当前位置: 仪器信息网 > 行业主题 > >

食品中草甘膦草铵磷氨甲基磷酸残留检测

仪器信息网食品中草甘膦草铵磷氨甲基磷酸残留检测专题为您提供2024年最新食品中草甘膦草铵磷氨甲基磷酸残留检测价格报价、厂家品牌的相关信息, 包括食品中草甘膦草铵磷氨甲基磷酸残留检测参数、型号等,不管是国产,还是进口品牌的食品中草甘膦草铵磷氨甲基磷酸残留检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合食品中草甘膦草铵磷氨甲基磷酸残留检测相关的耗材配件、试剂标物,还有食品中草甘膦草铵磷氨甲基磷酸残留检测相关的最新资讯、资料,以及食品中草甘膦草铵磷氨甲基磷酸残留检测相关的解决方案。

食品中草甘膦草铵磷氨甲基磷酸残留检测相关的论坛

  • 【原创大赛】食品中草甘膦、草铵膦、氨甲基膦酸残留量检测方法

    【原创大赛】食品中草甘膦、草铵膦、氨甲基膦酸残留量检测方法

    【生活中的仪器分析】样 品:蔬菜、水果、茶叶、茶粉等食品检测项目:草甘膦、草铵膦、氨甲基膦酸参考标准:SN/T 1923-2007检测仪器:a.WATERS液相色谱串联质谱仪:配有电喷雾(ESI)离子源(可用其他品牌作用等效的高效液相色谱质谱仪替代)b.Biotagevacmaster固相萃取仪c.IPRE Qclean PMG草甘膦专用固相萃取柱d.BiotageTurbovap LV 快速浓缩仪e.IKA MS3 涡旋混匀器g.TOMY-MX307离心机g.昆山超声波清洗器实验过程:1.提取及预处理称取2-5g(精确到0.001g)试样于50 mL聚丙烯离心管中,加入100μL内标液,加入20.0 mL水超声提取30min,于10000 r/min离心5min,取1.0 mL上清液于2mL子弹头离心管中,加入100μL酸度调节剂(注A),涡旋混匀,15000r/min离心5 min,待净化。注A:酸度调节剂配制方法:纯水+色谱纯甲醇+盐酸=160+40+13.4(V/V/V)2.固相萃取净化І将PMG-І柱(蓝柱)用2mL甲醇和2 mL 0.5%甲酸淋洗活化并自然滴干,将加入酸度调节剂处理的提取液(2)转移到小柱上,用5mL刻度试管收集流出液(1-2滴/秒),用1.0mL 0.5%甲酸洗柱并真空抽干,合并流出液,用移液枪吸取50%NaOH调pH7-9(用1-14pH试纸,根据样品不同约20-50μL),加水定容到3 mL刻度,混匀,待衍生。3.衍生步骤准确吸取600 μL净化液(3)于2mL子弹头离心管中,加入200 μL 5%硼砂溶液,边涡旋,边加入200 μL 25g/L FMOC-Cl乙腈溶液(注B),放置10min,加入50 μL甲酸,涡旋混匀,15000 r/min离心5min,吸取上清液准备过PMG-ІІ柱。注B:25 g/L FMOC-Cl乙腈溶液配制方法:称取0.25 gFMOC-Cl,溶解于10 mL色谱纯乙腈中。4.固相萃取净化ІІ 将PMG-ІІ柱(红柱)用2 mL甲醇和2 mL 0.5%甲酸淋洗并自然滴干,将上清液过PMG-ІІ柱,用3 mL水淋洗小柱,真空抽干5-10 min,再加入2 mL正己烷淋洗小柱,滴干后真空抽干5 min,最后用5 mL 5%氨水/甲醇洗脱小柱(1-2 mL/min)并用5 mL刻度试管收集流出液,45℃,氮气吹至近干,用20%乙腈定容1.0 mL,涡旋混匀,过0.2 μm PTFE膜后上机测试。5.测定5.1色谱条件a.色谱柱:Waters BEH-C18,1.7 μm,2.1 mm×100 mm;b.流动相:5mmol/L乙酸铵:乙腈梯度洗脱,梯度表见表1; 表1 流动相及梯度 时间(min)流速(mL/min)5mmol/L乙酸铵(%)乙腈(%)00.3901020.362384.40.362384.50.35956.50.35956.60.390109.00.39010c.检测器:串联四极杆质谱仪;d.柱温:35℃;e.进样量:10 μL。5.2质谱分析条件a)电离源:电喷雾正离子模式;b)毛细管电压:3.50KV;c)源温度:120℃;d)脱溶剂气温度:400℃;e)脱溶剂气流量:700L/h;f)碰撞室压力:2.7í10-3mbar;g)特征离子及参数见表2。 表 2 草甘膦和氨甲基膦酸的主要特征离子 化合物保留时间(min)母离子+(m/z)锥孔电压(V)子离子(m/z)碰撞能量(eV)草甘膦1.32392.215*88.02515214.01

  • 【原创大赛】关于”新版GB 2763 食品安全国家标准 规定茶叶中限量农残草甘膦和草铵膦项目“的检测研究

    【原创大赛】关于”新版GB 2763 食品安全国家标准 规定茶叶中限量农残草甘膦和草铵膦项目“的检测研究

    关于”新版GB 2763 食品安全国家标准 规定茶叶中限量农残草甘膦和草铵膦项目“的检测研究 一、研究意义及现状 随着新版GB 2763 食品安全国家标准的不断更新及发布实施,草甘膦和草铵膦已被明确列为茶叶中农药残留强检(必检)项目,草甘膦在茶叶中的限量为1mg/kg,草铵膦在茶叶中的限量为0.5mg/kg。同时,草甘膦和草铵膦也成为中国茶叶出口国外的检测项目(来源于中华人民共和国商务部),且已成为越来越严的限量指标。 文献(2013年农药行业预测和草甘膦市场机遇分析,杨益军,农药市场信息,2013.03)报道,除草剂草甘膦因其高效、广谱、低毒等特性使其被广泛应用,未来需求量也将大幅增加。但草甘膦的使用容易使植物产生抗性(IARC国际研究机构发布报告称草甘膦很可能对人类致癌),而草铵膦可克服该缺陷,现已有学者(草铵膦、百草枯、草甘膦对非耕地杂草的防效比较,凌进,农药,2014年第53卷第8期,613-615)对草铵膦和草甘膦的除草性能进行了研究,确证了草铵膦代替草甘膦的可行性。 因草甘膦和草铵膦为广谱除草剂,被广泛应用于农业、林业及园艺的栽培。我国作为农业大国,其茶叶产量世界第一、出口量世界第二,草甘膦和草铵膦的生产和使用量都位居世界前列(草甘膦 草铵膦及其代谢产物的检测方法,李小娟、周信康、孟品佳,公共安全中的化学问题研究进展)。同时,我单位对西南茶叶原料主产区进行了初步调研,进一步确认茶农使用草甘膦和草铵膦农药的现状。 随着草甘膦和草铵膦除草剂使用量的日益增大,使其常被发现存在于环境水样、土壤及植物中,这样长期积累会引起环境污染,从而对人类健康造成严重威胁。草甘膦和草铵膦结构类似,且均含有膦酸基、羟基、氨基,是极强的两性化合物,易溶于水,难挥发。鉴于草甘膦和草铵膦特殊的物化性质和茶叶基质自身的复杂性,无论国内外,茶叶中草甘膦和草铵膦同时检测的标准还未见发布。 目前,可用于检测草甘膦和草铵膦农药残留量的主要方法有液相色谱法,柱前衍生后气相色谱法、气相色谱-质谱法及液相色谱-质谱/质谱法。 快速发展起来的超高效液相色谱-质谱联用技术,具有检测灵敏度高、适用范围广、分析速度快和能有效排除复杂基质产生的干扰等优点,当今已成为检测型实验室检测农残的首选。然而,若采用液质质直接测定草甘膦和草铵膦,则仪器响应较低,无法满足茶叶中草甘膦和草铵膦农药残留量检测的要求。 近两年来,已有研究文献陆续发表,用柱前衍生-液相色谱串联质谱法检测。笔者结合其文献研究结果,对茶叶中草甘膦和草铵膦农药残留量的检测方法系统地进行研究,采用9-芴甲氧羰酰氯(FMOC-Cl)作为常用衍生剂,在硼酸盐缓冲盐溶液的条件下,能与草甘膦和草铵膦的提取液发生衍生反应,形成衍生产物,衍生产物注入UPLC进行色谱洗脱分离,采用串联质谱探测响应信号,外标法直接快速定量茶叶中的草甘膦和草铵膦的含量。二、液质质检测分析原理 质谱原理是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。液质联用是将色谱的分离能力与质谱强大的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析,简化样品的前处理流程,使样品分析更简便。主要针对不挥发性、极性、热不稳定、大分子量等化合物的分析测定。液质联用检测技术灵敏度高,且串联质谱(三重四级杆)定性准确,可有效杜绝微量甚至痕量物质分析时的假阳性现象,常用于目标物质的痕量分析。 采用柱前衍生-液相色谱串联质谱法检测茶叶中的草甘膦和草铵膦有以下优势: 1)、灵敏度高、线性好、检出限低(可达ng/mL级及其以下); 2)、定量结果准确、稳定、重复性好; 3)、实验操作简单、步骤少、耗时短、分析速度快、检测效率高; 4)、实验试剂无污染、无毒、安全; 5)、有效减弱基质对目标物检测的影响。三、茶叶中草甘膦和草铵膦农药残留量检测的前处理试验 茶叶经GB/T8303磨碎、过筛制得待测茶样(发酵茶应先低温去除水分,使样品易于磨碎); 准确称取已磨碎处理过的茶样1g(精确至0.001g)置于80mL具盖离心管中,加入10mL水,涡旋混匀静置,加入2mL二氯甲烷,混匀,超声提取或回旋振荡10min,低速离心机4500r/min离心5min,取上清液,制得提取上清液; 注意:若茶样为新采摘的鲜叶,则称取约5g鲜叶于研钵中,加入30mL水,研磨约10min,将其转入离心管中,用10mL水洗涤研钵后转移至离心管,重复洗涤一次,再次加入10mL二氯甲烷于离心管,均质至混匀,4500r/min离心10min,取上清液,制得提取上清液; 将提取上清液用净化柱CAX、C18,以及活性炭小柱等进行比对试验,确定以C18小柱净化提取液,制得提取净化液; 通过缓冲液浓度、衍生液浓度、衍生液用量、缓冲液用量、净化液用量,衍生时间等条件试验,得出最优衍生试验参数为缓冲液浓度为50g/L,衍生液浓度20g/L,衍生液用量:缓冲液用量:净化液用量的体积比为1:1:1,衍生时间为约3h,衍生液过0.22μm的有机滤膜后进样。四、茶叶中草甘膦和草铵膦农药残留量检测的衍生机理 茶叶中草甘膦和草铵膦农药残留量的衍生机理为:在硼酸钠缓冲盐溶液条件下,草甘膦(分子结构如图1所示)和草铵膦(分子结构如图2所示)中R-NH-R’的-H被FMOC-Cl(分子结构如图3所示)中的FMOC-取代,生成 http://ng1.17img.cn/bbsfiles/images/2017/10/2015070414494663_01_0_3.png,得到衍生目标产物草甘膦衍生物和草铵膦衍生物。 其中,草甘膦分子结构图,见图1;草铵膦分子结构图,见图2;9-芴甲氧羰酰氯(FMOC-Cl)分子结构图,见图3;草甘膦和草铵膦与9-芴甲氧羰酰氯(FMOC-Cl)的衍生机理图,见图4。http://ng1.17img.cn/bbsfiles/images/2017/10/2015070414424276_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015070414430242_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015070414432007_01_2275853_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507061123_553629_2275853_3.png五、茶叶中草甘膦、草铵膦农残衍生物在质谱中的裂解机理1、茶叶中草甘膦农残衍生物在质谱中的裂解机理 通过对草甘膦衍生物在串联质谱中的裂解机理进行系统的分析研究,可探索出草甘膦衍生物的裂解机理为:首先草甘膦衍生物裂解为离

  • 茶叶中草甘膦和草铵膦的残留量检测

    分享资料《柱前衍生-超高液相色谱-串联质谱法同时检测茶叶中草甘膦和草铵膦的残留量》http://wenku.baidu.com/link?url=meaZziIax7otjPVs1FrYqEHoNBY-97XuQ_wZBaHHvfC7ZpBS0qhoL2Oqu-x9ExmGEBRNVW6stKsrlDk7gULF6T_eXev3FAk3Uwgt6BdAVT7

  • 【专题讨论】检测草甘膦及《日本厚生省食品中残留农药兽药饲料添加剂检测方法》讨论

    最近收到Linasyau来信(检测草甘膦):“我依据《日本厚生省食品中残留农药兽药饲料添加剂检测方法》上面的方法去做,没有做出来,请问有什么需要注意的地方吗?标样衍生和流动相的ph值有什么需要注意的地方呢?”关于检测草甘膦,我没有什么经验。因此在这里设立一个专题讨论,希望有经验的朋友来帮帮忙。另外,有些朋友也反映:依据《日本厚生省食品中残留农药兽药饲料添加剂检测方法》上面的方法去做,有些项目检不出来。大家有碰到类似问题的,也欢迎来讨论。也许《日本厚生省食品中残留农药兽药饲料添加剂检测方法》中有些细节没透露或者具体的实验条件不尽相同,造成实验的失败。希望有经验的朋友来这里传授传授心得体会。

  • 【原创大赛】农药残留草甘膦的检测

    【原创大赛】农药残留草甘膦的检测

    农药残留草甘膦的检测前言 草甘膦又叫镇草宁,是广谱除草剂,对哺乳动物有低毒性。除草剂的广泛使用使得草甘膦成为地下水甚至饮用水的重要污染物。简介 分析草甘膦的方法现在主要有气相色谱法或液相色谱法,通常都要衍生化处理,其中采用液相色谱法更多些。现主要介绍比较复杂的阳离子交换柱后衍生荧光检测器测定草甘膦的方法。本方法着重描述了分析草甘膦及其主要代谢物氨甲基磷酸(AMPA)的便利方法。 本方法参考了美国EPA方法、GBT 5750.9-2006方法、岛津、美瑞泰克、博纳艾杰尔等公司提供的参考方法及本实验室全体工作人员的集体智慧编制而成。阳离子交换柱后衍生荧光检测器法测定草甘膦色谱原理 柱后衍生与荧光检测器结合使得本方法具有很高的灵敏度和选择性。样品进样后,草甘膦和AMPA经流动相磷酸二氢钾缓冲液洗脱,在色谱柱中分离。分离后,分析物通过柱后衍生反应系统,生成的反应产物用荧光检测。由于每个厂家的仪器的灵敏度各不相同,所以每种方法的进样量也不相同,一般为10-200ul.此方法建议定量进样50uL,如图1所示,效果很好。http://ng1.17img.cn/bbsfiles/images/2013/09/201309200103_465474_2369266_3.png图11.草甘膦 1.0mg/L 2.AMPA 1.0mg/L设备 L600高效液相色谱仪,包括:梯度泵1套,柱后衍生仪1台,衍生注射泵2台,荧光检测器1台,数据采集控制器1台,自动进样器1台,柱温箱1台,阳离子色谱柱及保护柱各1根,色谱工作站1套,超声波振动仪,溶剂过滤器,固相萃取装置,离心机。试剂 5 mM 磷酸二氢钾,磷酸调pH 2.0 ;5 mM 氢氧化钾 ;5%次氯酸钠溶液;硼酸钠缓冲稀释剂;OPA(二巯基乙醇),色谱级;甲醇,色谱级;硫醇试剂。试剂和标准品的准备氧化试剂(试剂1): 将一瓶次氯酸盐稀释剂倒入预先用甲醇清洗过的干净试剂瓶中。加入100uL5% 次氯酸盐溶液(家用漂白剂),旋转,混匀,0.45um水系滤膜过滤,超声脱气。加入的剂量可能需要根据检测器的响应进行调整:色谱系统平衡后,草甘膦混合测试溶液进样10uL,如图2所示。如果AMPA和草甘膦的面积比例差别很大,则在氧化剂里面再加入5%次氯酸盐溶液,每次加入20uL,直至二者所占面积比例相当。 OPA试剂(试剂2): 将OPA稀释剂倒入预先用甲醇清洗过的干净试剂瓶中。鼓泡10min以除去其中的氧气。余下的步骤应在尽可能短的时间内完成,因为此试剂对氧气和光敏感:称取大约100 mg OPA于一小烧杯中,加入10 mL甲醇溶解,而后加入OPA稀释剂。用1~2 mL甲醇清洗烧杯,把清洗液倒入稀释剂中。加入2 g硫醇试剂于试剂瓶中。0.45um有机系滤膜过滤,超声脱气,备用。色谱条件分析柱:草甘膦分析柱,阳离子交换柱,4 mm x 150 mm x 8um保护柱:草甘膦保护柱,阳离子交换柱,3 mm x 20 mm x 8um柱温:55 °C 淋洗液:(A)磷酸二氢钾(5 mM,磷酸调pH 2.0);(B)氢氧化钾(5 mM)流速:0.4 mL/min 柱后试剂1:氧化试剂,36 °C,流速为0.4 mL/min 柱后试剂2:OPA,室温,流速为0.4mL/min 荧光激发波长为330 nm,发射波长为460 nm 进样量:50ul剃度表:[fo

  • 【求助】食品中草甘膦的检测方法

    求助,食品中草甘膦的检测方法,我们参照SN-T 1923-2007 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法,做出的回收率很低,请问大家都是用什么方法来检测的?有没有用气相来做的?查到了2个气相的标准。请大家给点帮助,谢谢!http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 各位做食品中草甘膦和草铵膦用的是什么方法?

    各位朋友: 你们做食品中的草铵膦和草甘膦农残用的是什么方法? 什么仪器?感觉这两农残项检测挺难得,听说茶叶中的这两项现今能检测的没有几家?不知各位做的怎么样?希望大家仪器讨论,分享一下?

  • 食品中草甘膦残留量检测方法——固相萃取部分

    食品中草甘膦残留量检测方法——固相萃取部分

    草甘膦作为茶叶25项农残必检项目,其检测是至关重要的,但是现有国标SN/T 1923-2007《进出口食品中草甘膦残留量检测方法-液相色谱串联质谱法》经长期实验发现存在以下问题:1. 标准SN/T 1923-2007采用CAX阳离子交换树脂小柱,该柱体积大、吸附容量小,洗脱液体积大且水占比例大,在浓缩时不易蒸干,且需要用到的前处理仪器多,在实际工作中需要耗费大量的时间和精力。2. 标准SN/T 1923-2007样品溶液经过净化后仍然存在大量杂质,衍生效果很差。3. CAX阳离子交换树脂小柱价格昂贵。现在我们单位用的是某公司的草甘膦的专用固相萃取柱,还有提供方法哦,价格实惠,效果还不错,有下图为证,下图是茶叶加标样品谱图,供大家参考哦!!!file:///C:\Users\Administrator\Documents\Tencent Files\1066244377\Image\FZYZ2S8I(932%X9JQON6O3P.jpgfile:///C:\Users\Administrator\Documents\Tencent Files\1066244377\Image\FZYZ2S8I(932%X9JQON6O3P.jpgfile:///C:\Users\Administrator\Documents\Tencent Files\1066244377\Image\FZYZ2S8I(932%X9JQON6O3P.jpgfile:///C:\Users\Administrator\Documents\Tencent Files\1066244377\Image\FZYZ2S8I(932%X9JQON6O3P.jpghttp://ng1.17img.cn/bbsfiles/images/2013/10/201310180920_471661_2771075_3.jpg

  • 【原创大赛】超高效液相色谱-串联质谱法测定大豆中草甘膦及其代谢物氨甲基膦酸的残留

    【原创大赛】超高效液相色谱-串联质谱法测定大豆中草甘膦及其代谢物氨甲基膦酸的残留

    “超高效液相色谱-串联质谱法测定大豆中草甘膦及其代谢物氨甲基膦酸的残留”是本人去年开展大豆中草甘膦检测项目整个试验过程的总结,欢迎各位老师和同行批评指正,该文章还未在任何刊物上发表。[align=center][b]超高效液相色谱-串联质谱法测定大豆中草甘膦及其代谢物氨甲基膦酸的残留[/b][/align][align=center][/align][align=center]户江涛[/align][align=center](黑龙江省农垦科学院测试化验中心,黑龙江 佳木斯 154007 )[/align]摘要:采用超高效液相色谱-串联质谱法建立了快速检测大豆中草甘膦和氨甲基膦酸残留量的分析方法。试样经水超声提取,二氯甲烷去除脂肪,C[sub]18[/sub]固相萃取柱净化后,在硼酸钠缓冲溶液中与9-芴甲氧羰酰氯(FMOC-Cl)进行衍生反应,其衍生产物在C[sub]18[/sub]色谱柱上以 2 mmol/L 乙酸铵溶液和乙腈为流动相,进行液相色谱分离:质谱检测采用电喷雾正离子化模式和多反应监测模式(MRM)。结果表明,草甘膦和氨甲基膦酸在0.001~0.5 mg/L范围内线性关系良好,相关系数(R)分别为0.9996和0.9993,定量限(LOQ)均为0.01mg/kg。在空白大豆样品添加浓度为0.02、0.2、2 mg/kg 时,草甘膦和氨甲基膦酸的平均回收率分别为80.2%~91.5%和77.7%~89.3%,相对标准偏差(RSD)分别为3.37%~6.96%和4.11%~8.27%(n=6)。本方法快速、简便、灵敏,适用于大豆中草甘膦和氨甲基膦酸残留的同时检测。关键词:超高效液相色谱-串联质谱;大豆;草甘膦;氨甲基膦酸;衍生反应[align=center]Determination of glyphosate and its metabolite aminomethyl-phosphonic acid residues in soybean by ultra performance liquid chromatography-tandem mass spectrometry[/align][align=center]HU Jiangtao[/align][align=center]([i]Testing and Analysis Center of Heilongjiang Academy of Land Reclamation Sciences, Jiamusi 154007,China[/i])[/align][b]Abstract:[/b]A method[b] [/b]was developed for the determination of glyphosate(PMG) and aminomethyl-phosphonic acid(APMA) residues in soybean by ultra performance liquid chromatography-tandem mass spectrometry(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS). After extracted with water under ultrasonication, the sample was defatted with dichloromethane and purified by C[sub]18 [/sub]solid phase extraction cartridge, and then PMG and APMA were derivatized using 9-fluorenylmethoxycarbonyl(FMOC-Cl) in borate buffer for 2 h.The derivatives of PMG and APMA were separated on a Waters BEH C[sub]18[/sub] column with gradient elution with the mobile phase of 2 mmol/L ammonium acetate and acetonitrile, and finally detected by positive eletrospray ionization-mass spectrometry(ESI[sup]+[/sup]-MS/MS) in multiple reaction monitoring(MRM) mode.The results showed the linearities of PMG and APMA were good in the concentration range of 0.001~0.5 mg/L ,and the correlation coefficients were 0.9996 and 0.9993 respectively. The limit of quantification(LOQ) of PMG and APMA was both 0.01mg/kg. At the spiked levels of 0.02、0.2、2 mg/kg in the blank soybean samples, the mean recoveries of PMG and APMA were 80.2%~91.5% and 77.7%~89.3% respectively, and the relative standard deviation(RSD) of PMG and APMA were 3.37%~6.96% and 4.11%~8.27% res-pectively(n=6).This method is fast,simple,sensitive, and suitable for simultaneous determination of PMG and APMA in soybean.[b]Key words: [/b]ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) soybean glyphosate(PMG) aminomethyl-phosphonic acid(APMA) derivatization草甘膦(Glyphosate,PMG)又名镇草宁、农达,分子式为C[sub]3[/sub]H[sub]8[/sub]NO[sub]5[/sub]P,是1971年美国孟山都公司研发的一种有机磷除草剂,因其兼具内吸、传导性、灭生性及非选择性,同时不易在生物体内累积,故广泛应用于农业生产中一年生和多年生杂草防除,是目前世界上应用最广、生产量最大的除草剂[sup][/sup]。草甘膦及其在植物中的主要代谢物氨甲基膦酸(Aminomethyl-phosphonic acid,APMA,分子式为CH[sub]6[/sub]NO[sub]3[/sub]P)均属于强极性、易溶于水的高沸点化合物,具有不易挥发、无紫外吸收等特性,因此用常规方法分析检测十分困难[sup][/sup]。 目前, PMG和APMA残留检测的方法主要有色谱法(GC[sup][/sup]、LC[sup][/sup]、IC[sup][/sup])、质谱法(GC/MS[sup][/sup]、ICP/MS[sup][/sup]、LC/MS/MS[sup][/sup])、光谱法[sup] [/sup]等。光谱法虽然操作简便,但其灵敏度不高,而[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法[sup][/sup]只能适用于水样等简单基质,用于植物源样品检测时干扰太大;用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术检测时,需要将PMG和APMA衍生转化为可气化物质,其引入试剂多、过程相对繁琐,效率较低[sup][/sup];用LC/MS/MS法直接检测时[sup][/sup],由于PMG和APMA分子量(分别为169、111)均较小,其主要碎片离子的质荷比多在100以下,检测实际样品时受基质干扰严重,灵敏度较低,因此柱前衍生——[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]法成为近年来国内外检测PMG和APMA残留的主流方法[sup][/sup]。以9-芴甲氧羰酰氯(FMOC-Cl)做为衍生试剂,在硼酸盐缓冲溶液中与PMG和APMA水提取液相容性好,过程简单,其衍生产物在LC/MS/MS中响应信号高,碎片离子干扰小,适合定性定量分析。 目前,采用柱前衍生——LC/MS/MS法检测茶叶、稻米等基质中PMG和APMA残留的报道很多[sup][/sup],专门针对大豆基质的报道很少。行业标准[sup][/sup]的适用范围虽然包括了大豆基质,但该方法在实验过程中试剂用量大、操作繁琐(反复调pH值)、衍生时间长(需过夜),尤其是使用阳离子交换柱(CAX)洗脱时需要加入11 mL 1%的盐酸甲醇水(20/80,v/v),水分含量过高导致旋转蒸发时很难蒸干,容易造成PMG和APMA回收率不稳定。本文专门针对大豆这类高蛋白、高脂肪含量的特殊基质,采用纯水作为提取试剂,二氯甲烷去除脂溶性杂质,C[sub]18[/sub]固相萃取小柱净化后采用FMOC-Cl衍生,最后用UPLC/MS/MS测定。该方法前处理过程简便、快速、灵敏度高,适用于大豆中PMG和APMA的残留检测。[b]1 实验部分[/b]1.1 材料与试剂 草甘膦、氨甲基膦酸(纯度≥99%,德国Dr.Ehrensorfer公司);FMOC-Cl(纯度99%,Sigma公司),使用时配置成10g/L的丙酮溶液;乙腈、二氯甲烷、甲酸、乙酸铵(色谱纯,美国Fisher公司);十水四硼酸钠(优级纯,天津市科密欧化学试剂有限公司),使用时配置成50g/L的水溶液;实验用水为Millipore纯水仪制备;C[sub]18[/sub]固相萃取小柱(200mg/3ml,美国Agilent公司)。1.2 仪器与设备 Acquity UPLC型超高效液相色谱仪(Waters公司);XEVO TQ-S三重四级杆质谱仪(Waters公司);CR21GⅢ型高速离心机(HITACHI公司);KQ5200DB型台式超声波仪(昆山市超声仪器有限公司);涡旋混合器(IKA公司)。1.3 标准溶液的配置 分别称取草甘膦和氨甲基膦酸标准品10mg(精确到0.1mg),用水溶解并定容至10mL,配置成质量浓度为1.0 mg/mL标准储备液,于4℃冰箱保存待用;使用时用水逐级稀释成所需浓度的混合标准工作液。1.4 样品前处理 提取:称取粉碎均匀后的试样1.0g(精确到0.01g)于50mL聚乙烯离心管中,加入10.0mL超纯水,涡旋混合30 s并超声提取20 min后,以10000 r/min离心3 min,将上清液转移至另一离心管中,加入5 mL二氯甲烷涡旋混合30 s,以10000 r/min离心3 min,上清液待净化。 净化:取2.5 mL上清液加入到C[sub]18[/sub]固相萃取柱(使用前依次用3mL甲醇和3mL超纯水活化)中,弃去最初的几滴流出液(约0.5 mL),将剩余部分用5 mL玻璃管收集,待衍生。 衍生:取1.0 mL净化液于5 mL离心管中,依次加入1.0 mL 50g/L的硼酸钠溶液和 1.0 mL 10g/L的FMOC-Cl衍生液,混匀后室温下衍生2 h,以10000 r/min离心3 min,取上清液过0.22 mm有机系微孔滤膜后,供UPLC/MS/MS分析测定。1.5 液相色谱及质谱条件 液相色谱:色谱柱:Waters BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm);柱温:30℃;流速:0.5 mL/min;进样量:2 μL;流动相A:乙腈;流动相B: 2 mmol /L 的乙酸铵水溶液。梯度洗脱程序:0~0.5min,10% A;0.5~3. 0 min,10%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1min,100% A~10% A,4.1 ~5.0min 10% A。 质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.2 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[align=center]表1 PMG-FMOC和 AMPA-FMOC的MRM质谱参数[/align][align=center]Table 1 MRM parameters of PMG-FMOC and AMPA-FMOC[/align][table][tr][td][align=center]Analyte[/align][/td][td][align=center]Cone/V[/align][/td][td][align=center]Parent ion/(m/z)[/align][/td][td][align=center]Daughter ion/(m/z) [/align][/td][td][align=center]Collision energy/V[/align][/td][/tr][tr][td][align=center]PMG-FMOC[/align][align=center] [/align][align=center]AMPA-FMOC[/align][/td][td][align=center]30[/align][align=center] [/align][align=center]30[/align][/td][td][align=center]392[/align][align=center][sup] [/sup][/align][align=center]334[/align][align=center][sup] [/sup][/align][/td][td][align=center]88[/align][align=center]214﹡[/align][align=center]112﹡[/align][align=center]179[/align][/td][td][align=center]14[/align][align=center]8[/align][align=center]11[/align][align=center]20[/align][/td][/tr][/table]﹡quantitative ion[b]2 结果与讨论[/b]2.1 色谱及质谱条件的优化 流动相的选择:对比了酸性体系(0.1%甲酸水溶液)与非酸性体系(乙酸铵水溶液)分别于甲醇、乙腈的流动相体系组合,结果发现两种分析物在酸性体系中分离效果欠佳,峰形拖尾严重,而在非酸性体系中其色谱分离效果得到明显改善,峰形对称;乙腈比甲醇体系洗脱能力更强,可以有效缩短分析时间。故本研究采用乙酸铵水溶液+乙腈流动相体系,并比较了1、2、5 mmol/L三种乙酸铵浓度与乙腈的组合,结果发现随着乙酸铵浓度的增加,目标物响应值虽略有提高但相差不大,而同时仪器背景值却显著升高,综合考虑目标物信号强度、信噪比、色谱分离效果以及分析时间等因素,本实验最终选择了2 mmol /L 乙酸铵水溶液+乙腈分析体系。质谱的选择:PMG、 AMPA对应的衍生物PMG-FMOC、AMPA-FMOC分子量分别为391、333。用超纯水配置10 mg/L 混合标准溶液直接注射到质谱中,在正负离子模式下分别进行母离子全扫描,发现正离子模式下392、334具有很好的响应,然后分别以392、334为母离子进行子离子全扫描,各得到两组丰度高、干扰小的子离子对进行MRM监测,最终确定的质谱条件见表1。2.2 前处理条件的优化 提取溶液的选择:PMG和APMA属于强极性物质,易溶于水,难溶于有机溶剂,故一般采用极性溶剂提取,如纯水及KOH、NaHCO[sub]3[/sub]溶液等[sup][/sup]。实验发现,用碱性溶液提取后,大豆中脂肪、蛋白等物质会与碱性物质发生反应,导致离心后的提取液异常浑浊,不利于后期净化和衍生,因此本实验采用纯水作为提取试剂,再经二氯甲烷液液萃取去除脂溶性杂质。 净化柱的选择:研究发现,对提取后的溶液不经SPE净化直接进行衍生, PMG和APMA的回收率均不足30%,且精密度很差,这可能是由于大豆中富含脂肪、蛋白质等物质干扰衍生过程,故本实验比较了对脂肪、蛋白质有很好去除效果的C[sub]18[/sub]、中性Al[sub]2[/sub]O[sub]3[/sub]、HLB固相萃取SPE柱的净化效果,结果发现提取液经中性Al[sub]2[/sub]O[sub]3[/sub]净化后,PMG和APMA几乎检测不到;而C[sub]18[/sub]净化后目标物回收率为92.7%、90.8%,HLB为83.6%、80.5%。故本实验选取了净化效果更好,成本相对低廉的C[sub]18[/sub]固相萃取小柱。 衍生条件的优化:FMOC-Cl的衍生机制是在碱性环境下(pH=9.0)通过FMOC-Cl基团取代目标化合物氮原子上的氢,从而生成较稳定的化合物FMOC-Cl。参照行业标准[sup][/sup]及文献报道[sup][/sup]所选用的缓冲液浓度,本实验采用50g/L的硼酸钠水溶液缓冲液体系,设置的衍生试剂质量浓度为1、2、5、10、20 g/L FMOC-Cl丙酮溶液,按照本文1.4步骤对PMG和APMA质量浓度为0.5 mg/L的纯水溶液和大豆空白基质溶液分别进行衍生,结果见图1。结果表明,在纯水溶液中,FMOC-Cl浓度为2 g/L时,PMG和APMA的峰面积已达到最大,随着衍生化试剂浓度的升高,其峰面积无明显变化;而在大豆空白基质溶液中,FMOC-Cl低浓度(1、2g/L)时,PMG和APMA几乎检测不到,其峰面积随衍生化试剂浓度增加而加大,浓度到达一定程度(10 g/L)时,峰面积不再变化。产生这种现象的原因,可能是由于尽管大豆提取液经过了二氯甲烷和C[sub]18[/sub]小柱的净化,但还是会有少量水溶性蛋白、脂肪等杂质残留在净化液中,这些杂质可能会与衍生试剂反应,影响目标物的衍生效果。研究还发现,当FMOC-Cl浓度为20 g/L时,得到的PMG和APMA色谱峰产生拖尾现象,可能是由于衍生试剂化学性质较活泼,其用量大时,过量的FMOC-Cl会迅速转化成FMOC-OH,干扰目标物峰形。在50g/L硼酸钠水溶液、10 g/L FMOC-Cl丙酮溶液条件下,考察不同时间(0.5h、1h、2h、4h、8h和16h)对衍生效果的影响,结果发现,2 h后PMG和APMA的测定值无明显增加。因此,本实验最终选定的衍生条件为50g/L硼酸钠水溶液、10 g/L FMOC-Cl丙酮溶液,室温下衍生2 h。[img=,596,378]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020904_01_2984502_3.png[/img][img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020904_02_2984502_3.png[/img]2.3 基质效应的考察 基质效应(主要是抑制)是LC/MS/MS仪器检测时经常遇到的现象。由于本实验采用极性很强的水作为提取剂,大豆中的色素、脂肪酸等极性较强的物质也有少部分进入到最后的上机液中,在离子化带电过程中会与目标物产生竞争,抑制目标物的离子化效率。实验考察了用PMG和APMA的纯水标样去标定经过本文1.4步骤处理后的大豆空白基质溶液配置的同浓度标样,其色谱图见图2。结果发现,PMG在纯水和大豆空白基质中峰面积基本一致,而APMA在大豆空白基质中的峰面积仅为纯水中的55.7%,产生了明显的基质抑制效应。为了消除基质干扰,本实验选用大豆样品空白基质配置不同浓度的标准溶液来绘制标准曲线进行校准。2.4 线性范围和定量限 用大豆空白基质溶液分别配置0.001、0.005、0.01、0.05、0.1、0.2、0.5 mg/L的PMG和APMA混合标准溶液,按本文1.4步骤衍生后测定,以各自定量离子的峰面积为Y对应质量浓度X(mg/L)做标准曲线,得到的线性方程和相关系数见表2。结果表明,这两种物质在0.001~0.5 mg/L浓度范围内线性良好,相关系数R分别为0.9996和0.9993。以10倍信噪比(S/N)计算,该方法PMG和APMA的定量限(LOQ)均为0.01 mg/kg。[align=center]表2 PMG和APMA大豆基质标准溶液的线性方程、相关系数和定量限(LOQ)[/align][align=center]Table 2 Linear equations,correlation and LOQ of PMG and APMA in the soybean matrix standard solutions[/align][table][tr][td][align=center]Analyte[/align][/td][td][align=center]Linear range/(mg/L)[/align][/td][td][align=center]Linear equation[/align][/td][td][align=center]R[/align][/td][td][align=center]LOQ/(mg/ kg )[/align][/td][/tr][tr][td][align=center]PMG[/align][align=center]AMPA[/align][/td][td][align=center][sup]0.001~0.5[/sup][/align][align=center][sup]0.001~0.5[/sup][/align][/td][td][align=center]Y=889809x+1671.3[/align][align=center]Y=476982x+1161.9[/align][/td][td][align=center]0.9996[/align][align=center]0.9993[/align][/td][td][align=center]0.01[/align][align=center]0.01[/align][/td][/tr][/table]2.5 回收率和精密度 称取大豆空白试样1.0 g,分别添加0.02、0.2、2 mg/kg水平的PMG和APMA混合标样,每个水平重复6次,按照本文1.4步骤前处理方法处理后上机检测,实验结果见表3。从表3可以看出,PMG的平均回收率为80.2%~91.5%,相对标准偏差(RSD,n=6)为3.37%~6.96%;APMA的平均回收率和RSD分别为77.7%~89.3%和4.11%~8.27%。[align=center]表3 大豆中PMG和APMA的加标回收率和相对标准偏差(n=6)[/align][align=center]Table 3 Recoveries and relative standard deviations(RSD)of PMG and APMA spiked in the soybean(n=6) [/align][table][tr][td][align=center]Analyte[/align][/td][td][align=center]Spiked level(mg/kg)[/align][/td][td][align=center]Recovery/%[/align][/td][td][align=center]RSD/%[/align][/td][/tr][tr][td]PMGAMPA[/td][td][align=center]0.02[/align][align=center]0.2[/align][align=center]2[/align][align=center]0.02[/align][align=center]0.2[/align][align=center]2[/align][/td][td][align=center]80.2[/align][align=center]91.5[/align][align=center]86.8[/align][align=center]77.7[/align][align=center]89.3[/align][align=center]85.9[/align][/td][td][align=center]6.96[/align][align=center]3.37[/align][align=center]3.95[/align][align=center]8.27[/align][align=center]4.25[/align][align=center]4.11[/align][/td][/tr][/table][b]3 结语[/b] 本文建立了超高效液相色谱-串联质谱法(UPLC/MS/MS)测定大豆中草甘膦及其代谢物氨甲基膦酸残留的分析方法。该方法灵敏度高,PMG和APMA定量限(LOQ)达到0.01 mg/kg,能满足大豆产品相关限量标准要求。同时该方法具有较高的准确度和精密度,前处理步骤简单快速,特别适合大批量大豆样品的检测。

  • 液相色谱检测土壤中残留的草甘膦

    液相色谱检测土壤中残留的草甘膦,我使用的紫外检测器和强离子交换色谱柱,一种是柱前衍生后检测使用C18色谱柱,一种是直接用强离子交换色谱柱做,但是都不行检测的效果不好,直接用强离子交换色谱柱做效果要好一些但是检测的极限不够,如果哪位同行做个这个指点指点啊!

  • 【转帖】美国拟制订草甘膦最大残留限量

    [size=2][font=宋体]获悉,近来美国拟制订草甘膦在某些食品中的最大残留限量,生效日期尚未确定。此次拟制定的草甘膦在某些食品中的最大限量为[/font]([font=宋体]以[/font]mg/kg[font=宋体]计[/font])[font=宋体]:紫花苜蓿籽[/font]0.5[font=宋体]、紫花苜蓿草料[/font] 175[font=宋体]、紫花苜蓿秆[/font]400[font=宋体]、稻米[/font] 15.0[font=宋体]、米麸[/font]30.0[font=宋体]、米壳及类似产品[/font]25.0[font=宋体]、粮谷类[/font]15[font=宋体]组[/font]([font=宋体]不包括大麦、大田玉米、高粱谷、燕麦、稻谷及小麦[/font]) 0.l[font=宋体]、轧棉副产品[/font] 150[font=宋体]、小麦草料[/font]10.0[font=宋体]。[/font][/size][size=2] [font=宋体]草甘膦目前在我国广泛生产和使用[/font][font=宋体],[/font][font=宋体]企业应注意最终出台的残留限量标准,及时调整农药用量,加强质量控制和农残检测,确保农产品出口顺利。[/font][font=宋体](中国农药信息网)[/font][/size]

  • 【分享】进出口食品中炔草酯残留量的检测方法(中英文版)

    SN/T 2433-2010 进出口食品中炔草酯残留量的检测方法(中英文版)本标准规定了进出口食品中炔草酯残留量检测的气相色谱测定和气相色谱质谱确证的方法。本标准适用于芦笋、土豆、葱、梨、桃、玉米、荞麦、茶叶、食醋、蜂蜜、核桃仁、兔肉、鸡肝、虾仁、鸡肉中炔草酯残留量的检测。注:全文见资料中心。

  • 【求助】-草甘膦和百草枯残留分析方法

    实验中需要测定河流底泥及河水中草甘膦和百草枯的残留量分析,以前没有这方面的知识,看了好多资料也不知道究竟怎么测定。请教高手:1.采样注意事项2.详细的残留量分析方法(包括样品预处理)。3.如果方便,您也可以推荐检测单位,最好能有详细的联系方式,我把样品送出去做。因为在这里找不到可以测定两种除草剂残留的单位。或者您有测定其他样品中草甘膦和百草枯的残留量分析的方法也可以提供给我,联系方式:ening451@163.com先谢过您的关注和帮助!

  • 茶叶中草甘膦残留量的检测 《SN/T 1923-2007》

    茶叶中草甘膦残留量的检测 《SN/T 1923-2007》

    [align=center][img=,500,331]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352032638_8841_932_3.jpg!w640x424.jpg[/img][/align][b]参考标准[/b]《SN/T 1923-2007 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法》[b]主要试剂与材料[/b][align=center][b][img=,500,469]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352130998_1066_932_3.jpg!w248x233.jpg[/img][/b][/align][b]标准品:草甘膦(Glyphosate,CAS:1071-83-6,分子式:C3H8NO5P)及其同位素内标(1,2C13N15 草甘膦)固相萃取柱:Welchrom CRP (500mg/6mL)[b]净化[/b]活化:Welchrom CRP (500mg/6mL) 小柱,用 6mL 乙腈,6mL 水,1mL 待测液进行活化。上样:1.5mL 待分析液。接收:1.5mL 待分析液经过 CRP 柱后全部收集,待衍生。[b]样品和标准工作液衍生[/b]取混合标准工作溶液和待衍生液各 1.0mL 加入 200μL 5% 硼酸盐缓冲液,混匀后再分别加入 200μL 1.0g/L FMOC-Cl丙酮溶液,混匀,室温下进行衍生化反应,放置过夜,5000r/min 离心 10min,过 0.22μm 滤膜,HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS 分析。[b]仪器条件1. UPLC条件[/b][/b][align=center][b][img=,600,142]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352183698_6549_932_3.png!w611x145.jpg[/img][/b][/align][align=center][b][b]表1 梯度洗脱程序[/b][/b][/align][align=center][b][b][/b][/b][/align][align=center][b][img=,600,208]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352243279_7587_932_3.png!w625x217.jpg[/img][/b][/align][b]2. 质谱条件[/b]离子源:ESI+雾化器温度:350℃雾化器流速:10L/min鞘气温度:350℃鞘气流速:12L/min采集方式:多反应监测(MRM)Q1、Q3 均为单位分辨率[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]仪器型号:Agilent LC/MS/MS 6460[align=center][b][b]表2 多反应监测模式(MRM)参数[/b][/b][/align][align=center][b][img=,600,193]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352290609_8831_932_3.png!w622x201.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b][img=,600,207]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352336328_6335_932_3.jpg!w640x221.jpg[/img][/b][/align][align=center][b]草甘膦样品加标0.5mg/kg液相色谱串联质谱质量色谱图[/b][/align][align=center][b][b]表3草甘膦加标回收实验结果(n=6)[/b][/b][/align][align=center][b][img=,600,128]https://ng1.17img.cn/bbsfiles/images/2019/10/201910121352383738_5520_932_3.png!w640x137.jpg[/img][/b][/align][align=center][b]实验结论:月旭 CRP 小柱和 Xtimate UHPLC C18 柱可以满足此国标的检测。[/b][/align]

  • 德国啤酒检出农药残留:草甘膦到底是什么?

    日前,一则关于德国啤酒的新闻让不少德国啤酒发烧友吓出一身冷汗。据报道,今年即将迎来德国《纯啤酒法》颁布500周年,为了验证德国啤酒的纯度,德国慕尼黑环境研究所委托一家实验室检测德国最受欢迎的14种啤酒品牌。2月25日,研究所网站发布的调查报告却发现德国最受欢迎的啤酒并不十分“纯净”。实验室检测报告显示,这些啤酒中被检测出含有不同程度的农药残留物草甘膦,含量介于0.46μg/L至29.74μg/L之间。而根据德国饮用水的相关规定,饮用水中的草甘膦含量极值不可超过0.1μg/L。  德国是世界第二大啤酒生产国,生产的啤酒种类高达5000多种,德国啤酒几乎成为了纯正啤酒的代名词。一时间,继德国大众“排放门”之后,德国制造再次站上风口浪尖,受到了广泛质疑。  草甘膦的毒性有多大?  1971年,美国孟山都公司开发出在世界农业中具有时代意义的广谱除草剂草甘膦。目前,草甘膦已成为世上应用最广、产量最大的农药品种,其年销售值一直居农药之首。中国是草甘膦生产第一大国。草甘膦是一种内吸、传导性、灭生性除草剂,由于它不具有选择性,故广泛用于非农田、果园、道路、林业等,德国每年使用大约5400吨含有草甘膦的农药。  按我国农药毒性分级,草甘膦原药为低毒。其半数致死剂量(LD50)约为5000mg/kg,而食盐(氯化钠纯品)的LD50为3750mg/kg,也就是说草甘膦原药的毒性比食用盐氯化钠还要低。举个形象的例子,一个体重为50kg的人,要吃下250g的草甘膦纯品才会有50%的致死率。根据毒理学试验和风险系数计算得出,人的每日允许摄入量为1mg/公斤体重。因此,德国联邦风险评估研究所表示,这些啤酒中的草甘膦含量不会对消费者健康构成风险,“一名成年人每天要喝1000公升啤酒,才会摄入足以危害健康的草甘膦。”  2005年,联合国粮农组织和世界卫生组织专家开展了最近一次草甘膦残留限量评估,经过国际食品法典委员会审议后,发布了干大豆籽粒中草甘膦残留限量为20mg/kg,全球膳食评估结果认为这个限量不会对公众健康造成危害。美国、欧盟和日本等主要农产品贸易国家和地区都将草甘膦限量标准设定为20mg/kg。我国现已制定了草甘膦11项残留限量标准,限量最低的为棉籽油0.05mg/kg,最高的是小麦6.0mg/kg。  莫衷一是的致癌结论  慕尼黑环境研究所认为,尽管被检测到的草甘膦含量尽管很小,但检测结果却令人担忧,因为草甘膦被国际癌症研究机构(IARC)列入“可能对人类致癌”行列,即便含量很低,也可能对人类健康造成负面影响。  IARC是世界卫生组织(WHO)下属的一个专门癌症研究机构,主要进行和促进对癌症病因的研究,并在世界范围内进行癌症的流行病学调查和研究工作。IARC将致癌物质分为四类。1类:对人类致癌;2类:可能对人类致癌;3类:不明确是否能对人类致癌;4类:很可能不致癌。其中2类又被细分为2A:很可能致癌,2B:可能致癌。2015年3月,IARC发布报告称,草甘膦“很可能”对人类致癌,被列入2A等级。这一结论与农药残留联合会议(JMPR)得出的结论相反。JMPR是一个专家活动团体,由世界粮农组织(FAO)和WHO联合管理,他们发现草甘膦“不太可能致癌”。而2014年1月,德国联邦风险评估所(BfR)为欧盟完成的长达4年的草甘膦评估,他们审查了所有IARC考虑的数据,并加上更多其他的数据。结果发现,“草甘膦不太可能造成人类致癌的风险”。  在IARC的评估中,烟草、酒精饮料、中式咸鱼等被列入1类,更多生活中的常见物品被列入2类,即可能对人类致癌物,包括咖啡、咸菜、高温油炸食品等。IARC评级有一个隐患是忽视了剂量。剂量决定毒性,剂量越大,接触的时间越长,患癌症的概率也越高,但仍然不一定致癌。而IARC并未给出草甘膦致癌风险与暴露剂量的定量关系。所以,IARC关于草甘膦致癌的评价引起了广泛的质疑。  因此,拨开重重迷雾,德国啤酒“农药门”更像是一场虚惊。但是,笔者还是提醒广大消费者:啤酒虽好,限量消费,切莫贪杯。(来源:新华网)

  • 【求助】食品(面粉)中草甘膦的检测

    最近要做食品中草甘膦的检测,在站内查到了农业部的一个标准,NY/Y 1096-2006,前处理是用水提取的,我准备直接用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]检测,省去了衍生这一步。不知道还有没有其他前处理的方法?

  • 食品中草甘膦和草铵膦的检测

    食品中草甘膦和草铵膦的检测

    最近对茶叶、大豆粕中草甘膦的检测进行了优化,采用一种新的净化方式,净化液直接加入衍生试剂FMOC-CL,[color=#cc0000]Primer[/color][color=#333333] [/color][color=#cc0000]XE [/color][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS分析,定量限达到10ug.kg。有需要交流的朋友可以QQ402179727。茶叶样品净化后的照片:[img=白色为茶叶样品该方法净化后的效果,690,517]https://ng1.17img.cn/bbsfiles/images/2018/12/201812111103138250_7350_1643455_3.jpg!w690x517.jpg[/img]

  • 【资料】进出口食品中农兽药残留检测

    录第一章进出口食品中农兽药残留检测实验室质量控制残留分析质量控制指南(国家质量监督检验检疫总局文件农药残留分析的实验室规范导则(食品法典委员会)第二章进出口食品中农药残留检测技术第一节有机氯农药残留量的测定出口冻兔肉六六六、滴滴涕残留量检验方法食品中六六六、滴滴涕残留量的测定$% ) 动物性食品用中有机氯农药和拟除虫菊酯农药多组分残留量的测定茶叶、水果、食用植物油中三氯杀螨醇残留量的测定$% ) 肉与肉制品六六六、滴滴涕残留量测定动、植物中六六六和滴滴涕测定的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法$% ) 食品中乙滴涕残留量的测定方法$% )食品中扑草净残留量的测定方法$% )出口水产品中六六六、滴滴涕残留量的检验方法出口蜂产品中六六六、滴滴涕残留量检验方法01 出口粮谷中六六六、滴滴涕、七氯、艾氏剂残留量检验方法01 出口植物油中六六六、滴滴涕残留量的检验方法出口蔬菜及蔬菜制品中六六六、滴滴涕残留量检验方法出口茶叶中多种有机氯农药残留量检验方法出口茶叶中23%、%23、44* 残留量的检测方法第二节有机磷农药残留检测技术食品中有机磷农药残留量的测定$% )植物性食品中辛硫磷农药残留量的测定$% )植物性食品中甲胺磷和乙酰甲胺磷农药残留量的测定植物性食品中二嗪磷残留量的测定$% ) 柑桔中水胺硫磷残留量的测定$% ) 大米和柑桔中喹硫磷残留量的测定$% ) 植物性食品中亚胺硫磷残留量的测定$% ) 植物性食品中甲基异柳磷残留量的测定$% ) 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定大米中稻瘟灵残留量的测定动物性食品中有机磷农药多组分残留量的测量蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测粮食、水果和蔬菜中有机磷农药测定的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法食品中八甲磷残留量的测定方法出口粮谷中二嗪磷、倍硫磷、杀螟硫磷、对硫磷、稻丰散、苯硫磷残留量检验方法出口蔬菜及蔬菜制品中敌敌畏、二嗪磷和马拉硫磷残留量的检验方法出口肉及肉制品中敌敌畏、二嗪磷、皮蝇磷、毒死蜱、杀螟硫磷、对硫磷、乙硫磷、蝇毒磷残留量检验方法出口水果和蔬菜中** 种有机磷农药多残留量检验方法出口粮谷中丁胺磷残留量检验方法韭菜中甲胺磷等七种农药残留检测方法蔬菜上有机磷和氨基甲酸酯类农药残毒快速检测方法-)蔬菜中甲胺磷残留检验方法第三节菊酯类和氨基甲酸酯类农药残留检测技术植物性食品中氨基甲酸酯类农药残留量的测定植物性食品中二氯苯醚菊酯残留量的测定植物性食品中氯氰菊酯、氰戊菊酯和溴氰菊酯残留量的测定植物性食品中有机氯和拟除虫菊酯类农药多种残留的测定动物性食品中氨基甲酸酯类农药多组分残留高效液相色谱测定出口蔬菜中氯菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯残留量检验方法进出口茶叶中多种菊酯类农药残留量检验方法茶叶中硫丹、多种拟除虫菊酯类农药残留量检测方法第四节其他农药残留检测技术粮、油、菜中甲萘威残留量的测定)食品中对羟基苯甲酸酯类的测定粮食中二溴乙烷残留量的测定食品中环己基氨基磺酸钠的测定)黄瓜中百菌清残留量的测定)谷物及其制品中脱氧雪腐镰刀菌烯醇的测定)大米中杀虫环残留量的测定大米中杀虫双残留量的测定稻谷中三环唑残留量的测定植物性食品中三唑酮残留量的测定水果中乙氧基喹残留量的测定大豆及谷物中氟磺胺草醚残留量的测定食品中莠去津残留量的测定粮食中绿麦隆残留量的测定大米中禾草敌残留量的测定植物性食品中灭幼脲残留量的测定.)植物性食品中五氯硝基苯残留量的测定饮料中乙酰磺胺酸钾的测定植物性食品中吡氟禾草灵、精吡氟禾草灵残留量的测定蔬菜、水果、食用油中双甲脒残留量的测定植物性食品中除虫脲残留量的测定水果中单甲脒残留量的测定大米中丁草胺残留量的测定粮食中*,01滴丁酯残留量的测定大豆、花生、豆油、花生油中的氟乐灵残留量的测定梨果类、柑桔类水果中噻螨酮残留量的测定花生、大豆中异丙甲草胺残留量的测定粮食和蔬菜中*,01滴残留理的测定大米中敌稗残留量的测定稻谷、花生仁中恶草酮残留量的测定植物蛋白饮料中脲酶的定性测定粮食、蔬菜中噻嗪酮残留量的测定苹果和山楂制品中展青霉素的测定乳酸菌饮料中脲酶的定性测定蔬菜、水果中甲基托布津、多菌灵的测定小麦中野燕枯残留量的测定梨中烯唑醇残留量的测定)蜂蜜、果汁和果酒中+&0 种农药多残留测定方法[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]2 质谱和液相色谱2 串联质谱法花生仁、棉籽油、花生油中涕灭威残留量测定方法出口粮谷和蔬菜中戊菌隆残留量检验方法34出口粮谷及油籽中哒菌清残留量检验方法34 00*)出口粮谷及油籽中快杀稗残留量检验方法出口粮谷中叶枯酞残留量检验方法出口粮谷中涕灭威、西维因、杀线威、恶虫威、抗蚜威残留量的检验方法进出口粮谷中吡虫啉残留量检验方法液相色谱法进出口粮谷中吡氟乙草灵残留量检验方法出口鲜竹笋检验规程出口山蜇菜检验规程进出口食品中多效唑残留量检验方法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=83710]进出口食品中农兽药残留检测[/url]

  • 【原创大赛】液相色谱-三重四级杆质谱仪测定茶叶中草甘膦残留量的方法研究

    1实验目的本文对茶叶中的草甘膦残留经提取以及WAX和MCX固相萃取柱的净化,应用HPLC-QQQ进行定量分析,通过重复性、线性关系和回收率等参数进行考察,所建立的方法能对草甘膦进行快速、高灵敏的检测分析。1 材料与方法1.1材料和试剂草甘膦标准品,甲醇(色谱纯),氨水(优级纯), 原乙酸三甲酯:色谱纯,实验用水均为超纯水。1.2仪器设备 液相色谱-三重四级杆质谱联用仪:Agilent 1290-6460、MCX固相萃取柱:150mg 6mL,CNW、 PWAX固相萃取柱:150mg 6mL,CNW、恒温水浴锅;1.3 标准品配制 将草甘膦标准品用50%甲醇/水分别配制成50μg/kg、100μg/kg、200μg/kg、500μg/kg、1000μg/kg的标准曲线,根据样品反应的流程进行反应。1.4 样品处理称取已粉碎好的茶叶试样2.5g置于离心管中,添加标准中间液,10mL二氯甲烷,水25mL,均质,水5mL清洗刀头,抽滤,水10mL提取残渣。5等分滤液,待净化。MCX和PWAX(150mg/6mL)依次用5 mL甲醇、5mL水平衡,将平衡后的MCX与PWAX上下串联,将3.1的样液加载至MCX串联柱上,流出物弃去;5mL 水淋洗柱,弃去,弃去MCX柱,用5 mL甲醇淋洗PWAX柱,减压抽干3min,用10mL 5%氨水/甲醇洗脱接收,40-45℃减压蒸干。加入0.5mL乙酸溶解残渣,转入到15mL离心管中,加入2mL原乙酸三甲酯溶解残渣,合并溶液,涡旋1min,100℃加热2小时进行甲基衍生化反应,转移到50mL旋转蒸发瓶中,甲醇洗离心管合并到50mL旋转蒸发瓶中,50℃减压浓缩至干,1mL 50%甲醇/水定容,待测。1.5仪器条件1.5.1色谱条件a. 色谱柱:Agilent Poroshell 120 EC-C18 3.0X100mm,2.7-Micron; b. 流动相及其梯度流速:0.4mL/min时间(min)0.1%甲酸+2mMol/L乙酸铵水溶液(%)甲醇(%)0.009551.009556.0010908.0010909.0095510.009551.5.2 质谱条件a) 离子源:ESI源;b)扫描方式:正离子扫描;c)检测方式:多反应监测;e)电喷雾电压:4000V;d)雾化气温度:350℃;f)雾化气流速:10L/min;g)雾化气压力:40psi;h)定性离子对、定量离子对、提取电压以及碰撞气能量等见表。名称Q1Q3提取电压 V碰撞能量 V草甘膦254152951025410295102547495204.实验结果将草甘膦分别反应浓度为50μg/kg、100μg/kg、200μg/kg、500μg/kg、1000μg/kg的标准曲线,以峰面积y为纵坐标,浓度x为横坐标,绘制标准工作曲线方程为:y=3037.390732x+26813.423347,相关系数R2=0.99969630。茶叶样品中草甘膦的浓度为0μg/kg,添加浓度为100μg/kg,添加回收浓度为76.325μg/kg,回收率为76%。

  • 草甘膦检测

    我用安捷伦的1290-6460检测茶叶中的草甘膦、氨甲基膦酸,标准是SN/T 1923,可是母离子、子离子都找不到啊,麻烦大家指点一下!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制