当前位置: 仪器信息网 > 行业主题 > >

靶基因序列分析鉴定细菌和真菌的解释标准

仪器信息网靶基因序列分析鉴定细菌和真菌的解释标准专题为您提供2024年最新靶基因序列分析鉴定细菌和真菌的解释标准价格报价、厂家品牌的相关信息, 包括靶基因序列分析鉴定细菌和真菌的解释标准参数、型号等,不管是国产,还是进口品牌的靶基因序列分析鉴定细菌和真菌的解释标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合靶基因序列分析鉴定细菌和真菌的解释标准相关的耗材配件、试剂标物,还有靶基因序列分析鉴定细菌和真菌的解释标准相关的最新资讯、资料,以及靶基因序列分析鉴定细菌和真菌的解释标准相关的解决方案。

靶基因序列分析鉴定细菌和真菌的解释标准相关的资讯

  • FDA批准质谱仪系统VITEK MS用于鉴定193种不同致病细菌和真菌
    2013.8.21,FDA批准美国第一个质谱仪检测系统用于自动识别已知能导致人体严重疾病的细菌和酵母的上市。该质谱仪系统VITEK MS能鉴定出193不同微生物,可在一系列自动化测试过程中进行192种不同的测试,而且每个测试只需要大约一分钟。  谱仪系统VITEK MS可以鉴别诸如念珠菌、隐球菌和马拉色氏霉菌属组的酵母茵和葡萄球菌科、链球菌科、肠杆菌科、假单胞菌科和类杆属组的细菌,这些酵母茵和细菌跟皮肤感染、肺炎、脑膜炎和血液感染有关。HIV或AIDS、癌症治疗或器官移植后的抗排斥治疗损害或削弱免疫系统的患者特别容易受到这些细菌感染。  VITEK MS采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术,该技术利用激光打破酵母和细菌标本成小颗粒,形成一个独特的微生物模型。VITEK MS在检测系统数据库自动将这些微生物模型与193种已知的酵母和细菌进行比对,从而鉴别微生物。  此与其他要求大量微生物繁殖来检测的鉴别方法相比,质谱分析方法只需要少量的酵母或细菌繁殖,所以只要微生物生长到可视程度后就可以马上开始检测,通常在在18到24小时内。传统的方法需要五天才能得出相同的鉴别结果。  FDA通过新型分类程序审查了VITEK MS,这是对一些新型低中度风险且不完全等同于已知合法市售的医疗设备的调控途径。  VITEK MS再临床上用于鉴别由人体标本培养得到的微生物,它与联合其它临床和实验室发现相互结合,从而辅助诊断细菌和真菌感染。  VITEK MS的制造商为北卡罗来纳州达勒姆的生物梅里埃公司。
  • 李金华研究员与潘永信院士团队等:环境趋磁细菌单细胞鉴定和综合研究技术路线图
    摘要:微生物是地球上最古老且延续至今的生命形式。它们种类繁多、功能多样、分布极广、数量庞大,扮演着生产者、消费者和分解者的角色,参与近40亿年的地球演化,并且还在持续影响地球的物质元素循环和气候环境变迁等。开展现代环境中微生物多样性和地质记录中微生物化石综合研究,是理解微生物参与地球和生命演化过程和机制的关键所在。尽管微生物的研究已有三百多年的历史,然而目前成功分离培养的微生物仅占0.1%-1.0%,自然界中仍有大量不可培养微生物资源有待挖掘和开发利用。近日,中国科学院地质与地球物理研究所李金华研究员与潘永信院士生物地磁学团队联合法国巴黎第六大学、澳大利亚国立大学等国内外多个单位科研人员,将微生物分子生态学与电子显微学技术相结合,在单细胞水平上,实现了环境样品中脱硫菌门趋磁细菌的特异性鉴定和生物矿化研究。针对环境中大量的未培养趋磁细菌,该项研究还提出了单细胞鉴定和综合研究技术路线图,为地质微生物的种类鉴定及生物地球化学关联研究提供了新思路。本研究提出的环境趋磁细菌单细胞鉴定和综合研究技术路线图:第①步:趋磁细菌分离或收集(A-E)。A.野外采集含趋磁细菌的沉积物或水体样品。B.实验室建立有氧-无氧过渡区(OATZ)微环境,富集培养环境趋磁细菌。C.通过过滤或其他非磁性方法从分层水柱或沉积物中浓缩细菌(包括趋磁细菌)。D.单细胞显微操作分选目标趋磁细菌细胞。E.利用各种磁分离装置收集活的趋磁细菌细胞。第②步:单细胞水平细菌种类和磁小体结构关联鉴定(F-I)。F.利用通用或类群特异性引物扩增趋磁细菌细胞的16S rRNA基因测序。G.基于目标16S rRNA基因序列设计类群/物种特异性寡核苷酸探针。H.利用荧光标记的类群/物种特异性探针对目标趋磁细菌细胞进行荧光原位杂交实验。I.在单细胞水平上对经荧光标记的细胞开展“荧光显微镜—扫描/透射电镜”或“荧光显微镜—聚焦离子束—扫描电镜”关联分析。第③-⑤步:趋磁细菌单细胞水平综合显微学关联研究(J-L)。J.同步辐射扫描透射X-射线显微镜对趋磁细菌细胞开展化学组成和磁学性质分析(纳米尺度)。K.综合透射电镜对趋磁细菌和磁小体进行结构、形貌、磁性和化学成分分析(原子尺度)。L.纳米二次离子质谱对趋磁细菌细胞进行化学元素和同位素分析(纳米尺度)。   一、硫酸盐还原趋磁细菌趋磁细菌是经典的地磁微生物和地质微生物功能群,它们广泛分布于各种水体环境中,在细胞内合成膜包被的纳米磁铁矿(Fe3O4)或(Fe3S4)晶体颗粒,也叫磁小体。趋磁细菌可以感知地磁场,并在地质记录中形成磁小体化石,因而是生物矿化、生物地磁学和古地磁学研究的理想模式系统。趋磁细菌种类和形貌极其多样,但对生长条件要求极其苛刻,因而实验室纯培养非常困难。建立不依赖纯培养的综合研究体系,在单细胞水平上实现趋磁细菌的生物学、矿物学和磁学综合研究,是全面且深入认识趋磁细菌多样性和磁小体生物矿化机制的关键所在。在众多类群中,隶属于脱硫菌门的硫酸盐还原趋磁细菌尤为独特。已知的变形菌门、硝化螺菌门和暂定杂食菌门趋磁细菌只能合成磁铁矿成分的磁小体,且都是单细胞原核生物。与它们不同,脱硫菌门趋磁细菌中,除了能合成磁铁矿型磁小体,也能合成胶黄铁矿型磁小体,除了有单细胞型,还有多细胞型。从生态学上讲,脱硫菌门微生物主要以硫酸盐为电子最终受体,进行厌氧呼吸,因此在自然界的硫-碳循环中起关键作用。二、西安未央湖硫酸盐还原趋磁细菌的发现和鉴定自上世纪八十年代以来,国内外多个研究团队陆续在海洋和盐碱湖等环境中发现并鉴定了多种硫酸盐还原趋磁细菌。然而,对淡水环境中的硫酸盐还原细菌鲜有报道和缺乏深入研究。2013年,中国科学院地质与地球物理研究所生物地磁学研究团队在西安未央湖和护城河中,通过16S rRNA基因序列检测和透射电镜观测,首次在淡水环境中发现了多种硫酸盐还原趋磁细菌(Wang et al., 2013 陈海涛等,2013)。随后,研究团队通过建立的“荧光显微镜-扫描电镜”联用技术(Li et al., 2017),从西安未央湖中鉴定了一株新的淡水硫酸盐还原趋磁杆菌WYHR-1,在细胞内合成“子弹头形”磁铁矿晶体颗粒,沿[001]方向拉长,具有典型的“多阶段晶体生长”模式,在细胞内组装成2-3条紧密排列的磁小体链束结构 (Li et al., 2019, 2020)。然而,由于丰度低,且与其它门类趋磁细菌混合存在,其它种类硫酸盐还原趋磁细菌的鉴定和生物矿化研究并未成功。在本研究中,研究团队设计了特异性上游引物390F,与下游引物1492R配合使用,特异性地检测环境样品中硫酸盐还原趋磁细菌。实验结果表明,利用细菌通用引物对27F/1492R对环境趋磁细菌样品的16S rRNA基因序列进行扩增,只能得到相对丰度高的α-变形菌纲趋磁螺旋菌WYHS-1的基因序列。然而,利用390F/1492R引物对,对同一个环境趋磁细菌样品的16S rRNA基因序列进行扩增,成功地获得了三条新的硫酸盐还原趋磁细菌16S rRNA基因序列,分别命名为菌株WYHR-2,WYHR-3和WYHR-4(图1)。生物信息学分析证实,尽管390F/1492R引物对,对脱硫菌门微生物的覆盖度低于27F/1492R引物对(前者20.6%,后者为32.2%),然而对其它细菌门类的覆盖度仅有0.5%,远远低于27F/1492R的26.0%,因此可以作为类群特异性引物对,从环境样品中特异性地检测脱硫菌门细菌。图1 未央湖淡水硫酸盐还原趋磁细菌WYHR-2、WYHR-3和WYHR-4的系统发育树他们进一步采用三种不同策略,在单细胞水平上分别对这三种新的趋磁细菌开展生物学种类与磁小体结构的关联鉴定和研究。(1)荧光—扫描电镜联用(FISH-SEM)鉴定WYHR-2(图2)。结果显示,菌株WYHR-2为平均长度为2.9±0.6μm,平均宽度为1.5±0.3μm (n=29)的杆状细胞,合成58±16个平均长度为77.9±22.3nm,平均宽度为31.4±5.8nm (n=681 共分析29个细胞)的排列成一条链束状结构的直子弹头形磁铁矿成分的磁小体。(2)荧光—透射电镜联用(FISH-TEM)鉴定WYHR-3(图3)。结果显示,WYHR-3除了合成 33±13个平均长度为71.0±18.7 nm,平均宽度为30.3±4.9nm (n=846 共分析31个细胞)的直子弹头形磁铁矿成分的磁小体外,还合成18±11个平均长度53.7±13.1nm,平均宽度44.0±9.7nm的立方体或棱柱形胶黄铁矿成分的磁小体。(3)荧光—聚焦离子束-扫描电镜(FISH-FIB-SEM)鉴定WYHR-4(图4)。结果显示,WYHR-4也能在细胞内同时合成磁铁矿型和胶黄铁矿型磁小体。图2 趋磁细菌WYHR-2的FISH-SEM关联分析图3 趋磁细菌WYHR-3的FISH-TEM关联分析。使用TEM是因为,WYHR-3细胞相对较大较厚, SEM不能获得相对清晰的磁小体图像图4 趋磁细菌WYHR-4的FISH-FIB-SEM关联分析。使用FIB-SEM是因为,WYHR-4细胞相对较大较厚,单纯的SEM并不能获得相对清晰的磁小体图像,同时由于WYHR-4丰度太低,并不适合FISH-TEM关联分析。因此,在本研究中采用FISH-SEM将目标细菌共定位后,采用聚焦离子束技术(FIB)将目标细菌逐层切开,然后使用SEM对细胞内的磁小体进行形貌和成分分析  三、硫酸盐还原趋磁细菌磁小体晶型和矿化机制完成了三株新的未培养硫酸盐还原趋磁细菌的种类鉴定后,他们进一步采用先进的透射电镜技术对其磁小体晶型和矿化机制开展研究(图5-图6),并与前人以及他们前期的研究结果进行对比。结果表明:(1)脱硫菌门趋磁细菌合成的磁铁矿型磁小体,通常不弯曲,颗粒多沿[001]拉长,底端可保留一个大且平整的{001}面(如WYHR-1和WYHR-2)。然而,硝化螺菌门趋磁细菌合成的磁铁矿型磁小体,通常为弯曲形状,颗粒底端多保留为一个大且平整的{111}面,最终沿[001]拉长。这表明,磁小体的形状与趋磁细菌门类相关,地质记录中直的和弯曲形子弹头形磁小体化石可以用来指示上述两类趋磁细菌及其古环境。(2)与磁铁矿磁小体的结晶度高且通常至少保留一个可明显识别的晶面相比,胶黄铁矿磁小体的结晶度相对较差,形状多变,颗粒外围晶面欠发育且难识别。与棱柱形磁铁矿磁小体(变形菌门趋磁细菌合成)多沿磁铁矿晶体的[111]晶面拉长不同,棱柱形胶黄铁矿磁小体沿胶黄铁矿的晶体[001]方向拉长,其生长机制和磁学性质值得进一步深入研究。图5 趋磁细菌WYHR-2及其磁小体的形貌、尺寸和链束结构特征图6 趋磁细菌WYHR-3的磁铁矿(A-C)和胶黄铁矿(D-F)磁小体的形貌和晶型研究成果发表于国际学术期刊Environmental Microbiology(李金华*, 刘沛余, Menguy Nicolas,Benzerara Karim,白金伶,赵翔,Leroy Eric,张朝群,张衡,刘嘉玮,张荣荣,朱珂磊,Roberts Andrew,潘永信. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study[J]. Environmental Microbiology, 2022. DOI: 10.1111/1462-2920.16109)。研究受中国国家自然科学基金重点国际(地区)合作研究项(41920104009)、国家自然科学基金重大项目课题(41890843)和国家自然科学基金创新研究群体项目(41621004)资助。
  • 新技术确定了细菌进化中的里程碑
    p style="text-indent: 2em text-align: justify "细菌已经进化出生活在地球上的适应性。但与可以保存为化石的植物和动物不同,细菌几乎没有遗传进化的物理证据,这使得科学家很难准确确定不同细菌群体的进化时间。/pp style="text-indent: 2em text-align: justify "麻省理工学院的科学家们已经设计出一种可靠的方法来确定某些细菌群何时出现在进化历史中。该技术可用于识别细菌进化过程中何时发生重大变化,并揭示导致这些变化的原始环境的细节。/pp style="text-indent: 2em text-align: justify "1月28日在BMC进化生物学杂志上的一篇论文提到,研究人员报告使用该技术确定了,在古生代时期,大约3.5亿至4.5亿年前,几种主要的土壤细菌群从真菌中获得了一种特定的基因。这使得它们能够分解几丁质,并利用其产品生长。几丁质是一种在真菌的细胞壁和节肢动物的外骨骼中发现的纤维物质。/pp style="text-indent: 2em text-align: justify "这种细菌的进化适应可能是由环境的重大转变所驱动的。大约在同一时间,早期蜘蛛,昆虫和蜈蚣等节肢动物正从海洋移动到陆地上。随着这些陆生节肢动物的传播和多样化,它们留下几丁质,创造了更加丰富的土壤环境,并为细菌提供了新的机会,特别是那些获得几丁质酶基因的细菌。/pp style="text-indent: 2em text-align: justify "麻省理工学院地球,大气和行星科学系的Cecil和IdaGreen地球生物学助理教授GregoryFournier说:“在此之前,地球上应该有土壤,但它可能看起来像南极洲的干燥山谷。动物生活在土壤中之后,为微生物提供了利用优势和多样化的新机会。”/pp style="text-indent: 2em text-align: justify "Fournier说,通过追踪细菌中的几丁质酶等某些基因,科学家们可以对动物的早期历史及其生活环境有所了解。/pp style="text-indent: 2em text-align: justify "“微生物在他们的基因组中包含动物生命的未知历史,我们可以用它来填补我们不仅对微生物,乃至对动物早期历史认知的空白,”Fournier说。/pp style="text-indent: 2em text-align: justify "该论文的作者包括主要作者DanielleGruen博士,现在是美国国立卫生研究院的博士后,以及前博士后JoannaWolfe,现在是哈佛大学的研究科学家。/pp style="text-indent: 2em text-align: justify "缺少化石/pp style="text-indent: 2em text-align: justify "在没有化石记录的情况下,科学家们利用其他技术来研究细菌的“生命之树”,遗传关系图,显示出许多分支和分裂,因为细菌随着时间的推移已经演变成数十万种。科学家通过分析和比较现有细菌的基因序列建立了这个遗传关系图。/pp style="text-indent: 2em text-align: justify "使用“分子钟”方法,他们可以估计某些基因突变可能发生的速率,并计算两个物种可能发生分化的时间。/pp style="text-indent: 2em text-align: justify "“但这只能告诉你相对时间,因为这些估计值存在很大的不确定性,”Fournier说。“我们必须以某种方式将这棵树锚定在地质记录上,是绝对时间。”/pp style="text-indent: 2em text-align: justify "该团队发现他们可以使用来自完全不同的生物体的化石来锚定某些细菌群进化的时间。虽然在绝大多数情况下,基因通过世代传承,从父母到后代。但每隔一段时间,一个基因就可以通过病毒或通过环境从一个生物体跳到另一个生物体,这个过程称为水平基因转移。因此,相同的基因序列可以出现在两种生物中,否则它们将具有完全不同的遗传历史。/pp style="text-indent: 2em text-align: justify "Fournier和他的同事推断,如果他们能够识别细菌和完全不同的生物之间的共同基因,比如一个具有明确化石记录的生物,他们可能能够将细菌的进化固定到这个基因从化石的有机体转移到细菌的时间。/pp style="text-indent: 2em text-align: justify "分裂的树木/pp style="text-indent: 2em text-align: justify "他们查看了数千种生物的基因组序列,并鉴定了一种基因,几丁质酶,它出现在几个主要细菌群体以及大多数真菌种类中,这些真菌具有完善的化石记录。/pp style="text-indent: 2em text-align: justify "紧接着,他们利用几丁质酶基因产生所有不同物种的遗传关系图,推算出显示基于该基因组突变的物种之间的关系。接下来,他们采用分子钟方法确定每种含有几丁质酶的细菌从其各自祖先分支的相对时间。他们对真菌重复了同样的过程。/pp style="text-indent: 2em text-align: justify "研究人员将真菌中的几丁质酶追踪到它最初出现在细菌中时与该基因最相似的点,并推断当真菌将基因转移到细菌时就会如此。然后,他们使用真菌的化石记录来确定转移可能发生的时间。/pp style="text-indent: 2em text-align: justify "他们发现,真菌将该基因转移到几组细菌中,含有几丁质酶基因的三大类土壤细菌在34.5亿至4.5亿年前就已经多样化了。微生物多样性的快速爆发可能是对陆地动物的类似多样化的反应,特别是产生几丁质的节肢动物。这种情况发生的时期,也正如化石记录显示的那样。/pp style="text-indent: 2em text-align: justify "“这个结果支持上面提出的想法,一旦进入新的环境微生物群体就会尽快获得能在该环境下的基因,”Fournier指出。“原则上,这种方法可以用于更多的微生物群体,转移其他物种使用其他资源的基因。”/pp style="text-indent: 2em text-align: justify "Fournier现在正在开发一种自动化管道,用于从大量基因数据中检测细菌和其他生物之间有用的基因转移。例如,他正在研究负责分解胶原蛋白的微生物基因,胶原蛋白是一种仅在动物身上产生的化合物,存在于柔软的身体组织中。/pp style="text-indent: 2em text-align: justify "“如果我们找到微生物中摄取软体组织的群体,那么我们就可以重建软体组织早期的未知历史,这在化石记录中所缺失的一部分,”Fournier说。/pp style="text-indent: 2em text-align: justify "这项研究部分得到了美国国家科学基金会和西蒙斯基金会的支持。/ppbr style="text-indent: 2em text-align: left "//p
  • 用基因技术定位食品中的致病细菌和产地
    一个新的,用于编目在食品中发现的约100,000种细菌的基因的公开数据库,大大的提高了它的数据量,科学家们可以利用它来追踪各种食品传染病的病因。 这个免费数据库被被设置于加利福尼亚大学的戴维斯分校,不但能够让科学家精确查找到食品中导致疾病暴发的病菌,比如,寿司中未经加工的金枪鱼,也能够找到它来自哪个国家。以前在疾病发生后做出这种反应通常需要几周时间,新的数据库预计可将时间缩短到几天。 “从科学角度来讲有着重大意义”,食品和药物管理局官员斯蒂芬M马瑟,上周四宣布了数据库的计划。 基因序列是全新的。迄今为止科学家鉴别了多达3000种序列,只有1000种与食物有关。 食品和药物管理局食品安全与营养应用中心主任马瑟博士说,疾病预防和控制中心拥有最大的数据库,但基因图谱并不完整,不足以确定是何种食品引发了疾病,或者食品的地理来源。 基因编码需要很长的时间,仅仅沙门氏菌就有大约2700种不同的菌株,这已经是数据库已经编入的视频传染病菌序列的三倍。 但是,指导这项工程的加利福尼亚大学戴维斯分校微生物学教授巴特C维摩表示,数据库在疾病中心和安捷伦公司的帮助下,将在5年内映射100,000种序列,成为世界上最大的单一基因组工程。他还表示,近年来这项工作的成本已经急剧下降,主要问题在于是否有足够经过培训的人员来整理数据。 维摩博士说,最初的排序工作是在三月开始的,但不久之后食品和药物管理局和大学的研究人员发现大家在相同的时间做着类似的事情,于是决定进行合作。“要在公共卫生领域造成影响,你需要大量的资料,这会提高准确性和快速处理事情的能力。”维摩博士如是说。
  • 浙江省分析测试协会立项《大豆转基因序列检测 高通量全基因组测序法》等两项团体标准
    各相关单位:根据国家质检总局、国标委、民政部《团体标准管理规定》和《浙江省分析测试协会“浙江测试”团体标准管理办法》的有关规定,浙江省分析测试协会于2023年12月组织专家对《大豆转基因序列检测 高通量全基因组测序法》、《玉米转基因序列检测 高通量全基因组测序法》“浙江测试”团体标准进行立项论证,符合立项条件,现批准立项。请申报单位严格按照浙江省测试分析协会团体标准工作要求及专家意见,尽快组织相关单位进行标准编写,强化编制质量管理,确保按期完成编制任务。为使各立项标准的制定更具广泛性、更科学合理,欢迎与本标准有关的企业、科研机构、高等院校等相关单位加入标准的起草制定工作,有意参与标准起草制定工作的单位请与协会秘书处联系。联系方式:胡勇平 0571-85157210 zjtest@126.com协会地址:浙江省杭州市西湖区体育场路508号地矿科技大楼439/436 江省浙江省分析测试协会2023年12月8日计划公告-浙江省分析测试协会关于发布第十七批团体标准立项的公告.pdf
  • 中科院能源所利用单细胞拉曼分选-测序耦合系统 首次精确到一个细菌细胞的环境菌群scRACS-Seq
    摘要:2021年5月,中国科学院青岛生物能源与过程研究所荆晓艳博士等人应用星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节)在美国微生物学会会刊《mSystems》在线发表题为“One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE)”的文章。单细胞拉曼分选耦合测序(RACS-Seq)是剖析环境菌群功能机制的重要手段,但拉曼分选后单个细菌细胞基因组的覆盖度通常低于10%,极大限制了其应用。近日,中国科学院青岛生物能源与过程研究所单细胞中心基于星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),首次实现了精确到一个细菌细胞、全基因组覆盖度达93%的环境菌群scRACS-Seq,为环境微生物组原位代谢功能研究提供了一个强有力的新工具。土壤是地球上最重要的生态系统之一,土壤微生物组的代谢活动支撑着农业与畜牧业,也在地球元素循环、全球气候变化中起着关键性作用。同时,土壤菌群也是地球上最多样与最复杂的微生物组之一,而其中大部分微生物尚难以培养,因此,单个细胞精度的拉曼分析-分选-测序(Single-cell RACS-Seq,简称scRACS-Seq)策略,是剖析土壤等环境菌群之代谢机制的重要手段。然而针对环境菌群的scRACS-Seq一直以来存在两大瓶颈,一是难以无损、快速地获取具有特定拉曼表型的单个细胞;二是难以获得高覆盖度的单细胞基因组数据。这已经成为scRACS-Seq技术体系在复杂菌群中得以广泛应用的关键瓶颈。针对这一业界共性难点问题,单细胞中心荆晓艳、公衍海和徐腾等组成的联合攻关小组,基于前期发明的RAGE-Seq技术(Raman-activated Gravity-driven Encapsulation and Sequencing Xu, et al, Small, 2020,点击查看),从液相拉曼分析稳定同位素底物饲喂的土壤菌群出发,将特定拉曼表型的细菌单细胞精准分离并包裹到皮升级液滴中,进而耦合下游基因组测序。结果表明:(i)土壤菌群中细胞代谢活跃的低丰度物种(如Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp. 和 Pseudomonas spp.等)可经耦合重水饲喂与标记的RAGE-Seq精准地识别和分选,其单细胞基因组覆盖率可高达〜93%;(ii)同样,基于RAGE-Seq,含类胡萝卜素的土壤微生物细胞(如Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., 和Pedobacter spp.等)能实现单个细胞分辨率、高基因组覆盖度的代谢重建,从而完整、深入地挖掘其类胡萝卜素合成途径;(iii)这些“原位”合成类胡萝卜素的土壤微生物细胞中,既有代谢活跃的,也相当部分是惰性的,表明基于纯培养的策略势必错失这些代谢惰性的功能微生物,因此“原位”、单细胞精度的功能细胞识别和分离,对于全面、客观的菌群功能剖析和资源挖掘具有重要意义。精确到一个细胞的拉曼分析-分选-测序(scRACS-Seq)此外,该工作还通过组分与状态均精确可控的人工菌群,建立了系统且严格的scRACS-Seq质量评价与控制体系。基于该体系,发现该技术能将不同拉曼表型的细菌单细胞从菌群中快速、精准分离,在保证单细胞拉曼光谱质量的同时,分选准确性达100%。此外,以来自于靶标细胞周围水相的空液滴为阴性对照,发现靶标细胞序列中被菌群中其他细胞DNA污染的概率极低。上述工作定量证明了scRACS-Seq的灵敏度、特异性和可靠性。借助星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),scRACS-Seq可以在复杂菌群中以单个微生物细胞的分辨率建立新陈代谢与基因组的联系,从而精确回答“谁在做什么,为什么”。该系统广谱适用于细菌、古菌、真菌和动植物细胞,正服务于涵盖各种复杂生态系统的研究和应用。
  • 新“基因魔剪”按需敲入长DNA序列
    据最新一期《自然生物技术》发表的一项研究,在CRISPR基因编辑系统的基础上,美国麻省理工学院研究人员设计了一种新工具,可以更安全、更高效的方式剪除有缺陷的基因并用新基因替换它们。使用这个系统,研究人员可将长达36000个DNA碱基对的基因传递给几种类型的人类细胞,以及小鼠的肝细胞。这种被称为PASTE(通过位点特异性靶向元素进行可编程添加)的新技术有望治疗由具有大量突变的缺陷基因引起的疾病,例如囊性纤维化。新工具结合了CRISPR-Cas9的精确定位,CRISPR-Cas9是一组最初源自细菌防御系统的分子,与整合酶结合在一起,病毒使用这种酶将自己的遗传物质插入细菌基因组。这些整合酶来自细菌和感染它们的病毒之间的持续斗争,它说明了人们如何能够不断从这些自然系统中找到大量实用新工具。此次开发的新工具,可切除有缺陷的基因并用新基因替换它,而不会引起任何双链DNA断裂。研究人员专注于丝氨酸整合酶,它可插入大块DNA,大至50000个碱基对。这些酶以称为附着位点的特定基因组序列为目标,这些序列起到“着陆点”的作用。当在宿主基因组中找到正确的着陆点时,它们就会与之结合。研究团队意识到,将这些酶与插入正确着陆位点的CRISPR-Cas9系统相结合,可轻松地对强大的插入系统进行重新编程。一旦结合了着陆点,整合酶就会出现并将其更长的DNA有效载荷插入到该位点的基因组中。研究人员表示,这朝着实现可编程插入DNA梦想迈出了一大步。研究人员使用PASTE将基因插入多种类型的人类细胞,包括肝细胞、T细胞和淋巴母细胞(未成熟的白细胞)。他们使用13种不同的有效载荷基因(包括一些可能具有治疗作用的基因)测试了递送系统。在这些细胞中,研究人员能够以5%到60%的成功率插入基因。研究还证明,可将基因插入小鼠的“人源化”肝脏中。这些小鼠的肝脏由大约70%的人类肝细胞组成,PASTE成功地将新基因整合到大约2.5%的这些细胞中。
  • 临床丝状真菌鉴定是难点,VITEK MS来支招
    p style="text-indent: 2em "当田中耕一因发现‘生物大分子的软电离技术’而获得2002年诺贝尔化学奖时,他一定没有预想到,短短十几年时间,这一技术能够在微生物领域带来如此巨大的变革。br//pp  MALDI-TOF MS这一技术自应用于微生物以来,其技术的成熟度和商品化程度迅猛发展令人咂舌。今天当一位临床微生物工作者说出“鉴定结果来自质谱”时,已经不再是带有些许的怀疑,而是成竹在胸的自信。成本低廉、操作简单、快速而准确已经使得质谱技术成为微生物发展中不可阻挡的一股趋势。/pp  即使在这样的潮流下,也并非所有的事情都是那么一帆风顺的。/pp  比如对于微生物中的丝状真菌,应用于质谱鉴定并非一路坦途。/pp  不论是产品研发还是临床应用,丝状真菌在谱上的鉴定似乎注定要经历更多的时间和坎坷,而当下微生物工作者在这个问题上似乎仍然更依赖于形态学鉴定,纵使遇到难题时首先也是考虑测序的方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/af2392aa-bcd0-45b9-ac49-93ec182fd380.jpg" title="01.jpg" alt="01.jpg"//pp style="text-indent: 2em "strongspan style="text-indent: 2em color: rgb(0, 112, 192) "关键问题一/span/strong/pp  从原理上来看,丝状真菌的鉴定和细菌并无不同,此处省略1000字并再次脑补MALDI-TOF MS的原理过程……/pp  然而必须要强调的是,对于微生物的质谱鉴定,一个足够丰富、有组织性的数据库才是真正重要的关键条件。这也是在某些数据库中的一个显著短板,即对于真菌,尤其是双相真菌和丝状真菌难以获得一个令人满意的结果,这些质谱系统要么是鉴定出一堆不相关的低分辨结果 要么由于分值太低而鉴定失败。/pp  需要注意!/pp  对于鉴定失败的情况,一方面可能是由于数据库中确实不包含该菌种,另一方面可能数据库中包含该菌种,但在临床工作中分离出的临床菌株因为和建库菌株间的异质性(heterogeneity)而不能很好的匹配,导致没有鉴定结果。/pp  丝状真菌质谱鉴定的复杂性正体现在此,由于丝状真菌本身的蛋白成分相比细菌更加复杂,加之培养条件、菌丝体大小、产孢情况的不同,也会导致丝状真菌的蛋白图谱会发生较大的差异变化,这显然给质谱的鉴定带来了一定程度的挑战。因为试图通过少量菌株的图谱来“演绎”所有菌株可能性的情况并不现实,这种蛋白表达上的“质”和“量”的变化是难以预测的。而可能的一个解决途径则是尽可能收集不同来源的菌株和不同培养条件下获得的图谱,通过“归纳”的方法将所有蛋白特征进行整理,以期覆盖该菌种的普遍性特征,并满足临床鉴定的需要。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d7e5326e-b021-48b6-b336-494941ebe8c0.jpg" title="02.jpg" alt="02.jpg" width="600" height="300" border="0" vspace="0" style="width: 600px height: 300px "//pp style="text-align: center "黑曲霉在SDA平板上生长2天和8天获取的图谱/pp  strongspan style="color: rgb(0, 112, 192) "关键问题二/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/a756fa21-5e75-4de9-ba3d-6c3ecfae4517.jpg" title="03.jpg" alt="03.jpg" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp  strong另一个问题是丝状真菌的前处理:/strong/pp  和一般细菌以及酵母样真菌不同,通过基质液甚至是甲酸处理并不能有效破坏其细胞壁并充分获取其蛋白。这是因为丝状真菌的细胞壁中包含一种叫几丁质的物质,该物质同样存在于昆虫的甲壳中,它不能被普通的有机溶剂(乙醇、甲酸等)所溶解。这也是为什么很多实验室按照一般的提取流程,所获得用于分析的蛋白波峰非常少,从而导致鉴定失败。/pp  2018年10月,VITEK MS获得FDA临床实验验证的菌种数量已经达到401种,而其中丝状真菌达到了47种;成为目前唯一通过FDA认证的可用于丝状真菌的MALDI-TOF MS系统!/pp  其中包括了毛霉、双相真菌、皮肤真菌、暗色真菌、曲霉及其他潜在的病原菌。/pp  在外部临床实验中总共检测了1519株丝状真菌,达到了91%的正确鉴定率² ,这显然已经完全达到了临床诊断的要求。/pp  值得注意!/pp  VITEK MS IVD数据库中的丝状真菌已经超过了100种,但这其中仍然有一部分因为临床试验中没有分离到足够的菌株而尚未获得FDA的认证。/pp  VITEK MS通过FDA批准的丝状真菌种类:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/4a1d0ed1-1eed-4415-af10-6d01b81b96cf.jpg" title="04.jpg" alt="04.jpg" width="600" height="200" border="0" vspace="0" style="width: 600px height: 200px "//pp  strongspan style="color: rgb(0, 112, 192) "Q& A/span/strong/pp  strong为什么目前只有VITEK MS的丝状真菌鉴定能够通过FDA的严苛考评呢?/strong/pp  正如前文所述,一方面梅里埃为VITEK MS的数据库开发提供了强大的菌株库,作为拥有全球最大的菌株贮藏机构之一,在丝状真菌的建库上选择了多株有代表性的菌株,同时经过不同的培养条件、培养时间及不同的操作人员获取图谱并通过权重矩阵的算法实现对普遍性的覆盖。/pp  另一方面,专利性的丝状真菌提取技术(U.S. Provisional Patent Application no. 62/209,116)能够在保证生物安全的同时,实现高效率的蛋白提取,获得高质量的蛋白图谱。/pp  2012年,VITEK MS成为史上第一台获得FDA认证的微生物质谱鉴定系统,从此质谱的临床应用开启了全新的时代。/pp  而随着丝状真菌感染越来越受到临床的关注,质谱鉴定的方法已经成为临床工作中必不可少的选项,在这一领域中,VITEK MS再次走在了前列。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/70cf35ab-312a-4955-8e60-1557efde4f8f.jpg" title="07.jpg" alt="07.jpg"//pp  /pp style="text-align: center "VITEK MS 全自动快速微生物质谱检测系统/p
  • 首个完整无间隙人类基因组序列公布
    被誉为生命科学“登月计划”的人类基因组测序再次取得重大进展:国际科学团队端粒到端粒联盟(T2T)发表了第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”。当地时间31日,《科学》杂志连发6篇论文报告这一成就。2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。然而由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。新的无间隙版本被称为T2T-CHM13,由30.55亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,已知其在进化和疾病中发挥重要作用。新序列还在识别和解释遗传变异方面具有重要改进,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。研究人员称,这一完整的、无间隙的序列对于了解人类基因组变异的全谱和了解某些疾病的遗传贡献至关重要。研究人员表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及我们与近亲、其它灵长类动物的关系。【总编辑圈点】基因组的某些区域,其实是一遍又一遍的重复,这些重复区域包括细胞分裂中一些极其关键的部分,也包括可能帮助物种适应的新基因。在过去,所有这些重复使得科学家无法以正确的顺序“组装碎片”——就像高难度的、几乎每一块都相同的拼图,而人们不知道其中哪一块该放在哪,就在基因组图谱上留下了巨大空白。现在的最新成果不再有任何隐藏或未知的部分,或者也可以说,一个全新的基因宝库正在全人类面前徐徐打开。
  • 浙江省分析测试协会发布 《水稻转基因序列检测 高通量全基因组测序法》 浙江测试团体标准
    根据国家标准化管理委员会、民政部《团体标准管理规定》和《浙江省分析测试协会“浙江测试”团体标准管理办法》的相关规定,《水稻转基因序列检测 高通量全基因组测序法》(标准编号:T/ZJATA 0018-2023)浙江测试团体标准经本协会批准,自2023年11月10日起实施。 特此公告。浙江省分析测试协会2023年10月10日浙江省分析测试协会关于发布《水稻转基因序列检测 高通量全基因组测序法》标准的公告.pdf
  • Illumina和梅里埃合作进行细菌性感染的全基因组测序服务
    p  抵御抗生素耐药性意味着临床医生们需要小型工具来鉴别出哪种感染是细菌性的,以及引发感染的细菌种类,同时还要揭示出这些细菌对于多种抗生素是否是敏感性的。近日,Illumina公司和生物梅里埃公司(bioMerieux)就通过联合研究推出了一项全基因组测序服务,目的在于改善医源性感染的控制和流行病学的监测。/pp  该服务被称之为EpiSeq,其可以帮助阐明细菌的特性,来帮助医院更好地理解和细菌毒力及耐药性相关的遗传标志物,同时还可以帮助阐明细菌如何传染,对于后期进行流行病学的监测或提供一定的帮助 测序就可以帮助建立不同传染源特性之间的关联,以便可以确定菌株传播的大事件同时便于对其进行监测。/pp  Illumina公司CEO Jay Flatley表示,我们很高兴可以同生物梅里埃合作来提供最前沿的研究,新一代的基因组测序技术可以帮助我们在全基因组的基础上对引发感染性疾病的细菌进行特性分析,而随着抗生素耐药性细菌的不断增多,当前的技术或许并不能及时地为公众健康保驾护航。利用这种新型服务,医院就可以将相关的细菌分离毒株传输至生物梅里埃公司装配有Illumina公司MiSeq测序仪的实验室进行分析,随后的测序数据将会被储存至一种安全的云平台中,这些数据同时还会通过生物梅里埃公司的数据库和软件进行分析,最终的结果会阐明感染性病原体的基因组特性以及相关的遗传突变体。/pp  这项服务是两家公司从2014年11月份开展微生物测序应用的以来的首个服务类型,其将会首先在欧洲推广,其次是北美和亚洲 最开始的服务目录中包括对金黄色葡萄球菌的测序服务,随后将会扩大至和人类机体细菌性感染的多个细菌菌株。/pp  生物梅里埃公司的主席Jean-Luc Belingard说道,我们非常高兴可以成为在细菌流行病学领域向消费者提供创新性测序解决方案的首个公司,目前公司的EpiSeq服务可以帮助解决主要的公众健康挑战,帮助抵御感染性疾病及抗生素耐药性的发生。EpiSeq服务的发起或将为后期同Illumina公司进行更深入的合作来讲新一代测序技术应用于细菌基因组测序奠定坚实的基础。/p
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 安捷伦科技将华大基因(BGI)指定为中国首家新一代测序靶向序列捕获系统的认证服务
    安捷伦科技将华大基因(BGI)指定为中国首家新一代测序靶向序列捕获系统的认证服务提供商 2011 年4 月4 日,北京 安捷伦科技公司(纽约证交所:A)今日宣布知名的基因组学研究中心深圳华大基因(BGI)正式成为新一代测序技术安捷伦 SureSelect XT 靶向序列捕获系统的认证服务提供商(CSP)。安捷伦CSP 计划是一项针对全球服务提供商的合作计划,旨在为其客户提供更高质量的数据和服务。 位于深圳的BGI是世界上最大的基因组学研究机构,也是中国第一家SureSelect XT 的认证服务提供商。该机构已通过了所有SureSelect XT 靶向序列捕获操作方案的认证,其中包括人类全外显子捕获、SureSelect 索引捕获、DNA 捕获、RNA 捕获、激酶组RNA捕获和定制捕获。 &ldquo 我们非常高兴能够成为安捷伦的认证服务提供商,&rdquo BGI 的基因组测序运营总监李京湘说道,&ldquo 安捷伦SureSelect XT 靶向序列捕获系统是性能卓越的国际著名产品,借助此系统我们能够为客户提供最好的外显子靶向测序服务。&rdquo &ldquo 我们非常高兴地看到,这座顶尖的测序中心正在将SureSelect XT 靶向序列捕获技术的优势推广到极其广泛的基因组学实验中。&rdquo 安捷伦基因组学SureSelect 平台市场总监Fred P. Ernani 博士说道。 自2009 年该平台发布以来,安捷伦至今已推出35 种SureSelect 靶向序列捕获试剂盒。包括涉及各种遗传性疾病研究和发现的论文在内,已有超过45 篇同行评审的相关论文发表。 SureSelect XT 简化了靶向序列捕获流程,研究人员可以仅针对目标基因组区域(而非整个基因组)进行测序。结合领先的新一代测序系统不断增加的样品容量,SureSelect XT 平台的多重检测支持功能使科学家们可以在每次实验中分析更多样品的基因组,这在过去是难以实现的。迄今为止,文库制备和靶向序列捕获一直是此类实验的一个瓶颈。为了实现高通量的样品处理,安捷伦还提供了集成式工作站,用于自动化完成SureSelect XT文库制备和靶向序列捕获工作流程。 SureSelect XT 还能实现最大程度的定制化。用户使用安捷伦 eArray xD 桌面设计工具可轻松设计靶向任意目标基因组(均在单管内进行)的定制产品,从而有效提高研究效率。安捷伦还提供 eArray 在线设计工具,用户使用该工具可对预定义的 SureSelect XT 试剂盒,例如SureSelect XT 小鼠全外显子系列产品进行自行定制。 《科学》杂志12 月17 日刊登的2010 年十大科学突破中,其中两项突破&ldquo Reading the Neandertal Genome&rdquo (解读尼安德特人基因组)和&ldquo Homing In on Errant Genes&rdquo (外显子组测序/罕见疾病基因)均采用了SureSelect 靶向序列捕获系统。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500名员工为 100多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 我国科学家开发高效基因组序列分析工具
    人类的疾病易感性和生理特征等常见性状的差异,往往由DNA序列变化造成,这些DNA片段缺失、增加、异位等变化被统称为遗传变异。全基因组关联研究(Genome-Wide Association Study,GWAS)是通过比对大量人群的遗传信息,利用统计学检测遗传变异和性状之间关联性的方法。西湖大学的研究团队开发了可用于百万级生物样本库的全基因组关联研究的分析工具,相关成果在《Nature Genetics》发表,题为:A generalized linear mixed model association tool for biobank-scale data。  随着近年来十万级、甚至百万级大型生物样本库的出现,目前的GWAS分析工具已不能满足数据分析的需求。该研究团队开发了一款高效的广义线性混合模型,克服了传统分析工具耗时长等缺点,并且对硬件的要求较低。研究人员通过对包含两百万人的模拟样本进行分析,发现这种工具预算效率最高时可达已有技术的36倍。利用这种工具分析英国生物样本库中的2989个疾病相关性状也验证了其稳健高效的特征,研究人员已将所有的关联分析结果共享到在线数据平台上以供生物医学类研究参考。  此项成果不仅为超大型生物样本库关联分析研究提供了有力工具,也为揭示人类复杂疾病遗传奥秘带来了新希望。  注:此研究成果摘自《Nature Genetics》,文章内容不代表本网站观点和立场。   论文链接:  https://www.nature.com/articles/s41588-021-00954-4
  • 中国科学家首次揭示肠道噬菌体组与II型糖尿病的相关性
    p  近日,中国科学院深圳先进技术研究院的研究团队在国际权威学术期刊Microbiome(《微生物组》)上发表最新研究,首次证实了人体肠道噬菌体组和糖尿病的关联性,为应用噬菌体干预肠道菌群,以及预防和治疗某些疾病提供了依据。/pp  噬菌体是一类专一感染细菌的病毒,作为细菌的天敌,2014年被美国国立卫生研究院列为对抗耐药菌武器之一,同时也是人体肠道微生物组的重要组成部分。肠道噬菌体种类丰富、数量巨大,通过塑造肠道菌群结构,进而影响人体健康。但是,人们目前对于噬菌体的认识还非常匮乏。/pp  论文作者首次利用已有的人体肠道微生物大数据,开发了一系列生物信息学方法,挖掘其中的噬菌体基因组序列,鉴定了大量的全新肠道噬菌体,揭示了肠道噬菌体组的多样性和新颖性。通过对这些噬菌体基因组序列的分析,科研人员发现这些噬菌体携带大量的功能基因,这些基因和宿主细菌在肠道环境中的生存适应性相关。/pp  研究显示糖尿病患者的肠道细菌菌群组成变化和糖尿病有着显著的相关性。由于噬菌体—细菌之间是捕食者—被捕食者的关系,通常认为糖尿病人肠道菌群的变化会影响噬菌体的组成差异。但是,科研人员首次发现了肠道噬菌体的数量在糖尿病患者肠道中的数量显著高于对照组,经过进一步分析发现肠道细菌和噬菌体之间存在复杂的关系网络,细菌与噬菌体之间不是简单的“此消彼长”的关系。/pp  据介绍,这个工作成果连同近期其他实验室发在《细胞》上的工作成果,都暗示着噬菌体—细菌—宿主两两之间存在着相互作用,这种关系有可能影响着人体的健康。未来,解析这些关系将是该领域的研究热点。/p
  • 绿脓杆菌或引起眼药水致盲,MALDI-TOF助力快速鉴定
    导读据中国经济网近日报道,美国FDA针对印度某药企生产的眼药水发出警告,该眼药水可能导致细菌感染,造成失明甚至死亡。该款眼药水是人工泪液,用于润滑眼球。美国疾控中心已确认共有55名患者感染了一种罕见绿脓杆菌耐药菌株,其中5名患者永久性失明,1名患者因血液感染死亡。绿脓杆菌又称铜绿假单胞菌,是比较常见的一种致病菌,常引发呼吸道、胃肠道、尿道等感染。专家认为,本次感染是由于眼睛可以通过泪管与鼻腔相连,致病菌可以从眼睛进入鼻腔,再进入血液等其他体液或组织,从而导致疾病。使用岛津MALDI-TOF微生物鉴定系统,可以快速鉴定绿脓杆菌,守护明亮双眸。认识绿脓杆菌绿脓杆菌又称铜绿假单胞菌( Pseudomonas aeruginosa) ,是一种革兰阴性条件致病菌,抗药性较强,是一种重要的食源性和水源性致病菌,如蔬菜、水果、瓶装水、桶装水中均较常见。同时也是医院内常见的引发慢性感染和急性感染的致病菌之一,严重者可引发患者肺部功能衰竭以及纤维化囊肿。其引起的感染具有进展快、易耐药、病死率高等特点,所以快速准确的鉴定铜绿假单胞菌显得尤为重要。常见检测方法目前,传统的微生物检测方法有生化反应法和16S rRNA序列分析法。生化反应法主要依靠铜绿假单胞菌的生物学特征,通过分离培养结合生化检测等方法对细菌进行鉴定,需经过增菌、选择性分离培养、鉴定等步骤,不仅操作繁琐、检测时间长、费时费力,且容易延误诊断,难以满足快速诊断及治疗的需要。因此,致病菌的快速鉴定仍是临床微生物检验工作者面临的重要问题。MALDI-TOF质谱法是近年来广泛用于微生物快速鉴定的方法,微生物都有自身独特的蛋白组成, 因而拥有独特的蛋白质图谱。细菌蛋白主要取决于细菌自身的遗传因素, 受培养基、培养时间以及其他培养条件等外部因素的影响较小, 因而具有很好的稳定性和可重复性。常见检测方法比较表岛津解决方案MALDI-TOF微生物鉴定系统优势&bull 数据库使用岛津MALDI-TOF iDPlus Assurance、Confidence、Performance等多款仪器,采集待测微生物的核糖体蛋白质谱图,与数据库中的标准谱图进行匹配检索,可以快速的进行致病菌鉴定。数据库中含有3400种以上微生物的标准图谱,涵盖大部分常见细菌及真菌。同时还支持用户自行追加新的标准谱图,以满足数据库中未收录菌种的鉴定需要。自建库流程图(以绿脓杆菌为例)&bull MALDI-TOF质谱法检测速度快从质谱数据采集到给出鉴定结果最快只需数十秒。日常使用只需要基质、纯水及少量有机试剂,成本低廉。使用MALDI-TOF专用384孔靶板,可以单次高通量检测384个样品,同时靶板可重复使用。鉴定流程图微生物鉴定流程图绿脓杆菌鉴定案例使用MALDI-TOF采集绿脓杆菌质谱图,导入微生物鉴定数据库匹配检索,可以快速检测绿脓杆菌。绿脓杆菌质谱图绿脓杆菌数据库检索结果结语使用岛津MALDI-TOF iDPlus微生物鉴定系统采集菌株的核糖体蛋白质谱图, 与数据库比对后, 可以快速获得绿脓杆菌的鉴定结果,为科研分析或临床筛查提供依据。MALDI-TOF质谱法快捷、准确、成本低,将在致病菌快速鉴定与分析中, 发挥着越来越大的作用。本文内容非商业广告,仅供专业人士参考。
  • 中科院等完成橡胶草基因组序列解析
    p  中国科学院遗传与发育生物学研究所李家洋研究组与中国农业科学院、中国热带农业科学院等合作,在橡胶草基因组序列解析方面取得重要进展,标志着以橡胶草作为模式植物进行天然橡胶合成研究进入后基因组时代。研究成果近日在线发表在权威学术期刊《国家科学评论》(National Science Review)杂志上。/pp  科研人员独立组装完成了高质量的橡胶草基因组草图,该基因组大小为1.29Gb,包含46,000多个基因和约70%重复序列。橡胶草基因组也因此成为目前能够产生高分子量橡胶的植物中,唯一完成基因组测序的草本植物。/pp  通过产胶植物与非产胶植物之间的比较基因组研究,研究人员鉴定了橡胶草中橡胶合成途径和菊糖合成途径,并阐述了橡胶链延长过程中CPT/CPTL和REF/SRPP两个重要基因家族的进化历程。此外,他们还发现了橡胶草基因组中与自交衰退相关的可能候选区域。该成果并将大大加速橡胶草从野生植物向经济作物的驯化,推动我国天然橡胶产业的发展。/pp  天然橡胶是与石油、钢铁、煤炭并重的世界四大工业原料之一,2015年全球消耗总量达12.14百万吨,产值约170亿美元。巴西三叶橡胶树一直是天然橡胶的主要来源,但由于种植面积限制、生产成本增加、遗传背景狭窄和病虫害严重等因素,橡胶生产逐渐难以满足需求。我国是天然橡胶消费大国,而巴西三叶橡胶树可种植面积极少,导致我国对外依赖度已超过80%。因此,开发生产天然橡胶的替代资源具有重要的战略意义和经济价值。/pp  橡胶草又名俄罗斯蒲公英,根部可合成高分子量的天然橡胶和菊糖。由于具有生长范围广,天然橡胶含量高,生长周期较短,相对简单的基因组和遗传转化与基因编辑比较容易等特点,它被认为最有可能成为替代生产天然橡胶的经济作物和科学研究的模式植物。21世纪以来,世界各国相继成立了天然橡胶研究计划,相比之下,我国则研究相对较少。2015年4月中国“蒲公英橡胶产业技术创新战略联盟”正式成立。/pp/p
  • 广东质标所研发太赫兹生物传感器实现大肠杆菌DNA序列免标检测
    微生物污染已成为国内外突出的食品安全问题,而由此引发的食源性疾病严重危害了人类的健康。我国每年的官方通报中,细菌性食物中毒的报告数和波及人数最多。因此,开展食源性致病菌的快速、准确监测具有十分重要的意义。近期,广东省农业科学院农业质量标准与监测技术研究所(简称:质标所)与浙江大学合作研发了一种基于超表面-石墨烯异质结构的太赫兹微流控器件,实现了对大肠杆菌DNA的快速、准确、免标检测。该研究针对大肠杆菌快速灵敏检测的实际需求和现阶段太赫兹传感技术实现极性溶液中生化分子灵敏检测过程中的共性关键问题,首次提出将金属孔阵列结构与单层石墨烯结合并集成至太赫兹微流控器件中,基于对所构建器件的传感机理的全面探究,建立了生物-电-光信号增益转化的传感方法,实现了对大肠杆菌(O157:H7)DNA序列的快速、准确、免标检测。该研究成果为进行食源性致病菌的快速筛查提供了新的方法,也为推动解决太赫兹传感应用过程中灵敏度低、极性基质干扰严重的共性问题提供了新的思路,具有较好的学术和应用价值。图片来自网络
  • Nature | 破解miRNA释放或滞留的序列密码
    外泌体和其他细胞外囊泡 (sEVs) 提供了一种特殊的细胞间交流方式。miRNA是高度保守的非编码小分子RNA。有的miRNA滞留细胞内,通过沉默目的mRNA来参与细胞自身重要生理功能的调控,而有的 miRNA能被分泌出去 ,包裹进具有脂质双层膜结构的外泌体里,被其他细胞吸收,从而介导不同细胞和组织间的信号交流和协调【1-3】。一直以来,外泌体/细胞外囊泡及其分泌的miRNA均被作为多种重要疾病的明星分子得到关注,这是因为它们不仅在疾病诊断和检测中具有重要意义,还可被外源性加工以治疗疾病 (图1)。图1. 细胞外miRNA的疾病治疗前景(摘自C. Ronald Kahn院士组2019年在Cell Metabolism的综述) 【1】尽管外泌体和miRNA的研究如火如荼,我们对决定miRNA是被释放到外泌体还是滞留细胞内的分子机制知之甚少,极大地阻碍了我们对miRNA的生物学功能的研究及疾病治疗的应用。2021年12月22日,来自美国哈佛大学医学院C. Ronald Kahn院士组 (美国国家科学院及美国医学科学院) 的研究人员在Nature杂志在线发表了题为MicroRNA sequence codes for small extracellular vesicle release and cellular retention 的研究论文,在此前同一课题组发表的另一篇研究miRNA在组织脏器间介导信号交流的Nature文章【2】的基础上,通过比较分析5种不同组织来源细胞系的细胞培养基,发现了决定miRNA被分泌到外泌体中或滞留胞内的特定序列,揭示了循环外泌体miRNA导向特定组织器官的重要机制。这一发现有助于我们更好地提高RNA治疗的精准性。为研究决定miRNA在细胞滞留 (cellular retention) 或从外泌体分泌的分子机制,研究人员从代表5种重要组织器官的小鼠细胞系中分离外泌体。这些细胞系包括3T3-L1细胞 (白色脂肪细胞)、棕色脂肪细胞、C2C12细胞 (骨骼肌细胞)、SVEC细胞 (内皮细胞) 及AML12细胞 (肝脏细胞)。通过提取外泌体中及相应细胞内的miRNA并进行下游检测,研究人员确定了不同类型细胞的miRNA特征,并发现外泌体来源的miRNA和各自细胞来源的miRNA具有显著不同的特征,约三分之一外泌体来源的miRNA具有细胞类型特异性的富集特征,可用于预测其器官组织来源。图2. 使用5种细胞系研究sEVs或细胞来源的miRNA特征通过比较细胞和外泌体内miRNA相对丰度,研究人员确定了miRNA在外泌体和细胞内的差异程度——部分miRNA表现出外泌体富集,而有些miRNA则表现出细胞内富集,即细胞滞留(retention)。进一步分类发现,43个miRNA主要存在于所有细胞类型的细胞内,而13个miRNA则存在于所有细胞类型的外泌体内,这一有趣发现提示,可能存在一种决定miRNA是细胞内滞留还是被分泌入外泌体的适用于所有细胞类型的通用机制。为揭示miRNA富集及分泌的机制,研究人员对表现出仅外泌体富集或仅细胞富集的miRNA进行了序列和结构分析,发现表现出外泌体高富集的miRNA序列具有更高的G+C含量及Gibbs自由能。随后对各个细胞类型深入序列分析,研究人员鉴定出了与外泌体富集显著程度相关的EXOmotifs (各细胞类型具有1-4种该序列,表现出更高的G+C含量),同时也鉴定出与细胞富集显著相关的CELLmotifs (各个细胞类型具有2-5种该序列,G+C含量较低)。部分序列反复出现在外泌体富集或细胞内富集的miRNA中(无论细胞种类),该序列具有四核苷酸特征,被研究人员命名为核心EXOmotifs或核心CELLmotifs。这些体外系统鉴定出的miRNA分类特征同样也可以在原代细胞系中得到重复。接下来,为研究调控外泌体分类的序列是否具有改变细胞和外泌体之间miRNA分布的充分性,研究人员引入或移除特定序列以进行突变研究 (图3)。将属于CELLmotifs的AGAAC引入只在外泌体富集的miR-431-5p后能引起该miR 在外泌体中的富集度降低约35%。对本身拥有AGAAC序列的miR-140-3p而言,在该Cellmotif被突变后,其外泌体的转运程度倍增。更显著的是,将miR-677-5p中存在的两个核心CELLmotifs同时突变,能引起该miR在外泌体中的富集程度增加14倍左右。同样类似的结果也可以在核心EXOmotifs突变中得到验证。这些实验结果在其他细胞系中也得到了验证。因此,研究人员鉴定出的这些核心EXOmotifs或核心CELLmotifs能参与miRNA保留或分泌,对其进行引入或移除操控能改变miRNA的分布。图3. 研究人员使用突变实验研究序列功能基于这一现象,研究人员做出假设,认为 EXOmotifs或CELLmotifs可能与特定miRNA结合蛋白相互作用。因此,研究人员开展可基于生物素的pulldown实验 (图4),将与miRNAs结合的蛋白进行LC-MS/MS蛋白组分析,鉴定出了67个差异表达蛋白。使用siRNA对其中两个蛋白Alyref和Fus进行敲减后,外泌体中含CGGGAG 的miRNA显著减少。因此认为,Alyref和Fus是参与了miRNA序列识别和外泌体转运的两个重要蛋白。研究人员随后也使用了Transwell系统引入特定EXOmotifs至miRNAs以提高其进入外泌体的几率,也验证了分泌后的miRNA能抑制受体细胞的靶基因。图4. 使用pulldown实验验证与特定EXOmotif或CELLmotif相互作用的miRNA结合蛋白本文通过对5种代谢关键的细胞系进行miRNA测序,发现了不同细胞系的外泌体能释放与原细胞系内存在的miRNA显著不同的miRNAs。测序分析发现miRN在外泌体的富集与EXOmotifs (外泌体分泌序列) 和CELLmotifs(细胞保留序列)的存在密切相关。这一发现提示机体存在控制miRNA外泌体富集、分泌和细胞滞留的复杂整合机制 (图5)。对这一机制的深入理解不仅能帮助我们提高调控靶基因表达的miRNA递送效率,还能更好地帮助我们利用将循环miRNA导入至特定组织脏器以治疗重大疾病。因此,本研究提供的调控miRNA在细胞内保留或分泌的机制具有重要的疾病治疗意义。图5. EXOmotifs和CELLmotifs介导的细胞类型特异性的miRNA在外泌体/sEV分泌和细胞保留的机制。哈佛大学医学院Joslin糖尿病中心的Ruben Garcia-Martin博士为本文第一作者,C. Ronald Kahn院士为本文通讯作者。C. Ronald Kahn教授为美国科学院、美国医学科学院、美国科学艺术学院院士,为糖尿病及胰岛素抵抗研究的世界领军人物,培养了100多位遍布世界各地的糖尿病、代谢疾病研究的科学家,其中重要弟子包括哈佛医学院前院长Jeffrey Flier在内的十余位哈佛教授以及担任多个重要研究机构的领军人物,如Eric Verdin (UCSF大学Buck研究所主席、CEO)、Jens Bruning (德国马普代谢研究所所长)等。C. Ronald Kahn教授曾荣获70余个重要国际学术奖项,包括素有“诺奖风向标”之称的沃尔夫医学奖、首届亥姆霍兹糖尿病终身成就奖、美国医师协会George M. Kober奖章,以及美国糖尿病学会(ADA)、美国英国内分泌协会、英国内分泌协会、欧洲糖尿病研究协会、美国临床内分泌医师协会等组织颁发的最高奖等。此外,还C. Ronald Kahn教授领导多个重要学术组织,曾担任美国临床研究学会主席、美国糖尿病学会President-Elect、美国科学院生物医学部门主席、美国国会任命的糖尿病研究工作小组主席、NIDDK战略规划工作组主席等。C. Ronald Kahn教授论文引用达16.5万次,H-index为210,连续多年入选科睿唯安的“高被引科学家”榜。课题组长期致力于多个重要组织脏器的胰岛素信号通路研究,如肝脏、肌肉、脂肪、大脑等,近年来尤其感兴趣利用iPSC研究代谢型疾病中的胰岛素抵抗以及应用miRNA研究不同重要组织间的信号交流,C. Ronald Kahn教授组现有1-2名博士后职位空缺,欢迎有iPSC及miRNA(以及神经代谢)研究背景的研究人员申请。原文链接:https://doi.org/10.1038/s41586-021-04234-3
  • Nature子刊:结合三代测序和Illumina二代测序解析肠道菌群结构变异和功能
    近十年来,肠道微生物组已成为生命科学研究领域的热点,但目前大部分研究都集中在使用二代测序技术进行物种和功能的解析,宏基因组的拼接质量不高并且很难实现菌株水平的功能差异分析。有鉴于此,中科院微生物研究所王军课题组和动物研究所宋默识课题组合作,建立了ONT三代测序和Illumina二代测序数据混合组装和后续分析流程。在mock community上的验证表明,三代和二代测序数据的混合组装从完整度、准确程度以及编码密度方面均比单纯二代或者三代测序组装更有优势。图1本研究的技术路线(a),利用三代测序进行SV的深度解析,以及横断面/时间序列中SV的组成、动态分析,最终进行SV对代谢功能的影响判定。(b)混合组装能够有效提高N50,并组装出大量的基因组(c),其中发现更多的insertion、deletion和inversion。图2肠道微生物中与SVs相关的功能研究结果。(a,b,c) SV影响基因富集结果 (d-i) SV影响单菌种内不同菌株与代谢产物以及血糖的关联。图3肠道菌群汇中与病毒和CRISPR相关的研究结果该研究基于三代ONT序列,提高了宏基因组装的质量、SV的发现能力,发现了大量包括插入突变和基因倒位在内的结构变异对于菌株水平上基因功能的影响,以及噬菌体、CRISPR-spacer等系统的深度挖掘。这项研究是课题组利用三代Nanopore测序技术解析肠道病毒组(Cao et al., Medicine in Microecology, 2020, 4:100012 Cao et al. Gut Microbes, 2021, 13),近期发表的真菌组分析方法(Lu et al, Molecular Ecology, doi:10.1111/mec.16534)和靶向RNA检测病原微生物(Zhao et al., Advanced Science, 2021, 8, 2102593)之后,在利用三代Nanopore测序技术探索肠道微生物研究领域的新进展。这一发现,对未来更精细的精准医学领域的发展提供了理论启发。中国科学院微生物研究所王军研究员、中科院动物研究所宋默识研究员为本文的共同通讯作者。中国微生物研究所助理研究员陈亮、赵娜、博士生曹佳宝、硕士研究生刘小林、助理研究员徐嘉悦为该论文的共同第一作者。该研究得到了国家重点研发计划项目、国家自然科学基金项目、中国科学院战略性先导科技专项、北京市自然科学基金项目等多项资金的资助。文章链接:https://www.nature.com/articles/s41467-022-30857-9
  • 药典委公示微生物全基因组测序技术指导原则标准草案
    11月29日,国家药典委员会官方网站公示了关于微生物全基因组测序技术指导原则标准草案,公示时间为3个月。详情如下:编号:Fg2022-0216号我委拟制定微生物全基因组测序技术指导原则,为确保标准的科学性、合理性和适用性,现将拟制定标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:朱冉、陈蕾电话:010-67079581 010-67079566电子邮箱:zhuran@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061国家药典委员会2022年11月29日附件:微生物全基因组测序技术指导原则公示稿.pdf微生物全基因组测序技术指导原则起草说明.pdf微生物全基因组测序技术指导原则 本指导原则对全基因组测序技术用于药品微生物控制给予通用性技术规定,为药用原料、辅料、制药用水、中间产品、终产品、包装材料、环境、设备和人员等药品全生命周期质量控制中微生物精准鉴定、溯源分析和风险识别等提供指导。微生物全基因组测序(Microbial whole-genome sequencing)是指利用高通量测序技术对微生物个体的整个基因组序列进行测定,获取遗传信息的过程。高通量测序技术主要包括:边合成边测序、半导体测序、DNA (Deoxyribonucleic acid, DNA)纳米球测序、连接酶测序等第二代测序技术(又称下一代测序,Next Generation Sequencing)和基于单分子测序(Single Molecule Sequencing)的第三代测序技术。第二代测序技术的基本原理主要是利用物理或酶切的方法将待测样本的基因组打断到1kb以内的DNA片段,在其两端连接特定接头序列后,固定于测序介质中,通过核酸扩增技术,如聚合酶链式反应、等温扩增技术等将待测样本放大收集成库,然后进行平行循环测序。当需要获得微生物样本基因组精细图、完成图时,可采用能够实现大片段测序读长的第三代测序技术。第三代测序技术的基本原理主要有:采用荧光标记脱氧核糖核苷酸,用光学镜头实时记录DNA合成过程中新引入脱氧核糖核苷酸的荧光变化,通过不断地重复合成、成像、淬灭等过程进行单分子荧光测序;或采用电泳技术驱动单个分子逐一通过纳米孔,通过检测不同碱基的电信号,进行单分子纳米孔测序。本指导原则以目前发展成熟、应用较为广泛的第二代测序技术为主要技术手段,对实验室的一般要求、全基因组测序的主要技术指标、技术流程、影响测序结果的主要因素、方法学考察和应用指导等方面进行通用性技术规定。一、实验室的一般要求1.实验场地及人员 开展微生物全基因组测序的实验环境应具备分子生物学实验室的基本条件,并符合相应级别的生物安全等级要求。实验区域一般应设置:试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区,各个区域在物理空间上相互独立,并标识明确;另外,根据使用仪器的功能,相关区域可适当合并。应单向流进入各工作区域,按照试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区的先后顺序进行实验操作。实验区域应定期进行清洁消毒。实验人员应具备分子生物学和微生物学专业背景,或经专业培训。2. 实验仪器实验室一般应具备高通量核酸测序仪、核酸扩增仪、片段分析仪、核酸定量仪、生物安全柜、混匀器、高速离心机、水浴或加热模块、冰箱、微量加样器等分子生物学检验常用仪器设备。影响测序质量的仪器设备应定期进行性能确认和维护,以保证仪器处于良好的运行状态。3. 实验试剂除另有规定外,所有实验使用的试剂均应不含DNA和DNA降解酶,宜大体积配制、小体积分装,并保证试剂的无菌性,必要时可采用高压灭菌或0.22 μm孔径滤膜过滤除菌。用于核酸扩增的相关试剂应避免反复冻融。关键试剂应制定质量控制程序,以确保试剂质量。采用适宜的商品化试剂或试剂盒进行核酸提取、文库构建和核酸测序时,应按照说明书操作,并符合说明书中的质量控制要求。二、全基因组测序的主要技术指标1. 测序通量测序通量是指单次测序可获得序列信息的基因片段数量或可测定的DNA (以碱基表示)数量。核酸测序仪器的测序通量直接关系到测序输出的数据量。微生物的基因组DNA较小,但不同种属之间变化幅度较大,如:葡萄球菌属、埃希菌属、假单胞菌属、沙门菌属等常见细菌的基因组DNA大小约3~6 Mbp;酵母菌的基因组DNA大小约12~16 Mbp;典型致病霉菌的基因组DNA通常大于30 Mbp。在进行微生物全基因组测序时,应根据待测样本基因组大小、样本数量等实际需求,选择适宜测序通量的测序仪器和配套试剂,保证测序结果的准确性。2. 碱基识别质量碱基识别质量是衡量碱基正确识别的概率(通常以数字值直接表示)。碱基识别质量与碱基识别错误率之间的关系为:Q=-10lg P(Q为碱基识别质量,P为碱基识别错误率)。Q=20代表碱基识别正确率≥99%;Q=30代表碱基识别正确率≥99.9%。高通量测序仪器应能自动判读碱基识别质量。三、 技术流程 全基因组测序的一般流程包括:测序样本的获得、测序文库的构建、全基因组测序和数据分析等。1. 测序样本的获得 全基因组测序主要用于待测微生物的核酸序列测定。待测微生物应进行分离纯化,以获得生长状态稳定的纯培养物,可参考“微生物鉴定指导原则”(通则9204)。分离纯化后的纯培养物应采用适宜的方法,可参考“细菌DNA 特征序列鉴定法”(通则1021),获得浓度、纯度和完整性良好的基因组测序样本。2. 测序文库的构建 测序文库是指将基因组样本随机打断后,在其两端加入特定接头序列(adapters),并经过大规模平行扩增,形成的DNA片段集合。测序文库中样本的核酸浓度、纯度、片段的大小分布等因素,都会影响测序输出的数据量和碱基识别质量。应对构建的测序文库进行纯化、定量、均一化处理,使文库中各待测样本的浓度保持均等;必要时,采用凝胶电泳或毛细管电泳等方法检测文库的质量。3. 全基因组测序 将测序文库中的待测样本固定在测序介质中,通过特定接头序列,将测序引物与待测核酸序列进行结合。加入底物脱氧核糖核苷酸,在DNA聚合酶作用下,使结合在待测核酸序列上的测序引物进行延伸,并利用信号收集器采集信号,包括但不限于光信号、电信号或离子信号等,通过信号分析软件对采集到的信号进行分析,获得待测样本的碱基序列信息,以及物理通量、有效通量、测序读长、测序深度、碱基识别质量等参数。4. 数据分析 采用适宜的序列分析方法和软件,对得到的核酸测序下机数据进行序列拼接,最终获得待测微生物样本的全基因组序列信息。四、 影响测序结果的主要因素 1. 待测样本核酸质量 应采用适宜的方法提取待测样本的基因组DNA,并保证提取的基因组DNA 在适宜的浓度和纯度范围内,无蛋白、多糖等污染。一般情况下,核酸浓度宜不低于10 ng/μl,A260/A280比值宜在1.8~2.0之间。核酸浓度较低,或发生降解等导致质量不佳的情况,可导致基因组DNA片段化不完全,影响文库质量,进而影响测序深度和测序结果。2. 测序文库质量 应对测序文库进行质量控制。当测序文库中包含多个待测样本时,不同样本的核酸浓度应基本一致,保证测序后的输出数据量均匀稳定。推荐采用荧光分析法定量检测不同样本的基因组DNA浓度,测序文库制备完成后,采用适宜的稀释倍数,确定上机测序文库的浓度。3. 测序深度 测序深度是指待测样本中某个指定核苷酸被检测的次数。一般高通量测序仪器输出的测序深度指待测样本基因组序列中核苷酸被检测次数的平均值。测序深度与基因组覆盖率之间是正相关,测序深度越大,重复测序次数越多,待测样本基因组覆盖率越大,测序带来的错误率也会随着测序深度的提高而降低。一般而言,基因组测序深度应不少于50倍;建立全基因组序列参考数据库时,测序深度应不少于100倍。4. 碱基识别质量 碱基识别质量是评价测序结果准确率的重要因素。根据核酸测序仪器的正常运行参数,单个样本的核酸测序的结果应保证Q20≥80%或Q30≥70%;也即测序数据中80%及以上的碱基正确率大于99%,或者70%及以上的碱基正确率大于99.9%。五、 方法学考察 除考察影响测序结果的主要因素,包括:待测样本核酸质量、测序文库质量、测序深度、碱基识别质量等,还应进行相应的分析方法学考察;可在测序过程中增加已知序列的参考品,评估测序仪器性能,以保证全基因组测序结果的准确性和重现性。六、 应用指导 微生物全基因组序列能够提供全面丰富的遗传信息,通过全基因组序列的比对分析,可以实现待测微生物,包括:标准菌株、模式菌株、质控菌株、生产检定用菌(毒)种、益生菌等,以及从药用原料、辅料、制药用水、中间产品、终产品、包装材料和环境等中检出污染微生物等的精准鉴定、溯源分析以及风险评估等。精准鉴定当基于常规生化筛选、表型和基因型鉴定方法无法获得待测微生物样本准确的鉴定信息时,可利用全基因组测序技术获得更加精准的鉴定结果或遗传变异信息等。全基因组序列分析还对研究微生物的系统进化具有重要价值,有助于新种或亚种的发现和遗传分类单元的系统发育解析,提高对新种或亚种的生物学认识。溯源分析当出现无菌试验结果阳性、培养基灌装等模拟工艺失败、生产过程严重异常事件时,如常规基因型鉴定方法无法提供足够的分辨力,可在获得菌种鉴定信息的基础上,采用全基因组测序技术对目标微生物以及相关环节中分离的同种微生物进行全基因组序列的同源性分析,结合污染调查信息,实现目标微生物的溯源分析风险评估全基因组序列包含了微生物菌株全部的遗传信息,基于全基因组数据分析还能够用于毒力、耐药以及其他基因的功能分析与表型预测,为开展微生物的风险评估分析提供参考依据。起草单位:上海市食品药品检验研究院联系电话:1800677839复核单位:中国食品药品检定研究院、天津市药品检定研究院、辽宁省药品检验检测院参与单位:浙江现代生物技术发展中心、中国工业微生物菌种保藏中心
  • 我国现行真菌毒素检测标准概述
    1 真菌毒素标准的发展  真菌毒素是产毒真菌在粮食(或果蔬)的种植、收获、运输、储存过程中侵染粮食(或果蔬),并在适宜的生长条件下产生的次生代谢产物。真菌毒素污染谷物、饲料、果蔬,通过食物链危害人类健康和畜禽生产安全。因此,世界卫生组织(World Health Organization,WHO)和联合国粮农组织(Food and Agriculture Organization,FAO)把真菌毒素列为食源性疾病的三大根源之首。我国是真菌毒素污染最严重的国家之一。  目前,人们发现的真菌毒素有400多种。我国重点关注黄曲霉毒素(主要是Aflatoxin B1,AFB1和Aflatoxin M1,AFM1)、脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)、玉米赤霉烯酮(Zearalenone,ZEN)、赭曲霉毒素(Ochratoxin A,OTA)、展青毒素(Patulin,Pat)、T-2毒素(T-2 toxin,T2)和伏马毒素(Fumonisins,FBs)等,这些毒素具有强毒性和高污染频率等特点,每种毒素的化学结构、生物毒性及适宜生长的基质不同;有些毒素会在饲用动物体内发生结构转化,以结构类似物存在动物源性食品中,危害人类健康。包括我国在内的许多国家都制定了真菌毒素的限量标准,这些限量标准是非关税壁垒的重要组成部分,也是保障我国食品安全和畜牧业健康发展的需要。  黄曲霉毒素M1结构式  从“十五”到“十二五”,国家重点关注农、兽药等外源性有毒有害物质污染,对真菌毒素的重视较晚,相关检测技术的研究起步也晚。国家标准委员会曾提出在标准制定中采用国际标准和国外先进技术、积极与国际接轨的要求,促使我国真菌毒素检测标准的制修订得到了充分的发展。一些标准制定借鉴了国外先进的检测技术,这在一定程度上为我国国有品牌树立了标杆和发展方向。  经过十多年的发展,我国制定了一系列的真菌毒素相关标准,但还需要在检测技术、作用毒理、公共危害等领域得到加强的基础上逐步改进和丰富。研究人员曾对我国真菌毒素的检测标准进行探讨,但那些被讨论过的标准很多已被废止,侧面反映了近些年来我国真菌毒素标准制定的活跃和国家的重视。  真菌毒素标准包括限量标准和检测标准。按照检测方法,可分为大型仪器方法和快速检测方法;按照适用范围,可分为食品类、原粮类和饲料类。本文对我国现行真菌毒素检测标准进行了梳理、阐述和分析,根据笔者对真菌毒素检测技术的了解,对各类标准涉及的技术进行思考和探讨,并从应用和市场角度提出了一些建议和意见,希望能为我国真菌毒素标准的发展提供有益的参考。  2 我国现行的食品中真菌毒素的标准  现行的食品安全国家限量标准GB 2761-2017《食品中真菌毒素限量》,属国家强制执行的标准。GB 2761包括限定的毒素种类、限量、食品类型及检验方法的标准。最早的GB 2761是1981年颁布实施的,先后经过四次修订。1981年版只规定了AFB1的限量和食品种类;2005年版增加了AFM1、DON、Pat;2011版又增加了OTA、ZEN。2017版没有增加毒素种类,但对食品类型的划分更加细致。该标准没有做出受饲料行业监管、污染原粮的FBs、T-2的限定。GB 2761的修订,反映了国家对食品真菌毒素污染的重视。下边将对每种真菌毒素的现行检测标准逐一阐述和分析:  2.1 黄曲霉毒素(AF)  AF是产毒真菌黄曲霉和寄生曲霉产生的次级代谢产物,是毒性最强的化学致癌物质之一。目前分离鉴定出的AF包括AFB1、AFB2、AFG1、AFG2、AFM1和AFM2等18种。1993年国际癌症研究所将AF确定为一级人类致癌物。热带和亚热带地区农作物易遭受AF污染,居民肝癌发病率较高。  GB 276l-2017规定了食品中AFB1/M1的最大限量标准及其存在的食品类别:谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、特殊膳食用食品等6大类18小类,限量范围为0.5~20 μg/kg,其中特殊膳食用食品的限量最低。AFM1限量的食品类别分为乳及乳制品、特殊膳食用食品等2大类8小类,统一限量0.5 μg/kg。GB 276l-2017的限量明显比GB 13078-2017《饲料卫生标准》严格,但低于欧盟食品的限量要求。  AF的检测标准(见表1)包括国家标准(GB)、粮油行业标准(LS)、农业行业标准(NY)、出入境检验检疫行业标准(SN)、地方标准(DB)及食药局快检标准(KJ)等,涵盖了真菌毒素检测的所有方法。涉及的检测方法有柱后光化学衍生高效液相色谱法、超高效液相色谱法、免疫亲和柱净化-高效液相色谱法、同位素内标-液相色谱-串联质谱法、高效液相色谱-柱前衍生法等仪器分析方法和胶体金定量/定性检测技术、酶联免疫吸附筛查法、时间分辩荧光定量检测技术、双流向酶联免疫法、薄层色谱法、免疫亲和层析净化荧光光度法等快检方法。  一种作物可能被多种真菌毒素污染,因此对多种真菌毒素同时检测的技术很有实际应用价值。刚刚实施的LS/T 6133-2018《主要谷物中16种真菌毒素的测定 液相色谱串联质谱法》采用稳定同位素内标液相色谱-串联质谱法,对谷物中多种毒素同时检测,该技术除了检测我国日常监管的毒素外,还可以检测其衍生物或结构类似物。  快检方法不仅仅是对实验室方法的有益补充,根据2015年颁布的《食品安全法》,国家认可的快检方法可以作为执法依据。农业部、国家粮食局和国家食药总局先后颁布了8个免疫检测技术的标准。粮食行业标准率先将胶体金定量检测技术纳入标准中,之前胶体金免疫层析技术只是作为定性筛查的手段。2017年国家食药局颁布了三个真菌毒素快检标准,其中两个是AF的标准。这些都为免疫层析技术在农业、粮油、食药行业的应用提供了技术保障和标准支撑,同时也有效保障了这些领域AF的监管和检测。唯1写入GB或GB/T的免疫方法是市场应用剧减的酶联免疫,目前应用广泛的免疫层析技术只出现在行业标准中。  全球有100多个国家和地区制订了食品和饲料中AF限量标准。我国对食品中AFB1和AFM1的最高允许量有严格规定,而美国、加拿大等国家主要对AF总量(B1+B2+G1+G2)做出限定。为了满足进出口的需求,SN标准是针对黄曲霉毒素总量的检测。  黄曲霉毒素的检测标准覆盖了AF污染的大多数食品,2020年《中国药典》2351真菌毒素测定法,更是增加了药材、饮片及中药制剂中真菌毒素的检测。但是,一些过时检测技术的行业标准依然有效:如NY/T 1664-2008《牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法》,该技术操作繁琐,专业性要求高,且只能定性检测,市面上已很难买到相应的检测试剂。薄层色谱法是一种前处理复杂、当前应用很少的检测技术,依然作为第五法写入GB 5009.22-2016中。编者建议废止不能适应市场需要的一些标准。  2.2 脱氧雪腐镰刀菌烯醇(DON)  脱氧雪腐镰刀菌烯醇又称为呕吐毒素,广泛存在玉米、小麦、大麦等谷物中,是污染食物的主要真菌毒素。DON破坏人和动物免疫系统,具有一定的胚胎毒性和致畸性。世界各国都对食品中DON做出了限量要求。GB 276l-2017规定谷物及其制品中DON的限量是1000 μg/kg,与美国对小麦的限量标准一致。而欧盟标准规定的非常细致:未加工的硬质小麦、谷物和玉米中DON的限量为1750 μg/kg,未加工的谷物(除前述之外的谷物)的DON限量是1250 μg/kg,终端销售的谷物面粉、麸皮和胚芽的DON限量为750 μg/kg,谷物为原料的婴儿食品中DON限量不得超过200 μg/kg;日本规定小麦和小麦制品的DON限定量为1100 μg/kg。  DON的检测标准有9个(见表2),包括4个LS,1个KJ,3个GB和1个SN,其中GB 5009.111-2016《食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》是GB 2761-2017指定的检验方法,可以检测谷物及其制品、酒类、酱油、醋中的DON及其乙酰化衍生物。与AF相比,DON检测标准的数量和方法明显减少,但DON作为粮食行业重点关注的毒素,LS占比非常大。DON的结构类似物雪腐镰刀菌烯醇(NIV)对我国中东部作物的污染较常见,但目前只有DB32/T 3205-2017《饲料中雪腐镰刀菌烯醇(NIV)的测定 免疫亲和柱净化-高效液相色谱法》提出了它的检测方法。
  • 北京基因组所开发国际领先基因组序列变异库
    p  近日,中国科学院北京基因组研究所生命与健康大数据中心开发了国际领先、国内首个规模最大的基因组序列变异库——GVM(Genome Variation Map)。该库基于人工审编整合了多个物种的大量基因组序列单核苷酸多态位点和小的插入与删除变异信息,是基因组序列变异信息汇交、管理与检索的资源库。研究成果以Genome Variation Map: a data repository of genome variations in BIG Data Center为题,在线发表在Nucleic Acids Research上。/pp  基因组序列变异是基因组DNA水平发生的可遗传变异,是生物多样性的基础,是物种进化、分子育种、优良性状选育、人类疾病等研究最为宝贵的遗传资源。近年来,随着测序技术发展,越来越多物种的基因组被精细解析 物种内遗传多态变异位点也通过大规模的群体测序获得,并广泛应用于复杂性状的关联解析。国际两大数据中心NCBI和EBI旗下的dbSNP和EVA是主要的基因组序列变异资源库。今年5月,NCBI宣布自2017年9月1日起,dbSNP和dbVar两大数据库停止接收非人物种的SNP提交信息,自2017年11月1日起停止非人物种的SNP在线查询与提交。这对基于序列变异研究的科研人员造成了不便。/pp  为此,GVM作为生命与健康大数据中心的核心数据资源库之一,搜集了以二代测序和芯片技术为主要检测手段的全基因组序列变异检测的原始数据,通过标准化的变异位点鉴定与注释,获得包括人、畜牧动物、主要农作物和其他资源物种在内的19个物种共约50亿的变异信息,8,884个个体的基因型数据,并通过人工审编收录了13,262条高质量非人物种的基因型与表型知识数据,整合了180,911条人变异位点的知识信息。其中,大熊猫、虎鲸、毛竹、橡胶、小麦是GVM数据库所特有的物种。/pp  GVM开发了友好的数据提交、浏览、搜索和可视化功能。用户可通过基因组位置、变异影响、基因名称和基因功能等检索变异位点信息,并下载数据 可通过ftp服务下载VCF和FASTA文件格式的全基因变异信息 可在线或离线方式向系统提交数据,这方便了科研人员的数据共享。/pp  研究工作得到了中科院战略性先导科技专项、中科院国际大科学计划、国家科技攻关计划、国家高技术研究发展计划(863计划)、国家自然基金项目、中科院百人计划、中科院青年创新促进会等的资助。/pp论文标题:Genome Variation Map: a data repository of genome variations in BIG Data Center/pp style="text-align: center "img title="W020171027507396378092.png" src="http://img1.17img.cn/17img/images/201710/insimg/a8ee4d25-d8cb-4e86-a1de-06e90d767ff5.jpg"//pp style="text-align: center "strongGVM数据库物种变异信息统计表/strong/p
  • 科学家开发工程化细菌用于检测肿瘤DNA
    人们应用合成生物学手段已开发出精密的细胞生物传感器,可用于检测人类疾病。然而,生物传感器尚未被设计用于检测特定的细胞游离DNA序列和突变。美国加州大学圣迭戈分校等机构合作开发一种工程化细菌,可检测活体中肿瘤DNA。该研究成果于近日发表在《Science》杂志上,题为:Engineered bacteria detect tumor DNA。  研究人员改造了贝氏不动杆菌,以检测来自结直肠癌(CRC)细胞、器官组织和肿瘤的供体DNA。他们通过共培养试验在体外鉴定了细菌的生物传感器功能,而后通过将传感器细菌转入携带结直肠肿瘤的小鼠体内进行验证。改造后的不动杆菌能够识别原癌基因(KRAS基因)的突变,突变的KRAS基因将促进结直肠癌的发生。肿瘤DNA可激活细菌中的抗生素抗性基因,进而反馈检测的结果。在小鼠CRC模型中,研究人员观察到肿瘤细胞与细菌之间发生了水平基因转移。  研究人员将这种利用CRISPR区分水平基因转移的细胞检测方法简称为“CATCH”。该方法能够对特定的细胞游离DNA进行生物检测,为无创诊断和疾病治疗提供了新的方法。
  • 利用动态学分析方法为您揭秘细菌生长-Molecular Devices
    利用动态学分析方法为您揭秘细菌生长细菌,一种非常微小的细胞生物,它既可以在生物科技领域中广泛运用,造福于人类,也会给人类带来许多致命的疾病。抗生素的出现帮人类解决了很多问题,肺结核、炭疽等疾病统统都被消灭了,但抗生素是一把双刃剑,过度依赖和滥用抗生素,导致越来越多耐药菌的出现,已经引发了一个全球性的巨大的健康危机。目前,许多制药公司都在研发对抗这些耐药致病菌的有效化合物,而如何筛选和鉴定这些化合物的功效是微生物学家们面临的挑战。本篇技术文章中我们将以粪肠球菌为例,为您讲述如何利用动态学分析方法监测细菌生长。我们使用SpectraMax i3x 多功能微孔板读板机对含有GFP蛋白表达质粒的粪肠球菌菌株OG1RF进行长时间的细菌生长曲线的动态监测。本篇文章中,我们使用 SoftMaxPro7.0( 或更高版本 ) 数据采集和分析软件进行细菌生长曲线的检测。在SoftMaxPro7.0软件中可以同时读取细胞生长密度值和 GFP 荧光信号值,然后进行各种动力学数据分析和数据转换,如将GFP信号值归一化为细菌密度。值得一提的是,SoftMaxPro7软件在做长时间动态监测时支持“暂停”和“恢复”动力学读数功能,从而这个功能方便您在进行长时间实验中,将微孔板取出进行加药处理或其它实验的检测,然后再将微孔板放回仪器内继续之前的长时间监测实验,并且所有数据将会自动以时间序列进行排列。下载请联系美谷分子仪器
  • 我国现行真菌毒素检测标准概述
    1 真菌毒素标准的发展  真菌毒素是产毒真菌在粮食(或果蔬)的种植、收获、运输、储存过程中侵染粮食(或果蔬),并在适宜的生长条件下产生的次生代谢产物。真菌毒素污染谷物、饲料、果蔬,通过食物链危害人类健康和畜禽生产安全。因此,世界卫生组织(World Health Organization,WHO)和联合国粮农组织(Food and Agriculture Organization,FAO)把真菌毒素列为食源性疾病的三大根源之首。我国是真菌毒素污染最严重的国家之一。  目前,人们发现的真菌毒素有400多种。我国重点关注黄曲霉毒素(主要是Aflatoxin B1,AFB1和Aflatoxin M1,AFM1)、脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)、玉米赤霉烯酮(Zearalenone,ZEN)、赭曲霉毒素(Ochratoxin A,OTA)、展青毒素(Patulin,Pat)、T-2毒素(T-2 toxin,T2)和伏马毒素(Fumonisins,FBs)等,这些毒素具有强毒性和高污染频率等特点,每种毒素的化学结构、生物毒性及适宜生长的基质不同;有些毒素会在饲用动物体内发生结构转化,以结构类似物存在动物源性食品中,危害人类健康。包括我国在内的许多国家都制定了真菌毒素的限量标准,这些限量标准是非关税壁垒的重要组成部分,也是保障我国食品安全和畜牧业健康发展的需要。黄曲霉毒素M1结构式从“十五”到“十二五”,国家重点关注农、兽药等外源性有毒有害物质污染,对真菌毒素的重视较晚,相关检测技术的研究起步也晚。国家标准委员会曾提出在标准制定中采用国际标准和国外先进技术、积极与国际接轨的要求,促使我国真菌毒素检测标准的制修订得到了充分的发展。一些标准制定借鉴了国外先进的检测技术,这在一定程度上为我国国有品牌树立了标杆和发展方向。  经过十多年的发展,我国制定了一系列的真菌毒素相关标准,但还需要在检测技术、作用毒理、公共危害等领域得到加强的基础上逐步改进和丰富。研究人员曾对我国真菌毒素的检测标准进行探讨,但那些被讨论过的标准很多已被废止,侧面反映了近些年来我国真菌毒素标准制定的活跃和国家的重视。  真菌毒素标准包括限量标准和检测标准。按照检测方法,可分为大型仪器方法和快速检测方法;按照适用范围,可分为食品类、原粮类和饲料类。本文对我国现行真菌毒素检测标准进行了梳理、阐述和分析,根据笔者对真菌毒素检测技术的了解,对各类标准涉及的技术进行思考和探讨,并从应用和市场角度提出了一些建议和意见,希望能为我国真菌毒素标准的发展提供有益的参考。2 我国现行的食品中真菌毒素的标准  现行的食品安全国家限量标准GB 2761-2017《食品中真菌毒素限量》,属国家强制执行的标准。GB 2761包括限定的毒素种类、限量、食品类型及检验方法的标准。最早的GB 2761是1981年颁布实施的,先后经过四次修订。1981年版只规定了AFB1的限量和食品种类;2005年版增加了AFM1、DON、Pat;2011版又增加了OTA、ZEN。2017版没有增加毒素种类,但对食品类型的划分更加细致。该标准没有做出受饲料行业监管、污染原粮的FBs、T-2的限定。GB 2761的修订,反映了国家对食品真菌毒素污染的重视。下边将对每种真菌毒素的现行检测标准逐一阐述和分析:  2.1 黄曲霉毒素(AF)  AF是产毒真菌黄曲霉和寄生曲霉产生的次级代谢产物,是毒性最强的化学致癌物质之一。目前分离鉴定出的AF包括AFB1、AFB2、AFG1、AFG2、AFM1和AFM2等18种。1993年国际癌症研究所将AF确定为一级人类致癌物。热带和亚热带地区农作物易遭受AF污染,居民肝癌发病率较高。  GB 276l-2017规定了食品中AFB1/M1的最大限量标准及其存在的食品类别:谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、特殊膳食用食品等6大类18小类,限量范围为0.5~20 μg/kg,其中特殊膳食用食品的限量最低。AFM1限量的食品类别分为乳及乳制品、特殊膳食用食品等2大类8小类,统一限量0.5 μg/kg。GB 276l-2017的限量明显比GB 13078-2017《饲料卫生标准》严格,但低于欧盟食品的限量要求。  AF的检测标准(见表1)包括国家标准(GB)、粮油行业标准(LS)、农业行业标准(NY)、出入境检验检疫行业标准(SN)、地方标准(DB)及食药局快检标准(KJ)等,涵盖了真菌毒素检测的所有方法。涉及的检测方法有柱后光化学衍生高效液相色谱法、超高效液相色谱法、免疫亲和柱净化-高效液相色谱法、同位素内标-液相色谱-串联质谱法、高效液相色谱-柱前衍生法等仪器分析方法和胶体金定量/定性检测技术、酶联免疫吸附筛查法、时间分辩荧光定量检测技术、双流向酶联免疫法、薄层色谱法、免疫亲和层析净化荧光光度法等快检方法。  一种作物可能被多种真菌毒素污染,因此对多种真菌毒素同时检测的技术很有实际应用价值。刚刚实施的LS/T 6133-2018《主要谷物中16种真菌毒素的测定 液相色谱串联质谱法》采用稳定同位素内标液相色谱-串联质谱法,对谷物中多种毒素同时检测,该技术除了检测我国日常监管的毒素外,还可以检测其衍生物或结构类似物。  快检方法不仅仅是对实验室方法的有益补充,根据2015年颁布的《食品安全法》,国家认可的快检方法可以作为执法依据。农业部、国家粮食局和国家食药总局先后颁布了8个免疫检测技术的标准。粮食行业标准率先将胶体金定量检测技术纳入标准中,之前胶体金免疫层析技术只是作为定性筛查的手段。2017年国家食药局颁布了三个真菌毒素快检标准,其中两个是AF的标准。这些都为免疫层析技术在农业、粮油、食药行业的应用提供了技术保障和标准支撑,同时也有效保障了这些领域AF的监管和检测。唯一写入GB或GB/T的免疫方法是市场应用剧减的酶联免疫,目前应用广泛的免疫层析技术只出现在行业标准中。  全球有100多个国家和地区制订了食品和饲料中AF限量标准。我国对食品中AFB1和AFM1的最高允许量有严格规定,而美国、加拿大等国家主要对AF总量(B1+B2+G1+G2)做出限定。为了满足进出口的需求,SN标准是针对黄曲霉毒素总量的检测。  黄曲霉毒素的检测标准覆盖了AF污染的大多数食品,2020年《中国药典》2351真菌毒素测定法,更是增加了药材、饮片及中药制剂中真菌毒素的检测。但是,一些过时检测技术的行业标准依然有效:如NY/T 1664-2008《牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法》,该技术操作繁琐,专业性要求高,且只能定性检测,市面上已很难买到相应的检测试剂。薄层色谱法是一种前处理复杂、当前应用很少的检测技术,依然作为第五法写入GB 5009.22-2016中。编者建议废止不能适应市场需要的一些标准。表1 我国现行标准中黄曲霉毒素的检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB5009.24-2016食品安全国家标准食品中黄曲霉毒素M 族的测定乳、乳制品和含乳特殊膳食用食品第一法:同位素稀释液相色谱-串联质谱法;第二法:高效液相色谱法;第三法:酶联免疫吸附筛查法。第一法:液态乳、酸奶,取样4g。AFM1:0.005/0.015; AFM2:0.005/0.015。乳粉、特殊膳食用食品、奶油和奶酪,取样1g。AFM1:0.02/0.05 AFM2:0.02/0.05;第二法:液态乳、酸奶 4g,AFM1 :0.005/0.015;AFTM2 0.0025/0.0075。乳粉、特殊膳食用食品、奶油和奶酪 1g,AFM1:0.02/0.05;AFM2:0.01/0.025 GB 5009.22-2016食品安全国家标准食品中黄曲霉毒素B族和G 族的测定谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品第一法:同位素稀释液相色谱-串联质谱法;第二法:高效液相色谱-柱前衍生法;第三法:高效液相色谱-柱后衍生法;第四法:酶联免疫吸附筛查法;第五法:薄层色谱法第一法:B1:0.03/0.1;B2:0.03/0.1;G1:0.03/0.1;G2:0.03/0.1。第二法:B1:0.03/0.1;B2:0.03/0.1;G1:0.03/0.1;G2:0.03/0.1。第三法:B1:0.03/0.1;B2:0.01/0.03;G1:0.03/0.1;G2:0.01/0.03。第四法:B1(谷物、坚果、油脂、调味品样品): 1/3;B1(特殊膳食用食品):0.1/0.3第五法:B1:5 GB/T 30955-2014饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法饲料免疫亲和柱净化-高效液相色谱法B1:0.2/1.0;B2:0.2/1.0;G1:0.3/1.0;G2:0.3/1.0。GB/T 17480-2008饲料中黄曲霉毒素B1的测定 酶联免疫吸附法饲料原料、配合饲料及浓缩饲料酶联免疫0.1LS/T 6111-2015粮食中黄曲霉毒素B1 胶体金快速定量法小麦、玉米、大米等胶体金定量检测2LS/T 6108-2014谷物中黄曲霉毒素B1的快速测定免疫层析法大米、糙米、玉米等胶体金免疫层析(定性)4~20LS/T 6122-2017粮油及其制品中黄曲霉毒素含量测定 柱后光化学衍生高效液相色谱法粮油及其制品柱后光化学衍生高效液相色谱法B1: 0.5;B2: 0.25;G1: 1.0;G2: 0.5LS/T 6128-2017粮食中黄曲霉毒素B1、B2、G1、G2的测定 超高效液相色谱法粮食及其制品超高效液相色谱法B1: 0.2/0.4;B2: 0.1/0.3;G1:0.5/1.5;G2: 0.1/0.3LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法 B1、B2、G1、G2:0.3/1.0NY/T 2547-2014生鲜乳中黄曲霉毒素M1筛查技术规程生鲜乳时间分辩荧光免疫层析法0.45NY/T 2548-2014饲料中黄曲霉毒素B1的测定 时间分辩荧光免疫层析法饲料及饲料原料时间分辩荧光免疫层析法0.3NY/T 2071-2011饲料中黄曲霉毒素、玉米赤霉烯酮和T2毒素的测定 液相色谱-串联质谱法单一饲料、配合饲料、浓缩饲料、添加剂预混合饲料液相色谱-串联质谱法1.0/2.0NY/T 2549-2014饲料中黄曲霉毒素B1的测定 免疫亲和荧光光度法饲料及饲料原料免疫亲和荧光光度法0.3NY/T 2550-2014饲料中黄曲霉毒素B1的测定 胶体金法饲料及饲料原料胶体金法1NY/T1664-2008牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法生牛乳、巴氏杀菌乳、UHT灭菌乳、乳粉双流向酶联免疫法0.5DB 34/T 813-2008饲料中黄曲霉毒素的测定 免疫亲和层析净化荧光光度法 配合、浓缩饲料和单一饲料免疫亲和层析净化荧光光度法B1+B2+G1+G2 总量:1 DB37/T 2617-2014饲料中黄曲霉毒素B1 的测定高效液相色谱法饲料高效液相色谱法5SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷类及其制品液相色谱-质谱/质谱检测方法AFB1:0.5;AFB2、AFG1、AFG2:1SN/T 3263-2012出口食品中黄曲霉毒素残留的测定玉米、茶叶、花生果、苦杏仁、花生米方法一:高效液相色谱法;方法二:荧光光度法方法一:B1、B2、G1、G2:0.5。方法二:黄曲霉毒素总量:1.0SN/T 3868-2014出口植物油中黄曲霉毒素B1、B2、G1、G2的检测 免疫亲和柱净化高效液相色谱法花生油、芝麻油、橄榄油免疫亲和柱净化高效液相色谱法B1、B2、G1、G2:1.0KJ201708食用油中黄曲霉毒素B1的快速检测胶体金免疫层析法花生油、玉米油、大豆油及其他植物油脂等食用油胶体金免疫层析法B1 玉米油、花生油:20;其他植物油脂:10 KJ201709液体乳中黄曲霉毒素M1的快速检测胶体金免疫层析法生鲜乳、巴氏杀菌乳、灭菌乳胶体金免疫层析法0.52.2 脱氧雪腐镰刀菌烯醇(DON)  脱氧雪腐镰刀菌烯醇又称为呕吐毒素,广泛存在玉米、小麦、大麦等谷物中,是污染食物的主要真菌毒素。DON破坏人和动物免疫系统,具有一定的胚胎毒性和致畸性。世界各国都对食品中DON做出了限量要求。GB 276l-2017规定谷物及其制品中DON的限量是1000 μg/kg,与美国对小麦的限量标准一致。而欧盟标准规定的非常细致:未加工的硬质小麦、谷物和玉米中DON的限量为1750 μg/kg,未加工的谷物(除前述之外的谷物)的DON限量是1250 μg/kg,终端销售的谷物面粉、麸皮和胚芽的DON限量为750 μg/kg,谷物为原料的婴儿食品中DON限量不得超过200 μg/kg;日本规定小麦和小麦制品的DON限定量为1100 μg/kg。  DON的检测标准有9个(见表2),包括4个LS,1个KJ,3个GB和1个SN,其中GB 5009.111-2016《食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》是GB 2761-2017指定的检验方法,可以检测谷物及其制品、酒类、酱油、醋中的DON及其乙酰化衍生物。与AF相比,DON检测标准的数量和方法明显减少,但DON作为粮食行业重点关注的毒素,LS占比非常大。DON的结构类似物雪腐镰刀菌烯醇(NIV)对我国中东部作物的污染较常见,但目前只有DB32/T 3205-2017《饲料中雪腐镰刀菌烯醇(NIV)的测定 免疫亲和柱净化-高效液相色谱法》提出了它的检测方法。  表2 我国现行标准中呕吐毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB5009.111-2016食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定食品第一法:同位素稀释液相色谱-串联质谱法;第二法:免疫亲和层析净化高效液相色谱法第三法:薄层色谱测定法第一法:谷物及其制品、酒类、酱油、醋、酱及酱制品取样2g,DON、3-AC-DON、15-AC-DON: 10/20。酒类取样5g,DON、3-AC-DON、15-AC-DON 5/10 第二法:谷物及其制品、酱油、醋、酱及酱制品取样25g ,DON:100/200;酒类取样20g,DON:50/100 第三法:DON:300GB/T 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇薄层色谱法饲料薄层色谱法1000GB/T 30956-2014饲料中脱氧雪腐镰刀菌烯醇的测定免疫亲和柱净化-高效液相色谱法饲料原料、配合饲料、浓缩饲料、精料补充料免疫亲和柱净化-高效液相色谱法100LS/T 6110-2014谷物中脱氧雪腐镰刀菌烯醇测定胶体金快速测试卡法小麦、玉米等谷物胶体金快速测试卡法1000LS/T 6113-2015粮食中脱氧雪腐镰刀菌烯醇测定胶体金快速定量法小麦、玉米等及其粮食制品胶体金快速定量法120LS/T 6127-2017粮食中脱氧雪腐镰刀菌烯醇的测定超高效液相色谱法粮食及其制品超高效液相色谱法50/150LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法DON:45/150DON-3G:7.5/253-AcDON:12/4015-AcDON:6.0/20SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷类及其制品液相色谱-质谱/质谱检测方法50KJ201702食品中呕吐毒素的快速检测胶体金免疫层析法谷物加工品及谷物碾磨加工品胶体金免疫层析法10002.3 玉米赤霉烯酮(ZEN)  玉米赤霉烯酮主要污染玉米、小麦及其制品。动物食用被ZEN污染的饲料会引起中枢神经中毒,妊娠期的动物则可能流产、死胎、畸胎。GB 2761-2017规定小麦(粉)、玉米(粉)中ZEN的限量为60 μg/kg,未规定以小麦、玉米为原料的玉米油、调味品等的ZEN限量。ZEN现行的检测标准有8个(表3),包括4个LS,3个GB, 1个NY,基本覆盖了市场上ZEN的检测技术。GB 2761-2017指定的ZEN的检验方法GB 5009.209-2016《食品中玉米赤霉烯酮的测定》中规定的方法,适用很多检测样本:粮食和粮食制品、酒类、酱油、醋、酱及酱制品、玉米油、大豆、牛肉、猪肉、牛肝、牛奶、鸡蛋。ZEN在动物源性食品中常以代谢物玉米赤霉烯醇的形式存在,玉米赤霉烯醇对动物具有类似ZEN生物效应,但目前关于玉米赤霉烯醇的检测标准非常不完善。LS/T 6112-2015的检出限是5 μg/kg,远小于GB 2761确定的限量值,应用上没太大实际意义,但对推动检测技术和国家限量标准的改进具有积极的作用,建议放宽此类标准的检出限,给国内产品更多的市场机会。  表3 我国现行标准中玉米赤霉烯酮检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB/T 5009.209-2016 食品中玉米赤霉烯酮的测定第一法:粮食和粮食制品、酒类、酱油、醋、酱及酱制品、大豆、油菜籽、食用植物油;第二法:大豆、油菜籽、食用植物油;第三法:牛肉、猪肉、牛肝、牛奶、鸡蛋 第一法 液相色谱法;第二法:荧光光度法;第三法:液相色谱-质谱法第一法:粮食和粮食制品:5/17;酒类:20/66;酱油、醋、酱及酱制品:50/165;大豆、油菜籽、食用植物油:10/33。第二法:10/33。第三法:1/4。GB/T 28716-2012饲料中玉米赤霉烯酮的测定 免疫亲和柱净化-高效液相色谱法饲料免疫亲和柱净化-高效液相色谱法2/10GB/T 19540-2004饲料中玉米赤霉烯酮的测定于配合饲料和饲用谷物原料第一法:薄层色谱法第二法:酶联免疫吸附测定法第一法:500第二法:500LS/T 6112-2015粮食中玉米赤霉烯酮胶体金快速定量法小麦、玉米、大米胶体金快速定量法5LS/T 6109-2014谷物中玉米赤霉烯酮测定的胶体金快速测试卡法小麦、玉米胶体金快速测试卡法60LS/T 6129-2017粮食中玉米赤霉烯酮超高效液相色谱法粮食及其制品超高效液相色谱5/10LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法ZEN:6/20NY/T 2071-2011饲料中黄曲霉毒素、玉米赤霉烯酮和T2毒素的测定 液相色谱-串联质谱法单一饲料、配合饲料、浓缩饲料、添加剂预混合饲料液相色谱-串联质谱法5/10  2.4 伏马毒素(FB)  伏马毒素是串珠镰刀菌产生的毒素,包括FB1、FB2和FB3。我国主要检测FB1和FB2总量,但目前尚无食品中的FB限量标准。GB 13078-2017规定了不同饲料及原料中FB的限量,范围是5~60 mg/kg。随着检测技术的改进和国家对检测标准统一的要求,近年来FB标准废止力度较大。我国现行的伏马毒素的检测标准(表4)有6个,包括1个GB和5个行业标准,适用样本包括粮食及其制品、玉米及其制品、花生、谷物、饲料(配合饲料、浓缩饲料、精料补充料)等。今年刚颁布实施的DB 36/T 1023-2018规定了饲料及其原料中FB的胶体金快速定量法,是FB唯一的现行有效的快检标准。GB(GB/T)或行标缺乏FB的快检方法,限制了FB快检技术及产品在相关行业领域的应用。  表4 我国现行标准中伏马毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB 5009.240-2016食品中伏马毒素的测定玉米及其制品第一法:免疫亲和柱净化-柱后衍生高效液相色谱法;第二法:高效液相色谱-串联质谱联用法;第三法: 免疫亲和层析净化-柱前衍生高效液相色谱法第一法:FB1、FB2、FB3:17/50、8/25、8/25;第二法:FB1、FB2、FB3:7/20、8/25、8/25;第三法:FB1、FB2、FB3:17/50、8/25、8/25;LS/T 6130-2017粮食中伏马毒素B1、B2的超高效液相色谱法粮食及其制品超高效液相色谱法50/250LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法FB1: 6/20FB2: 3/10NY/T 1970-2010饲料中伏马毒素的测定植物源性饲料原料、精料补充料、配合饲料、浓缩饲料第一法:液相色谱串联质谱法;第二法:液相色谱法第一法:10/50;第二法:10/50SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷类及其制品液相色谱-质谱/质谱检测方法50DB 36/T 1023-2018饲料中伏马毒素的快速筛查 胶体金快速定量法饲料及饲料原料胶体金快速定量法100  2.5 赭曲霉毒素(OT)  赭曲霉毒素是由赭曲霉等真菌产生的有毒代谢物,分为OTA、OTB和OTC等。其中毒性最大、污染最严重、分布最广的是OTA。GB 276l-2017中详细的规定了谷物及其制品、豆类及其制品、葡萄酒等共五大类7小类食品中OTA的限量标准,限量范围为2~10 µg/kg。我国现行的OTA检测标准中共有7个(表5),包括3个GB和5个行业标准,适用样本包括玉米、小麦、大麦、大米、大豆及其制品、稻谷、油菜籽、油料、葡萄酒、咖啡、酱油、葡萄干、胡椒粉等。GB 2761制定的检验方法GB 5009.96-2016《食品安全国家标准食品中赭曲霉毒素A的测定》,包括免疫亲和净化-仪器分析、酶联免疫和薄层色谱等五种检测方法。这些检测标准基本涵盖了国内OTA的检测技术。  表5 我国现行标准中赭曲霉毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB 5009.96-2016食品安全国家标准食品中赭曲霉毒素A的测定第一法:谷物、油料及其制品、酒类、酱油、醋、酱及酱制品、葡萄干、胡椒粒/粉;第二法:玉米、稻谷(糙米)、小麦、小麦粉、大豆、咖啡、葡萄酒;第三法:玉米、小麦等粮食产品、辣椒及其制品等、啤酒等酒类、酱油等产品、生咖啡、熟咖啡;第四法:玉米、小麦、大麦、大米、大豆及其制品;第五法:小麦、玉米、大豆。第一法:免疫亲和层析净化液相色谱法第二法:离子交换固相萃取柱净化高效液相色谱法第三法:免疫亲和层析净化液相色谱-串联质谱法第四法:酶联免疫吸附法第五法:薄层色谱法第一法:粮食和粮食制品、食用植物油、大豆、油菜籽、葡萄干、胡椒粒/粉:0.3/1;酒类:0.1/0.3;酱油、醋、酱及酱制品:0.5 /1.5;第二法:葡萄酒:0.1/0.33;其他样品:1.0/3.3;第三法:玉米、小麦等粮食产品、辣椒及其制品:1.0/3.0;啤酒等:1.0/3.0;熟咖啡、酱油等:0.5/1.5;第四法:玉米、小麦、大麦、大米、大豆及其制品:1/2;第五法:未列出GB/T 19539-2004饲料中赭曲霉毒素A的测定配合饲料、饲用谷物原料第一法:薄层色谱法;第二法:酶联免疫吸附测定法薄层色谱:2;酶联免疫吸附测定方法:0.05 GB/T 30957-2014饲料中赭曲霉素A的测定免疫亲和柱净化-高效液相色谱法饲料原料、配合饲料、浓缩饲料、精料补充料免疫亲和柱净化-高效液相色谱法定量限:5.0LS/T 6114-2015粮食中赭曲霉毒素A测定的胶体金快速定量法小麦、玉米、燕麦等粮食及其制品胶体金定量检测3LS/T 6126-2017食品中赭曲霉毒素A的测定 超高效液相色谱法粮食及其制品超高效液相色谱法0.5/1LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法0.6/2SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷物及其制品液相色谱-质谱/质谱检测方法2SN/T 4675.10-2016进口葡萄酒中赭曲霉素A的测定 液相色谱-质谱/质谱法葡萄酒液相色谱-质谱/质谱法0.2  2.6 T-2毒素(T-2)  T-2是由拟枝孢镰孢等真菌产生的有毒代谢产物。在寒冷潮湿的环境下,粮食受T-2毒素污染的程度会增加。我国颁布了一系列T-2毒素的检测标准,但尚无食品中T-2的限量标准。由表6可知,T-2共有3个GB和3个行业标准,包括强制性标准GB 5009.118-2016《食品中T-2毒素的测定》。GB 13078-2017规定了饲料中T-2的限量是500 μg/kg。显然,GB/T 8381.4-2005《配合饲料中T-2毒素的测定 薄层色谱法》的检出限高于国家限量,已无法满足检测要求,建议相关部门改进或废止该检测标准。  表6 我国现行标准中T-2检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB 5009.118-2016食品安全国家标准 食品中T-2毒素的测定 第一法:粮食及粮食制品、酒类、酱油、醋、酱及酱制品;第二法、第三法:粮食及粮食制品 第一法:免疫亲和层析净化液相色谱法; 第二法:间接ELISA 法;第三法:直接ELISA 法第一法:粮食及粮食制品:10/33;酒类、酱油、醋、酱及酱制品:5/17第二法:粮食及粮食制品:1/3;第三法:粮食及粮食制品。直接ELISA法一:1/3;直接ELISA法二: 3.5/11。 GB/T 8381.4-2005配合饲料中T-2毒素的测定 薄层色谱法配合饲料薄层色谱法1000GB/T 28718-2012饲料中T-2毒素的测定 免疫亲和柱净化-高效液相色谱法饲料原料、配合饲料、浓缩饲料免疫亲和柱净化-高效液相色谱法10/30LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法T-2:0.6/2HT-2:3/10SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷物及其制品液相色谱-质谱/质谱检测方法10NY/T 2071-2011饲料中黄曲霉毒素、玉米赤霉烯酮和T2毒素的测定 液相色谱-串联质谱法单一饲料、配合饲料、浓缩饲料、添加剂预混合饲料液相色谱-串联质谱法1.0/2.0SN/T 5026-2017饲料中T-2毒素的测定 酶联免疫吸附法/*酶联免疫吸附法/  2.7 展青霉素(Pat)  展青霉素是由展青霉、扩展青霉、棒曲霉等多种真菌产生的有毒代谢产物,主要污染果蔬类,是GB 2761-2017标准中唯一不污染谷物的真菌毒素。在果蔬贮藏和运输的过程中,真菌通过寄主表面的伤口或自然孔口侵入并感染宿主。展青霉素可以诱发一系列急性、慢性疾病及细胞水平的病变。依据GB 2761-20l7,以苹果、山楂为原料的水果制品、果蔬汁及饮料和酒类中,展青霉素不得超过50 μg/kg,与欧盟限量一致。我国针对Pat的检测标准只有两个,包括GB 2761指定的检测方法 GB 5009.185-2016《食品中展青霉素的测定》。Pat近年来废止力度较大,是国家监管的真菌毒素现行检测标准最少的,目前只有仪器检测方法。  表7 我国现行标准中展青毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB 5009.185-2016食品安全国家标准 食品中展青霉素的测定第一法:苹果和山楂及其制品、果蔬汁类和酒类;第二法:苹果为原料的果蔬汁类和酒类 第一法:同位素稀释-液相色谱-串联质谱法;第二法:高效液相色谱法第一法:净化方式:1、混合型阴离子交换柱:澄清果汁:1.5/5;苹果酒:1.5/5;固体、半流体:3/10;2、净化柱法:澄清果汁:3/10;苹果酒:3/10;固体、半流体:6/20;第二法:液体试样:6/20;固体、半流体试样:12/ 40;DBS 53/016-2013食品中展青霉素的测定 液相色谱-串联质谱法果汁饮料、果酒、果酱、果干及薯类制品等液相色谱-串联质谱法5  3 结论  近年来,我国真菌毒素检测技术发展迅速,导致我国真菌毒素检测标准的新旧更替也很频繁。真菌毒素因其社会危害程及国家重视,虽然近年来废止很多,但还拥有较其他化学污染物更多的检测标准。一些市场上应用剧减的技术,如薄层色谱等,虽然不像过去作为GB的唯一方法,但依然作为方法之一,但可以预测,这类检测方法会被逐步删除的。  如何使真菌毒素检测标准体系科学、统一、权威,这是一个与技术相关但不限于技术的问题。目前我国现行的检测标准,检出限普遍远小于或等于国家限量。太低的检出限市场应用意义并不大,但会推动我国真菌毒素检测技术的进步和国家限量标准的改进。方法检出限等于国家限量也是不科学的,因为每种检测方法都存在一个不确定区间。正常的情况应该选择检出限略低于国家限量的检测方法。尤其对于免疫分析方法来说,受抗原-抗体的来源影响非常大,检出限过低,特别容易形成技术瓶颈和市场垄断。因为真菌毒素物种污染的特异性和广泛性,多种类检测依然是市场需求的重点,但目前来看,快检技术显然无法满足这一需求。  后记  本文是编者曾发表在《食品质量安全检测学报》【2019,10(4):837~847】上的一篇综述性论文,两年过去了,真菌毒素的标准已经发生了一些变化,突出的是2020年《中国药典》2351 真菌毒素检测法的颁布实施。因此,本文发布前,编者又做了一定的修改以满足日新月异的真菌毒素标准领域。
  • 利用qPCR结合NGS,西湖大学首次证实细菌促进癌症转移
    作为女性最常见的恶性肿瘤之一,影响乳腺癌进展的因素十分复杂且尚未明晰。4月7日,西湖大学生命科学学院蔡尚团队在《细胞》在线发表的最新研究论文,首次证实了乳腺癌组织中存在多种独特的“胞内菌”,并揭示了它们在肿瘤转移定植过程中所起的关键作用。这一研究为深入理解肿瘤转移及临床治疗提供了全新思路。什么是16S rRNA?16S rRNA 基因是编码原核生物核糖体小亚基的基因,长度约为1542bp,其分子大小适中,突变率小,是细菌系统分类学研究中最常用和最有用的标志。16S rRNA基因序列包括9个可变区和10个保守区,保守区序列反映了物种间的亲缘关系, 而可变区序列则能体现物种间的差异。 16S rRNA基因测序以细菌16S rRNA基因测序为主,核心是研究样品中的物种分类、物种丰度以及系统进化。二代高通量测序原理目前二代测序是一个边合成边测序的过程,使用的是荧光可逆终止子。每个可逆终止子的碱基3’端都有一个阻断基团,而在侧边带有一种荧光。由于有4种不同的碱基(ATCG),因此也会有对应4种不同颜色的荧光。开始扩增每次结合上一个碱基,DNA的扩增便会停止,此时能收到一种荧光信号。然后放试剂除去阻断基团,进行下一个碱基的结合,以此类推得到一连串的荧光信号组合序列。而根据荧光的颜色我们便可以确定每一个位点的基因型,即可以得到这一段DNA片段的序列。
  • 高效分离新方法 可加速MALDI-TOF MS细菌鉴定
    炎炎夏日里,能来上一杯清凉的啤酒,简直是无比畅爽!但是,你知道吗?为了保持啤酒的高品质,啤酒厂需要进行生物质量控制。由于乙醇含量高、酸度高、溶氧含量低、二氧化碳含量高,啤酒看起来似乎不太适合腐败和病原微生物生长,煮沸、巴氏杀菌、无菌过滤和冷却等生产流程也进一步降低了微生物生长的可能性。但是,事实上细菌和野生酵母等可以在这样恶劣的条件下茁壮成长,从而形成不良味道、气味、烟雾和沉积物,这一过程可能会发生在酿造的任何阶段,影响啤酒的最终感官特征。啤酒厂的微生物爆发会给企业带来很大的风险,轻则花费大成本召回不合格产品,重则对品牌声誉带来致命损害。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法,是一种快速、高通量、高准确度鉴定微生物的技术,目前已经被应用于啤酒厂中,进行质量控制中啤酒腐败微生物的鉴定。然而,MALDI-TOF MS法的适用性受到混合培养物相关问题的阻碍,使得技术人员在鉴定之前需要耗费很长时间去做微生物选择性培养。南澳大利亚大学未来工业研究所进行了一项研究,提出了一种新型的低成本方法,将惯性微流体和螺旋微通道中二次流相结合,从啤酒腐败微生物(短乳杆菌和啤酒片球菌)中高通量和高效地分离酵母(巴氏酵母和酿酒酵母),然后使用MALDI-TOF MS平台进行微生物物种鉴定。 图1 巴氏酵母和短乳杆菌分离的实验装置示意图。在入口处(即A-A),巴氏酵母和短乳杆菌随机分散。在惯性分馏(即B-B)之后,巴氏酵母沿着通道的内壁聚焦,并且通过在分叉点处放置适当的出口,可以分离这些细胞。 在梯形截面的螺旋通道中,通过惯性升力和迪恩阻力的联合作用,内壁受力大于外壁,酵母细胞向出口内壁迁移。研究人员通过评估,选择1.5 mL/min的流速作为最佳流速,对巴氏酵母可以实现超过90%的分离效率。此外,为了提高短乳杆菌的分离效率,将其通过螺旋微通道再循环三次,分离效率可达90%以上。该研究证明,微流体分离与MALDI-TOF MS鉴定相结合,可以提高MALDI-TOF MS物种水平鉴定的检测限,而无需在选择性培养基上进行耗时的培养,为啤酒腐败微生物的检测提供一种新的、快速、灵敏的方法,可用于啤酒厂的质量控制。 虽然啤酒中条件艰苦,“菌”生艰难,但是总有那么一小撮细菌可以顽强生长,而MALDI-TOF MS微生物鉴定质谱可以快速帮助把这些微生物“揪”出来。融智生物基于新一代宽谱定量飞行时间质谱平台QuanTOF推出的微生物鉴定质谱系统,配备了自主研发的基于生物组学信息建立的全新微生物质谱数据库,该数据库拥有超过1,400属,4,500余种微生物,更针对传统MALDI-TOF MS难以鉴定的基因相近菌属建立了二级数据库,可实现难检菌的鉴定。QuanTOF微生物鉴定质谱系统检测效率高,10分钟内可完成超100个样本的检测;鉴定重现性好,RSD<2%;不仅可鉴定出微生物,还能详细地提供质谱峰与蛋白的对应信息,为科研提供有力工具。另外,QuanTOF有别于友商最强大的功能,是可用一台仪器进行微生物鉴定、核酸分析、质谱成像以及糖化血红蛋白全血直接定量。
  • 关于病原体宏基因组高通量测序产品的几点考虑
    感染性疾病是由病原微生物(细菌、病毒、真菌、寄生虫等)引起的疾病的统称。据统计感染性疾病死因占全部死因的25%以上,是当今世界严重威胁人类健康的重大疾病。长期以来感染性疾病的诊断和疗效监测一直依靠形态学、免疫学、分子生物学以及病原体分离培养等方法,这些方法各有优缺点,在感染性疾病的辅助诊断中发挥着重要作用。近年来新兴的病原体宏基因组高通量测序(metagenomic next-generation sequencing,mNGS)技术,是指采用高通量测序技术对特定临床样本中所有核酸进行测序,并通过生物信息学分析判断样本中是否存在病原体的检测方法。与传统基于分离培养的病原体检测技术相比,该技术从理论上讲能够无偏倚的检测各类微生物(如:病毒、细菌、真菌、寄生虫等),包括难以培养的病原体以及新发病原体。mNGS技术是一个开放的分析和诊断系统,对于mNGS技术所检测的病原体数量未有明确规定,根据不完全统计,开展相关检测服务的机构已纳入的病原体有近万种,包括细菌、病毒、真菌和寄生虫等,为疑难危重症及罕见病原体感染的诊断提供了有效的技术手段。在特定的临床应用场景下,具有临床意义。针对mNGS的临床应用,目前已有多个临床专家共识。结合该技术的特点,我中心对相关产品的临床应用、设计开发、验证确认等方面进行了专题研究,现将当前的几点考虑总结如下。一、关于产品预期临床使用场景基于mNGS技术的产品与常规的病原体检测产品相比,具有检测过程较为复杂、易受到人源基因的干扰、检测时间较长、结果解读专业要求高、检测成本高等特点,一般用于传统检验方法未能给出明确病原学结果从而影响患者准确诊疗的感染性疾病、新发突发传染病、危急重症或排除其他发热疾病。推荐临床通过拟诊先行传统微生物检验及常规分子生物学产品检测常见病原体,不盲目使用mNGS技术。在必要或紧急情况下,如危急重症、群体性感染事件等,可考虑与常规方法同步进行检测。对常规微生物学检查容易明确的病原体不建议进行mNGS检测。从临床角度,mNGS结果不能单独作为病原学确诊或排除的证据。适用场景举例如下:(一)患者表现为发热或发热症候群,病因未明确(符合不明原因发热定义),考虑感染或不除外感染,但规范性经验抗感染治疗无效,在应用常规技术检测的基础上,开展mNGS产品检测。(二)各种原因导致患者急危重症表现,不除外感染所致,或考虑继发或并发危及生命的严重感染,在常规检测的基础上,开展mNGS产品检测。(三)免疫受损患者疑似继发感染,常规病原学检查未能明确致病原或/和规范性经验抗感染治疗无效,建议进一步完善常规病原学检测的同时,或在其基础上,开展mNGS产品检测。(四)疑似局部感染,病原学诊断未明确、不及时处理则后果严重时,在常规检测的基础上,开展mNGS产品检测。(五)高度疑似感染性疾病,但病原学诊断未明确且常规抗感染治疗无效,建议进一步完善常规病原学检测、处理原发感染灶,调整经验抗微生物治疗方案的同时开展mNGS检测。(六)慢性感染,或慢性疾病不除外感染,尤其是二者临床表现相似、难以鉴别时,病情严重或抗感染治疗疗效不佳需要明确病因,建议在完善常规检测、调整经验治疗的同时开展mNGS产品检测。(七)其他患者疑似特殊病原体感染或从相关流行病学角度考虑需要进行mNGS产品检测。二、关于产品的检测样本及适应证mNGS产品在目前的临床应用研究中涉及多种适应证,如:中枢神经系统感染、血流感染、局灶性感染、呼吸道感染、感染性腹泻等,对于具有相关临床症状的病例,应在按照现有诊疗流程进行标准化诊疗的基础上开展检测。针对患者感染部位不同,采集的样本类型也不同,产品适用的样本类型主要包括:静脉血、脑脊液、痰液、肺泡灌洗液、胸腔积液、腹水、组织、局灶穿刺物、粪便等多种类型。对于样本的采集,应注意以下两个方面,一是,对于无菌体液,如静脉血、脑脊液、胸腔积液、腹水等,需按照严格的无菌操作采集样本,采集的样本须置于无菌容器内;二是,对于有菌部位的样本,如痰液、肺泡灌洗液、咽拭子等,应标明样本的采集部位,在样本采集过程中应尽量避免引入该部位的正常菌群,以免干扰后续检测结果。采集的样本应尽量选取感染部位的体液或组织,可提高检测结果的可信度。若感染部位的样本采集难度较大,可选择外周血液样本,但有可能会降低检测结果的准确性。产品适用的样本类型推荐优先选择无菌采集的样本。关于不同适应证适用的样本类型举例见表1。表1.产品适应证与适用的样本类型举例三、关于产品检测病原体种类范围mNGS产品检测原理为对临床样本中存在的病原体核酸进行无偏倚的检测,从产品检测的技术角度考虑,除新发病原体外,产品的检测范围不应局限为某一种或某几种常见病原微生物,应为产品适应证、适用样本中所有可报告的病原微生物。产品所检测的病原微生物受几个方面的影响,一是产品配套使用的参考数据库及生信分析过程涵盖的病原体种类,如数据库中未涵盖某种病原体基因组参考序列,则该类病原体不在该产品的检测范围之内;二是检测样本类型、核酸提取等会直接影响产品病原体的检测种类,不同的样本类型可能检出的病原体会存在差别,如脑脊液样本检出的病原体主要以中枢神经系统感染的病原体为主,而粪便样本检出病原体主要为消化系统感染的病原体。不同的核酸提取方式对病原体的检出种类也会产生影响,如核酸提取过程未考虑破壁,则产品可能不适用于具有厚细胞壁的病原体检测;三是产品检测的目标物是否包括不同类型的核酸靶标,如产品检测的靶标仅为DNA,则RNA病毒不在该产品的检测范围之内。相关产品的申请人应依据产品设计、适用的样本类型、适应证等多个方面综合考虑产品预期用途,确定合理的病原体检测范围。四、关于产品配套使用的数据库mNGS产品检测结果,除了产生可用于比对的微生物短片段序列外,还存在大量人源、环境微生物、试剂含有的微生物等背景核酸序列,必须依靠生物信息学手段对其进行筛选、过滤、比对,最终给出微生物物种注释。结果分析过程中,数据库的使用是必需的,而且是影响mNGS产品检测结果准确性的重要因素。目前相关产品在选择配套使用的数据库时,一般会存在两种情况,一种为直接选择公共数据库,如:NCBI nr/nt database、NCBI RefSeq database等;另一种为自建数据库,对公开数据库中基因组序列进行挑选、整理、分类,然后通过程序软件将收集到的基因组序列整理成适用于本产品的微生物及人源序列比对数据库。针对成熟的产品,建议根据产品特点及临床需要,使用临床应用级的自建数据库。在数据库的构建、使用和管理方面应注意以下问题:(一)需要考虑数据库的全面性以及纳入物种在分类学上的代表性,对于同一种微生物,往往存在具有遗传差异的不同亚型或株,所以在选择基因组时,应考虑到微生物的遗传多样性,尽可能选取具有高度代表性的不同亚型或株的高质量基因组。(二)无论所选择的参考基因组的来源如何,申请人需要考虑其注释的准确性及序列的完整性,防止注释错误、命名错误或者代表性不足临床相关微生物列入库。(三)申请人应在有必要的基础上,对纳入库中的微生物的潜在的临床意义进行注释,让结果解读人员对检测的微生物有基本的认识和判断。(四)由于病原体在自然状态下是不断发生进化变异的,致病性也是动态变化的,所以需要及时(或定期)对参考数据库中的基因组信息及临床致病证据进行更新。(五)当数据库发生可能影响病原体判读结果的更新后,应对更新后的数据库进行验证与确认。(六)应构建全面的人源基因序列数据库,并评估最新版国际人类参考基因组和用于构建人源基因序列数据库所选择的参考基因组差异,进而评价人源基因序列数据库的代表性,人源基因序列数据库用于在生信分析过程中过滤人源基因数据。(七)mNGS检测产品检测过程中一些样本中会存在背景菌序列、环境微生物及实验室残留微生物,这些基因序列可造成测序污染,导致假阳性结果产生;另外,一些样本(例如呼吸道样本)会存在定植微生物,因此,针对产品需要构建检测背景库用于过滤污染序列、区分背景病原体和致病性病原体。五、关于测序数据要求人体不同的样本类型单位体积含有的细胞数量有巨大的差异,最终的测序数据由微生物序列和人源基因组序列组成,不同的人源细胞含量、病原微生物感染的类型和病原体含量的高低都会影响测序数据中目标微生物序列占比,如组织样本的人源细胞含量比较高,测序所得的序列数据中相应微生物的占比可能较少,因此,mNGS产品在不同的样本类型中,产品分析灵敏度会存在差异。该类产品可通过增加测序数据量来提高待检出的微生物数据量,或通过富集微生物含量以提升微生物序列的占比,从而提高微生物的检出率。一般而言,在一定范围内随着测序数据量的增加,产品的灵敏度会有所提升。因此,为了保证产品具有满足临床要求的灵敏度,针对某一样本类型,应保证一定的测序数据量。产品在设计上,一般分为去除宿主人源基因与未去除宿主人源基因两种设计,去除宿主人源基因后,产品产生的相应数据量会大大减少。在缺乏有效的人源宿主去除步骤的情况下,单个样本检测所需的数据量应充分评估并设立合理的指标要求。测序模式一般为单端测序和双端测序,双端测序所花费的经济成本及时间均高于单端测序,如产品设计选择单端测序,为确保序列比对的准确性,避免因同源错配导致的序列比对错误,可参考相关专家共识的要求,如测序序列单端读长当前建议不少于50bp。为了保证数据分析的可靠性,产品检测的下机数据应有一定的质量要求。下机数据经拆分后即得到每个样本的测序数据,需要进行数据质量过滤,包括过滤测序接头、低质量序列、低复杂度序列、重复序列等,将获得的高质量读长序列作为微生物鉴定的输入数据。一般而言,数据应达到以下指标:Q30碱基数量占比80%、接头污染比例不超过1%、有效序列长度不小于50bp、数据的有效比对率应大于70%等。六、关于产品阳性判断值的研究产品阳性判断值的研究,主要是为了区分真阳性、真阴性,以及判断实验过程中污染的微生物等。基于mNGS技术的产品,阳性判断值应包含度量标准,例如检测结果中能够比对到数据库中的微生物的序列数、对某种微生物的基因组覆盖度等,可通过ROC曲线分析的方法对产品的阳性判断值进行研究。在阳性判断值研究过程中应注意,胞内菌和厚壁微生物检出率低,因此即使在检测报告中某种/某些胞内菌/厚壁菌检出序列数不高,也要考虑其为致病病原体的可能。七、关于产品检测结果的报告用于临床辅助诊断的mNGS报告应包括测序总序列数、检测病原微生物列表、检出病原特异序列数量、检测病原范围、覆盖度、测序深度、检测方法及检测技术说明。需要注意的是,检测结果仅代表临床样本中检出或未检出某微生物的核酸片段,不能明确该物种与感染的关系,即使阴性结果也需结合临床表现及其他检查结果进行综合判断。对于胞内菌和厚壁微生物的检测,因技术原因存在一定的偏倚,如对于胞内感染菌因释放到体液中含量较少而导致检测敏感性偏低,对具有较厚细胞壁的病原微生物如真菌感染,可能由于核酸提取效率较低,相对检出率低,导致临床检出率和敏感性较低。因此即使在检测结果中某种胞内菌/厚壁菌检出序列数不高,也要考虑其为致病病原体的可能。mNGS信息量大,临床应用过程中,检验机构依据检测结果出具检验报告时,有些情况下不可能在结果中列举出所有检测到的病原体,对于罕见病原体、胞内菌等,可能因检出序列数少、微生物丰度低,在报告中未能列举,如果临床有疑似特殊病原体的感染,应该可以追溯原始数据库进行查询。八、关于产品验证与确认的考虑基于mNGS技术的产品,因其预期用途涵盖的病原体的种类非常广,产品验证与临床试验应对检测范围内的病原体进行有充分覆盖度、有充分代表性的性能评价。产品临床试验在入组人群上,应与产品临床适用人群一致。在对比方法选择上,应选择临床参考方法作为对比方法,临床参考方法应综合病原体分离培养、患者的影像学检查结果、基于宿主反应的检测结果等。同时,由mNGS获得致病病原体后,临床上会针对病原体进行精准治疗,治疗后患者的临床表现和治疗效果的随访结果也可以作为临床试验对比方法的证据。临床试验过程中,应关注试验体外诊断试剂对一些对于胞内感染菌、具有较厚细胞壁的病原微生物等的临床性能研究。参考文献:1.宏基因组分析和诊断技术在急危重症感染应用的专家共识[J].中华急诊医学杂志,2019(02):151-155.2.宏基因组学测序技术在中重症感染中的临床应用专家共识(第一版)[J].中华危重病急救医学,2020,32(05):531-536.3.《中华传染病杂志》编辑委员会.中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J].中华传染病杂志,2020,38(11):681-689.4.中华医学会检验医学分会.高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J].中华检验医学杂志,2020,43(12):1181-1195.5.宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J].中华检验医学杂志,2021,44(02):107-120.6.中华医学会检验医学分会.宏基因组测序病原微生物检测生物信息学分析规范化管理专家共识[J].中华检验医学杂志,2021,44(09):799-807.7.Charles Y. Chiu and Steven A. Miller Clinical metagenomics Nature Reviews Genetics 2019,20, 341-355.8.fda. Infectious Disease Next Generation Sequencing Based Diagnostic Devices:Microbial Identification and Detection of Antimicrobial Resistance and Virulence Markers(Draft)
  • 食品中微生物鉴定技术的发展历程
    仪器信息网讯 2015年6月17日,&ldquo 第四届中国食品与农产品质量安全检测技术国际论坛暨展览会&rdquo 在北京国家会议中心开幕。此次会议特别设置了&ldquo 食品与农产品安全微生物检测&rdquo 、&ldquo 食品与农产品中重金属元素和其他有害物质检测&rdquo 、&ldquo 饮用水安全检测&rdquo 等九个专题。大会第二天,来自北京出入境检验检疫局的曾静博士在&ldquo 食品与农产品安全微生物检测&rdquo 专题中做了题为&ldquo 微生物鉴定技术的发展历程&rdquo 的报告。专题现场北京出入境检验检疫局 曾静博士  随着人们生活水平的不断提高,食品安全问题越来越受到人们的重视,微生物对食品的污染问题也相应地备受关注。微生物包括细菌、真菌等,有些微生物还是致病菌,对人体的危害很大,因此食品中微生物的检测非常重要。  在报告中曾静介绍,微生物鉴定技术在检验检疫 食品、化妆品等产品致病菌的检测 动物源性致病菌的检测 植物病原细菌、真菌的检测等工作中起到非常关键的作用。检验检疫工作中的微生物鉴定工作主要有判断该菌是不是目标的致病菌和新发现的菌的种类两项内容。相比而言,后者需要做更完善的实验,参考多种方法相互印证以后才能确定该菌的种类。  曾静说,目前微生物鉴定技术的发展有两个方向,速度快和分型能力强。速度快的微生物鉴定技术主要以飞行时间质谱(MALDI-TOF MS)鉴定技术为典型代表,可以在数十秒内实现微生物的鉴定 分型能力强的鉴定技术主要包括各种基于DNA的鉴定技术。  在报告中,曾静介绍,微生物鉴定技术主要有形态学观察、全自动微生物生化鉴定系统和依据细胞物质进行微生物鉴定技术等方法。她在报告中对三种方法进行了详细的阐述。  据她介绍,微生物的形态学观察主要是依据微生物的形态和生理生化反应等特征来进行微生物的分类和鉴定。用微生物的形态特征来鉴定微生物是由于微生物的形态比较单一,容易分辨 用微生物的生理生化反应特征来鉴定微生物主要是依据微生物细胞壁的组成、微生物发酵产物和微生物对碳源、氮源等养分的利用。  曾静同时提到这种方法相对比较繁琐、耗时,因此近年来被全自动微生物生化鉴定系统逐步替代。  她介绍道,全自动微生物生化鉴定系统实际上是将多个生化反应有效整合、浓缩于商业化的板卡上,方便实验室进行微生物的鉴定。全自动微生物生化鉴定系统具有以下优点:1.生化反应数量多,商业化的卡板最多可集合45-46种生化反应 2.实验操作标准化,节省大量人工 3.鉴定速度快,一般3-4小时即可出鉴定结果。基于以上优点,目前,全自动微生物生化鉴定系统已经作为实验室中微生物的日常鉴定手段。除此之外,全自动微生物生化鉴定系统还具有细菌的MIC值测定和耐药表型的检测等作用。  曾静在介绍依据细胞物质进行微生物鉴定技术时说,该技术主要包括蛋白质的检测和DNA的检测,是目前微生物鉴定技术的两个发展方向。依据蛋白质检测的鉴定技术,具有鉴定速度快的特点,主要检测仪器有飞行时间质谱。基于DNA检测的鉴定技术,对微生物的分型能力很强,该检测技术主要有16S rDNA测序技术、PFGE和全基因组测序技术等。  在蛋白质检测方面,曾静介绍说,利用飞行时间质谱进行微生物鉴定的原理是通过质谱获得微生物特征蛋白质分子的&ldquo 指纹图谱&rdquo ,然后与大容量的数据库进行对比,最终实现菌落或者菌株水平上的鉴定。质谱鉴定系统的优势主要体现在鉴定速度快,仅需十余秒即可完成。  在DNA检测技术方面,曾静分别就16S rDNA测序技术、PFGE和全基因组测序技术做了详细的阐述。  她说道,16S rDNA基因是细菌核糖体DNA的一部分,被称为细菌的&ldquo 活化石&rdquo ,该基因进化速度十分缓慢,具有生物钟的特点,已经作为细菌系统发育的目的基因,16S rDNA序列测定是科研领域细菌分类和鉴定的金标准。目前,常见的商业化测序系统有针对细菌16S rDNA中的500bp保守序列进行测序、针对真菌的28S rDNA的D2基因区域进行测序等。该方法获得的数据有利于致病菌的溯源分析,但是操作过程具有一定的复杂度,耗时较长,另外,基因测序仪和测序耗材试剂的价格较贵,因此不利于在应用层面进行推广。  报告中,曾静对PFGE阐述道,PFGE(脉冲场凝胶电泳)是一种分离大分子DNA的方法。此种方法的原理是将细菌包埋于琼脂块中,用适当的内切酶在原位对整个细胞染色体进行酶切,酶切片段在特定的电泳系统中通过电场方向的不断交替变换和适合的脉冲时间等条件作用而得到良好分离的方法。PFGE的分型能力极强,可区分菌株水平的差异,目前被全世界各个国家普遍使用。通过PFGE分型可以对细菌性传染病、食源性致病菌进行监测,同时可以进行分子流行病学的调查,但是操作较为繁琐,需要较高的实验技能方可掌握。  在全基因组测序技术方面,曾静介绍说,该技术可以对菌株进行最为有效的分型,即使是16S差异不大的菌株,也可以通过分布在整个基因组上的单核苷酸多态性位点(SNP)进行区分,是目前分型能力最为强大的技术之一。全基因组测序用于微生物鉴定工作的主要障碍在于使用成本高和专业的数据分析。  最后,曾静提到,对于检验检疫工作来说,需要根据实际情况选择合适的微生物鉴定方法。同时,为了更快速、更准确的确认病原微生物,可能需要几种鉴定方法联合使用,例如可以先利用质谱鉴定速度快的优势迅速判断致病菌,然后再利用分子生物学的手段进行分型和流行病学的调查。编辑:张葳
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制