热功率和大尺寸的蒸发瓶,单次蒸馏量得到了显著提升。蒸馏速率:12-19L 乙醇/小时热浴温度:室温- 180 ℃蒸发瓶尺寸:1-50 L加热功率:3600-6600W推荐配件:泡沫传感器环形螺母与垫片自动检测样品状况,避免起泡后进入冷凝器导致样品损失无需人员值守,自动调整压力萃取X浓缩经常做中药原料中有效活性成分提取的老师们都知道,植物粗品的处理绝对不是一个轻松的过程,上文呈现的萃取过滤和浓缩蒸馏是其中最费时费力的两个步骤,而且为了充分得到植物样品中的活性成分,这两步往往需要多次循环。R-220 Pro X-traction (Extraction)一套系统即可同时满足萃取与浓缩我们结合多年在天然产物领域耕耘的经验以及自身对中国市场的理解,推出 R-220 Pro 的衍生款——R-220 Pro X-traction (Extraction)。在保留了 R-220 Pro 极高的浓缩效率的同时,额外添加了一个 4 L 的固液萃取池。采用蒸馏溶剂并循环萃取过滤的解决方案,可以有效避免萃取液饱和,专为中药原料的连续萃取蒸馏而设计。蒸馏速率:10L乙醇/小时热浴温度:室温- 180 °C加热功率:3600W蒸发瓶尺寸:20 L萃取池尺寸:4 L本期的本草奇遇记就到此告一段落,相信各位老师已经有了心仪的萃取与浓缩解决方案,如果想了解更多,请通过下方的联系方式联系我们的产品专家。在下一期的奇遇记中,我们会带大家进入分离纯化之旅,展示步琦在中药纯化领域的全能解决方案。
  • 【瑞士步琦】为您的实验减负——全自动蒸馏干燥解决方案
    随着近几年我国医药、生物领域不断发展,各地实验室都出现项目多而人手少的情况。高强度的实验室工作负荷也催生出了许多实验室自动化设备,如自动进样器、自动凯氏定氮仪、自动萃取装置等等。然而旋转蒸发仪作为实验室最常用的前处理设备之一,自动化普及的程度却并不高。这是因为面对不同的样品和溶剂,旋转蒸发仪很难自动判定蒸馏的状态,因此会出现爆沸、损失过大、耗时长或者无法蒸干的情况。瑞士步琦作为旋转蒸发仪的发明者,早在33年前就已经开启了自动化蒸馏的探索之路:1990 年▲双温度传感器 (Dual Temperature Sensor)2005 年▲自动蒸馏探针(Automatic distillation probe)2015 年▲AutoDest 1.0 自动蒸馏传感器在这 33 年里,步琦不断收集客户的反馈,优化不同溶剂和样品的蒸馏程序,于今日给大家带来全新的 R-300 旋转蒸发仪自动蒸馏解决方案:AutoDest 2.0&AutoDry 自动蒸馏干燥套件。AutoDest 2.0 自动蒸馏传感器相比AutoDest 1.0,新款传感器具有以下优点:使用简单,只需设置蒸发瓶尺寸并点击开始,仪器就会进行自动蒸馏。终点判定准确,在保证接收瓶液体不二次蒸发的前提下,通过检测溶剂蒸汽和冷却循环水机的温度,尽可能地浓缩样品。适用范围更广,无论是 20-50mL 的少量样品,还是多种混合溶剂,都可以实现自动蒸馏,且溶剂损失低于 5%。配合新款 AutoDry 自动干燥套件,可实现样品完全蒸干。AutoDry 自动干燥套件 AutoDry 自动干燥套件是一个连接于 R-300 冷凝器与接收瓶之间的自动切换阀门,它可以与 AutoDest 2.0 联动。当 AutoDest 2.0 的蒸馏程序结束后,它会自动隔断冷凝器和接收瓶,将压力调整至 0 mbar,这样既可以保证样品完全蒸干,也可以避免接收瓶内溶剂的二次蒸发。 AutoDry 自动干燥套件安装与激活演示: AutoDest 2.0+AutoDry 全步骤:AutoDest 2.01、设置蒸发瓶大小与 AutoDry 干燥时间2、点击开始,AutoDest 2.0 自动接管仪器蒸馏,此时 AutoDry 阀门不关闭,接收瓶与系统相连AutoDry3、自动蒸馏程序结束,AutoDry 自动接管仪器,关闭阀门,隔断接收瓶,调整压力至 0 mbar4、待干燥时间结束,仪器自动停止蒸馏并抬升蒸发瓶在上述的两个阶段、四个步骤中,只需在第一步设置两个简单的参数,即可实现自动蒸馏干燥过程,大大降低了研发人员的工作负荷,也避免了误操作引起的爆沸和样品损失。如果对我们的自动蒸馏干燥解决方案感兴趣,可以通过下方的联系方式与我们沟通,我们有更多强大的自动蒸馏方案,如:自动循环萃取蒸馏、自动连续蒸馏等等。也可以关注我们的微信公众号,获取更多步琦自动化解决方案的新内容。
  • 莱伯泰科发布两款新品:旋转蒸发仪和快速溶剂萃取仪
    仪器信息网讯 太湖绝佳处,春景正当时。2021年4月22日,中国科学仪器行业的“达沃斯论坛”——第十五届中国科学仪器发展年会(ACCSI2021)在无锡盛大开幕。会议以“创新发展,产业共进”为主题,共吸引来自政、产、学、研、用、资、媒等各界的近1400位代表参会。在此盛会上,北京莱伯泰科仪器股份有限公司发布了两款新产品,分别是旋转蒸发仪EV400H和HPSE Ultra系列高效快速溶剂萃取仪,仪器信息网对莱伯泰科产品经理进行了现场采访。 现在用户都更加的关注仪器操作的便捷性、仪器的自动化智能化程度,和相关应用的整体解决方案,莱伯泰科发布的两款仪器都是以此为出发点研发生产的,能够真正解决客户的问题。莱伯泰科产品经理周思佳首先为我们介绍了旋转蒸发仪EV400H。“这是我们公司最新研发生产的一款手动旋蒸,仪器美观小巧,最大蒸发量却可以做到3L,最快转速可达300RPM,浴锅的最高温度可以到210℃,水浴油浴兼容。这款仪器的设计理念是极简化设计,用户可以用最少的操作去完成实验要求。像它的升降开关是隐藏在升降把手内的,单手一个动作,就可以完成仪器的升降运动;像它的单键飞梭的设定按钮,单指操作,随意设定参数,比常规的4个按键的控制器操作起来更简单;像它的在线加料阀,可以通过仪器负压自动将需要补充的试剂加入到蒸发瓶内,且整个过程不需要停止转速,卸下蒸发瓶,减少实验人员的操作。”莱伯泰科的旋蒸是系列产品,根据功能不同分为基础型EV400H和智能型EV400VAC。智能型旋蒸会内置真空控制器,系统真空度可以数字化精确控制;而且具有自动蒸馏模式,实验人员无需设定参数,仪器可以自动识别溶剂沸点,自动调整参数蒸馏样品,让浓缩过程最简化。除此之外莱伯泰科也提供旋蒸整体解决方案,与之配套使用的水循环、真空控制器、真空泵等产品。旋转蒸发仪EV400H莱伯泰科产品经理刘雪为我们介绍了HPSE Ultra系列高效快速溶剂萃取仪。这款产品可以用于环境、食品等领域半挥发性有机物的提取,为半自动快速萃取,是基于用户的使用需求而推出的,设计操作简单,多种配置可选,很灵活,可满足各种用户的提取需求。刘经理介绍说:“首先,HPSE Ultra系列采用模块化设计,支持2、4、6等多通道可选,支持现场升级,非常灵活。另外,本机兼容性很强大,兼容各种规格大小罐,应用领域兼容性强。多套高压泵设计,保证了流速精准,也保证各通道之间平行性。加热炉精准定位,配以仪器各状态不同颜色灯光设计,直观友好。本机,整体密闭设计,可直接对接通风系统,安全环保。”对于用户来说,这款产品的设计很有优势。首先,模块化以及灵活现场升级设计,对于预算有限或者刚开始成立的一些检测单位是非常不错的。不少用户业务量开始并没有很多,一下投入比较多的仪器费用也比较困难,可以选择2通道或者4通道的配置,后续业务量上来,还可以再进行升级至更高通道。另外,本机可以实现一机多用,兼容大小罐的设计,满足环境(土壤、空气)、食品检测的各种应用领域的使用需求,应用领域兼容性广。还有,本机还可以同时支持一机多法。可以同时做不同提取溶剂、提取温度等的提取方法,满足不同项目的检测需求,方法兼容性强。对于多种项目检测需求的第三方检测机构非常适用,也很适合这些用户紧急样品的检测需求。HPSE Ultra系列高效快速溶剂萃取仪最后,两位经理用一句话为我们概括了两款新品的特性:从用户角度出发,让实验更简单!发布会现场
  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。图 1 滴中滴液-液微萃取( Anal Chem 1996,68:1817-1882)  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。图 2 &ldquo 溶剂微萃取&rdquo 示意图( Anal Chem 1996,68:2236)  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图(M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示图4 顶空溶剂微萃取示意图  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相直接浸入 (DI)连续流动(CF)液滴-液滴 (DD)直接悬浮(DSD)顶空(HS)液-液-液(LLL)液-液-液+直接悬浮(LLL + DSD)图 5 SDME的7种模式  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。图 6 SDME各种模式的使用频率  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。  动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。图 7 把液滴温度降低的设备图1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口(Anal Chim Acta,2010,661:161)  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。图8 用热电冷却器冷却萃取溶剂(J Chromatogr A,2010,1217:5883)2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8图 8 SDME 与分析仪器的配合的比例  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1SDME 结合GC-FPD分析水中6种有机磷农药在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学)2通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20minChen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所)3用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学)4动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13minYang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学)5新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学)6单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学)7用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量&Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学)8单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学)10用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3minCabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)11以单滴微萃取GC-MS分析细辛中的挥发物正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学)12微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学)13表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 379014用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806(东北林业大学)15农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 768116用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 mindos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 12617动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237&ndash 242(吉林大学)18用顶空单滴液体微萃取光度法自动分析混凝土中的氨用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34&ndash 3719高效单滴液体微萃取-气相色谱新策略毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 &mu L氯苯液滴和1 &mu L空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545&ndash 255020用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析连翘精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143&ndash 150(东北林业大学) 21自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较用2&mu L正十一烷作萃取溶剂,30 ℃萃取3 min Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187&ndash 193(贵阳医学院)22用离子对单滴液体微萃取分析水中化学战剂降解产物分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679&ndash 68523液相微萃取-气质联用法测定水中硝基苯的含量l&mu L甲苯作萃取剂,,萃取15min,进行GC-MS中分析耿飞,青年科学,2014,(6):20824离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5&mu L微量进样器精密吸取12&mu L离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。李梅,科学与财富,2013,(12):26525顶空单滴液相微萃取与GC&mdash MS联用测定易挥发溶剂 了十二烷和正癸烷 作萃取溶剂,0.5&mu L萃取溶剂,萃取10 min徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-14726单液滴微萃取一气相色谱/质谱法检测水中多环芳烃萃取溶剂1.0&mu L、萃取时间20 min,萃取温度室温常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,8227单滴液相微萃取-气质联用在香精分析中的运用正戊醇作萃取溶剂2.0&mu L ,萃取温度 30 ℃,萃取时间35 min徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页28单滴微萃取.气相色谱-质谱联用测定水中的硝基咪唑类药物。用5&mu L迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-11029单滴微萃取.气相色谱法分析海水中的四种苯胺推荐一个环保的综合化学实验 将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-21630单滴微萃取-气相色谱法测定塑料食品包装浸出液中邻苯二甲酸酯类物质1.4&mu L二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min张聪敏,食品与生物技术学报,2011,30 (6):863-86731单滴微萃取技术测定饲料中硝基咪唑类药物残留研究 溶剂为2.5 &mu L正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-170632超声雾化一顶空单滴微萃取气相色谱质谱联用检测八角茴香中挥发油成分 3&mu L 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D07133不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究 将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-122134TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为 乙醇作为萃取溶剂,液滴体积保持约为10 &mu L吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-663、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758&ndash 3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做&ldquo 顶空水基液相微萃取&rdquo ,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54&ndash 66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和气相(液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加气相中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:最后,钱教授还介绍了分析非常极性风味化合物的另外一个技术方法, 来分析如呋喃酮(furaneol)以及4-羟基-2,5-二甲基-3(2h)-呋喃酮(4-hydroxy-2,5-dimethyl-3(2h)-furanone. 使用的方法是基于聚合物相的固相萃取法 lichrolut-en solid phase extraction。然后把30μl的提取液注入微型瓶中,再使用热脱附单元直接进行热萃取。装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! 背景介绍michaelc qian博士毕业于明尼苏达大学(导师gary reineccius教授),现为美国俄勒冈州立大学终生教授,美国化学学会农业和食品化学分会执行委员会委员,美国化学学会农业和食品化学分会前任主席(2014),美国化学学会会士(fellow),美国化学学会农业和食品化学分会会士,是中山大学、江南大学和西北农林科技大学的客座教授以及广东省农科院客座研究员。研究兴趣集中在食品和饮料体系(尤其是奶酪和乳制品,小浆果, 葡萄酒, 酿酒葡萄和白酒)中的香气/风味物质的产生机理,研究结果为酿酒葡萄的栽培实践和葡萄酒品质的改善作出了重大贡献;同时他运用风味化学理论和原理开创了中国白酒风味化学研究的先河。曾在acs全国会议上组织十余个科学专题讨论,是第一届(colombia),第二届(china)和第三届(chile)国际香料会议的发起者和主席。
  • 【瑞士步琦】纺织品中偶氮的测定——平行蒸发仪上的自动蒸馏干燥解决方案
    纺织品中偶氮的测定偶氮是国际环保要求的必检项目之一, 欧洲议会和欧盟委员会公布指令限制在某些纺织品和皮革制品中使用具有致癌作用的偶氮着色剂,禁止销售用受限制含偶氮着色剂着色的商品。根据,样品先经过萃取,之后用 SyncorePlus 平行蒸发仪浓缩至干。样品经过柱洗脱后用于仪器分析。 1介绍偶氮染料是合成染料中品种最多的一类,广泛用于纺织品中,也用于油漆、塑料、橡胶等的着色。偶氮染料会分解出致癌芳香胺,引起人体病变和诱发癌症。本文阐述了搭配了 AutoDest 和 AutoDry 功能的 SyncorePlus 浓缩蒸干溶剂快速高效的方法。 2结果仪器:反应器加热器提取柱平行蒸发仪 SyncorePlus R-24样品:纺织品样品取代表性纺织品样品,剪成小片混合,称量后置于反应器中,加入 25mL 氯苯,130℃ 加热 30min 萃取,萃取后用平行蒸发仪 SyncorePlus R-24 浓缩至干,加入15mL 柠檬酸盐缓冲液和 2mL 甲醇,超声水浴 30min。将样品溶液过柱得到滤液, 滤液进行浓缩定容,用于仪器分析。表 1:SyncorePlus R-24 工作参数溶剂氯苯体积600mL(24╳25mL)加热温度75℃旋转速度280rpm 3AutoDest为了使用 AutoDest 功能,必须安装 AutoDest 传感器(见下图)。使用 AutoDest,溶剂不会蒸发到干燥,当温度差异不明显时,蒸发过程将停止。AutoDest 功能全自动蒸发溶剂,无需编程任何压力梯度,但需要设置 SyncorePlus 底座和加热盖的旋转和温度。 4AutoDry使用 AutoDry 阀门将溶剂蒸发至干燥(见上图)。该阀门位于冷凝器和接收瓶之间。收集瓶被堵塞,真空度降低到 0mbar,冷凝的溶剂被收集到泵的次级冷凝器中。AutoDry 功能只适用于 SyncorePlus Polyvap 型号用来将溶剂蒸干。5结果在 SyncorePlus Polyvap 上研究了不同的溶剂。AutoDest 功能能够自动蒸发至少 90% 的初始溶剂量,使蒸发过程中溶剂无爆沸。AutoDry 功能然后进一步蒸干溶剂。结果如图 2 所示:图 2 分为三个区域:绿色区域:蒸发前不需要准备黄色区域:蒸发前建议超声处理红色区域:不建议使用 AutoDest 功能 6结论AutoDest 和 AutoDry 的组合可实现将溶剂蒸干的全自动化过程。因此不需要设置方法,只需要设置 SyncorePlus 底座和加热盖的旋转、温度和干燥时间即可。利用平行蒸发仪对检测过程中的氯苯溶剂蒸馏进行批量化处理,可大大减少检测中所花费的人力及时间。
  • 116万!莆田市疾病预防控制中心全自动顶空固相微萃取仪等设备采购项目
    项目编号:FJHLX2022008项目名称:莆田市疾病预防控制中心全自动顶空固相微萃取仪等设备采购项目采购方式:竞争性磋商预算金额:116.0500000 万元(人民币)采购需求:采购包品目号采购标的数量品目号预算允许进口采购包预算采购包最高限价磋商保证金11-1全自动顶空固相微萃取仪1套280000否46000046000046001-2二氧化硫水蒸汽蒸馏仪1套18000022-1防爆个体大气采样器6台30000否23050023050023002-2防爆个体粉尘采样器6台300002-3防爆粉尘采样器6台300002-4流量计(皂膜或干式流量计)1台100002-5个体噪声剂量计(包括防爆)5台480002-6积分声级计(包括防爆)1台54002-7照度计1台5002-8紫外线测定仪(含UVA,UVB,UVC 3个探头)1台56002-9不分光红外线分析仪(含CO和CO2)1台290002-10WBGT指数仪1台100002-11倍频程声级计1台100002-12风速仪1台12002-13环境级X、γ剂量率仪1台2080033-1固相萃取仪1套390000否 470000 47000047003-2低温高速离心机水平转头1台80000合同履行期限:按磋商招标文件要求本项目( 不接受 )联合体投标。
  • 双核:在无锡,感受固相萃取和微波萃取
    4月8-9日,EMIF生态环境检测技术创新论坛在无锡成功举办。出席会议的有来自全省分析测试机构、高校科研单位和企业的代表,以及安捷伦、赛默飞、PE、沃特世、岛津、屹尧科技等仪器厂商。来自无锡、南京、常州、镇江等市环境检测中心的专家对环境监测的热点和方向、江苏省环境监测条例和现场监测的新标准做了分析解读,并分享了水质中藻毒素和酞酸酯的测定,以及环境空气中VOCs的测定技巧。江苏省环境检测中心的陈老师则介绍了检测行业飞行检查需要注意的要点以及检测机构内部质量管理的要点。前处理仪器作为环境监测中重要的一环,屹尧科技产品部齐经理在会上做了《水质和土壤中污染物分析自动化前处理方法》的报告。无论固相萃取还是微波萃取,屹尧科技都可以针对不同应用需求,为您提供更合适的解决方案。好的固相萃取仪什么样?它不应该只能测水样,还可以同时测土壤、食品和生物样!真正的全自动固相萃取仪,不会因为体积大小不同,或者用到不同的SPE柱子,就不得不手动更换配件。是的,EXTRA固相萃取仪作为真正全自动的“时间管理大师”,能同时轻松搞定各种类型的样品,并实现多种SPE柱的自动切换。除了便捷高效之外,再好看的数据,也首先要真实才有意义。用户一直苦恼的固相萃取过程中的交叉污染,对EXTRA早已不再是问题。它采用极其巧妙的流路设计,移液针配套高精度注射泵实现样品通过缓冲环进样方式,样品不经过泵阀,从源头上避免了交叉污染。随着样品量的不断增加,检测需求的不断提高,微波萃取在土壤和沉积物、固体废物等样品分析前处理中的应用也越来越多。密闭微波溶剂萃取利用微波加热的优势,大大提高了目标分析物在提取溶剂中的溶解度,增加其从样品基质中脱吸的速率,且更大程度的保留了易挥发组份。屹尧科技精确的温度控制保证了提取的重复性,110mL萃取管满足了标准中大样品量需求,45分钟即可完成27个样品的提取。屹尧科技,为您提供更高效可靠的微波萃取与更便捷精准的全自动固相萃取双核驱动的样品前处理。
  • 傅若农第二十一讲:碳用于固相萃取的演变
    往期讲座内容见:傅若农老师讲气相色谱技术发展   碳是有机世界的“主角”,在地球上按重量计算,占地壳中各元素总重量的0.4%,按原子总数计算不超过0.15%。而元素碳是一种十分神奇的物质,像碳纤维是比钢轻而抗拉强度高于钢7-9倍的材料。尤其是近20年纳米级大小的碳(富勒烯,碳纳米管,石墨烯等)人们给以前所未有的重视。  在利用各种吸附剂进行混合物分离发展的早期,人们就利用各种形态的碳做吸附剂用于分离各种混合物,现在人们又把目光投向富勒烯,碳纳米管,石墨烯等纳米级材料做新型分离材料用作固相萃取的吸附剂。  1.活性炭作固相萃取吸附剂  活性碳是最早使用的固相萃取吸附剂,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,吸附性能不能令人满意,就把它改性,以适应萃取分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最重要的是原料的选择和预处理。活性碳的基本性质取决于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质——主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个m2/g,使之没有过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成化合物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂。制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。活性碳表面具有很高的化学和几何不均一性,特别是工业用活性碳尤为严重。  固相萃取(SPE)使用活性炭始于上世纪50年代初,Braus等人使用活性碳做吸附剂,在铁管中装1200-1500g碳纤维,用以富集水中的污染物,之后用索氏萃取器提取被吸附的有机物,包括水中的有机氯农药。(AnalChem,1951,23:1160)。萃取管长91.44cm,直径在10.16cm,装填1200-1500g颗粒状活性碳,通过5000gal-7500gal地表水吸附有机氯氯农药。  由于活性碳的缺点妨碍其使用,即吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪60年代末到80年代初,一直在寻找更为合适的适应性更强的SPE填料。  2.碳分子筛作固相萃取吸附剂  在上世纪70到80年代,在研究聚合物吸附剂和键合有机物硅胶的同时,再次使用了性能改进的碳吸附剂——碳分子筛。这是由于当时的碳吸附剂结构改进、材质均一、性能稳定,同时它对极性化合物的吸附有好的选择性。碳分子筛的性能与XAD-4大孔树脂(以苯乙烯和丙烯酸酯为单体、乙烯苯为交联剂进行聚合)相同。  1968年Kaiser制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是CarbosieveB,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000m2/g,平均孔径为1.2nm。这种吸附剂用于气-固色谱的固定相,我国称之为碳多孔小球(TDX),自然可以用作固相萃取的吸附剂。早年我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(TanDuokongXiaoqiu,TDX),具体的牌号有TDX-01 TDX-02。它们的堆积密度为0.6g/mL,比表面为800m2/g。碳多孔小球的特点是:非极性很强,表面活化点少,疏水性强,耐腐蚀、耐辐射,寿命长。表1列出国外厂家的碳分子筛的性能。表1商品碳分子筛的性能吸附剂商品名厂家比表面/(m2/g)孔径/nm堆积密度/(g/mL)CarbosieveBSupelco10001-1.20.226CarbosieveSSupelco5601-1.20.5-0.7CarbosieveS-II*Supelco5480.5-0.70.55-0.60CarbosieveG*Supelco2040.5-0.70.25-0.28SpherocarbFoxboro12001.50.5+0.05CarbosphereChrompack10001.3  3近年用碳纳米材料作固相萃取吸附剂  自从1991年日本学者饭岛澄男(SumoIijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域。在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,它们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图1所示。图1碳家族的各种形态(TrAC,2016,77:23–43)  (1)富勒烯及其衍生物作固相萃取吸附剂  自从1990年Huffman和Kratschmer发表了能大量制备富勒烯(C60)之后,对这类物质进行大量研究,对这类化合物的制备和性能有不少文章和综述发表,日本的JinnoKiyokatsu研究组对富勒烯进行了大量研究(Anal.Chem.,1995,67:2556),把富勒烯键合到硅胶上用作HPLC的固定相,分离多环芳烃。Gallego等揭示了C60作为吸附剂在分离富集金属离子的潜力(AnalChem,1994,66:4074),它对金属离子的分离富集能力优于常规萃取剂——键合烷基硅胶和活性炭。例如超痕量镉在C60富勒烯微柱上进行分离,形成中性配合物,用200mL对甲基异丁基酮洗脱吸附的镉,用原子吸收光谱进行测定。用双螯合试剂,即吡咯烷铵(APDC)和8-羟基喹啉,在一个流路中进行检测。APDC和C60富勒烯对镉进行选择性吸附,与含有的铜、铅、锌、铁中分离出来。与其他方法对比,C60和APDC的方法得到更为准确的结果(JAnalAtomSpectrom,1997,12:453–457)。  2000年MValcá rcel等使用一个简单的流动注射系统,在C60富勒烯吸附柱上在线富集金属二硫代氨基甲酸盐(杀菌剂),无需使用常规方法的酸水解,以便释放CS2,也不用衍生化,它可以直接保留在吸附柱上,随后用稀硝酸洗脱。将洗脱的馏分直接送入火焰原子吸收光谱仪进行测定(Analyst,2000,125:1495–1499)。  2004年MGallego等用富勒烯萃取柱选择性吸附汞的二乙基二硫代氨基甲酸配合物,分析水中的无机和有机汞,免除许多金属离子的干扰(JChromatogrA,2004,1055:185–190)。  2009年MGallegoa等利用C60富勒烯萃取柱区分非芳香族(脂族和环状)和芳香族亚硝胺,用C60和LiChrolutEN组成一组串联萃取柱,25ml样品通过C60柱只有芳香族亚硝胺保留,然后通过LiChrolutEN柱非芳香亚硝胺馏分被保留。用150μ L乙酸乙酯–乙腈溶液(9:1)洗脱非芳香亚硝胺,进样1μ L萃取物到GC-MS中进行测定。通过比较C60和C70富勒烯和碳纳米管的研究,显示C60富勒烯是选择性地保留芳香族馏分最佳。(JChromatogrA,2009,1216:1200–1205)。表2是勒烯及其衍生物作固相萃取吸附剂的用例。表2富勒烯及其衍生物作固相萃取吸附剂的用例1富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS--JAnalAtSpectrom,1997,12:453–4572富勒烯C60汞(II)、甲基汞(I)与乙基汞(I)海水,废水和河水GC-MS80–105JChromatogrA,2004,1055:185–1903富勒烯C60有机金属化合物水溶液GC-MS--JChromatogrA,2000,869:101–1104富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–98Analyst,2000,125:1495–14995富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–104JSepSci,2006,29:33–406富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–102JChromatogrA,2009,1216:1200–12057富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOFMS--AnalBiochem,2009,393:8–22  (2)碳纳米管及其衍生物作固相萃取吸附剂  碳纳米管(CNTs)是由管状碳同素异形体,由一个单一的石墨薄片卷形成的结构,即单壁碳纳米管(SWCNT)或几个同心排列的碳纳米管结构,即多壁碳纳米管。单壁碳纳米管的直径可达3nm,多壁碳纳米管最多至100nm。由于CNTs具有表面积大、活化点多、π -π 键作用力强等特殊性能,适合于在固相萃取中应用,而且它的纳米级多孔性能有利于减小传质阻力,有利于平衡。碳纳米管具吸附性?,特别是多壁碳纳米管有很强的吸附性,比如它对TCDD(2,3,7,8-四氯代二苯并二恶英)的吸附性比一般活性碳吸附剂高1034倍(JAmChemSoc,2001,123:2058.)。开始CNTs用于从水中分离双酚,壬基酚和辛基酚(AnalBioanalChem,2003,75:2517),回收率可达102.8%。其他多壁碳纳米管的SPE应用于包括极性和离子性化合物的目标物,如磺脲类除草剂,头孢菌素,抗生素、磺胺类和酚类化合物,苯氧羧酸类除草剂。(AnalSci,2007,23:189 AnalChimActa,2007,594:81 MicrochimActa,2007,159:293)。  碳纳米管的一个有趣的特点是它们的表面可以进行化学改性,得到功能化具有独特性能的吸附剂。例如,有人在原单壁碳纳米管进行氧化,以便引入羧酸基团,可以萃取非甾体类抗炎药如布洛芬 从尿液萃取托美汀和吲哚美辛(JChromatogrA,2007,1159:203)。碳纳米管进行表面修饰使其具有高选择性,如吉首大学的张华斌等在多壁碳纳米管表面通过酰胺化反应接枝双键,以L-组氨酸为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯交联剂,偶氮二异丁腈为引发剂,利用表面印迹技术,在多壁碳纳米管表面制备印迹聚合物(MWNTs-MIPs)。可选择性吸附红霉素从鸡组织制剂中提取红霉素回收率达95.8%。(AnalBioanalChem,2011,401:2855 JChromatogrB,2011,879:1617)。图2是多壁碳纳米管(a和c)和多壁碳纳米管的分子印迹聚合物(MWNTs-MIPs)(b和d)的扫描电镜(a和b)和透射电镜(c和d)图。图2多壁碳纳米管和和多壁碳纳米管的分子印迹聚合物的扫描电镜  另外他们(JChromatogrB,2011,879:1617)在Fe3O4磁性纳米粒子的表面涂渍了用羧基改性的多壁碳纳米管,并在表面接枝了牛血清白蛋白(BSA),使其具有印迹吸附功能(MIP)选择性吸附剂。  碳纳米管通过表面化学修饰,使之成为有选择性的吸附剂,成为近年研究的热点。表面修饰使碳纳米管物理和化学性能改性,这不仅扩大了其应用范围还可以提高其溶解性,这是由于提高了它和溶剂的色散作用力,可与大多数溶剂作用。表面化学修饰功能化过程通常包括酸化、氧化处理,提供了可作用的功能团,也减少了在碳纳米管的合成过程中造成的杂质。可以使用简单的或复杂的方法获得共价键合或非共价方式修饰碳纳米管。直接键合可通过碳纳米管壁形成的羧基可以直接与想要的功能团进行结合。另一方面,可通过范德华力、静电力、堆积作用、氢键和疏水相互作用形成非共价聚集体。两个或多个相互作用的结合,可提高了系统稳定性和选择性。表3是使用碳纳米管作样品前处理的应用实例。表3使用碳纳米管进行样品处理的应用分析物样品基体分析方法碳纳米管特点回收率/%文献1邻苯二甲酸酯水样GC–MS/MSMWCNTs,o.d.: 8nm,长:0.5–2μ m,比表面: 500m2/g86.6–100.2JChromatogrA,2014,1357:53–672邻苯二甲酸酯饮料,自来水,香水GC–MSMWCNTs,o.d.:10–20nm,长:5–15μ m64.6–125.6同上3邻苯二甲酸单酯人尿GC–MSMWCNTs,o.d.:30–60nm,长:3–5μ m,92.6–98.8同上4直链烷基苯磺酸盐湖水,河水,污水人工湿地HPLC–UVMWCNTs,o.d.:30–60nm,长:~20μ m,比表面:~60m2/g87.3–106.3同上5对羟基苯甲酸酯饮料HPLC–DADMWCNTs,o.d.:20–40nm,长:5–15μ m--同上6神经剂及其标记蒸馏水自来水,浑浊水GC–FPDMWCNTs,o.d.:7–15nm,,i.d.:3–6nm,长:0.5–200μ m55.5–96.3同上7(氟)喹诺酮类人血浆UPLC–UVMWCNTs,o.d.:110–170nm,长:5–9μ m70.4–100.2同上8氟喹诺酮类矿泉水,蜂蜜CLCMWCNTs,o.d.: 8nm,长:0.5–2μ m84.0–112同上9苯并[a]芘解决方案有机溶剂、水溶液MALDI–TOF–MSMWCNTs--同上10PAHs食用油GC–MSWCNTs,o.d.:10–20nm,长:5–15μ m87.8–122.3同上11PAHs活性炭/烧烤肉GC–MSMWCNTs,o.d.:30–60nm,长:5–3μ m81.3–96.7同上12雌激素,自来水,矿泉水,珠江水,蜂蜜EC–UVMWCNTs,o.d.: 8nm,:0.5–2μ m89.5–99.8同上13雌激素牛奶HPLC–FLDMWCNTs,o.d.:10–20nm,长:5–15μ m93.7–107.2同上14核酸相关蛋白质人细胞裂解物,肝癌BEL-7402细胞Nano-LC–MS/MSMWCNTs,o.d.:20–30nm--同上15核酸相关蛋白质人肝癌BEL-7402细胞Nano-LC–MS/MSMWCNTs,o.d.:20–30nm--同上16双酚A,双酚F和缩水甘油醚自来水,河水,雪水GC–MS/MSMWCNTs,i.d.:60–100nm88.5–115.1同上17Se(IV)自来水,湖水HG–AFSMWCNTs平均20nm96.3–102.3同上18Pb(II)废水、河水,大米,红茶,绿茶,洋葱,马铃薯FAASMWCNTs,o.d.:8–15nm,比表面:233m2/g97–104.5同上19六种邻苯二甲酸酯茶油GC-MSMWCNTs,o.d.:1–2nm,长:0.5–2μ m比表面:380m2/g86.4-111.7色谱,2014,32(7):735-74020114种农药残留烟草LC-MS/MSMWNCTs1-5:外径:<8->50nm,长度:10-30μ m,比表面:40-500m2/g93-114烟草科技,2015,48(5):47-5521金刚烷胺鸡肉LC-MS/MSMWNCTs1-5:外径:<8->50nm长度:10-30μ m,比表面:40-500m2/g97.8-103.6肉类研究,2014,28(4):14-182216种有机磷农药水样GC-FPDMWNCTs1-5:直径:20-40,nm长度:5-15μ m,比表面:40-500m2/g 75分柝化学,2009,37(10):1479-148323有机氯和除虫菊农药蔬菜GC-ECD多壁碳纳米管(L-MWNT-2040),20-40,nm长度:5-15μ m, 70色谱,2011,29(5):443-44924溶菌酶蛋清SDS-PAGE凝胶电泳MWNCTs:外径:40-60nm,96.4高等学校化学学报,2—8,29(5):902-90525有机磷农药水样GC-PFPD--70厦门大学学报(自然科学版),2004,43(4):531-53526有机磷农药大蒜方波伏安法--97.0-104.0分析试验室,2007,26(增刊)(10):216-21727酰胺类除草剂饮用水GC-MS/MS--82-93.5分析试验室,2009,28(增刊)(5):82-8428唑4种磺胺类药物环境水(HPLC—PDA己基-3.甲基咪唑六氟磷酸([C。MIM][PR])离子液体自聚集于磁性多壁碳纳米管上0.6-99.99分析化学,2015,43(5):669-67429多环芳烃河水GC-MS--60.4-89.3分析化学,2009,37,(增刊):D02530甲硝唑食品LC-UV--68-112分析测试学报。2010,29(8):807-8ll  (3)石墨烯作固相萃取吸附剂  石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构,它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbonnano-tube,CNT)或者堆垛成三维(3D)的石墨(graphite),因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π 键,π 电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料。自然,人们不会忘记把它用作吸附剂用于固相萃取。因为它有高比表面积,2630m2/g,高的吸附能力,良好的化学和热稳定性,高机械强度,价格便宜,网上戏称是白菜价。基于它的离域π -电子体系,它可以和带有苯环的化合物形成π -π 堆积相互作用,因而对这类化合物有很强的吸附作用。氧化石墨烯(GO),石墨烯的含氧基团,如羧基和羟基,可以化合物以共价键,静电或氢键结合。  基于石墨烯的吸附剂已用于含苯环化合物的预富集。2011年江桂斌院士的研究组利用石墨烯作吸附剂制成固相萃取柱,萃取水中的8种氯代酚,比较了几种吸附剂对8种氯代酚的回收率,见图3(JChromatogrA,2011,1218:197-204).  新加坡国立大学的HKLee等使用磺化石墨烯片作为吸附剂的固相微萃取,测定水中8种多环芳烃(JChromatogrA,2012,1233:16-21),萃取效率远高于C8和C18萃取剂,见图4.图4磺化石墨烯与C8和C18吸附效率的比较G1,G2—磺化石墨烯Nap—萘 Ace—苊 Flu—芴 Phe—菲 Ant—蒽 Flt—荧蒽 Pyr—芘表4是石墨烯用作固相萃取吸附剂的用例表4石墨烯用作固相萃取吸附剂的用例萃取剂被分析物样品基质检测回收率/%文献1石墨烯,Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.4AnalChimActa,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-108SpectrochimActa,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3-102.4JChromatogrA,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118JChromatogrA,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6-113.5JChromatogrA,2012,1233:16–21  3.碳用作萃取吸附剂的综述文献  表5是碳纳米材料用作吸附剂近几年发表的综述文献,读者可以了解到更多的有关碳纳米材料在固相萃取中的应用情况。  表5碳纳米材料用作吸附剂近几年发表的综述文献1碳纳米管在分析化学中的应用(引用273篇文献)SPE,SPME,膜,吸附棒J.Chromatogr.A,2014,1357:110–1462碳基吸附剂—碳纳米管(引用194篇文献)SPE,SPME,吸附棒JChromatogrA,2014,1357:53–673石墨烯基材料—制备及其在分析化学中的吸附应用(引用203篇文献)SPE,SPME,色谱固定相JChromatogrA,2014,1362:1–154石墨烯作吸附剂在分析化学中的应用SPE,SPME中的应用TrAC,2013,51:33-435碳纳米管在分离科学中的应用-综述(引用241篇文献)SPE,SPMELC,GC,CE,ECE,中的应用AnalChimActa,2012,734:1–306碳纳米管在分析科学中的应用(引用93篇文献)在分离、传感器、样品制备中的应用MicrochimActa,2012,179:1–167碳纳米管在分离科学中的应用研究进展(引用90篇文献)在SPE,SPME,LC,GC,CE中的应用色谱,2011,29(1):6-148碳纳米材料在分析化学中的应用(引用215篇文献)在样品制备、分离及检测中的应用AnalChimActa,2011,691:6-179碳纳米管用于原子吸收光谱分析金属的固相萃取吸附剂(引用140篇文献)固相萃取吸附剂AnalChimActa,2012,749:16-3510碳纳米管用于磁固相萃取吸附剂(引用116篇文献)固相萃取吸附剂AnalChimActa,2015,892:10-2611碳纳米管用于杀虫剂分析的吸附剂(引用53篇文献)固相萃取吸附剂Chemosphere,2011,83:1407–141312碳基吸着剂-碳纳米管(引用194篇文献)固相萃取吸附剂JChromatogrA,2014,1357:53–6713固相萃取新倾向——新吸附介质(引用153篇文献)固相萃取吸附剂TrAC,2016,77:23–4314色谱分析样品处理中的固相萃取吸附剂进展(引用214篇文献)固相萃取吸附剂TrAC,2014,59:26-4115固相萃取吸附剂中新材料及倾向(引用68篇文献)固相萃取吸附剂TrAC,2013,43:14-:316碳纳米管应用研究进展(引用47篇文献)固相萃取吸附剂化工进展,2006,25(7):750-75417磁纳米材料的功能化修饰及在环境分析中的应用研究(引用116篇文献)固相萃取吸附剂湖南大学邹瑩硕士论文,201418多壁碳纳米管固相萃取--高效液相色谱技术联用在有机污染物分析中的应用固相萃取吸附剂河南师范大学刘珂珂硕士论文,201219多壁碳纳米管在痕量元素分离富集中的应用固相萃取吸附剂华中师范大学丁琼硕士论文,200620基于碳纳米管表面分子印迹固相萃取材料研究(引用131篇文献)固相萃取吸附剂吉首大学张华斌硕士论文,201121生物功能化碳纳米管的合成、表征及分析应用(引用147篇文献)碳纳米管作为吸附剂的研究南开大学刘越博士论文,200922碳纳米材料在环境分析化学中的应用研究(引用107篇文献)固相萃取吸附剂河南师范大学汪卫东硕士论文,200623新型纳米材料与传统吸附材料性能比较研究(引用131篇文献)固相萃取吸附剂东南大学邓思维硕士论文,201424新型吸附材料在样品前处理技术中的应用研究(引用170篇文献)固相萃取碳纳米管西南大学汪卫东博士论文,200925修饰碳纳米管对砷的吸附及其应用研究固相萃取吸附剂西南大学李璐硕士论文,2009
  • 普洱中农药多残留检测的固相萃取方法
    普洱中农药多残留检测的固相萃取方法一、实验目的(superclean gcb/nh2)本研究利用固相萃取作为样品前处理方法,gc-ecd 和 lc-ms/ms 作为分析方法,检测普洱中的农药残留水平。该方法操作简便,可简化样品前处理过程,减少有机溶剂的使用。二、应用范围本方法适用于茶叶中有机磷类、有机氯类、拟除虫菊酯类和氨基甲酸酯类农药多残留的测定。三、实验材料nuanalytical superclean gcb/nh2 固相萃取柱 500 mg/500 mg/6 ml。四、实验方法1、样品提取称取粉碎好的普洱 2 g(精确到 0.001 g),加入 50 ml 离心管中,加入 10 ml 乙腈,剧烈振荡 1 min,静置 30min,4000 r/min 离心 5 min。上清液待净化。2、spe 柱活化gcb/nh2 固相萃取柱中加入约 2 cm 高无水硫酸钠,使用前使用 10 ml 乙腈-甲苯(3:1,v/v)活化。3、上样和洗脱当溶液液面到达柱吸附层表面时,立即倒入上述待净化溶液 4 ml, 用鸡心瓶接收流出液,逐步加入 25 ml 乙腈-甲苯(3:1,v/v)洗涤小柱,收集上述所有流出液于鸡心瓶中。4、重新溶解流出液于 40 ℃水浴中旋蒸至 1 ml 左右,加入 2 ml 乙腈转移至 10 ml 试管中,于40 ℃下氮气吹干,加入 1 ml 乙腈溶解残渣,0.22 μm 微孔滤膜过滤,分别供 gc-ecd 和lc-ms/ms 上机测试。5、仪器条件(1)、 gc-ecd 条件气相仪器:agilent 7890a 色谱柱:fb-5, 30 m×0.32 mm, 0.25 μm进样口温度:220 ℃ 检测器温度:300 ℃升温程序:180 ℃(保持 2 min);以 10 ℃/min 升温到 230 ℃(保持 2 min);以 2 ℃/min升温到 260 ℃(保持 2 min);以 25 ℃/min 升温到 270 ℃(保持 1.6 min)载气:氦气 流速:1.6 ml/min 进样方式:分流进样(分流比 10:1)(2)、lc-ms/ms 条件质谱仪:api 4000 色谱柱:superlu c18(2.0 mm×150 mm, 5 μm)流动相:a: 0.1%甲酸+10 mm 乙酸铵(1 ml 甲酸+0.77 g 乙酸铵溶于 1 l 水中);b: 甲醇洗脱方式:梯度洗脱,洗脱程序如下: 时间/mina(%)b(%)0.09551.509556.059511.059511.0195515955流速:0.35 ml/min 柱温: 40 ℃ 进样体积:5 μl离子源:电喷雾(esi) 扫描模式:正离子模式 检测方式:多反应监测(mrm) 质谱仪离子源参数如下: source/gascollision gas (cad)6curtain gas (cur)12ion source gas 1 (gs1)50ion source gas 2 (gs2)50ion spray voltage (is)5500temperature (tem)550interface heater (ihe)on氨基甲酸酯类农药各组分名称、保留时间及母离子和子离子检测离子对如下: 物质名称保留时间/min检测离子对dpepcecxp涕灭威7.06208.1>89.1208.1>1163030101022101212克百威7.13222.3>123.1222.3>165.24848101016311212涕灭威砜6.25223.1>86.2223.1>148.46969101021131212涕灭威亚砜6.10207.1>132.2207.1>89.16060101013221212啶虫脒6.83223.4>126.1223.4>907070101029461212五、实验结果1、普洱中农药多残留的添加回收结果表 1 0.25 mg/kg 普洱中有机氯和拟除虫菊酯类农药多残留的添加回收结果 回收率(%)名称平均回收率(%)rsd (%)123乙烯菌核利84.576.080.080.25.30腐霉利110.5102.0105.0105.84.07异菌脲112.0107.5119.0112.85.14联苯菊酯94.587.590.590.83.87甲氰菊酯109.5100.0106.5105.34.61高效氟氯氰菊酯84.079.582.582.02.79氟氯氰菊酯86.586.894.189.14.83氟氰戊菊酯120.5114.0120119.23.06氰戊菊酯95.585.092.991.16.00氟胺氰菊酯70.472.7581.074.77.45表 1 0.05 mg/kg 普洱中氨基甲酸酯类农药多残留的添加回收结果 回收率(%)名称平均回收率(%)rsd (%)123涕灭威95.687.290.090.94.70克百威84.478.082.281.53.99涕灭威砜77.483.081.480.63.58涕灭威亚砜70.074.475.273.13.73啶虫脒82.494.088.488.36.572、普洱中农药多残留检测色谱图图 1 添加水平为 0.25 mg/kg 普洱中有机氯和拟除虫菊酯类农药多残留检测色谱图 图 2 添加水平为 0.0625 mg/kg 普洱中氨基甲酸酯类农药多残留检测色谱图
  • 对付兽药残留的”好家伙”——HLB固相萃取柱
    4月18日,有记者了解到,江西省市场监管局组织食品安全监督抽检,抽取粮食加工品、食用农产品两大类食品共303批次食品,检出10批次食用农产品不合格,涉及农兽药残留和重金属污染问题。 图1:江西省食品安全抽检不合格 兽药残留问题看似离我们很遥远,实际长时间积累对人体危害极大!一旦产品翻车,企业难辞其咎。 无独有偶,在其他城市的抽检也查出了同样的问题,例如,青海、西藏、重庆等。但另一方面,这些消息也表明我国对于食品中农兽药残留的安全问题越来越重视。 小编曾经讨论过关于农药残留问题,我们可以通过高效液相-柱后衍生法去检测。 那么如何检测兽药残留? 兽药残留检测法食品中的兽药残留检测——可以先将样品被提取后经过固相萃取柱的净化,再通过液相色谱-质谱质谱法进行检测。除此之外,相关检测方法还有气相色谱—质谱法等。 检测方法相关标准具体如下:gb/t 21315-2007 动物源性食品中青霉素族抗生素残留量检测方法 液相色谱-质谱质谱法;gb/t 21313-2007 动物源性食品中β-受体激动剂残留检测方法 液相色谱-质谱-质谱法;gb 29685-2013 食品安全国家标准 动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱—质谱法;gb 29682-2013 食品安全国家标准 水产品中青霉素类药物多残留的测定 高效液相色谱法;sn/t 2222-2008 进出口动物源性食品中糖皮质激素类兽药残留量检测方法 液相色谱-质谱/质谱法;gb 31658.17-2021 动物性食品中四环素类、磺胺类和喹诺酮类药物多残留量的测定液相色谱-串联质谱法;… … hlb固相萃取柱在兽药检测中的应用在进行液相色谱-质谱质谱检测前,我们将提取好的样品加入到已经活化的hlb固相萃取柱中,进行净化、经过一系列淋洗、洗脱等过程,得到我们的被测物质。以动物肌肉组织中喹诺酮的检测及动物源食品青霉素的检测为例—— ⚪动物肌肉组织中喹诺酮的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将提取后的上清液全部过柱子;淋洗:然后用2ml 5%(体积比)的甲醇水溶液淋洗柱子,弃去淋洗液;洗脱:用6ml甲醇洗脱并收集洗脱液。 ⚪ 动物源食品青霉素的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将上清液通过柱子净化;淋洗:用2ml 0.05mol/l的磷酸盐缓冲液淋洗2次,再用1ml纯水淋洗2次;洗脱:用3ml乙腈洗脱并收集洗脱液。 在这个过程中,用到的hlb固相萃取柱,它其中填料具备了良好的水润湿性、重现性等特点。 hlb是什么?hlb是hydrophile lipophilic balance的英文缩写,翻译成中文就是亲水亲油平衡。hlb亲水亲脂平衡填料可作为固相萃取柱填料的一种。 关于hlb亲水亲脂平衡填料 图2:水相调节亲水-亲脂平衡 hlb亲水亲脂平衡填料由特殊的共聚合技术制备而成,含有特定比例的亲水基和疏水基:疏水性的二乙烯基苯结构保留非极性化合物,亲水性的n-乙烯基吡咯烷酮结构保留极性化合物。该填料具有良好的水润湿性,可通过水相调节亲水-亲脂平衡,从而获得理想的选择性。 hlb对非极性至中等极性的酸性、中性、碱性化合物均有较好的回收率,特别适合血液、尿液和食物等复杂基质的处理。 hlb亲水亲脂平衡填料的特点hlb亲水亲脂平衡填料参数:比表面积:600 m2/g平均粒径:40 μm平均孔径:300 å hlb亲水亲脂平衡填料还具备了以下特点:● 作为一种通用型填料,应用范围广;● 高水可浸润性,不怕溶剂抽干,不易穿透;● 回收率高,重现性好;● 吸附容量和载样量远高于c18键合硅胶(3-10倍); ● 可耐受ph 1-14,兼容大多数溶剂 hlb固相萃取柱型号及规格填料量(mg)体积(ml)包装(支/盒)型号60350223-13002200630223-13003500630223-13004150630223-13009 当然,我们要根据样品性质,选择最适宜的spe小柱。除了hlb基质以外,市面上也还有硅胶(正反相)、复合萃取、以及专用型的固相萃取产品,英诺德甚至提供多种quechers和色谱散装填料,以满足各种各样的分离需求。 在后续的文章中我们将陆续和大家分享介绍,请关注我们,敬请期待。 *更多资讯,请关注innoteg英诺德公众号
  • 台湾开发新农药残留萃取技术 1分钟搞定
    p style="TEXT-ALIGN: center"img style="WIDTH: 399px HEIGHT: 300px" title="20150812004671.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/insimg/9934b21c-b2f6-4fe0-9665-8b5b0638d739.jpg" width="399" height="300"//pp 农业药物毒物试验所历经两年的研究,成功开发出全球最快的农药残留萃取净化技术,只要「1步骤、1分钟」就能完成农药萃取,时程比传统技术快40倍。/pp 农委会药毒所长费雯绮表示,化学质谱法农药残留检验为国际间通用的检验技术,包含采样、粉碎研磨、农药萃取、质谱分析及数据判断等步骤,其中农药萃取的过程最耗时,即使现行最快速的技术也须40分钟,而毒药所历经两年的研究,开发出「萃取净化粉剂」,将萃取过程缩减为1分钟。/pp 主要研究员林韶凯指出,传统的萃取方法须使用5至7种化学溶剂,以去除样品中的各式杂质,不过萃取净化粉剂结合各种化学溶剂的功能,可吸附样品中的所有杂质,只要1分钟即可完成农药萃取,并进入质谱分析及数据判读的检验阶段。/pp 药毒所同步向台湾、美国及中国大陆提出专利申请,已在上月20日取得台湾专利,并技转给岛内业者,预计年底将进入试量产阶段,完成商品化。下一步将和“卫福部”接洽,进行实验室比对,往“国家”标准检验法的方向推广,并拓展海外市场,市场分析10年商机上看新台币66亿元。/p
  • 如何选择固相萃取柱
    p style="text-indent: 2em "固相萃取柱是从层析柱发展而来的一种用于萃取、分离、浓缩的样品前处理装置,常见的固相萃取柱大都以聚乙烯为材料的注射针筒型装置,该装置内装有两片以聚丙烯或玻璃纤维为材料的塞片,两个塞片中间装填有一定量的色谱吸附剂(填料)。/pp style="text-indent: 2em "选择固相萃取柱的关键除了要求的规格之外,决定分离性能的是它的填料。在选择萃取柱时,必须根据待检测样品的种类及其物化性质选择合适的填料。固相萃取填料通常是色谱吸附剂,大致可以分为三大类,分别是以硅胶、高聚物、无机材料为基质。/pp style="text-indent: 2em "第一类是以硅胶为基质,如:Waters Sep-Pak C18固相萃取小柱,硅胶极性很强,呈弱酸性,可被用于正相或反相两种分离模式:正相提取时,极性比硅胶弱,反相提取时非极性比C18 或 C8 的弱。对于类固醇有着较好的萃取效果通常用于非极性或弱极性化合物的萃取或极性杂质的去除。主要用于血样、尿样中药物及其代谢物、多肽脱盐、环境样品中的痕量有机化合物富集、饮料中的有机酸。/pp style="text-indent: 2em "第二类是以高聚物为基质,如:聚苯乙烯-二乙烯苯等。高纯度、高交联度的苯乙烯-二乙烯基苯聚合物为固定相填装的萃取小柱具有高载样量,可耐受极端 pH 条件和不同的溶剂,对极性化合物具有优异的保留能力。可用作酸性、中性和碱性化合物的通用型吸附剂,通常用于反相条件下保留含有亲水基团的疏水性化合物如:酚类、硝基芳香类、硝胺类、硝酸酯类等。/pp style="text-indent: 2em "第三类是以无机材料为主的,如:弗罗里硅藻土、氧化铝、石墨化碳等。弗罗里硅土是一种氧化镁复合的极性硅胶吸附剂,以此为基质的萃取小柱适合于从非极性基质中吸附极性化合物,如多氯联苯、多环芳烃、有机氯农残等;石墨化碳黑(CARB)萃取小柱, 以石墨化碳黑为填料,萃取过程非常迅速。且对化合物的吸附容量比硅胶大一倍有余,由于石墨化碳黑表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如水果、蔬菜中的色素、甾醇、苯酚等物质;以氧化铝为基质的填料有酸、碱、中性三种类型,适用于酸性、碱性、中性溶剂的分离萃取。/pp style="text-indent: 2em "固相萃取柱容量是指固相萃取柱填料的吸附量,在选择固相萃取柱时,必须考虑柱容量。由于我们面对的样品基质通常都较为复杂,在固相萃取中,固相萃取吸附剂对目标化合物吸附的同时,也会吸附同类性质的杂质。因此,在考虑柱容量是应该是目标化合物加上可被吸附的杂质总量不能超过柱容量。否则在载样的过程中就可能有部分目标化合物不能被吸附,造成回收率偏低。/p
  • 采用沃特世MV-10 ASFE和超高效合相色谱系统简化目前可萃取物分析方法
    采用沃特世MV-10 ASFE和ACQUITY UPC2 系统简化目前可萃取物分析的方法Baiba Cabovska、Andrew Aubin和Michael D. Jones沃特世公司(美国马萨诸塞州米尔福德)应用效益■ 超临界流体萃取法比微波萃取法更具可行性,与索氏萃取法(Soxhlet extraction)相比,可节省大量的溶剂消耗和运行时间。■ UPC2TM 技术通过精简工作流程,提高了萃取物分析的能力。沃特世解决方案ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器MV-10 ASFE&trade 系统Empower&trade 3软件关键词可萃取物、SFE、UPC2、超临界流体、合相色谱引言制药和食品包装行业中的可萃取物的分析流程的建立已经很完善1-3。分析流程可能会涉及到各种技术。类似地,容器密闭系统的评价可能涉及到各种萃取技术。ACQUITY UPC2TM 系统可针对萃取操作中所用的各种常用溶剂体系来灵活选择分析溶剂,简化分析流程4。超临界流体在改善分析流程的过程中扮演重要角色的同时,也遇到了一个这样的问题:&ldquo 样品萃取操作能不能简化至仅采用一种技术,即仅采用超临界流体萃取法?&rdquo 在可萃取物分析过程中,样品的萃取可采用数种方法。通常采用的方法是索氏萃取法、微波萃取法或超临界流体萃取法(SFE)。萃取溶液必须涵盖各种极性范围,以保证非极性和极性分析物均能从包装材料中被萃取出来。索氏萃取器因其相对廉价而深受青睐。但是,如果考虑萃取溶剂及其废液处理的价格时,微波萃取法和超临界流体萃取法具有节省成本的优点,包括减少溶剂消耗量和废液处理量,以及节约宝贵的分析时间。在本应用纪要中,对四种不同类型的包装材料进行萃取,包括:高密度聚丙烯(HDPE)药瓶、低密度聚丙烯(LDPE)瓶、乙烯-乙酸乙烯酯血浆袋(EVA)和聚氯乙烯(PVC)泡罩包装材料。萃取后,使用配有PDA和SQD质谱检测的超效合相色谱(UPC2)系统对所得溶剂中的14种普通聚合物添加剂进行快速筛选。微波萃取法和索氏萃取法采用异丙醇和正己烷萃取液,而各种不同浓度的异丙醇用作超临界流体萃取的辅助溶剂。在本文中,我们对各种方法的萃取表现进行了对比。实验方法条件UPC2条件系统: ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器。色谱柱: 3.0 x100mm、1.7&mu m辅助溶剂: 1:1甲醇/乙腈流速: 2 mL/min梯度: 1% B保持1min、2.5min达到20%、保持30s、重新平衡回归至1%柱温: 65 ℃APBR: 1800 psi进样量: 1.0&mu L运行时间: 5.1min波长: 220nmMS扫描范围: 200~1200m/z毛细管电压: 3kV锥孔电压: 25V补给流量: 0.1%蚁酸甲醇溶液,速度为0.2mL/min数据管理: Empower 3软件样品描述微波萃取将高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)、乙烯-乙酸乙烯酯(EVA)和聚氯乙烯(PVC)(各2g)切成1x1cm的小块,然后以10mL异丙醇或10mL己烷在50℃下萃取3个小时。索氏萃取索氏萃取的做法是将切碎的材料(聚氯乙烯(PVC)3g,高密度聚丙烯(HDP E)、低密度聚丙烯(LDP E)或乙烯-乙酸乙烯酯(EVA)各5g)小块(约1x1cm),放到华特曼33x94mm纤维萃取套管内。然后,将萃取套管置于普通的索氏萃取器中,其中包括冷凝管、索氏萃取室和萃取烧瓶。在索氏萃取器中加入大约175mL萃取溶剂(正己烷或异丙醇)。所有样品将使用热沸溶剂混合物萃取8小时。萃取完成后,将萃取溶剂几乎蒸干,重新以正己烷或异丙醇溶解。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。SFE超临界流体萃取(SFE)使用Waters MV-10ASFE系统进行。对于每个超临界流体萃取实验,将材料切成小块(大约1x1cm),加到10mL的不锈钢萃取容器中(聚氯乙烯(PVC)2g、高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)各3g)。对于每种材料,进行两次不同的萃取。第一次使用5.0mL/min二氧化碳和0.10mL/min异丙醇,第二次使用4.0mL/min二氧化碳和1.0mL/min异丙醇。所有萃取操作均在50℃和300bar背压的条件下,采用30-min动态、20-min静态、10-min动态程序进行,重复该程序2次。异丙醇用作补充溶剂,速度为0.25mL/min。对于高体积异丙醇萃取,在完成萃取过程后,收集溶剂(共溶剂和补充溶剂的混合物),将收集的溶剂几乎蒸干并重新溶于异丙醇(对于聚氯乙烯(PVC)为10mL,对于高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)分别为9mL)。对于低体积异丙醇萃取,收集的溶剂相应地补足至体积。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。每个样品的总萃取时间为2个小时。结果与讨论将各种萃取方法进行对比,索氏萃取法每个样品的萃取时间是8小时;微波萃取法在时长为3小时的萃取操作中可同时处理多达16个样品。超临界流体萃取法处理每个样品需要2个小时,可同时加载多达10个样品。即使同时使用更多的索氏萃取器,其萃取的总时间仍然远远超过微波萃取和超临界流体萃取所需的时间。就溶剂用量而言,索氏萃取需要多达175mL的溶剂,然后将溶剂蒸馏,以减少样品体积。微波萃取需消耗10mL溶剂,如果需要提高灵敏度,可以将这些溶剂量降低。超临界流体萃取法在样品预浓缩方面,具有最大的灵活性。在低体积异丙醇萃取条件下,最终收集的体积大约为5mL,将加至相应体积,使样品浓度与微波萃取和索氏萃取样品浓度相当。在高异丙醇萃取条件下,收集的溶剂总体积大约为30mL,蒸出部分溶剂,以达到最终的浓度。经微波萃取提取后,在聚氯乙烯(PVC)和乙烯-乙酸乙烯酯(EVA)样品中,可萃取物的数量最少。使用正己烷或异丙醇萃取低密度聚丙烯(LDPE)样品时,可萃取物的数量最多,如图1所示。图1使用微波萃取方法得到的正己烷和异丙醇萃取物使用索氏萃取,在聚氯乙烯(PVC)色谱图中可观察到一些附加的峰,如图2所示,而在微波萃取的色谱图中并未观察到这些峰。这种可观察到的差异可能是由于使用索氏萃取时,萃取时间较长,萃取温度较高。图2使用索氏萃取法得到的正己烷和异丙醇萃取物通过观察,将超临界流体萃取与其他两种方法进行对比,超临界萃取法萃出的聚氯乙烯(PVC)分析物的量与索氏萃取法萃出的量相似,但比微波萃取法萃出的量大,如图3所示。高体积异丙醇萃出的低密度聚丙烯(LDPE)的量高于低百分浓度异丙醇萃出的低密度聚丙烯(LDPE)的量。这就说明了用于确定改性剂百分含量的方法调整的灵活性和简易性,而这种灵活性和简易性正是塑料材料成功分析可萃取物所需的。图3使用低体积异丙醇和高体积异丙醇得到的超临界流体萃取物对于低密度聚丙烯(LDPE)样品,所有使用异丙醇作为溶剂的萃取方法得到的色谱图形状相似,如图4所示。增加可萃取物的浓度可以通过在微波萃取和索氏萃取中延长萃取时间、升高萃取温度,或者在超临界流体萃取中增加异丙醇的量得以实现。正己烷萃取不采用超临界流体萃取法进行,因为二氧化碳是一种非极性溶剂,与正己烷的化学性质相似,因而将会得到类似的结果。图4 低密度聚丙烯的异丙醇萃取物在低密度聚丙烯萃取物中鉴别的化合物示例如图5所示。图5 在低密度聚丙烯、超临界流体萃取物中鉴别的可萃取物总的来说,就萃出的化合物种类而言,所有方法大体相当。但是,经过确定,如果时间和资源成为重要的因素,则超临界流体萃取法相对于其他萃取方法具有诸多优势。MV-10 ASFE系统由软件控制,可进行自动化的方法开发。可使用的共溶剂达4种之多,在方法中可设定各种比例和萃取时间。在方法开发中,索氏萃取和微波萃取需要手动更换每一操作步骤的溶剂进行质量设计研究时,相当费时。结论与索氏萃取法相比,超临界流体萃取法可减少80%至97%的溶剂消耗量,同时可减少75%的萃取时间。通过软件控制的超临界萃取法使自动化方法开发能够确定最佳的萃取溶剂的比例和溶剂的选择。此外,与微波萃取法相比,超临界流体萃取法提供了样品预浓缩操作的灵活性。参考文献1. Containers Closure Systems for Packaging Human Drugs and Biologics Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER) Rockville, MD. 1999 May.2. Norwood DL, Fenge Q. Strategies for the analysis of pharmaceutical excipients and their trace level impurities. Am Pharm Rev. 2004 7(5): 92,94,96-99.3. Ariasa M, Penichet I, Ysambertt F, Bauza R, Zougaghc M, Rí os Á . Fast supercritical fluid extraction of low- and high-density polyethylene additives: Comparison with conventional reflux and automatic Soxhlet extraction. J Supercritical Fluids. 2009 50: 22-28.4. Cabovska B, Jones MD, Aubin A. Application of UPC2 in extractables analysis. Waters Application Note 720004490en. 2012 November.下载完整清晰应用纪要 请点击:http://www.waters.com/waters/library.htm?lid=134715590&cid=511436
  • 【瑞士步琦】使用快速溶剂萃取仪 E-916测定橡胶中的可萃取物
    使用快速溶剂萃取仪测定橡胶中的可萃取物E-916应用”橡胶(Rubber)是指具有可逆形变的高弹性聚合物材料, 橡胶按原料可分为天然橡胶与合成橡胶两种。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的高分子。橡胶是橡胶工业的基本原料,广泛应用于工业和生活各方面,制造轮胎、胶管、胶带、电缆及其他各种行业,全球约 70% 的天然橡胶用于交通运输行业中的轮胎制造。天然橡胶、钢铁、石油和煤炭一起并称为四大工业原料,是基础产业以及工业建设不可缺少的物资。1介绍快速溶剂萃取是在高温高压下用溶剂对固体或者半固体样品进行萃取的方法。该实验对橡胶中的可萃取物进行研究,按照ISO 1407-2023标准进行测定。该标准要求使用索氏萃取法,萃取时间为16小时 ,每小时5次循环。本文中介绍了一种有效的测定橡胶样品中可萃取物的方法,使用快速溶剂萃取仪E-916上在高温高压下进行提取,与标准相比,提取时间可以显着减少。2设备快速溶剂萃取仪 E–916平行蒸发仪 P-6分析天平(精度 ±0.1mg)干燥箱快速溶剂萃取仪 E-914 / E-916最快速度和最大样品处理量的结合快速溶剂萃取仪 E-914 / E-916 结合最大速度与处理量,是快速加压溶剂萃取 (PSE) 的最佳解决方案。通过并行处理更多样品、轻松加载样品和快速收集萃取物,提高生产率。平行蒸发仪 Multivapor可高效蒸发多个样品使用平行蒸发仪 Multivapor P-6 / P-12 对多个样品执行高效蒸发。通过同时处理大量样品加速样品蒸发过程。平行蒸发仪 Multivapor&trade 因其易用性可最大程度提高过程的效率。3试剂及样品丙酮橡胶样品样品 A: 预计值:18-22%样品 B: 预计值:19-24%4萃取步骤样品制备样品的提取溶剂蒸发提取物称重可提取含量的计算取 0.5g 样品放入纸滤筒中,装入 40mL 萃取池中(样品无需与硅藻土混合),按照表1的萃取参数进行萃取。表1: 快速溶剂萃取仪 E-916 萃取参数:参数温度100° C压力100 bar溶剂Acetone 100%萃取池40 mL接收瓶240 mL循环3预热1 min保持10 min排液3 min溶剂冲刷2 min气体冲刷5 min用平行蒸发仪 P-6 浓缩萃取后的溶剂,参数见表2。表2:平行蒸发仪参数参数加热温度45 °C转速7压力500 mbar溶剂蒸发浓缩后,将接收瓶在干燥箱中干燥至 102°C 恒重,在干燥皿中冷却至室温至少1小时后,称重。5结果样品A和样品B的可萃取含量如表3-4所示。结果均在在预期范围内。表3:样品 A 的结果(预期值 18- 22%)样品A样品重量接收瓶重量总重量萃取物含量%P10.5333152.7283152.836520.29P20.6547149.0583149.195120.90P30.5134153.2947153.400721.87平均值 [%]__20.61RSD [%] __1.48表4:样品 B 的结果(预期值 19- 24%)样品B样品重量接收瓶重量总重量萃取物含量%P40.5859146.4764146.586518.79P50.6023149.2818149.395918.94P60.6598148.4589148.582818.78平均值 [%]__18.84RSD [%] __0.496结论标准要求使用索氏提取时间为 12-16 小时,每小时至少循环 5 次。与标准中使用的索氏提取相比,使用快速溶剂萃取仪 E-916 萃取时间仅需 1 小时即可完成萃取任务。
  • 广州大学王家海教授团队在纳米孔单分子计数器和纳米孔整流器领域的系统性成果
    经过30多年的发展,纳米孔在核酸测序领域已经成功实现商业化,在分子诊断领域(分析化学)也取得了巨大的进步。期间,研究者发展了不同种类的纳米孔,包括蛋白质纳米孔、高分子纳米孔、玻璃纳米孔和各种无机薄膜纳米孔。于此同时,理论研究和各种功能化技术也逐渐完善。研究内容从核酸测序扩展到对药物小分子、蛋白质、核酸碱基突变及其他一些重要的对象进行检测。本文主要介绍王家海教授团队在纳米孔领域取得的一系列进展和成果。(一)将纳米孔的离子整流现象运用到分析化学,提高纳米孔的应用范围和深度2008年之前,基于纳米孔的分子检测主要使用电阻脉冲方法(Resistive-pulse method)(图1):在纳米孔两边施加电压时,纳米孔一端的离子在电场的作用下通过纳米孔,可观察到稳定的恒电流;当带有一定体积和电荷的探测物存在于溶液中时,电场的作用使其通过纳米孔,纳米孔中的离子浓度临时改变,可观察到一系列的电阻脉冲峰(Resistive pulse)。根据峰的大小、持续的时间和频率,即可对探测物进行定量和定性测量。图1. 基于蛋白质纳米孔的电阻脉冲方法电阻脉冲方法高度依赖纳米孔的孔径、稳定性、长度和表面的电荷及表面功能基团。譬如用于基因测序的蛋白质纳米孔,孔径只有两纳米左右。这些苛刻的要求,限制了该方法广泛用于生物体系中不同对象的探测及其实用化。因此发展新方法能使纳米孔分析化学应用更广泛和深入。2008年,为了提高纳米孔在分析化学上使用范围和深度,把离子整流现象运用到分析化学(Nanomedicine, 2008, 3, 13-20)。相关工作两次在国际大会进行专题报告。离子整流方法:在锥形纳米孔(带负电)两端实行电压扫描时,观察到一个非线性的电流对电压的曲线(I-V curve);把带正电的探测物置于溶液,探测物会选择性吸附到锥形纳米孔内表面,探测物改变或逆转了孔内表面电荷数目,当再次对锥形纳米孔两端实行电压扫描时,会观察到一个改变的非线性的电流对电压的曲线,通过对电流改变值进行分析,即可对探测物进行定量分析(图2)。图2. 基于锥形纳米孔的离子整流方法随后,该团队进一步把这个原理运用于探测不同疏水性药物小分子(Talanta, 2012, 89, 253-257)。药物检测原理如下(图3):(1)当不断改变药物分子在锥形纳米孔小端一侧的浓度时,观测到一系列变化的电流电压曲线。当药物分子达到一定值时,药物在纳米孔内的吸附达到饱和,电流电压曲线不再发生变化,这时候表面覆盖率达到1。(2)没有药物分子的时候,药物表面覆盖率为0,电流电压曲线为黑线。对应一定药物浓度的表面覆盖率,可以利用特定电压所对应的电流计算。(3)表面覆盖率与药物在溶液中的浓度和药物与表面的结合常数相关联。(4)如果以表面覆盖率为Y轴,药物浓度为X轴,结合Langmuir方程式,就可以拟合出药物与薄膜内表面的结合常数。不同疏水小分子在薄膜上的吸附能力不一样,所以可以用电流电压曲线区分不同小分子(图4);小分子Hoechst 33342 在20微摩尔时薄膜内表面吸附达到饱和(图4A),分子Propidium Iodide 在1毫摩尔时薄膜表面吸附达到饱和(图4B)。分子Bupivacaine hydrochloride 在8毫摩尔时在薄膜内表面吸附达到饱和(图4C)。图3. 离子整流定量检测药物分子。(A)不同浓度的药物引起不同的离子整流和电流电压曲线。(B)药物在纳米孔表面的覆盖率可以通过相对电流改变量计算。(C)药物表面覆盖率与溶液中的药物浓度和药物与表面的结合常数通过Langmuir方程式相关联。(D)如果以表面覆盖率为Y轴,药物浓度为X轴,结合Langmuir方程式,就可以拟合出药物与薄膜内表面的结合常数。图4. 区别不同疏水性带正电的药物小分子。(A)对应于小分子Hoechst 33342的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。(B)对应于小分子Propidium Iodide的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。(C)对应于小分子Bupivacaine hydrochloride的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。相对于电阻脉冲方法,离子整流方法带来新的期待,它对纳米孔大小、表面修饰、膜厚度的要求都比电阻脉冲方法宽松很多。尽管如此,离子整流仍然需要更进一步的发展:高分子膜中50纳米以下纳米孔在电镜的观测下,会变形,测量不准,误差很大,且操作费事;高分子膜表面的疏水性影响了探针分子的修饰,纳米限域内的分子探针修饰无论是成功率还是重现性都比开放表面修饰差很多;基于高分子纳米孔离子整流,离子整流的整流系数变化还不太理想,使整个体系的检测限与其他表面技术和荧光方法相比较,还有一定差距;离子整流的应用范围需要继续扩展。(二)发展基于光透射技术的纳米孔孔径测量方法此前常用的表征核孔膜孔径的方法有电子扫描显微镜(SEM)和光学显微镜。SEM测试费用昂贵,操作时间长。光学显微镜只能测量微米尺度以上的物体。况且这两种方法都不能够实现在线监测。为了纳米孔孔径测量更方便,测量时孔径不变化,该团队发展了一种基于光透射技术的测量方法(Chem. Commun., 2013, 49, 11451-11417)。运用紫外分光光度计测量出核孔膜的大小(图5),可以覆盖50纳米到1微米的区间,有望填补在线检测核孔膜生产的技术空缺。该团队发明的这个方法,优势在于简单(图6),可以生产出微型化的装备快速检测孔径大小(图7),主要运用于高分子核孔膜的制备与表征(Track-etched Membrane),实现实时在线检测。该团队已经基于该方法开发了相关检测仪器,已经与企业开始技术转化洽谈。[1]图5. 核孔膜孔径在增大的过程中孔的周边会有一个缓冲带,这个区域会随着孔径增大而同时变大,会反射光。逐渐增大的缓冲带会使薄膜越来越不透明图6. 薄膜仅仅需要放在紫外样品池支架上(静电吸附)图7. 核孔膜孔径与光反射log值呈现良好的线性关系(三)设计无探针修饰的纳米孔分析平台,消除限域纳米孔内立体阻碍的干扰高分子膜表面的疏水性影响了探针分子的修饰,纳米限域内立体阻碍对探针和被测物之间的相互作用有很大的影响,造成纳米限域内分子探针修饰无论是成功率还是重现性都比开放表面的修饰差很多。针对这个不足之处,该团队设计了无探针修饰的纳米孔分析平台(Microchim. Acta, 2015, 59, 4946-4952 Talanta, 2015, 140, 219-225 Biosens. Bioelectron., 2015, 63, 287-293 J. Mater. Chem. B, 2014, 2, 6371-6377)。在运用纳米孔作为检测平台时,探针修饰是常用的做法,但这种方法有不足之处,譬如纳米孔内表面的立体阻碍,影响检测限的优化。纳米孔内高电场也影响了探针在孔内的稳定性。在该团队的工作中,探针游离在溶液当中,可以高选择性的和目标对象结合(多余的探针被单碳纳米管除去),只有结合了目标物的探针才能被纳米孔吸附,从而改变纳米孔表面的电荷,因此能用纳米孔选择性检测目标分子。这个新方法的优势在于,探针与目标对象的作用完全在溶液中,不受表面影响。将该方法用于对三价镉离子的探测,仅仅通过选择适当的缓冲溶液就可以做到。图8. (a-c)在纳米孔表面吸附高分子PEI,然后吸附Zr4+离子,纳米孔具备吸附核酸探针的能力;(d)与探测物结合的核酸适配体吸附到纳米孔表面,没有与检测对象相结合的自由核酸适配体被单壁碳纳米管吸附带走。纳米孔表面的电荷改变可以通过离子整流探测。基于高分子的纳米孔整流器容易发生非特异性吸附,尤其是含有胺基的小分子容易吸附在纳米通道表面,这会降低纳米通道传感器的效率。该课题组利用主客体相互作用来消除过量小分子的影响,在检测三聚氰胺中利用环糊精(Cyclodextrin)解决了这一个问题。与单壁碳纳米管(SWNTs)相结合,β-环糊精(β-CD)为涂覆有聚乙烯亚胺(PEI)和锆离子(Zr4+)的锥形纳米通道提供了优异的传感性能。以三聚氰胺为检测对象,制备的纳米通道可以选择性检测三聚氰胺诱导的双链DNA(dsDNA)(Biosens. Bioelectron., 2019, 127, 200-206)。全部工作在广州大学完成。图9. 环糊精可以屏蔽三聚氰胺的非特异性吸附(四)借助纳米通道支撑基底,发现高分子膜材料上具备完美的离子二极管效应和离子整流现象高分子纳米孔离子整流系数变化不够大,其检测能力与其他表面技术和荧光方法还有一定差距。通过提高纳米孔的离子整流效率可以进一步降低检测限。借助纳米通道基底,该团队发现气体高分子响应膜材料上完美的离子二极管效应和离子整流现象(RSC Adv., 2015, 5, 35622-35630)。二极管效应早先是电子二极管很重要的一种现象,有广泛的应用实例。在后来的蛋白质纳米通道中也发现了二极管效应,与电子二极管不同的是电流的载体是离子,这种效应是离子二级管效应,其原理也被其他人工材料采用。本文发明了一种全新的离子二极管,并用新的物理化学机理解释了超薄气体响应高分子膜的这种离子二极管效应。该高分子膜除了可以应用在油水分离、海水淡化和能源隔膜等领域中,对应用在分析化学中也是很有前景,其离子整流系数达到几万倍,几乎接近完美。图10. (A)和(D)核孔膜电镜图(200 nm),(B)和(C)长满高分子膜的PET膜的上下两面。(E)和(F)高分子膜的厚度(1.6 μm)。图11. 只要调换溶液和控制电压方向,就可以制备可开关的离子二极管。电压方向可以控制离子在薄膜附近的浓度,从而引起薄膜亲水或者疏水。(五)运用离子整流解释高分子薄膜内羧基可以带正电纳米孔分析化学的应用范围需要继续扩展,譬如运用离子整流观测表面化学反应,把纳米孔集成到微小器件中用于体内检测。2011年该团队运用离子整流解释了高分子薄膜内羧基可以两步质子化反应带正电(Nanoscale, 2011, 3, 3767-3773)。发现不对称锥形纳米孔内新的物理和化学性质:聚脂薄膜内表面的羧基可以通过两步质子化使薄膜内带负电荷、呈中性、带正电荷三种状态。该工作打破了近十年的传统观念,以前认为薄膜内表面只能具备带负电荷、呈中性两种状态。表面羧基(COOH)是由NaOH刻蚀聚脂薄膜PET产生的,在中性溶液中薄膜内表面带负电荷(COO-),在溶液pH 下降到3 或更低时,电流电压曲线发生反转。要通过电流电压曲线观测到这个现象,需在比较宽电压范围内扫描。图12. 不需要生物化学修饰的离子整流器。(A)锥形纳米孔图,(B)薄膜表面电荷性质发生变化。(六)将二维纳米孔折叠成三维微米器件,用于细胞培养和药物释放目前基于纳米孔的分析检测都是在体外进行,要想将更加先进的检测技术运用到体内,必须和能用于体内的其他智能化的微小器件相结合。该团队曾经把二维的纳米通道折叠成三维的微米器件(Nano, 2009, 4, 1-5)。这种立体盒子的每个面都带有纳米孔,可以进一步功能化。该立体盒子(微米)可以用作细胞存放的容器,譬如能产生胰岛素的细胞。盒子的每一面的纳米孔都能感知周围的环境,根据需要用于营养成分的交换,保证盒内的细胞正常生长,并且在体内为患者提供源源不断的胰岛素。还可以把其他的药物分子放入微米器件内,为患者提供帮助。该工作只是初步的把纳米孔和其他先进器件相结合,后续的应用还需要更多的研究工作。图13. 三维纳米孔器件(七)小分子功能化的纳米孔通道可以调控离子流在家禽业中滥用金刚烷胺(ADA)及其衍生物作为兽药,可能会给人类带来严重的健康问题。因此,迫切需要开发一种快速、廉价、超灵敏的ADA检测方法。该团队建立了一种灵敏的锥形纳米通道传感器,利用主客体竞争的独特设计快速定量检测ADA。该传感器使用对甲苯胺类对纳米通道表面进行功能化来构建,然后用葫芦素(Cucurbit[7]uril,CB[7])组装而成。当ADA加入时,由于主客体的竞争,它会占据CB[7]的空腔,使CB[7]从CB[7]-p-甲苯胺类络合物中释放出来,导致纳米通道的疏水性发生明显变化,这可由离子电流确定。在最佳条件下,该策略允许在10-1000 nM的线性范围内灵敏检测ADA。基于纳米通道的ADA传感平台具有高灵敏度和良好的重复性,检测限为4.54 nM。该文首次利用纳米通道系统实现了基于主客体竞争的非法药物快速、灵敏的识别,并详细阐述了该方法的原理和可行性。该策略为将主客体系统应用于小分子药物检测纳米通道传感器的开发提供了一种简单、可靠、有效的方法(Talanta, 2020, 219, 121213)。全部工作在广州大学完成。图14. 葫芦素调控的纳米孔检测三维金刚烷胺(ADA)(八)核酸纳米结构作为纳米孔信号传导载体检测病毒基因片段运用纳米孔直接检测小分子或者其他目标对象挑战性非常大,如果把对目标对象的检测转化成对核酸纳米结构的检测,可以解决很多以前不能解决的问题(Analyst, 2022, 147, 905-914)。特别是,具有明确三维纳米结构的DNA四面体是用作信号传感器的理想候选。该团队展示了在反应缓冲液中检测HPV18的L1编码基因作为测试DNA靶序列,其中连接DNA四面体到磁珠表面的长单链DNA被靶DNA激活的CRISPR-cas12系统切割。DNA四面体随后被释放,可以通过玻璃状纳米孔中的电流脉冲进行检测。这种方法有几个优点:(1)一个信号传感器可以用来检测不同的目标;(2)孔径比目标DNA片段大得多的玻璃状纳米孔可以提高对污染物和干扰物的耐受性,避免纳米孔传感器性能的降低。图15. 纳米孔结合CRISPA-cas12 检测病毒片段王家海教授简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。精彩会议预告:点击图片免费报名参加“第五届基因测序网络大会”
  • 美国加州环保局对MARS6消解和萃取的应用效果认证
    新京报讯 (记者金煜)昨日,北京市环保局,来自美国加州的环境专家作关于美国大气治理和重污染应急措施讲座,10位微博网友受邀参加。回答市民提问时,美国加州空气资源委员会前执行官凯瑟琳说,空气质量这事太大,民众和政府都要参与。市民微博申请受邀,北京市环保局官方微博几日前就发出信息,将邀请两位美国环保专家举办讲座,介绍加州自洛杉矶烟雾事件以来空气质量改善历程及美国空气质量应急预案。环保局邀请10位关心环保的市民到场交流。摘自新京报网《环保局邀请市民 听美国专家讲环保》http://www.bjnews.com.cn/news/2013/03/28/255449.html CEM公司是全球最大和历史最久的微波化学仪器制造商,在北卡建有全球最大的微波化学研发中心,已获得11次国际R&D100应用科学大奖,被称为微波技术创始者和领导者。CEM最早推动了EPA方法标准的制定,并且一直致力于提高和制定微波化学的应用标准,以及仪器电磁和高压安全标准;最先开发了几乎所有微波化学新应用如:微波消解、微波萃取、微波合成、微波多肽合成、超低温化学、微波灰化、微波水分/脂肪/蛋白质快速测试等技术。第六代微波多模反应器MARS6,集合了CEM公司多项最新设计理念和技术。采用了最新的One-Touch和PowerMax专利技术,是分析化学智能化过程控制和目标控制的最新突破。 第六代智能化微波消解产品MARS6 加州环保署是全美国最严格的官方环保机构,加州是世界率先通过严格环保标准治理的地区,其当时的证明文件对全球环保界都具权威性和指导性意义。后来的全球各国都直接采用或以此参照,EPA在其相关的微波消解和萃取标准方法中(如EPA 3015、3051、3546),对反应温度、时间、反应罐体积等参数是在CEM机型上进行研发从而制定的。此证书是美国加州环保署,当时为推广执行标准出具的可行性技术论证,由此证明CEM在萃取技术方面的领先地位和卓越性。这也是为什么,CEM公司的&ldquo EPA微波萃取证书&rdquo 在行业内具有最高权威性的原因。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 原油评价好帮手,实沸点蒸馏
    原油是炼化企业最基础、最核心、最根本的生产资料,在原油加工过程中,原油采购成本占总加工成本的90%以上。在生产过程中,原油评价数据不但可以为一次加工提供依据,而且也是二次加工,如重整、加氢、润滑油生产、渣油加工、焦化、沥青生产和科研的技术工作者提供可靠的分析数据。可见原油评价工作在石油加工和石油研究中处于重要的地位。实沸点蒸馏是原油评价的首道工序。是根据原油中各组分的沸点不同,用加热的方法从原油中分离出各种石油馏分。而实沸点蒸馏仪针对实沸点蒸馏,是原油评价中最重要和最基础的设备,能够根据要求对原油进行窄馏分和宽馏分的切割,得到原油各馏分的效率,然后对宽馏分和窄馏分进一步分析,从而*得到全面的原油评价数据。其中TBP系统(常压蒸馏法)最/高切割温度能够达到400℃,蒸馏柱的效率在全回流时具有14 – 18块理论塔板数。根据需要,在回流比5:1的条件下切割出不同的馏分。剩下常压渣油,其中含有沸点较高的蜡油、渣油等组分。将常压渣油经过加热后,送入PS系统(罐式蒸馏法),是常压渣油在避免裂解的较低温度下进行分馏,PS系统最/高切割温度能够达到常压相当温度565℃,分离出润滑油料、催化料等二次加工原料,剩下减压渣油。 PD400CC原油实沸点蒸馏仪德国Pilodist PD 400系列原油实沸点蒸馏仪可分成两部分:原油蒸馏标准试验仪(PD 100系列)和重烃类混合物蒸馏仪(PD 200系列)。☑ PD 100系列符合ASTM D2892标准方法,切割范围从脱丁烷到400℃,他在全回流状态下具有15块理论塔板,蒸馏柱中装满不锈钢填料,在5:1的回流比下蒸馏。☑ PD 200系列符合ASTM D5236标准方法,切割范围从150℃到565℃,压力从10mmHg到0.1mmHg,蒸馏柱较短,没有填料,只相当于一块理论塔板。仪器特点:① Pilodist原油实沸点蒸馏仪完全符合ASTM D 2892和ASTM D5236标准方法;② 蒸馏过程由计算机控制,基于WINDOWS系统的操作软件操作方便,参数设置灵活,通过计算机输入测试运行参数,控制蒸馏运行,记录测试数据,显示测试曲线,蒸馏过程中操作人员可以随时对各技术参数进行修改设置,具有很强的灵活性;③ 蒸馏速率控制:自动闭环控制,根据样品回收质量速率或体积速率控制蒸馏加热功率,严格符合标准方法要求;④ 馏分切割,自动进行减压馏出温度和常压AET温度的换算,并根据预先设置AET切割温度实现自动馏份切割、收集、质量称量和体积测量;⑤ 数据处理:计算机实时显示测试过程数据,测试结果直接用EXCEL文档显示。试验结束显示和打印wt%、vol%实沸点蒸馏曲线。
  • Supelco 固相萃取产品应用文集有奖征稿活动
    Sigma-Aldrich集团旗下著名分析品牌Supelco,在分析和色谱领域内,拥有超过40年的技术经验。专注于色谱分离和样品前处理的研发和创新。自1985年Supelco首次引进SPE技术以来,其提供的Supelclean和Discovery系列SPE小柱已经广泛使用于食品、药品、农业,生物、环境等领域中。拥有LC-18,Envi-18,LC-Florisil,LC-Alumina,LC-NH2,LC-Si,LC-SCX,LC-WCX,LC-SAX,PSA 等多款广受好评的SPE小柱,特别是Envi-Carb/LC-NH2,Envi-Carb/PSA等双层柱已成为食品/农产品中农药多残留检测的指定产品。 为了使各行业用户更多了解Supelco固相萃取小柱的应用,增进用户之间的技术交流,为广大用户搭建交流与沟通的平台,共享方法开发的经验和技术,Sigma-Aldrich(中国)公司决定从2011年8月1日起开展应用文集有奖征稿活动。您的投稿将收录于Supelco固相萃取产品应用文集库并编辑成册后供广大用户参考。 活动时间:2011年8月1日至2011年9月30日征文要求:凡是在标准、公开发表刊物收录文章、会议论文、最新技术应用文章中使用Supelco SPE产品(包括固相萃取小柱和分散SPE),如在文章中引用Envi-18,Envi-Carb等字样的稿件均可参加投稿征文方式:投稿采用电子邮件方式,稿件请发送至haihong.xu@sial.com,主题标明&ldquo Supelco 固相萃取产品应用文集有奖征稿活动&rdquo 征文格式:word格式,A4,宋体,五号,文章中应注明作者姓名、联系方式、单位名称、详细地址奖励方式:经录用的优秀论文将免费得到精美礼品一份或者Supelco固相萃取小柱1~2包 注:本次活动不收取任何费用,最终解释权归Sigma-Aldrich(中国)公司所有Sigma-Aldrich(中国)公司市场部联系人:徐海红联系电话:021-61415566-8220关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 亚临界水萃取仪
    成果名称亚临界水萃取仪单位名称天津出入境检验检疫局动植物与食品检测中心联系人宓捷波联系邮箱mijb@tjciq.gov.cn成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 □合作开发 &radic 其他成果简介:  样品前处理技术是食品分析检测的最关键步骤之一。食品样品中的目标化合物一般含量极小,基体复杂、干扰物多,必须经过样品的制备、目标物质的提取、净化、浓缩等前处理过程才能最终进行检测。然而,提取和净化过程中通常需要大量使用乙腈、二氯甲烷等有毒试剂,并进行液固提取、转移、洗脱和最终的浓缩,残余溶液的废弃,这些都会对环境造成一定程度的污染,同时也会危害科学技术人员的生命健康。加强样品前处理技术的研究,在提高对食品样品中残留农兽药提取效率的同时,减少甚至不用有毒害的有机试剂,对于保障国家的食品安全、环境质量、人体健康都具有重大意义。  在食品分析检测过程中,目前广泛应用的前处理技术主要有微波辅助萃取(MAE)、加速溶剂萃取(ASE)、超临界流体萃取(SFE)等。这些方法提取效率高,定量准确,但同时也存在一些缺陷。一是操作处理时间过长。二是有机试剂用量大,对环境有污染。  天津检验检疫局围绕该关键点,广泛进行资料调研,认真分析,努力寻求方法的突破,积极尝试了亚临界水萃取后的多种反萃模式,并针对进出境食品中农兽药的残留情况进行方法开发。该项目利用固相吸附填料对亚临界水萃取后的目标物进行适时反萃和动态连接技术有效地克服了亚临界水萃取后目标物反萃的难点,建立了一套快速、灵敏、绿色、环保的亚临界水萃取-填料吸附的检测体系,并开发了简易、实用动态亚临界水萃取仪器。应用前景:  该项目是一个以具有自主知识产权的新技术为基础的食品中农兽药残留检测的前处理技术平台。项目采用了亚临界水萃取,填料组合吸附,动态连接和针对性优化等技术,同时利用该技术组装的动态萃取装置材料普遍,连接简便,适于基层实验室自行组装使用,便于推广。  该项目具有四项核心技术:亚临界水萃取温度优化,吸附填料的模式优化装填法,溶剂组合反萃技术,动态萃取连接交替冲洗技术。该项目建立的静态和动态亚临界水萃取-反萃技术立足于检验检疫的实际工作,解决了实验室一线的前处理难题,并具有实际推广的应用前景。该项目利用绿色、环保的萃取溶剂-水取代了有机溶剂,基于节能、环保的科技发展理念,充分考虑技术的实用性和可发展性。该技术的特点是萃取溶剂无毒无害,实验材料获取容易、方法灵敏,对蔬果、粮谷、肉类中绝大多数农兽药都可以进行定量的萃取,且动态亚临界水装置结构简单,可以根据实验要求进行不同的改进。  目前,该项目构建的加速溶剂萃取的静态亚临界水萃取-C18吸附净化前处理技术平台可以在蔬果、粮谷和肉类基质中较好地完成农兽药提取,其检测低限可达0.05mg/kg,回收率及精密度均符合分析要求;由液相色谱泵和气相柱温箱以及管线自组装的动态亚临界水萃取装置,可以在蔬果、中药材以及肉类制品中进行多种农兽药的提取、检测,对农药和喹诺酮类药物的检测低限均达到0.1mg/kg。
  • 萃取技术的奥秘揭秘——萃取实验装置助力学生掌握工业化工过程
    萃取是一种常用的分离和纯化技术,特别适用于分离提纯液体或乳浊液中的溶质。萃取原理类似于吸收,利用溶质在两相之间的溶解度差异进行分离操作。在化工类专业的实践教学中,萃取实验装置扮演着重要角色,通过实践操作装置,学生可以深入理解萃取技术的原理和应用。本文将介绍萃取实验装置在实践教学中的应用与成果,以及其特点和优势。 一、实践教学中的萃取实验装置应用 实践教学中的萃取实验装置主要用于验证性实验,如苯甲酸在水煤油中的萃取过程。装置包括萃取剂槽、水泵、流量计、塔部进料口、塔部出料口、油水液面控制管等。原料液则通过油泵、流量计,从塔部出料口流入设备。萃取剂和原料液在装置中进行接触,利用其密度差异和溶解度不同,实现苯甲酸的分离提取。 二、装置特点与优势 1. 萃取工艺的应用前景良好:萃取工艺成本较低,应用前景良好。实践教学中的萃取实验装置可以使学生了解并掌握萃取工艺的基本原理和操作技术,为将来的工作实践奠定基础。 2. 结构简单、操作方便:萃取实验装置采用欧标铝型材框架设计,整体结构简单紧凑,使用方便。硬质PVC透明管路设计使实验现象更直观,学生能够清晰观察和理解萃取过程。 3. 智能学习系统的配套:萃取实验装置配备智能学习系统,通过预习视频、3D仿真、在线考评测试等功能,培养学生的自主学习意识,激发学生的学习兴趣。同时,教师也可以借助该系统减轻教学压力,并提供学生个性化的辅导和指导。 4. 提供质保服务:为了解决用户后顾之忧,该装置提供6年质保服务,确保用户在使用过程中的顺利进行。这为教师和学生提供了更大的安心和保障。 总结: 萃取实验装置在化工类专业的实践教学中具有重要应用和优势。通过实践操作装置,学生可以了解萃取技术的原理和应用,提高实践动手能力、掌握分离原理和操作技巧,培养科学认识和实际工作能力。装置的特点和配套智能学习系统进一步增强了实践教学的效果和学习体验。为了确保用户的使用体验和满意度,该装置还提供质保服务。通过萃取实验装置的应用,将为化工类专业的学生提供更好的实践教学环境和机会,培养出更多优秀的化工人才。
  • 沃特世推出正压96孔固相萃取装置
    沃特世正压96孔固相萃取装置为96孔和1cc无凸缘固相萃取小柱形式提供最先进的运转性能。处理装置可以保证96孔板中的任何一个孔或小柱都恒压,即便孔板位置未完全填满时也是如此。相对于传统负压装置而言,正压处理装置具有许多优点。  分析物的回收率重现性好  普通真空萃取装置的一个主要问题是当96孔板中某个孔流干运行时,就会减慢其余孔的流速,这可导致不同孔间分析物的回收率重现性差。配有96个独立通道的沃特世正压96孔固相萃取装置对每个通道所施加的压力相等,不论是充满的还是流干的孔,甚至对根本没有孔入口的情况也不例外。这将提供高度均匀的萃取效果,从而改善分析物回收率的重现性。  提高粘性样品的流速  处理粘性样品时,真空萃取装置通常不能提供足够的处理动力,这是因为最大压力被限制在低于大气压(约15 psi)的水平下。沃特世正压96孔固相萃取装置允许气体压力高达80 psi,从而为粘性样品的流动提供更大的动力,并可对一块96孔板上粘度不同的血浆样品进行高度一致的流速控制。  适合各种类型的96孔板,1cc无凸缘式SPE小柱形式  与许多96孔真空装置不同,沃特世正压96孔处理装置可根据孔板的高度自行调节,从而可适应各种类型的96孔板(包括模块化孔板和集成孔板)。同时,沃特世的正压96孔固相萃取装置可一次性处理96个沃特世1 cc无凸缘式SPE小柱。  易用型设计  沃特世的正压96孔固相萃取装置使用简单。简单组装SPE和收集板,并将组件放置在处理装置的滑动托盘平台上,并将托盘滑动到歧管下方为止。该组件侧面的两个按钮可激活压缩装置。  优良的SPE流速控制  沃特世正压96孔固相萃取装置可对经过孔板的流量进行精确控制。惰性气体通过流速调节器并经过旋转式流量计而被传送至沃特世的正压96孔固相萃取处理装置中。这使得通过整块96孔板的流速均匀而受控,从而使流速不受空孔的影响。  处理粘性样品  沃特世正压96孔固相萃取装置的输气系统可使气体快速流动到歧管内,压力范围为0-80 psi,处理粘性样品时将96孔板流速调节至最大,并可降低这类样品造成孔堵塞的风险。
  • CEM的MARSX微波萃取技术得到美国加州环保局认证
    美国加州环保局有毒物质控制处对一项从固体中萃取有机化合物的独特技术进行了认证,认证编号为:01-01-035。此独特技术所用仪器是CEM公司的MARSX微波快速萃取系统。MARSX是目前唯一得到官方认证的利用微波进行快速溶剂萃取的新技术。 加州环保局有毒物质控制处认为CEM公司的MARS&mdash X微波快速萃取技术是一个非常快速、安全、环保的技术。 该技术是在密闭样品罐中利用微波能量加热加速萃取。系统带温度和压力的实时控制,并且磁控管的功率可调,可以在一个完全可控的条件下加速从固体中萃取有机物。 该系统可用于实验室中萃取、消融、水解等一系列样品前处理过程,它是一个非常快速的样品前处理系统,在15分钟内就能完成对14-40个样品的萃取。 由于该系统在萃取过程中对每一个样品罐进行实时温度和压力测量,所以它是非常安全的。 该系统萃取所用溶剂少,且萃取是在密闭罐中进行,它是非常环保的萃取技术。 加州环保局称对该技术认证的目的是提供生产厂商和用户之间独立的、更深层次的技术回顾,并由此推动加州环保技术的不断成长。微波萃取更多信息请点击www.pynnco.com 查询或致电:010-65528800培安公司。
  • 屹尧新品:固相萃取,请用更CLEVER的方式
    屹尧科技2018年5月,全新改版推出CLEVER全自动固相萃取仪,意味着地表水、饮用水、自来水、地下水等液体样品中痕量有机物萃取和浓缩的客户有了一个全新的选择。尤其当您需要萃取大体积液体样品中的痕量污染物质,那么我们郑重推荐CLEVER,它几乎是为您量身定做的。CLEVER全自动固相萃取仪可实现从活化、上样、淋洗、吹干、洗脱、浓缩、定容整个固相萃取过程的自动化和智能化。优异的性能,来源于诸多创新设计:模块化设计(单模块/多模块可选):多,或者更多可实现三通道直到十二通道的单独或并行工作模式,配置灵活多样,工作效率更高。叠机功能:快,效率才是王道在浓缩前一批样品时,可自动进行下一批样品的SPE处理,缩短样品处理时间,提高工作效率。两种除水模式:在线氮气吹扫和无水硫酸钠除水,效果更好无水硫酸钠除水适用范围广,尤其适合易挥发有机物的除水,除水效果更好,回收更稳定。自动红外定容功能:为所欲为,一切刚好0.5mL, 1mL可选。氮吹和定容模块透明可视,定容管整体可视,浓缩时自动启动照明功能。在线浸润SPE柱功能:做好本分,可靠才好溶剂加载到萃取柱后,可确保填料被溶剂浸润一定时间,使其充分活化或洗脱,结果更可靠。SPE和氮吹浓缩一体化设计:原位浓缩,简单就好洗脱完成后无需转移到其他浓缩设备,即可实现主机原位在线氮吹加热浓缩,过程实时可视。8.4吋大屏彩色液晶屏:省,不需要另配电脑可直接进行方法编辑、保存、修改以及运行,简单易用,便于操作。性价比这东西,首先还是看性能,然后才比价格。固相萃取,屹尧为您推荐更CLEVER的选择。我们确信,它将重新定义固相萃取仪性价比。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制