当前位置: 仪器信息网 > 行业主题 > >

用于养殖水体藻类等荧光物质成分检测

仪器信息网用于养殖水体藻类等荧光物质成分检测专题为您提供2024年最新用于养殖水体藻类等荧光物质成分检测价格报价、厂家品牌的相关信息, 包括用于养殖水体藻类等荧光物质成分检测参数、型号等,不管是国产,还是进口品牌的用于养殖水体藻类等荧光物质成分检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合用于养殖水体藻类等荧光物质成分检测相关的耗材配件、试剂标物,还有用于养殖水体藻类等荧光物质成分检测相关的最新资讯、资料,以及用于养殖水体藻类等荧光物质成分检测相关的解决方案。

用于养殖水体藻类等荧光物质成分检测相关的仪器

  • 产品概述BFA-3000活体荧光藻分类自动分析仪是以测量叶绿素a为核心,同时实现藻类的分类测量的一款仪器,无需试剂即可在线连续测量。 产品特点多路波长光照激发,实现不同浮游藻类分类和藻密度测量;可实现水体中不同藻类的垂直分布分析;内置多光路背景扣除算法,扣除水中部分荧光有机物、有色物质、光源差异、浊度等影响,结果更准确;高强度结构外壳,可以在水下200米实现藻类的测量;兼容性设计,具有便携、在线两种应用模式需求,分别用于应急、现场检测和站点监测。应用领域湖泊水库、饮用水源地、河流断面
    留言咨询
  • 水体叶绿素a藻类检测仪 天尔TE--1806采用5寸彩色触摸屏,无需化学试剂,环保无污,运用高精度数字电极,具有实时数据传送,4G通讯模块,检测项目有COD,TOC,氨氮,浊度,悬浮物,叶绿素,蓝绿藻,余氯,pH,溶解氧,温度,电导率,ORP,TDS,水中油等项目,适应于各种恶劣工作环境,专业水质检测仪系统,内置高容量锂电池,仪器性能稳定、测量准确、测定范围广、功能强大、操作简单、是一款为客户在野外,实验室提供检测,监察,数据管理融为的一体手持式水质检测系统 .厂家直销、现货供应、支持定制、质保三年。水体叶绿素a藻类检测仪 天尔TE--1806功能特点: 5寸彩色触摸屏,5个触摸感应功能模块※ 手持式设计,内置大容量充电锂电池,待机时间长;※ 采用传感器新技术、无需试剂,无污染、经济、便捷,精度高,响应快;※ 整机按照人工学设计,外观流行时尚,携带方便;※ 可长时间在野外工作,中文界面切换,操作简单、快速;※ 采用高精度全数字光学电极,自动温度补偿,从而实现更稳定准确的测量;※ 可选择免校准测量,自动锁定测量读数,保留稳定的读数易于浏览与记录;※ COD、浊度、悬浮物、叶绿素、蓝绿藻、水中油采用全数字光学电极,能自动对光路衰减及浊度影响进行快速补偿,从而实现更稳定准确的测量值;水体叶绿素a藻类检测仪 天尔TE--1806厂家直销、支持定制、质保三年
    留言咨询
  • ALGcontrol藻类在线监测仪采用7种不同波长的光(365、450、525、570、590、615、710nm),以极高的频率依次照射藻类,检测器记录每次的信号强度值用于计算藻类的浓度,计算的结果以µ g/l的形式显示在仪器屏幕上。并且为了消除DOM(溶解性有机物)和浊度对藻类测量结果的影响,监测仪还分别测定365 nm和710 nm的荧光对DOM和浊度进行补偿,从而提高藻类监测的准确性,相应的DOM和浊度值也自动计算并显示。nanoFlu 微型荧光计工作原理ALGcontrol监测仪采用特定波长的一组LED激发光照射水体中藻类的叶绿素分子,叶绿素分子将部分吸收的光以特定波长的荧光形式发射出来,检测荧光强度来计算叶绿素浓度。同一种藻类都含有等量的叶绿素a,这些叶绿素a发射的荧光峰值是相同的,即被激发出的荧光是一样的(都被激发出680nm的荧光)。但同一种藻类受到不同波长单位强度的光照射时,发出的荧光强度不同;不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。 产品特征全自动监测水体中藻类浓度的变化可同时测定叶绿素a、DOM、浊度自动DOM和浊度值补偿快速检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发易于集成到iTOXcontrol在线生物综合毒性监测系统数据快速存储和自动图形显示触摸屏数据显示和操作界面支持多种标准通信接口可设置藻类浓度阈值报警可编程泵和阀门用于进样或清洗自动清洗防污染,易维护、低费用产品应用地表水、河流、湖泊、水库、海洋技术参数测量参数:(绿藻+蓝-绿藻) 叶绿素a,DOM(溶解性有机物),浊度 含氰基叶绿素(蓝-绿藻) 叶绿素a,DOM(溶解性有机物),浊度叶绿素测量范围:0~200 μg/l chl.a测量精度:0.2 μg/l浊度测量范围:0~400 NTU波 长:365、450、525、570、590、615、710nm检 测 器:DTGS(24位ADC信号采样)操作方式:集成于Linux电脑窗口 触摸屏,用户图形界面 直接通过LAN局域网连接标准接口:CAN-Bus,LAN,Modem,RS232,RS485数字通讯:Modbus TCP,Modbus RTU或其他可定制协议模拟输出:2个4~20 mA模拟输出其他输出:Profibus转换器箱体材质:铝样品压力:0 bar (最大0.05 bar)功 耗:45W防护等级:IP54(可选IP65)尺寸(HxBxD:450×450×260 mm样品温度:10~35 ℃环境温度:15~30 ℃样品流速:2~10 L/h(无悬浮物)操作系统:内置Linux可选配置:Modem卡槽可选UMTS、ISDN或模拟 第2路样品和额外清洗装置 传 感 器:pH、DO、浊度、ORP 输 入:4~20 mA、2×数字输入、泄露监测传感器 PC软件(SQL数据库) 清洗系统 清洗溶液:(次氯酸钠溶液0.05%活性)可在数周内防止结垢和无人值守的使用电 源:24 VDC
    留言咨询
  • FMT150藻类培养与在线监测系统将生物反应器与监测仪器独特地结合在一起,用于淡水、海水藻类和蓝细菌(蓝藻)等的模块化精确光照培养与生理监测。FMT150可以通过控制单元(包括电脑与预装软件,软件分为基本版与高级版)中用户自定义程序动态自动改变培养条件并实时在线监测培养条件与测量参数。光强、光质、温度和通入气体的组分与流速都可以精确调控。加装恒浊和恒化模块后还可以调控培养基的pH值和浊度。FMT150可连接多达7个蠕动泵进行不同恒化与pH条件培养。培养条件可以根据用户自定义方案动态变化,既可以进行恒定条件下的培养,也可以一定的周期自动变化。控制单元可同时控制多台FMT150进行同步实验,保证不同处理实验间的一致性。仪器内置叶绿素荧光仪和光密度计等。培养藻类的生长状况由光密度计测定OD680和OD720实现实时监控,并可以通过OD值监测相对叶绿素浓度。叶绿素荧光仪实时监测Ft并可测定F0、Fm、Fm′和QY来反映培养藻类的光合生理状态。FMT150藻类培养与在线监测系统应用领域:1. 环境科学与环境工程——藻类的利用与有害控制用于水体中水华和赤潮现象的模拟、预警防治研究,水体污染治理与生态修复研究如利用藻类进行水体重金属污染及面源污染的消纳研究等,大气污染生态修复研究如利用藻类对污染排放进行吸收的研究等,及利用藻类吸收大气二氧化碳的研究等等。2. 生态学与生态工程海洋初级生产力研究,海洋碳循环,浮游植物等光养生物生理生态研究,藻类对全球变化的响应机制,生物圈模拟研究,水体生态修复研究等。3. 生物工程与生物医学工程用于藻类保健营养品的开发研究,藻类转基因抗肿瘤药物的开发研究,水产养殖藻类培养等等。4. 生物能源开发——向藻类要能源地球上的石油、煤炭等常规能源面临资源枯竭及环境污染、温室气体排放等严重问题,用玉米等粮食进行生物柴油的开发一度引起全球的粮食危机,目前国际上已将生物柴油的开发焦点转向藻类,藻类独居植物产油率榜首。FMT150已成为欧美国家用于藻类生物能源培养研究的热门设备。
    留言咨询
  • FMT150藻类培养与在线监测系统——光氧细菌和藻类培养与状态在线监测的完美结合光养生物反应器是指用于培养藻类、光养细菌等的技术系统,一般由培养系统(如光、培养容器、温度控制等)和监测系统(如PH值等)组成,可分为开放式和封闭式。广泛应用于生物工程领域如食品、水产养殖、营养保健制剂、医药如抗体及抗肿瘤药物等,生态环境工程领域如水体生态修复、CO2吸收、污水处理如重金属吸收等,能源领域如微藻生物柴油等。同时,随着全球碳排放的增加,海洋藻类对全球变化的响应也逐渐成为光养生物反应器应用的重要领域。FMT150藻类培养与在线监测系统将生物反应器与监测仪器独特地结合在一起,用于淡水、海水藻类和蓝细菌(蓝藻)等的模块化精确光照培养与生理监测。FMT150可以通过控制单元(包括电脑与预装软件,软件分为基本版与高级版)中用户自定义程序动态自动改变培养条件并实时在线监测培养条件与测量参数。光强、光质、温度和通入气体的组分与流速都可以精确调控。加装恒浊和恒化模块后还可以调控培养基的pH值和浊度。FMT150可连接多达7个蠕动泵进行不同恒化与pH条件培养。培养条件可以根据用户自定义方案动态变化,既可以进行恒定条件下的培养,也可以一定的周期自动变化。控制单元可同时控制多台FMT150进行同步实验,保证不同处理实验间的一致性。仪器内置叶绿素荧光仪和光密度计等。培养藻类的生长状况由光密度计测定OD680和OD720实现实时监控,并可以通过OD值监测相对叶绿素浓度。叶绿素荧光仪实时监测Ft并可测定F0、Fm、Fm′和QY来反映培养藻类的光合生理状态。应用领域:1. 环境科学与环境工程——藻类的利用与有害控制用于水体中水华和赤潮现象的模拟、预警防治研究,水体污染治理与生态修复研究如利用藻类进行水体重金属污染及面源污染的消纳研究等,大气污染生态修复研究如利用藻类对污染排放进行吸收的研究等,及利用藻类吸收大气二氧化碳的研究等等。2. 生态学与生态工程海洋初级生产力研究,海洋碳循环,浮游植物等光养生物生理生态研究,藻类对全球变化的响应机制,生物圈模拟研究,水体生态修复研究等。3. 生物工程与生物医学工程用于藻类保健营养品的开发研究,藻类转基因抗肿瘤药物的开发研究,水产养殖藻类培养等等。4. 生物能源开发——向藻类要能源地球上的石油、煤炭等常规能源面临资源枯竭及环境污染、温室气体排放等严重问题,用玉米等粮食进行生物柴油的开发一度引起全球的粮食危机,目前国际上已将生物柴油的开发焦点转向藻类,藻类独居植物产油率榜首。FMT150已成为欧美国家用于藻类生物能源培养研究的热门设备。5.藻类基因组学与分子生物学为分子、基因实验提供可靠的预培养样品,精确模拟培养条件,研究不同环境条件下藻类表型变化。主要特点:国际首个将藻类光生物反应器技术与藻类生理监测技术(叶绿素荧光技术、光密度测量)结合起来的系统,集成了目前几乎所有主要的藻类在线培养与生理监测技术内置双调制叶绿素荧光仪,实时监测培养藻类的生理状况,测量记录荧光参数Ft,Fm,QY等内置光密度计,测量OD680和OD720,经过校准可计算生物量(藻类细胞数量)、叶绿素浓度配备气泡阻断阀和气泡加湿器,使荧光和OD值的测定更加精确可同时测量监测温度、pH值、溶解氧等多种参数精确控制温度、光质、光强、培养周期等,并可进行恒化或恒浊培养培养容器使用高强度耐热耐腐蚀材料,可进行高温灭菌光化学光强度达1500 umol photons m-2 s-1(蓝绿藻培养正常光强为90 umol photons m-2 s-1),可升级达3000 umol photons m-2 s-1,光质可根据用户需求在红光、蓝光、白光中选择单色光或双色光,扩展光源中还可以加入红外光气流速率、CO2及O2浓度可精确控制(备选)可通过专用的电脑软件实现外部控制、数据监测和保存,操作简单技术参数指标1 测量参数:1)叶绿素荧光参数:暗适应条件下F0, Fm, Fv(Fm-F0), QY(Fv/Fm) 光适应条件下Ft, Fm‘, Fv‘(Fm‘-Ft), QY(ΦPSII即量子产额)2)光密度:OD680、OD7203)环境参数:温度、光照强度、pH、溶解氧(选配)、溶解CO2(选配)2 调控环境参数:温度、光强、通气速度、通入气体组分与含量(需选配GMS高精度气体混合系统)、恒化(恒定pH)培养与恒浊(恒定OD)培养(需选配相应模块),所有参数都可以单独同步控制。3 容积:400 ml/1000 ml/3000ml可选4 温度精确控制范围:400 ml/1000 ml标准培养容器15 - 55℃,3000ml标准培养容器18 - 55℃, 400 ml增强培养容器5 - 75℃,1000 ml/3000 ml增强培养容器10 - 75℃(实际控温效果与环境温度有关)5 控温系统:2个珀耳帖元件(200W,400W)6 双显示:主机控制显示和外部控制单元实时显示7 LED光源:1)标准配制:红光、蓝光或白光、红光双色光源,可选白光、蓝光双色光源或白、蓝、红单色光源2)光强:1500 umol (photons).m-2.s-1 PAR(蓝光750/红光750;白光750/红光750;可选白光1500,蓝光1500,红光1500,白光750/蓝光750)可升级至3000 umol (photons).m-2.s-1 PAR(蓝光1500/红光1500;白光1500/红光1500;白光或蓝光单色3000)8 外部扩展光源(备选,用于不同有机体培养或者高光强胁迫):单色光、单色光+红外光、双色光9 光密度测量:通过两个LED (720nm,680 nm)实时测量OD10 检测器:PIN光敏二极管、665 nm-750nm滤波器11 传感器:pH/温度传感器、溶解氧传感器(备选)、溶解CO2传感器(备选)12 GMS高精度气体混合系统(备选):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备13 选配Oxzala 差分式O2/CO2通量监测系统,在线双通道监测进气口和出气口O2和CO2:1) 高精度差分式氧气分析仪,双燃料电池技术,双通道差分测量,测量范围0-100%,精确度0.1%,分辨率0.0001%;温度补偿、气压补偿,气压分辨率0.0001kPa,显示屏同时显示通道1O2浓度、通道2O2浓度、通道3ΔO2、通道4气压2) 双通道CO2分析仪,单光束双波长红外技术,测量范围0-1000ppm,可选配0-2000ppm,精确度优于1.5%,差分测量可达0.3-0.5ppm,自动温度补偿、自定义压力及相对湿度补偿,分辨率1ppm,双通道数据采集显示器,LCD背光显示屏,可显示双通道CO2浓度及变化曲线14 恒浊培养模块(可选):包含一个蠕动泵pp600和内置支持控制软件,通过检测光密度(OD680或OD720),蠕动泵自动补充培养基实现恒浊培养15 恒化培养模块(可选):包含2个蠕动泵pp600和内置支持控制软件,通过检测pH,2个蠕动泵分别自动补充酸液或碱液实现恒化培养16 pH稳定/恒浊模块(可选):包含1个带气体阀的蠕动泵pp600和内置支持控制软件,可以进行恒浊培养,也可以通过调节通入培养基的CO2气流流速来实现pH稳定调控(两个功能不可同时实现)。CO2气源需用户自备17 额外蠕动泵(可选):最多可同时控制8个蠕动泵18 其他备选部件:磁力搅拌器(用于无氧状态培养)、气体分析系统(测定CO2)、PWM泵(用于控制气体或液体流速,可以为培养液通气,也可用于无氧状态下代替磁力搅拌混匀藻液)19 控制单元:包括专用电脑、软件及硬件绑定的许可证,对一到多台反应器进行同步控制和数据采集,所有测量数据都可以实时图形化显示20 软件功能:基础版高级版l 可同时控制2台FMT150主机l 在线软件升级l 附件(如pH电极)校准l 修改实验培养程序l 电脑重启后恢复实验l 记录传感器原始数据l 记录用户/系统实验事件l 导出实验数据到Excell 实验记录过滤l 用户及权限管理l 支持OD调控(恒浊)程序l 支持pH调控(恒化)程序l 支持外部扩展光源调控程序l 支持PWM泵或磁力搅拌程序l Ft/QY测量l 可同时控制数量不限的FMT150主机l 包含基础版所有功能l Email通知l 允许发送低级设备命令l 支持修改程序脚本l 可在程序内设置单独的测量周期l 导入以前的实验l 预订实验计划l 监测并通知附件(如pH电极)值域l 用户自定义实验图数据系列l 实验图数据回归分析l 支持气体分析系统l 支持气体混合系统l 控制额外的蠕动泵21 控光模式:光质和光强均可通过软件按用户编制的程序自行动态变化,可模拟自然日照周期、云遮挡造成的光强光质变化等光节律变化22 控温模式:温度可通过软件按用户编制的程序自行动态变化,可模拟自然温度日变化、温度周期性骤升或骤降等23 Bios:可升级固件24 数据传输:RS-232串口接口或USB接口25 远程控制:可通过网络实现远程控制与数据下载(需配备固定IP)26 材料:防火耐热玻璃、飞机专用杜拉铝合金、不锈钢、硅化垫圈27 尺寸:400ml,42 cm(H)×35 cm(W)×31 cm(D),重量:15.5kg;1000ml,42 cm(H)×35 cm(W)×31 cm(D),重量:17.5kg;3000ml,50 cm(H)×35 cm(W)×31 cm(D),重量:28kg28 供电电压:90-240V29 可根据用户需求定制25升等各种大型光养生物反应器应用案例:产地:欧洲参考文献:1. Trivedi J, et al. 2022. Enhanced lipid production in Scenedesmus obliquus via nitrogen starvation in a two-stage cultivation process andevaluation for biodiesel production. Fuel 316: 123418.2. Zaki A, et al. 2022. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Advances 12(4): 2497-2510.3. Vasile NS, et al. 2021. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development. Frontiers in microbiology 12: 639482.4. Rabouille S, et al. 2021. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Frontiers in Microbiology 12: 620.5. Polerecky L, et al. 2021. Temporal Patterns and Intra-and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Frontiers in Microbiology 12: 620915.6. Lang I, et al. 2021. Plasticity of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants. Plants 10(9): 1836.7. Kedem I, et al. 2021. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynthesis Research 6: 1-16. 8. Norsker NH, et al. 2021. Developing microalgal oil production for an outdoor photobioreactor. Journal of Applied Phycology. doi: 10.1007/S10811-021-02374-7.9. Klein BC, et al. 2021. Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. Brazilian Journal of Chemical Engineering 38(2): 251–263. 10. Amer M, et al. 2020. Low Carbon Strategies for Sustainable Bio-alkane Gas Production and Renewable Energy. Energy & Environmental Science 13(6): 1818-1831.11. Kanygin A, et al. 2020. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Energy & Environmental Science 13: 2903-2914.12. Treves H, et al. 2020. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants 6(8): 1031-1043..13. Klassen V, et al. 2020. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy. Bioresource Technology 315: 123825.14. Canonico M, et al. 2020. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Frontiers in Plant Science 11:586543.15. Baránková B, et al. 2020. Light absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells. Algal Research 49: 2211-9264.16. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): Evidence from transcriptomics and biochemical data. BMC plant biology 20(1): 424-424.17. Trivedi J, et al. 2020. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous Scenedesmus Obliquus at High Solid Loadings. European Journal of Lipid Science and Technology 122(4): 1900328.18. Sukaová K, et al. 2020. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiologica 65: 901–908.19. Pattanaika B, et al. 2020. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic Engineering Communications 10: e00125.
    留言咨询
  • 叶绿素蓝藻监测仪/水体蓝藻监测仪/叶绿素荧光仪/在线蓝藻荧光仪,叶绿素a监测仪、水体叶绿素仪、叶绿素仪监测仪、叶绿素藻类监测仪多参数水质监测仪,便携式多参数水质监测仪,多参数水质分析仪,多参数水质监测仪,进口便携式多参数水质分析仪,、多参数水质分析仪供应,多参数水质分析仪AP-5000 GPS型便携式多参数水质监测仪提供智能化的传感器和主机平台,可以现场测量水体温度、深度、pH、氧化还原电位(ORP)、溶解氧(DO)、电导率、TDS、盐度、电阻等水质多参数指标, 同时记录时间和位置信息。AP-2000可增配一个ISE电极(铵离子 氨氮 氯离子 氟化物 硝酸盐 钙)和一个光学探头(叶绿素 蓝藻 浊度 水中油)可更换成其他参数等水质多参数指标,均有温度自动补偿功能.多参数水质监测仪数据采集系统(可自选以下2项)★AM-200手持式显示器 用于现场读取数据1、尺寸(W*H*D) 90*180*39mm 2、重量(含电池) 450g3、显示屏: 带背光,80 个字符LCD4、内存 1900 个数据5、GPS 接受: 内置天线,12 通道6、GPS 精度: ±10m7、大气压: 150mb-1150mb,精度:1mb8、PC 接口: RS-485/2329、供电: 内置电池供电,可方便更换电池10、操作温度: -20~70 °C11、防护等级: IP67 叶绿素蓝藻监测仪/水体蓝藻监测仪/叶绿素荧光仪/在线蓝藻荧光仪,叶绿素a监测仪、水体叶绿素仪、叶绿素仪监测仪、叶绿素藻类监测仪多参数水质监测仪,便携式多参数水质监测仪,多参数水质分析仪,多参数水质监测仪,进口便携式多参数水质分析仪,、多参数水质分析仪供应,多参数水质分析仪多参数水质监测仪★Aqualogger数据采集器 无人值守保存数据1、坚固耐用,适合野外使用 2、体积小,可以放到2”管道监测 3、供电:2个碱性C型电池 4、电量:可支持连续工作6个月 5、内存:32,000数据 6、软件:LoggerLink用于设置和下载数据 7、可编程采集方案,或事件激发采集数据 8、尺寸:直径44mm ,长度250mm
    留言咨询
  • 藻类荧光在线监测仪 400-860-5168转1895
    仪器简介:AOM藻类荧光在线监测仪为超高灵敏度藻类在线测量监测仪器,可以测量监测到30ng/L的叶绿素荧光;具有广谱生物检测功能,可以对绿藻、蓝藻、蓝绿藻及棕色藻类进行测量监测,测量参数包括Fo、Ft、Fm、Fm&rsquo 及OJIP等,同时还可以测量浊度。广泛应用于饮用水在线监测及河流、湖泊、海洋藻类测量监测和研究。仪器便携性能强,可用于野外和实验室研究,所附软件可以进行荧光参数及藻类荧光动力学分析,数据可导出到Excel表。技术参数:AOM藻类荧光在线监测仪具体性能指标如下: 测量参数Fo、Ft、Fm、Fm&rsquo 、OJIP、浊度测量极限(灵敏度)绿藻:10cells/ml,蓝绿藻(藻氰菌):100cells/ml光化学光和饱和光0-3000uE可调光波探测器光电二极管,660nm-750nm滤波器数据通讯串口232或USB口内存8MB,内置数采防水性能IP65温度范围0-45大小198mm x 60mm x 295mm,重量1800g
    留言咨询
  • MC1000 8通道藻类培养与在线监测系统名称:8通道藻类培养与在线监测系统 型号:MC1000 产地:捷克用途:MC1000 8通道藻类培养与在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等。特点:8通道藻类培养,每个藻类培养试管可培养85ml藻液;LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等;光密度在线监测,包括OD680、OD735,监测数据自动存储;可选溶解氧在线监测,分析藻类光合作用等;可选O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收;用户设置不同的程序模式控制温度、光照条件;通过调节阀手动调节气流量以对培养试管内的藻类进行混匀;可选配藻类荧光测量模块;应用领域:多通道藻类同步培养;藻类培养条件优化;藻类同步梯度胁迫实验;藻类生长动力学监测;技术参数:在线测量参数光密度光密度测量外径由两个LED(720nm,680nm),每一个培养容器的实时测量 外径测量的时间间隔可以被指定。试管插槽8个独立插槽试管容积100ml(每个试管推荐工作容积85ml)温度控制范围20~60℃(标准),15~60℃(可选,配套AC-90冷却装置)供暖150W筒式加热器LED照明光强度从0到100%可调,最大光强度高达900μmol(photon)/m2 .s(冷白)或750μmol(photon)/m2 .s(暖白 - 应要求提供)光模式静态或动态可选显示系统控制数据和实时读数气泡流量和成分控制可选水槽容积5L探测器PIN光敏二极管、665 nm-750nm滤波器Bios可升级固件数据传输RS-232材料玻璃,不锈钢、硅化垫圈、聚碳酸酯尺寸71 X 33×21 cm重量13Kg电压110~240V
    留言咨询
  • 产品核心概况:藻类在线监测系统,能够高效提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻。该系统也提供高精度的溶解氧、浊度、水温、叶绿素、pH、电导率监测数据。定时清洁,集检测、搜集、整理分类、实时显示监测数据于一体,无需人工操作,通过有线、无线数据网络,自动上传数据至云端。系统组成: 藻类在线监测系统包括工业电脑、数据采集模块、系统控制模块、涡旋除泡器、浮游植物分类传感器、溶解氧传感器、浊度传感器、流通池、电源模块和防生物维护模块。系统功能特点: l 一键启动实时在线监测l 提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻l 提供高精度的溶解氧、浊度、水温、叶绿素、电导率监测数据l 内置藻类生物量浓度与细胞数自动换算系数l 内置涡旋高效除泡器, 对水样进行预处理,消除样品气泡,保证数据可靠性l 水华警示(岸基版)l 数据曲线图显示l 支持传感器校正l 自动上传数据至云端l 水生态监测数据现场查看,自动备份上传云端,界面简洁,操作便捷l 模块化流通池可供自行配置安装传感器种类及数量l 配备防生物维护模块,流路定期自维护,减少生物附着,提高数据可靠性l 智能电路模块,来电自动开机,断电自动关机,有效防止短路、过压、过载危害应用领域:河流、湖泊、海湾、近岸海水等水生态环境实时在线监测。l 船载式走航水生态监测l 固定站房式水生态监测l 便携式水生态监测l 无人船巡航监测(定制)l 生态灾害应急监测l 水华/赤潮监测l 污染源遡源/遡因监测l 养殖水体生态状态监测l 水生态科学研究技术特点:1、①以高频、原位、无损的生物光学检测为核心技术手段 ②根据不同藻类的生物光学差异,构建不同类型藻类的激发光谱指纹特征,作为分类与定量依据 2、① 优化的光学、流体力学设计&bull 高效涡旋除泡技术&bull 优化流通池技术(低停留时间)&bull 高量子效比光路结构优化流动单元,流速为10L/min条件下,95%流体更新时间在90秒以内② 智能化控制系统&bull 一键启动实时在线监测&bull 自动上传数据至云端&bull 配备防生物维护模块,流路定期自维护&bull 智能电路模块:来电自动开机,断电自动关机&bull 故障自诊断与故障报警③ 适用于不同应用场景的计算模型&bull 内置藻类生物量浓度与细胞数自动换算模型&bull 新类群识别与定量模型自定义模块&bull 水华、赤潮分级与预警模型3、自清洁模块:① 包含微型隔膜泵、单向阀、清洁液存储箱等②具备流路自清洁功能,采用定期自动清洁方式。③有效抑制生物附着,降低生物附着对光学传感器的影响,提高长时间检测精度AquaSOO系列软件界面:技术参数:测量参数:甲藻、绿藻、蓝藻、硅藻、隐藻、叶绿素、溶解氧、浊度、水温、电导率激发光波长:375/ 400/ 420/ 435/ 470/505/ 525/ 570/ 590 nm测量范围(分辨率): 甲藻:0 ~ 500 μg/L(±0.1 μg/L); 绿藻:0 ~ 500 μg/L(±0.1 μg/L); 蓝藻:0 ~ 500 μg/L(±0.1 μg/L); 硅藻:0 ~ 500 μg/L(±0.1 μg/L); 隐藻:0 ~ 500 μg/L(±0.1 μg/L); 叶绿素:0 ~ 500 μg/L(±0.1 μg/L); 溶解氧:0 ~ 20 mg/L、0 ~ 200 %(±0.1 mg/L、±1 %); 浊度:0 ~ 1000 NTU (±10 %); 水温:-2~ 45 °C(±0.1 °C); 电导率:0~200 mS/cm(±1 %);主机内存:4G定位方式:GPS(走航版标配)耐受温度:5~45℃测量间隔:5~60S短路保护:是过压保护:是过载保护:是 输入电源:220VAC/50Hz/100W可触摸一体式显示器参数:15英寸/12V/分辨率1024×768(岸基版)推荐进水流量:18~24 L/min联网方式:4G/WiFI/有线(可选)定时自动清洁:是进样泵:扬程:32米最大流量:33L/min最小流量:18L/min技术指标:参数检测范围精度分析速度最低检测限方法甲藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法绿藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法蓝藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法硅藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法隐藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法叶绿素0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法水温-2 ~ 45 °C±0.1 °C5 s/次-热电偶溶解氧0 ~ 20 mg/L0 ~ 200 %±0.1 mg/L±1 %5 s/次-荧光法浊度0 ~ 1000 NTU±10 %5 s/次-散射法电导率0~200 mS/cm±1 %5 s/次-电极法支持其他类型传感器箱体尺寸650*550*1850mm(长*宽*高,岸基版)650*550*800mm(长*宽*高,走航版)水管接口6分重量65 kg(走航版)90 kg(岸基版)输入电压220VAC 50Hz功率100W运行环境5 ~ 45°C注:1 传感器可根据需要进行配置2 最低检测限与实验环境、实验用水等因素有关。
    留言咨询
  • 产品核心概况:藻类在线监测系统,能够高效提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻。该系统也提供高精度的溶解氧、浊度、水温、叶绿素、pH、电导率监测数据。定时清洁,集检测、搜集、整理分类、实时显示监测数据于一体,无需人工操作,通过有线、无线数据网络,自动上传数据至云端。系统组成: 藻类在线监测系统包括工业电脑、数据采集模块、系统控制模块、涡旋除泡器、浮游植物分类传感器、溶解氧传感器、浊度传感器、流通池、电源模块和防生物维护模块。系统功能特点: l 一键启动实时在线监测l 提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻l 提供高精度的溶解氧、浊度、水温、叶绿素、电导率监测数据l 内置藻类生物量浓度与细胞数自动换算系数l 内置涡旋高效除泡器, 对水样进行预处理,消除样品气泡,保证数据可靠性l 水华警示(岸基版)l 数据曲线图显示l 支持传感器校正l 自动上传数据至云端l 水生态监测数据现场查看,自动备份上传云端,界面简洁,操作便捷l 模块化流通池可供自行配置安装传感器种类及数量l 配备防生物维护模块,流路定期自维护,减少生物附着,提高数据可靠性l 智能电路模块,来电自动开机,断电自动关机,有效防止短路、过压、过载危害应用领域:河流、湖泊、海湾、近岸海水等水生态环境实时在线监测。l 船载式走航水生态监测l 固定站房式水生态监测l 便携式水生态监测l 无人船巡航监测(定制)l 生态灾害应急监测l 水华/赤潮监测l 污染源遡源/遡因监测l 养殖水体生态状态监测l 水生态科学研究技术特点:1、①以高频、原位、无损的生物光学检测为核心技术手段 ②根据不同藻类的生物光学差异,构建不同类型藻类的激发光谱指纹特征,作为分类与定量依据 2、① 优化的光学、流体力学设计&bull 高效涡旋除泡技术&bull 优化流通池技术(低停留时间)&bull 高量子效比光路结构优化流动单元,流速为10L/min条件下,95%流体更新时间在90秒以内② 智能化控制系统&bull 一键启动实时在线监测&bull 自动上传数据至云端&bull 配备防生物维护模块,流路定期自维护&bull 智能电路模块:来电自动开机,断电自动关机&bull 故障自诊断与故障报警③ 适用于不同应用场景的计算模型&bull 内置藻类生物量浓度与细胞数自动换算模型&bull 新类群识别与定量模型自定义模块&bull 水华、赤潮分级与预警模型3、自清洁模块:① 包含微型隔膜泵、单向阀、清洁液存储箱等②具备流路自清洁功能,采用定期自动清洁方式。③有效抑制生物附着,降低生物附着对光学传感器的影响,提高长时间检测精度AquaSOO系列软件界面:技术参数:测量参数:甲藻、绿藻、蓝藻、硅藻、隐藻、叶绿素、溶解氧、浊度、水温、电导率激发光波长:375/ 400/ 420/ 435/ 470/505/ 525/ 570/ 590 nm测量范围(分辨率): 甲藻:0 ~ 500 μg/L(±0.1 μg/L); 绿藻:0 ~ 500 μg/L(±0.1 μg/L); 蓝藻:0 ~ 500 μg/L(±0.1 μg/L); 硅藻:0 ~ 500 μg/L(±0.1 μg/L); 隐藻:0 ~ 500 μg/L(±0.1 μg/L); 叶绿素:0 ~ 500 μg/L(±0.1 μg/L); 溶解氧:0 ~ 20 mg/L、0 ~ 200 %(±0.1 mg/L、±1 %); 浊度:0 ~ 1000 NTU (±10 %); 水温:-2 ~ 45 °C(±0.1 °C); 电导率:0~200 mS/cm(±1 %);主机内存:4G定位方式:GPS(走航版标配)耐受温度:5~45℃测量间隔:5~60S短路保护:是过压保护:是过载保护:是 输入电源:220VAC/50Hz/100W可触摸一体式显示器参数:15英寸/12V/分辨率1024×768(岸基版)推荐进水流量:18~24 L/min联网方式:4G/WiFI/有线(可选)定时自动清洁:是进样泵:扬程:32米最大流量:33L/min最小流量:18L/min技术指标:参数检测范围精度分析速度最低检测限方法甲藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法绿藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法蓝藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法硅藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法隐藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法叶绿素0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法水温-2 ~ 45 °C±0.1 °C5 s/次-热电偶溶解氧0 ~ 20 mg/L0 ~ 200 %±0.1 mg/L±1 %5 s/次-荧光法浊度0 ~ 1000 NTU±10 %5 s/次-散射法电导率0~200 mS/cm±1 %5 s/次-电极法支持其他类型传感器箱体尺寸650*550*1850mm(长*宽*高,岸基版)650*550*800mm(长*宽*高,走航版)水管接口6分重量65 kg(走航版)90 kg(岸基版)输入电压220VAC 50Hz功率100W运行环境5 ~ 45°C
    留言咨询
  • 产品核心概况:藻类在线监测系统,能够高效提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻。该系统也提供高精度的溶解氧、浊度、水温、叶绿素、pH、电导率监测数据。定时清洁,集检测、搜集、整理分类、实时显示监测数据于一体,无需人工操作,通过有线、无线数据网络,自动上传数据至云端。系统组成: 藻类在线监测系统包括工业电脑、数据采集模块、系统控制模块、涡旋除泡器、浮游植物分类传感器、溶解氧传感器、浊度传感器、流通池、电源模块和防生物维护模块。系统功能特点: l 一键启动实时在线监测l 提供高频率浮游植物类群组成参数,包括甲藻、绿藻、蓝藻、硅藻、隐藻l 提供高精度的溶解氧、浊度、水温、叶绿素、电导率监测数据l 内置藻类生物量浓度与细胞数自动换算系数l 内置涡旋高效除泡器, 对水样进行预处理,消除样品气泡,保证数据可靠性l 水华警示(岸基版)l 数据曲线图显示l 支持传感器校正l 自动上传数据至云端l 水生态监测数据现场查看,自动备份上传云端,界面简洁,操作便捷l 模块化流通池可供自行配置安装传感器种类及数量l 配备防生物维护模块,流路定期自维护,减少生物附着,提高数据可靠性l 智能电路模块,来电自动开机,断电自动关机,有效防止短路、过压、过载危害应用领域:河流、湖泊、海湾、近岸海水等水生态环境实时在线监测。l 船载式走航水生态监测l 固定站房式水生态监测l 便携式水生态监测l 无人船巡航监测(定制)l 生态灾害应急监测l 水华/赤潮监测l 污染源遡源/遡因监测l 养殖水体生态状态监测l 水生态科学研究技术特点:1、①以高频、原位、无损的生物光学检测为核心技术手段 ②根据不同藻类的生物光学差异,构建不同类型藻类的激发光谱指纹特征,作为分类与定量依据 2、① 优化的光学、流体力学设计&bull 高效涡旋除泡技术&bull 优化流通池技术(低停留时间)&bull 高量子效比光路结构优化流动单元,流速为10L/min条件下,95%流体更新时间在90秒以内② 智能化控制系统&bull 一键启动实时在线监测&bull 自动上传数据至云端&bull 配备防生物维护模块,流路定期自维护&bull 智能电路模块:来电自动开机,断电自动关机&bull 故障自诊断与故障报警③ 适用于不同应用场景的计算模型&bull 内置藻类生物量浓度与细胞数自动换算模型&bull 新类群识别与定量模型自定义模块&bull 水华、赤潮分级与预警模型3、自清洁模块:① 包含微型隔膜泵、单向阀、清洁液存储箱等②具备流路自清洁功能,采用定期自动清洁方式。③有效抑制生物附着,降低生物附着对光学传感器的影响,提高长时间检测精度AquaSOO系列软件界面:技术参数:测量参数:甲藻、绿藻、蓝藻、硅藻、隐藻、叶绿素、溶解氧、浊度、水温、电导率激发光波长:375/ 400/ 420/ 435/ 470/505/ 525/ 570/ 590 nm测量范围(分辨率): 甲藻:0 ~ 500 μg/L(±0.1 μg/L); 绿藻:0 ~ 500 μg/L(±0.1 μg/L); 蓝藻:0 ~ 500 μg/L(±0.1 μg/L); 硅藻:0 ~500 μg/L(±0.1 μg/L); 隐藻:0 ~ 500 μg/L(±0.1 μg/L); 叶绿素:0 ~ 500 μg/L(±0.1 μg/L); 溶解氧:0 ~ 20 mg/L、0 ~ 200 %(±0.1 mg/L、±1 %); 浊度:0 ~ 1000 NTU (±10 %); 水温:-2 ~ 45 °C(±0.1 °C); 电导率:0~200 mS/cm(±1 %);主机内存:4G定位方式:GPS(走航版标配)耐受温度:5~45℃测量间隔:5~60S短路保护:是过压保护:是过载保护:是 输入电源:220VAC/50Hz/100W可触摸一体式显示器参数:15英寸/12V/分辨率1024×768(岸基版)推荐进水流量:18~24 L/min联网方式:4G/WiFI/有线(可选)定时自动清洁:是进样泵:扬程:32米最大流量:33L/min最小流量:18L/min技术指标:参数检测范围精度分析速度最低检测限方法甲藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法绿藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法蓝藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法硅藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法隐藻0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法叶绿素0 ~ 500 μg/L±0.1 μg/L1 min/次0.1 μg/L荧光法水温-2 ~ 45 °C±0.1 °C5 s/次-热电偶溶解氧0 ~ 20 mg/L0 ~ 200 %±0.1 mg/L±1 %5 s/次-荧光法浊度0 ~ 1000 NTU±10 %5 s/次-散射法电导率0~200 mS/cm±1 %5 s/次-电极法支持其他类型传感器箱体尺寸650*550*1850mm(长*宽*高,岸基版)650*550*800mm(长*宽*高,走航版)水管接口6分重量65 kg(走航版)90 kg(岸基版)输入电压220VAC 50Hz功率100W运行环境5 ~ 45°C
    留言咨询
  • 1.用途:用于区分与定量绿藻、甲藻、硅藻、蓝藻、隐藻等不同类群。计算水体中各类群藻类细胞丰度。仪器方便携带,可以单独应用于河流、湖泊、库区及近海水体浮游植物监测,可以进行水体垂直剖面调查或水样快速检测,也可以结合浮标、走航船舶、无人船、水质自动站等连续监测平台,实现对水生态健康的长时间、高频、连续监测与评估,以及对水华等生态灾害事件进行应急、快速、大面的溯源和范围调查。2.主要技术指标2.1.测量方法:荧光光谱法 2.2.激发光波长:15个;2.2.测量频率:1秒~60分钟一次可自定义 2.3.测量参数:叶绿素、藻类(蓝藻、绿藻、硅藻、隐藻、甲藻等)、深度、温度、浊度、有色溶解物(CDOM);2.4.水温:-2-45°C 2.5.浊度:0~200NTU 2.6.有色溶解物:0-500 ppb 2.8.叶绿素测量范围:0-500ug/L 2.9. 硅藻/甲藻/隐藻/绿藻/蓝藻:0-500ug/L 2.10.分辨率:0.01ug/L 2.11透光性: 0-100%2.12测量深度:0-100m(标配)3.功能要求3.1适用于野外现场对叶绿素进行定量分析以及对各种藻类进行定性、定量分析。能够实现对藻类分类检测,区分蓝藻、绿藻、硅藻、甲藻、隐藻等并检测其叶绿素浓度并估算其细胞丰度。可以进行水下剖面测量分析,在淡水与海洋环境浮游植物分布水层均可使用,可应用于湖泊、河流、水库、近海等不同水域。3.2通讯接口:RS485/RS232/USB3.3内置贮存空间: 16G/32G3.4内置电池续航时间: 12小时(2秒一次连续测量) 15 天(30分钟一次)3.5.光学窗口清洁:带自动清洁刷3.6.工作模式:支持离线与在线工作两种模式3.7 U盘模式:支持U盘模式数据文件直读3.8设备可以根据用户的需求定制如下参数:藻类类群数量、内置贮存空间。4. 配置清单4.1 野外藻类分析仪主机 l台4.2 润滑油脂 (lOml 注射器装) 1瓶4.3 128GB U盘 1个 4.4 硬壳保护箱 1个4.5 中文说明书及软件U盘 1套4.6 115V/230V电源 1个4.7 RS485/USB 多用途防水线缆 1条4.8 防水堵头 1个4.9 平板电脑 1台 4.10 校正容器 1套
    留言咨询
  • AquaPen AP110便携式藻类荧光测量仪是一款用于快速、精确测量水体藻类与蓝藻叶绿素荧光参数的手持式荧光仪。AquaPen有两种探头型号。AP110-C配备比色杯试管测量室,将要测量的水体、悬浊液或培养溶液采集到比色杯中进行测量,配备455nm蓝色和620nmLED红色光源,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度。AP110-P配备了浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类。AquaPen 具备极高的敏感度,可检测最低0.5μg Chl/L的叶绿素荧光,可以检测浮游植物浓度极低的自然水体,可用于野外和实验室测量。AquaPen采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。 AquaPen AP110便携式藻类荧光测量仪应用领域 藻类、蓝藻光合特性研究 水体藻类含量检测 光合突变体筛选与表型研究 生物和非生物胁迫的检测 藻类抗胁迫能力或者易感性研究 经济藻类育种、病害检测、长势与产量评估 功能特点:§ 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅180g§ 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数§ 内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP–test等§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数§ AquaPen两种探头型号:比色杯试管测量室,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度;浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类§ FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量§ 具备无人值守自动监测功能
    留言咨询
  • 该系统由数据采集平台或工控机与蓝绿藻探头、叶绿素a探头、CDOM 探头、水中油探头、水中硫化物(H2S,可同时测量pH, 温度和水深)、紫外水质探头(可测量COD、BOD、TOC、硝氮、亚硝氮,浊度)组成。高光谱紫外/可见光辐射传感器可接受被测目标的光谱信息,形成光谱文件。可测量的光谱波长在280..500nm (UV) 或 320nm&hellip 950nm(UV/VIS) 。广泛用于光谱研究、遥感、环境水质监测、海洋环境研究。系统有三种类型,单机单电极系统、单机多电极系统和监测网络系统。 单机单电极系统:该系统适用于任何水质状况。可用于单点监测的任何独立站点。系统能通过GSM modem 与中心控制室数据终端实现稳定的数据传输。主机带2个RS232 接口,通过专业通讯电缆与电极连接。特点:l 自带Windows 软件,可分屏同时显示不同参数l 可同时显示数据和工作曲线,现场情况一目了然。l 彩色LCD 液晶触摸显示屏l 2GB内存卡l 1个USB 接口用于数据交换和软件更新l 1个USB接口用于连接电极扩展盒l 2个RS232 接口用于连接电极l 1个高压气体清洗阀(可编程控制清洗功能,定期清洗探头) 单机多电极系统:该系统适用于任何水质状况。可用于进行多测点和多参数监测的任何独立站点。系统能通过GSM modem 与中心控制室数据终端实现稳定的数据传输。主机除自带2个电极外,还能通过扩展接线盒的RS232 接口与更多的电极连接实现多电极或测点同时测量。特点:l 自带Windows 软件,可分屏同时显示不同参数l 可同时显示数据和工作曲线,现场情况一目了然。l 1个高压气体清洗阀(可编程控制清洗功能,定期清洗探头) 监测网络系统:适用于一定区域如湖泊监测网点、大型污染源的监测组网。每个主机即是每个独立站点的数据采集器和控制器,也是整个监测网络中的传输节点。系统能通过电缆或GSM Modem 与中心控制室数据终端实现稳定的数据传输;各主机之间可以无线通讯兵实现远程相互查询功能,即每个主机可以作为客户端访问其它主机,也可以作为服务器接受其它主机的访问。系统实现多电极和多点位的区域性网络监测。尤其适合区域网络布点监测、区域预警监测。系统设备轻便,可以与浮标式监测设备配套使用。可太阳能供电。 藻类水质探头:蓝绿藻探头:是高精度浸入式电极传感器,是一个一体化微型荧光计。通过测量蓝绿藻体内藻青蛋白(phycocyanin)和衍生的藻蓝蛋白(蓝藻是唯一可产生大量藻青蛋白和藻蓝蛋白的藻类)在高能LED激发下释放出的荧光数量来计算蓝藻的含量。既可与手持读表连用,也可接入数据采集平台或其它工控机,成为在线监测仪表,停电后恢复供电可自动启动转入正常分析状态。 技术指标:分析方法:荧光法测量范围:0-10, 0-100 ug/L, 或0-250000细胞数/ml(可根据实际水体情况选择更大量程)灵敏度:0.02 ug/L分辨率:0.01 ug/L最低检测限: 0.06 ug/L防水深度:水下500米输出:RS232 或 4-20mA电源:5-14.5 VDC 叶绿素a探头:是高精度浸入式电极传感器,是一个一体化微型荧光计。根据叶绿素a 的光谱吸收特征,通过测定在高能LED激发下释放出的特定波长荧光来测量水中叶绿素a的含量。既可与手持读表连用,也可接入数据采集平台或其它工控机,成为在线监测仪表,停电后恢复供电可自动启动转入正常分析状态。 技术指标:分析方法:荧光法测量范围:0-10, 0-100 ug/L, 0-500 ug/L灵敏度:0.02 ug/L分辨率:0.02 ug/L准确度:+/- 2%防水深度:水下500米输出:RS232 或 4-20mA电源:5-14.5 VDC CDOM 探头:是一款微型浸入式电极,用于测量水中有色可溶性有机物,可长期稳定运行,可用于江河湖海各类水体水质调查。也适用于地表水及污染源等各种在线监测场合。既可与手持读表连用,也可接入数据采集平台或其它工控机,成为在线监测仪表,停电后恢复供电可自动启动转入正常分析状态。 技术指标及特点:量程:0-20/200 ug/L, 可根据需要选择更高量程高灵敏度:0.04 ug/L自动日光补偿防水深度:水下500米输出:RS232 或 4-20mA电源:5-14.5 VDC 水中油探头:高精度浸入式电极传感器,采用紫外荧光法测量水中油类。其敏感物质为特定碳氢化合物如多环芳烃(PAHs)。既适用于科学研究,也适用于污染源排放控制、工业过程控制、油类检漏以及其它水质在线监测等用途。既可与手持读表连用,也可接入数据采集平台或其它工控机,成为在线监测仪表,停电后恢复供电可自动启动转入正常分析状态。技术指标及特点:量程:0-10,100,500,5000ug/L, 可根据水质情况(如地表水或污水)选择量程高灵敏度:0.1 ug/L自动日光补偿防水深度:水下500米输出:RS232 或 4-20mA电源:5-14.5 VDC 水质探头:采用最新光谱技术,测量波长范围为190nm-720nm,涉及紫外、可见和红外区域,可对COD、TOC、BOD、硝氮、亚硝氮,浊度等参数进行测量。可测量单一参数或多参数合一。自动清洗、免维护功能也适合在线监测。既可与手持读表连用,也可接入数据采集平台或其它工控机,成为在线监测仪表,停电后恢复供电可自动启动转入正常分析状态。特点:l 水在线监测的新方向:光谱分析技术l 测量参数多,可选择单一参数或多参数l 自动清洗、免人工维护l 自动日光补偿l RS232 或 4-20mA输出
    留言咨询
  • 自容式藻类荧光计 400-860-5168转1218
    WETStar 自容式藻类荧光计特点: 一种使用简单、高精度、多功能自容式水下荧光计。WETStar荧光计可对环境水体中的叶绿素荧光提供高灵敏度的精确测量。叶绿素荧光作为水生生物聚集程度的一种因子用以估计水体中生物量的活动。WETstar采用新型流动池设计,避免了环境光波动的影响,外壳材料采用高级工程防腐设计,可长时间放置于水中进行测量。控制程序可以预设仪器的采样间隔 利用自动量程控制,仪器可以在复杂的条件下应用,能适应剧烈的动态变化,可以进行剖面测量,也可进行定点测量;使该荧光计可以单独工作,也可以和现有的CTD系统整合使用。参数:探头长:17.1cm,直径:6.9cm,重量:0.8kg,额定深度:600m,响应时间:0.17秒光学精度&ge 0.03&mu g/l,激发波长:470nm,发射波长:685nm,动态测量范围:标准0.03-75&mu g/l,或0.03-125&mu g/l软件界面:
    留言咨询
  • AquaPen AP110手持式藻类荧光测量仪是一款用于快速、精确测量水体藻类与蓝藻叶绿素荧光参数的手持式荧光仪。AquaPen有两种探头型号。AP110-C配备比色杯试管测量室,将要测量的水体、悬浊液或培养溶液采集到比色杯中进行测量,配备455nm蓝色和620nmLED红色光源,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度。AP110-P配备了浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类。AquaPen 具备极高的敏感度,可检测最低0.5μg Chl/L的叶绿素荧光,可以检测浮游植物浓度极低的自然水体,可用于野外和实验室测量。AquaPen采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。应用领域 藻类、蓝藻光合特性研究 水体藻类含量检测 光合突变体筛选与表型研究 生物和非生物胁迫的检测 藻类抗胁迫能力或者易感性研究 经济藻类育种、病害检测、长势与产量评估 教学功能特点:§ 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅180g§ 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数§ 内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP–test等§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数§ AquaPen两种探头型号:比色杯试管测量室,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度;浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类§ FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量§ 具备无人值守自动监测功能§ 内置蓝牙与USB双通讯模块, GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表§ 配备多种叶夹型号:固定叶夹式(适用于大批量样品快速测量)、分离叶夹式(适用于暗适应测量)、开放叶夹式(适用于温室、培养箱进行监测)、用户定制式等§ 可选配野外自动监测式荧光仪,防水防尘设计测量程序与功能 Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0 QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态)。 OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化 NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。 LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。 OD:光密度,反映藻类密度(限AP110-C)。技术参数 测量参数包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,OD680和OD720(限AP110-C)及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等 OJIP–test时间分辨率为10μs(每秒10万次),给出OJIP曲线和26个参数,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等 测量程序:Ft、QY、OJIP、NPQ1、NPQ2、LC1、LC2、LC3、OD(限AP110-C)、Multi无人值守自动监测 测量光:每测量脉冲0-0.09μmol(photons)/m2.s,0-100%可调 光化学光:0–1000μmol(photons)/m2.s,0-100%可调 饱和光:0–3000μmol(photons)/m2.s,0-100%可调 探头型号:AP110-C试管式、AP110-P探头式 光源:AP110-C:620nm红光和455nm蓝光测量叶绿素荧光,680nm和720nm红外光测量OD;AP110-P:455nm蓝光 试管容积(限AP110-C):4ml 叶绿素荧光检测限:0.5μg Chl/L 检测器:PIN光电二极管,667–750nm滤波器 尺寸大小:超便携,手机大小,165×65×55mm,重量仅290g 存贮:容量16Mb,可存储149000数据点 显示与操作:图形化显示,双键操作,待机8分钟自动关闭 供电:可充电锂电池,USB充电,连续工作48小时,低电报警 工作条件:0–55℃,0–95%相对湿度(无凝结水) 存贮条件:-10–60℃,0–95%相对湿度(无凝结水) 通讯方式:蓝牙+USB双通讯模式 GPS模块:内置 软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统操作软件与实验结果产地: 欧洲参考文献1. X Chen, et al. 2018. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere 196: 280-2872. C M' Rabet, et al. 2018. Impact of two plastic-derived chemicals, the Bisphenol A and the di-2-ethylhexyl phthalate, exposure on the marine toxic dinoflagellate Alexandrium pacificum. Marine Pollution Bulletin 126: 241-2493. P Steinrücken, et al. 2018. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions. Algal Research 30: 11-224. T Kieselbach, et al. 2018. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities. Photosynthesis Research 135(1-3): 149-1635. E Bermejo, et al. 2018. Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of Bioscience and Bioengineering, Available online 20 January 2018, In Press6. W Noh, et al. 2018. Harvesting and contamination control of microalgae Chlorella ellipsoidea using the bio-polymeric flocculant α-poly-l-lysine. Bioresource Technology 249: 206-2117. S Arisaka, et al. 2018. Genetic manipulation to overexpress rpaA altered photosynthetic electron transport in Synechocystis sp. PCC 6803. Journal of Bioscience and Bioengineering, Available online 5 March 2018, In Press8. J Tang, et al. 2018. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO2 nanoparticles. Bioresource Technology 248: 75-819. T Antal, et al. 2018. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiologia Plantarum, https://doi.org/10.1111/ppl.1269310. SB Ouada, et al. 2018. Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). Journal of Applied Phycology 6: 1-12
    留言咨询
  • 产品概述EXPEC 8100 流式藻类分析仪(实验室版)是基于流式荧光光谱和流式影像术相结合的浮游植物(藻类)高精密检测仪器,可提供丰富的荧光、图像等多维参数信息。EXPEC 8100 通过流体聚焦技术实现藻类细胞处于流体中心平面进样分析,结合深度神经网络AI智能图像识别技术,实现藻类自动、高效、精准的定性和定量。EXPEC 8100可广泛应用于河流、湖泊、海洋等水体藻类调查、监控、预警。 性能优势适用范围广 适用于大范围藻类尺寸(1-1000μm)和藻密度(102-1011cells/L)样品检测需求。检测准确度高 定性到属,定量以藻细胞计数,可获取藻类荧光光谱和显微图像等多维信息,结合藻类数据库使仪器优异性能充分发挥,此外人工辅助修正功能进一步提升仪器检测准确性。检测高效 一般单个样品的检测时间不超过10min,也可根据需求设置检测停止条件,藻细胞检测个数或检测时间等。前处理服务 综合考虑实际样品复杂性,针对不同藻类样品,开发相应前处理方法及技术。软件智能便捷全中文界面符合使用习惯,具有开机自检,分析过程向导式操作,支持藻类检测视频展示,支持数据多种筛选、统计、展示方式,支持藻类数据库升级更新。仪器维护方便具有自动维护功能,自动进行仪器周期性自检,系统维护等操作,维护操作简单,配备专业运维团队可快速响应仪器维护需求及上门服务。 应用领域应急监测,环境监测,公共安全,科学研究,水产养殖等
    留言咨询
  • YZQ-201C藻类荧光-光合仪 YZQ-201C藻类荧光-光合仪,是在201A藻类光合仪基础上增加了藻类荧光测量的新款仪器。该仪器能够监测光合放氧和呼吸耗氧,又可以测量藻类OJIP荧光动力学曲线,从而得到最大光化学效率。首先仪器特色是恒温控制、光谱可以调节、光强可以调节,控温精度达到±0.1℃。光谱分为暖白、R、G、B四种光谱可选,也可以多光谱定制。搭载荧光氧传感器(光学测量原理)测量微动态氧变化,自带搅拌功能使得测量更加稳定。实验设计可以是相同温度,不同光强,还可以是不同温度,同一光强对比测量均可实现。在恒温恒光环境下可连续监测藻类、根系、微生物、叶绿体等样本的微动态氧的变化,从而计算光合速率变化的状况。其次是将藻液收集到荧光测量室内进行荧光指标测量,藻反应杯包括藻液收集装置和藻液暗适应装置,收集和暗适应完毕即可将荧光传感器插入荧光测量室内进行荧光测量。 功能与特点(1)主机集成了荧光测量功能和光合放氧(呼吸耗氧)测量功能。(2)荧光氧电极(光学原理)的优势在于反应速度快,稳定性好,重复性好;对比极谱(CLARK)氧电极(电化学原理),不需要每次测量前要标定,不需要更换溶氧膜,不需要更换电解液,不需要打磨电极,不需要活化复新电极。(3)恒定温度、不同光强下样本光合速率的变化测量。不同温度梯度下的同一样本光合速率的变化测量(4)自带搅拌使得测量数据更稳定。(5)自带控制软件可进行实时控制。(6)自带智能藻液收集装置和荧光暗适应测量室。应用(1)藻类光合生理生态的研究(2)微生物、根、花粉等呼吸速率的研究(3)叶绿体等高等植物光合速率的研究
    留言咨询
  • MC1000 8通道藻类培养与在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,其主要功能特点如下: 1. 8通道藻类培养,每个藻类培养试管可培养85ml藻液2. LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等3. 光密度在线监测,包括OD680、OD720,监测数据自动存储4. 溶解氧在线监测(备选)以测量分析藻类光合作用等5. 温度、光照控制可用户设置不同的程序模式6. 气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀7. 可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收8. 可选配藻类荧光测量模块MC1000 8通道藻类培养与在线监测系统应用领域:l 多通道同步藻类培养l 同步梯度胁迫实验l 培养条件优化l 控制培养条件与藻类生长动力学监测MC1000 8通道藻类培养与在线监测系统仪器型号:MC 1000-OD: 8个通道光源颜色相同,标配冷白光LEDMC 1000-OD-WW:8个通道光源颜色相同,标配暖白光LEDMC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。MC 1000-OD-MIX:每个通道可配备最多8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。
    留言咨询
  • 水体富营养化(eutrophication)是指由于人类活动的影响,导致大量外源氮、磷等营养物质进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。当总磷浓度超过0.1mg/l(如果磷是限制因素)或总氮浓度超过0.3mg/l(如果氮是限制因素)时,藻类会过量繁殖。经济合作与发展组织(OECD)提出富营养湖的几项指标量为:平均总磷浓度大于0.035mg/l;平均叶绿素浓度大于0.008mg/l;平均透明度小于3m。目前一般采用的指标是:水体中氮含量超过0.2-0.3ppm,生化需氧量大于10ppm,磷含量大于0.01-0.02ppm,pH值7-9的淡水中细菌总数每毫升超过10万个,表征藻类数量的叶绿素-a含量大于10&mu mg/L。水体富营养化在线观测预报系统由藻类在线观测模块、氮磷在线观测模块、水体呼吸在线观测模块及污染源荧光示踪仪组成,可在线监测藻类浓度动态变化及生态生理状况、总氮总磷及营养盐动态变化、溶解氧动态变化及BOD等,并通过移动式荧光示踪测量仪观测分析藻类的空间分布状况、荧光示踪测量分析污染源分布和时空变化等,全面监测和解析富营养化的时空动态变化及来源,即时作出预测预报及相应防治对策。藻类在线观测模块采用叶绿素荧光技术(Technique of chlorophyll fluorescence)原理和叶绿素延迟荧光技术(Delayed fluorescence technique)原理。前者通过脉冲调制荧光方法(Pulse amplitude modulated (PAM)fluorescence methods),利用调制测量光、持续光化学光及饱和光闪激发叶绿素荧光,测量分析Ft、QY及OJIP等快速荧光参数,以研究藻类及高等植物的光合生理生态和胁迫生理,如不同除藻剂及不同剂量的QY和OJIP变化,以便找出除藻剂最低有效剂量及高效无污染除藻剂技术,其中Ft、OJIP固定面积(Fix-area,指OJIP曲线下面的面积)与藻类叶绿素浓度呈相关关系,经校准可以测量藻类密度(藻类叶绿素浓度);延迟荧光是比快速荧光弱但持续时间更长的叶绿素荧光,浮游植物延迟荧光与活体藻类浓度相关,不同颜色藻类可以激发出不同的延迟荧光,依次可以区分不同藻类的浓度,达到定性、定量监测藻类的目的。水体富营养化在线观测预报系统使用公认的实验室湿化学分光光度法进行样品分析,水体呼吸采用&ldquo 间歇式&rdquo 测量原理,集合了&ldquo 开放式&rdquo (实时测量)和&ldquo 封闭式&rdquo (测量简单但精度差)的优点,同时又克服了开放式测量时间解析度差、封闭式不能连续长时间测量等缺点,利用光纤荧光氧气测量技术,在线测量观测溶解氧及水体呼吸并可求出BOD等。水体富营养化在线观测预报系统主要功能特点如下:1. 可在线分类定量监测蓝藻和绿藻等其它藻类的动态变化2. 在线监测光谱性藻类的叶绿素荧光参数Ft、QY及OJIP-fix area,从而可全面分析藻类的光合生理状况、胁迫状况、生长状况及浓度状况3. 在线分析总氮、总磷,并进一步监测分析各组分包括磷酸盐、氨氮、亚硝态氮、硝态氮的动态变化4. 在线监测分析水体溶解氧变化、水体呼吸及BOD状况5. 各监测模块自由组合,又可独立运行6. 利用荧光示踪技术,可追踪污染源的空间分布状况,可用于地表水污染状况分布图绘制、污染状况监测研究、污染源追踪等性能指标1. 高灵敏度在线监测广谱藻类叶绿素荧光特性包括Ft、QY和OJIP-Fix area等,检测极限达30ng Chl/l,可检测出10 cells/ml的绿藻或100 cell/ml的蓝藻。蓝色(455nm)和红色(630nm)双色测量光,可选配其它波长测量光2. 延迟荧光技术分类定量监测蓝藻、绿藻(包括绿藻、裸藻等)、硅藻(包括硅藻、金藻、黄藻等)和隐藻类4种藻类,可通过USB接口下载数据或通过网络远程数据下载和数据诊断3. 在线测量监测总磷、磷酸盐、总氮、氨氮、硝态氮和亚硝态氮的动态变化,超量程自动稀释;标准检测范围:a) 总磷:0-3ppm-200ppm-Pb) 总氮:0-5 ppm - 1000 ppm &ndash Nc) 氨氮:0-0.2 ppm - 200 ppm - N-NH3d) 硝酸盐+亚硝酸盐:0-5 ppm - 1000 ppm - N-NO3e) 亚硝酸盐:0-0.05 ppm - 20 ppm - N-NO2f) 磷酸盐:0-0.2 ppm - 200 ppm - P-PO44. 营养盐测量方式为循环顺序测量,测量间隔程序可调5. 具备试剂冷藏配置,试剂更换3-6周(取决于测量参数及方法等因素)6. 内置时钟和显示屏,在线显示和存储数据包括日期、时间及测量值等7. Mini型荧光光纤氧传感器, Mini光纤氧探头外径2.8mm,内径2.0mm,被覆有光隔离材料以避免生物自发光造成的干扰,因而可以测量藻类等(有叶绿素荧光)具有内部自发光的生物耗氧;零氧耗、高稳定性,响应时间快于6秒(气相测量);可测量液相和气相氧浓度,测量范围0-50%空气氧、0 - 22.5 mg/L,测量极限0.15 %空气氧、15 ppb溶解氧;氧浓度在线温度补偿,不受电磁信号干扰8. 污染源荧光示踪仪为带参考光束的90度滤波式荧光仪,光源、检测器内置用户自定义设置的光学滤波器,多广谱测量,适于叶绿素荧光和其它示踪荧光如荧光素(光源465nm,检测器530nm)、若丹明(光源530nm,检测器580nm)等;测量单位:ppt,ppb,&mu g/l,&mu mol等,或者任意单位,灵敏度Chla 0.025&mu g/l 国内外应用状况藻类荧光技术应用于水体藻类监测包括水华监测预报及藻类生理生态和防治研究,近些年来在国际上得到越来越广泛的重视和应用,成为评估水体生态系统的重要技术手段和研究领域,对全球水生态评估和研究具有划时代意义。Dijkman等(1999)利用双调制荧光仪可以检测到100pM(皮摩尔浓度)叶绿素浓度的藻类。Vera Istvanovics 等(2005)利用延迟荧光技术对匈牙利Balaton湖浮游植物进行了持续在线监测,结果表明延迟荧光数据与传统显微镜计数法及实验室叶绿素浓度测量法具有极高的吻合性,可以精确监测不同藻类的浓度,检测极限约为1&mu g Chl/l。Gabriel等(2006)以Ft作为藻类叶绿素浓度指标、QY(Fv/Fm)作为藻类光合效率指标,研究了哥伦比亚安第斯高山带湖泊藻类动态,结果显示6月份深水层藻类叶绿素浓度高但光合效率低,而10月份水体循环期,藻类叶绿素浓度低但光合效率高,藻类光合效率并不依赖于生物量,而是与营养可获得性及光辐射情况有关。2007年,第一届&ldquo 叶绿素荧光技术与水科学&rdquo (Aquafluo 2007: chlorophyll fluorescence in aquatic sciences)国际会议在捷克召开;2010年,《Chlorophyll Fluorescence in Aquatic Sciences: Methods and Applications》(David J.Suggett等,2010)一书正式出版,该书全面介绍了荧光技术包括延迟荧光技术在水体藻类监测、研究、水体生产力评估等方面方法、技术和应用等。我国营养盐测量监测多采取采样实验室分析的方法(刘信安等,2005;李哲等,2009;),与实验室分析相比,原地(in-situ)在线监测具有即时(real-time)持续监测动态变化等无可比拟的优点,而且可以与藻类在线监测等数据耦合分析,因此成为国际研究的热点。欧盟于2007年启动了WARMER 项目(Water Risk Management in EuRope),其目标为在海滨地带及大江大湖区建立一个水质即时(real-time)监测系统,作为本项目的内容,Gunatilaka等(2009)利用原位监测技术,对威尼斯泻湖磷酸盐、铵态氮、硝态氮和亚硝态氮进行了监测,监测结果比起抽样实验室分析法(如每周或每月抽样)更精确系统地反映了营养盐的日变化、月变化等动态。参考文献:1. Kijkman,N., D. Kaftan and M. Trtilek. Measurements of phytoplankton of sub-nanomolar chlorophyll concentrations by a modified double-modulation fluorometer. Photosynthetica, 37(2): 249-254, 19992. Istvanovics, Vera, Mark Honti, Andras Osztoics, etc. Continuors monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy. Freshwater Biology, 50: 1950-1970, 20053. Gabriel A., John C. and Carlos A. Photosynthetic efficiency of Phytoplankton in a Tropical Mountain Lake. Caldasia 28(1): 57-66, 20064. Prasil O, Suggett D J, Cullen JJ, etc. Aquafluo 2007: chlorophyll fluorescence in aquatic sciences, an international conference held in Nove ́ Hrady. Photosynth Res. 95(1): 111-115, 20085. David J., Borowitzka, Michael A, etc. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer Dordrecht Heidelberg London New York, 2010.6. Gunatilaka, A., P. Moscetta, L. Sanfilippo, etc. Observations on Continuous Nutrient Monitoring in Venice Lagoon. IEEE Oceans&rsquo 09 conference, Biloxi(USA), 26-29, 20097. Moscetta, P., L. Sanfilippo, E. Savino, etc. Instrumentation for continuous monitoring in marine environment. IEEE Oceans&rsquo 09 conference. Biloxi(USA), 20098. 李哲、方芳、郭劲松等,三峡小江回水段2007年春季水华与营养盐特征。湖泊科学,21(1):36-44,20099. 刘信安、湛敏、马艳娥,三峡库区流域藻类生长与营养盐吸收关系。环境科学,26(4):95-99,2005
    留言咨询
  • MC1000 8通道藻类培养与在线监测系统 MC1000 8通道藻类培养与在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,其主要功能特点如下:1. 8通道藻类培养,每个藻类培养试管可培养85ml藻液2. LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等3. 光密度在线监测,包括OD680、OD720,监测数据自动存储4. 溶解氧在线监测(备选)以测量分析藻类光合作用等5. 温度、光照控制可用户设置不同的程序模式6. 气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀7. 可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收8. 可选配藻类荧光测量模块应用领域:l 多通道同步藻类培养l 同步梯度胁迫实验l 培养条件优化l 控制培养条件与藻类生长动力学监测仪器型号:MC 1000-OD: 8个通道光源颜色相同,标配冷白光LEDMC 1000-OD-WW:8个通道光源颜色相同,标配暖白光LEDMC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)品蓝光450nm,3)蓝光470nm,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)深红光660nm,8)远红光730nmMC 1000-OD-MIX:每个通道可配备8种不同颜色的LED光源,LED颜色为1)紫光405nm,2)品蓝光450nm,3)蓝光475nm,4)2个暖白光LED,5)绿光530nm,6)橙红光615nm,7)深红光660nm,8)远红光730nm技术指标:1. 藻类同步培养通道:8个2. 培养管容量:100ml,建议最大培养容量85ml3. 在线即时监测参数:分别监测每个培养管的OD680和OD720,数据自动保存到主机内存中,PIN光电二极管检测器,665-750nm带通滤波器4. 精确控温范围:标准配置高于环境温度5-10℃(与光强有关)~60℃,可选配15℃-60℃(环境温度20℃,需加配制冷单元)5. 加热系统:150W筒形加热器,水浴控温6. 水浴体积:5L7. 水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补水8. 光源系统:全LED光源,可在0-100%范围内调控,每个通道的光强可分别独立调控1) MC 1000-OD:标配冷白光LED,可选配暖白光、红光(635nm)或蓝光(470nm)LED;光强0-1000μmol/m2/s可调, 可升级至0-2500μmol/m2/s2) MC 1000-OD-WW:标配暖白光LED,光强0-1000μmol/m2/s可调,更高光强可定制3) MC 1000-OD-MULTI:8个通道光源颜色不同,分别为紫光405nm,品蓝光450nm,蓝光470nm,暖白光,绿光540nm,黄橙光590nm,深红光660nm,远红光730nm;光强0-1000μmol/m2/s可调4) MC 1000-OD-MIX:每个通道可配备8种不同颜色的LED光源,最大光强可达2500μmol/m2/s9. 控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等10. 控制单元显示屏:可调控培养程序和显示数据11. 气流调控:通过多管调节阀对8个培养管手动独立调控气体流量12. OD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出为TXT或Excel文件13. MC实时在线监测分析模块(含专用工作站和软件基础版或高级版,选配)1) 同时控制2台MC1000(基础版)或无限台MC1000(高级版)2) 通过PBR软件动态调控光照和温度模式3) 通过光密度(OD680、OD720)变化实时监测藻类生物量4) 对生长速率进行实时回归分析5) 多数据管理功能(过滤、查找、多重导出)6) 可将测量数据、培养程序和其他信息保存到数据库中7) 通过GUI图形用户界面设置培养程序并在线显示测量数据图8) 数据可导出为CSV文件9) 支持GMS高精度气体混合系统(仅限高级版)10) 用户自编程培养程序(仅限高级版)11) 设定实验起始时间(仅限高级版)12) 电子邮件通知(仅限高级版)14. GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备15. 恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控制 16. O2/CO2监测系统(选配):8通道续批式监测藻类CO2吸收或光合放氧通量:1) 氧气分析测量:氧气测量范围0-100%,分辨率0.0001%,精确度优于0.1%,温度、压力补偿,数码过滤(噪音)0-50秒可调,具两行文字数字LCD背光显示屏,可同时显示氧气含量和气压2) 二氧化碳分析测量:双波长非色散红外技术,测量范围0-5%或0-15%两级选择(双程),分辨率优于0.0001%或1ppm(可达0.1ppm),精确度1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显示CO2含量和气压,具数码过滤(噪音)功能3) 气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功能17. 藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类生理状态及浓度,荧光测量程序包括Ft,QY,OJIP-test,NPQ、光响应曲线等,可选配探头式测量或试管式测量:1) 探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数 2) 试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度值18. 通讯方式:USB19. 尺寸:71×33×21 cm20. 重量:13kg21. 供电:110-240V应用案例:莱茵衣藻全基因组重测序的样品预培养与生长动态监测(Flowers, 2015, Plant Cell)通过基因工程改造莱茵衣藻控制生物污染(Loera-Quezada, 2016, Plant Biotechnology Journal)产地:捷克参考文献:1. Barera S, et al. 2021. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology 328: 0168-1656.2. Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.3. Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.4. Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).5. Cecchin M, et al. 2021. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species 18(2): 431842.6. Dixit RB, et al. 2021. Secretomics: A Possible Biochemical Foot Printing Tool in Developing Microalgal Cultivation Strategies. doi: 10.21203/rs.3.rs-163118/v17. Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2 in Microchloropsis gaditana NIES 2587. Frontiers in Plant Science 11: 981.8. Billey E, et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.9. Vonshak A, et al. 2020. Photosynthetic characterization of two Nannochloropsis species and its relevance to outdoor cultivation. Journal of Applied Phycology 32(2):909-922.10. Dienst D, et al. (2020). High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Scientific Reports 10(1): 5932.11. Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.12. Akma C, et al. 2020. Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.13. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 78.14. Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology 11: 1445.15. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.16. Nzayisenga, JC, et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.17. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(6): 312. 18. Flamholz AI, et al. 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. eLife 9: e59882.19. Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13: 17. 20. Valev D, et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.21. Yao L, et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.22. Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.23. Alessandra B, et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52..
    留言咨询
  • 水中叶绿素藻类检测仪 天尔TE-16075寸彩色触摸屏,内置热敏打印机;便携式设计,内置大容量充电锂电池,待机时间长;采用传感器新技术、无需试剂,无污染,经济、便捷;整机按照人工学设计,外观流行时尚,携带方便;可长时间在野外工作,中文界面,操作简单、快速;采用高精度数字电极,可进行温度补偿,从而实现更稳定准确的测量值;双电源供电模式,内置大容量锂电池,支持户外检测;配备专用适配器为设备供电,可在实验室进行检测,是一款多功能的水质分析仪器。水中叶绿素藻类检测仪 天尔TE-1607技术参数:叶绿素测量范围0.15-400μg/L测量精度R2>0.999分辨率0.01μg/L温度补偿0-45℃蓝绿藻测量范围0.15-100μg/L测量精度R2>0.999分辨率0.01μg/L温度补偿0-45℃水体叶绿素藻类检测仪 天尔便携式污水分析仪厂家直销、支持定制、质保三年
    留言咨询
  • 测量原理 ALGcontrol采用特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。 同类藻体中含有等量的同种色素,被激发出的荧光是一样的(都被激发出680nm的荧光)。但同一种藻类受到不同波长单位强度的光照射时,发出的荧光强度不同,并且不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。 另外,DOM和浊度会干扰藻类的测定,因此仪器还分别测定365nm和710nm的激发荧光对DOM和浊度进行补偿,以提高藻类测定的准确性。 仪器采用7种不同波长的光(365,450,525,570,590,615,710nm),以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以μg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。全自动监测藻类浓度在水体中的变化 可同时测定总叶绿素、蓝藻叶绿素、DOM(溶解性有机物)、浊度,DOM和浊度值可自动修正叶绿素浓度 几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发 易于集成到iTOXcontrol在线生物综合毒性系统 数据快速存储和自动图形显示 藻类浓度超过设定值快速给出报警信号 易维护、低费用 地表水:河流、湖泊、水库、海洋
    留言咨询
  • bbe在线藻类分析仪 400-860-5168转4464
    在线藻类分析仪是一款专门对各种藻进行分类以及对各类藻的浓度进行定量检测的实时检测设备,在线藻类分析仪可以实现:对藻进行分类,定量检测各类别的浓度及活性,包括绿藻、蓝藻、硅藻/甲藻以及隐藻;检测叶绿素a的总浓度;通过软件可实现藻分类计数;确定叶绿素光合作用意义上的活性。 相比传统的培养和显微镜检测法,在线藻类分析仪分析快速(3分钟分析一个样品)、操作简便,减轻了藻类分析的工作量,并有效地减少了人为误差。 在线藻类分析仪具有极高的检测可靠性,检测结果与经典的HPLC分析方法相比具有极高的相关性(R2>0.93)。应用场合湖库、河海、湿地监测湖沼学研究?、自来水教学和科研、环境监测、水产养殖 产品主要特点实时原位检测、操作简便,分析快速、样本无需预处理、检测灵敏度高、检测可靠性高、通过软件实现藻分类及计数、能够判别4种以上藻类并检测其浓度 软件特点随时保存数据和参数、通过图形 显示监测值、在局域网上在线显示、完成设备校准、测量数值图表化、测量参数化、可将测值以excel或文档形式导出、完成藻分类检测的后续校准 检测原理:光合色素组成相似的藻类对多个设定波长的激发光具有相近的响应荧光光谱,因为特征色素的存在,不同类群藻类的荧光光谱之间具有较显著的差异,根据藻类指纹图谱及其强度,对藻类进行分类及对各类藻的浓度进行定量检测。技术参数型号AOA测量参数总叶绿素a/总藻密度;黄色物质;绿藻浓度/密度;蓝藻浓度/密度;硅/甲藻浓度/密度;隐藻浓度/密度;透光性;水温测量范围0-500μg chl-a/l测量时间3 min测量光源370/470/525/570/590/610nm分辨率0.01μg chl-a/l检出限0.05μg/l透光性0-100%维护周期≥7天/次重量19Kg尺寸420mm*600mm*200mm(H*W*D)电源110/240V 50/60Hz功率100W样品容量30mL样品温度0-35℃储存温度0-50℃防护等级IP54数据接口1*RS232;1*USB3 2*USB2 1*LAN(Ethanet)软件Bbe专用软件选配活性;带切换阀的控制单元;模拟输出4-20mA;继电器输出;带bbe转换器的SDI-12;Modbus 悬臂支架壁挂
    留言咨询
  • FastOcean APD原位藻类荧光仪采用多波长快速重复荧光技术,测量原位总初级生产力Gross Primary Productivity (GPP),是测量光合生物可变荧光的有力工具。特征全自动同步环境光和暗适应的传感器三个激发波长:450,530和624 nm多激发波长组合连续测量FastPro8软件提供自动数据处理,演示,归档和导出自动重新计算所有相关参数,除去样品空白和其他用户修改参数两个FastOcean APD的系统内的传感器可以用于实验室工作,可以结合FastAct系统一起工作FastOcean APD原位藻类荧光仪参数测量范围:有效FRR数据信号相当于叶绿素a浓度0.02-200mg/m3最大深度:600m输入电压:18-36V功耗:4.8W(峰值5W)电池持续时间:连续工作6小时数据软件:FastOcean APD 剖面测量系统能通过编程后,通过电池包自动运行,也可通过FastPro8软件实时操作。连续采样频率为10Hz,LED强度单位为(photons m-2 s-1 x 1022)。自然环境下和暗适应下的荧光曲线
    留言咨询
  • 便携式藻类检测仪 天尔TE--1807采用5寸彩色触摸屏,内置打印机,无需化学试剂,环保无污,运用高精度数字电极,具有实时数据传送,4G通讯模块,检测项目有COD,TOC,氨氮,浊度,悬浮物,叶绿素,蓝绿藻,余氯,pH,溶解氧,温度,电导率,ORP,TDS,水中油等项目,适应于各种恶劣工作环境,专业水质检测仪系统,内置高容量锂电池,仪器性能稳定、测量准确、测定范围广、功能强大、操作简单、是一款为客户在野外,实验室提供检测,监察,数据管理融为的一体手持式水质检测系统 .便携式藻类检测仪 天尔TE--1807※ 5寸彩色触摸屏,内置打印机※ 手持式设计,内置大容量充电锂电池,待机时间长;※ 采用传感器新技术、无需试剂,无污染、经济、便捷,精度高,响应快;※ 整机按照人工学设计,外观流行时尚,携带方便;※ 可长时间在野外工作,中文界面切换,操作简单、快速;※ 采用高精度全数字光学电极,自动温度补偿,从而实现更稳定准确的测量;※ 可选择免校准测量,自动锁定测量读数,保留稳定的读数易于浏览与记录;※ COD、浊度、悬浮物、叶绿素、蓝绿藻、水中油采用全数字光学电极,能自动对光路衰减及浊度影响进行快速补偿,从而实现更稳定准确的测量值; 可广泛应用于科研院所、环境监测,环境工程、江河湖泊、自来水厂、石油化工、生物制药、光伏能源、食品饮料、水产养殖和市政给排水以及第三方检测等行业 .
    留言咨询
  • 水产养殖物联网监测系统owl-smart 一、产品背景产养殖中水质好坏是决定养殖效益的决定条件,一直以来人们依靠的是经验,肉眼看水,或者人工取样来检测水样,从而判断水质好坏以及是否需要调水,误差大,时间长,人工成本大,很容易调水不及时给养殖带来灾难,水质在线监测系统就能很大程度上解决这个问题,使用高灵敏度的传感器技术实时把水质参数监测出来,让养殖户在手机和电脑端就可以看到数据,并且根据数据联动控制养殖设备,如增氧设备,投饵机等。二、产品简介养殖环境监测系统属于OWL-SMART物联网环境监测系统产品,是由深圳市猫头鹰智慧科技有限公司自主研发,综合软硬件一体化物联网解决方案;是基于环境网格化监测系统的一套实时在线监控,数据24小时全天侯实时,接收、保存,下载、图表显示、智能分析、智能告警提醒(支持5路,短信,电话,微信)。无需安装,通过浏览器即可登录管理。 具有HJ/T212-2017、工控协议等数据协议覆盖全,系统集成度高,功能丰富,工具集众多,安全可靠和开放兼容性好等特点 ,具备高可定制性, 实现了前端设备“云端管理,自动报警,远程查看”的物联网管理。三、平台系统架构 OWL-SMART物联网监测系统架构 基于物联网理念,并结合了“多端显示”的思想,监测硬件设备作为前端,24小时不停电监测现场环境数据,并通过wifi,网口,gprs/4G /NB-iot/zigBee等数据链路往云平台上传数据(默认采用4G上传,客户要求除外);云平台24小时全天侯实时,接收、保存,下载、图表显示、智能分析、智能告警提醒(支持5路,短信,电话,微信),用户可以可以通过微信公众号端,电脑端,大液晶电视屏都可以直观查看实时数据,历史数据,数据变化趋势,规律等。四、功能与特点(1) 平台支持设备多种状态管理,如停产管理,设备停运,维护状态,手工输入状态,故障状态,校准状态,超标,离线,通讯异常等状态分类管理;(2) 支持GIS电子地图状态显示,离线,在线,与报警闪动,(3) 通过网络实现远程登陆,无需安装任何软件,通过浏览器即可登录查看。 (4) 满足政府监管平台框架及功能要求,分区域监管(5) 实时数据查看(6) 历史数据变化曲线图查看(7) 设备状态查看(8) 各项指标污染排行榜查看(9) 实时告警页面查看,报警阀值远程可配置。(10) 历史告警记录查询(11) 数据导出(12) 设备管理(13) 用户管理(14) 用户中心(15) 可不用到现场就能配置设备,或者可不用到现场就能启动设备的喷淋设施(16) 标准GIS实时地图(17) web service开放接口(18) 支持大于1000套设备接入(19) 支持OEM定制开发(20) 支持颗粒物(PM2.5/PM10/TSP)、噪声、气象五参数、负氧离子、总辐射、光照强度、雨量、O2、H2S、NH3、SO2、NO2、、CO2、CO、O3、VOC、CH2O等监测数据处理支持接入阿里云iot物联网平台五、养殖检测产品安装(3种可选)1. 固定立杆式2. 壁挂式主机盒3. 防水主机盒考虑到高湿环境/海水易锈及高腐蚀性,金属立杆容易生锈,故很多项目使用以下防水抗腐蚀的塑料机箱进行设备安装 客户可把机箱固定于养殖场浮标设施或者固定于其他地方,把探头插入养殖池水中即可。六、技术参数1. 溶解氧 测量范围0~20.00 mg/L,量程自动切换;0~60℃分 辨 率0.01mg/L,0.1℃精度±0.5%FS,±0.3℃自动温度补偿0~60℃通讯接口485 通讯接口,标准MODBU 通讯协议信号输出光电耦合器隔离保护 4~20mA 信号输出,模拟电压输出工作条件环境温度为 0~60℃,相对湿度≤90%输出负载负载<300Ω(4-20mA)工作电压直流 24V 戒直流 12V 戒直流 5V(约定)线缆长度标配线缆长度 2 米,延长 20 元/米 2. PH测量范围0~14pH分辨率0.01pH准确度±0.1pH供电输出12—24VRS485信号 3. 水温 测量范围-50~50℃分辨率0.1℃准确度±0.1%FS ±0.3%FS ±0.5%FS供电输出12—24VRS485信号 4. 盐度(电导率) 测量范围0~200us/cm分辨率0.1us/cm准确度±1.5%F.S.供电输出12—24VRS485信号七、云平台 采用B/S构架+微信公众号的前沿设计,通过网络实现远程登陆,无需安装任何软件,通过浏览器或者微信即可登录查看。 八、全终端触达桌面版,web, 大屏,安卓平板和手机,iphone, ipad1. 液晶大屏显示大屏系统组成的元素有:物联网设备数据信息,地区定位,日期,天气预报,生活指数预报,天气预警,UI等组成;下面对各个部分进行详细介绍: 提供液晶屏与Led屏、同步屏等多种方式显示可在展厅,宣传区,通过液晶电视大屏显示数据,系统具备C/S架构,具备超强设备类型接入兼容能力,可接入水产养殖监测设备,可燃气体监测设备,扬尘环境监测设备,气象设备等类型的数据;整个系统由大屏系统与小屏系统组成,客户通过本系统,即可查看物联网系统中的各种数据与信息。本系统支持55寸液晶电视,10.1寸平板同时显示数据,一大一小,大屏可用于监管大屏展示;10.1寸小屏数据显示可放置于监管人员桌面使用,高端大气,富含科技感。下面分别对大屏系统与小屏进行介绍。2. 监管大屏展示 监管端大屏实时展示3. 微信公众号 通过公众号可简便触达数据,轻松管理与查看数据4. 电脑登录查看 电脑端,按区域网格化监管九、超标自动告警1. 平台报警提醒 当设备超标时,网页相应参数,自动闪烁红色提醒2. 微信告警提醒 当设备超标告警时,自动推送告警给用户与监管部门3. 电话告警提醒 在污染严重,且连续超标20分钟,平台自动电话语音通知用户紧急处理; 4. 报警历史查询 5. 支持设备多种状态分类管理十、系统安全多方位,多层级安全策略和防护措施,确保在设备对接,数据传输,用户认证,会话管理和权限控制等各个环节的数据和操作安全,防止数据在传输过程被泄漏篡改,防止仿 冒会话和恶意攻击,防止跨越权限的数据查阅和系统操作,同时, 所有涉及系统安全的行为都会记录安全日志,以做安全审计。 十一、北斗+GPS双模定位地图实时展示设备的位置和运行轨迹 6. 十二、可接入阿里云iot物联网平台 十三、设备远程维护通过VPN,SSH,telnet等方式可实现远程调试,参数设置和固件升级等操作 十四、电话短信微信报警和故障预测报警推送,报警事件日志,故障报警大数据分析,预警参数设 置, 运行信息大数据分析,智能预测潜在故障 支持5路紧急电话预警,5路短信微信预警。十五、开放数据接口WebService接口,支持TCP/IP、 restful api等多种方式 十六、使用说明/保养维护1) 接线请按照标签说明接 1. PH(一)使用说明2) 本说明适用于智慧型pH系列电极。3) 传感器敏感膜球泡属于易损品,一旦损坏将无法修复。4) 使用之前请仔细研读本说明。5) 打开包装前请检查包装是否有损坏。如果外包装已破损,请不要继续打开包装物,请立即与销售公司、最近的授权代理商或直接与我们联系,运输方代表到场后共同打开包装检验电极是否损坏,建议拍照取证。6) 如外包装完好但电极损坏请立即与销售公司、最近的授权代理商或直接与我们联系,并将电极原包装寄回。7) 不要将电极放在蒸馏水或去离子水内存储。8) 测量过程中,电极敏感膜球泡处若有污垢、黏着物或结垢,将会导致测量值不准确或波动 ,应及时清洗和校准。9) 传感器球泡内若有空气,将会导致测量值不准确或波动,可以轻轻甩动电极将气泡甩去。10) 该说明书所阐述的内容将随产品不断改进而改变,本公司在在说明书中将不另行通知,并且不承担由此带来的后果11) pH电极一般建议选择流通槽安装,测量更稳定,更准。12) 管道安装时,15°-165°为合法安装区域,其余为错误安装区域13) 安装方式。 (二)维护、保养和储存1) 冲洗电极后只能用柔软的纸巾吸干水分,切勿摩擦敏感膜。2) 当你发现电极上有白色氯化钾晶体积聚时,这一盐态的物质不会影响使用,只需用蒸馏水漂洗电极去除晶体后吸干即可。3) 储存电极时,必须旋上保护套,保护套必须含有浸泡液,保证电极球泡的湿润4) 必须保持电缆线接头清洁,不能受潮或进水。5) 电极不能长期干放,不能在表面附有干燥介质时储存,干放的电极应先放在合适的保存液中活化后才能使用。(三)故障排除1) 使用时出现测量不准时,一般仪表的故障率较低,主要是pH电极的状态发生了变化,因此需检查pH电极是否在良好状态。而pH电极也不易损坏,一般是球泡破损,结垢,参比中毒,堵塞等,应及时维护保养或更换。2) 仪器显示值过大、过小或无变化时,检查电极与仪表连接线或接头是否完好。2. 盐度(一)使用说明1) 本说明适用于智慧型电导率系列电极。2) 打开包装前请检查包装是否有损坏。如果外包装已破损,请不要继续打开包装物,请立即与销售公司、最近的授权代理3) 商或直接与我们联系,运输方代表到场后共同打开包装检验电极是否损坏,建议拍照取证。4) 如外包装完好但电极损坏请立即与销售公司、最近的授权代理商或直接与我们联系,并将电极原包装寄回。5) 电导率电极储存前需要晾干,不要将电极放在蒸馏水或去离子水内存储。6) 测量过程中,电极前端若有污垢、黏着物或结垢,将会导致测量值不准确或波动 ,应及时清洗和校准。7) 该说明书所阐述的内容将随产品不断改进而改变,本公司在在说明书中将不另行通知,并且不承担由此带来的后果 (二)电极的标定1) 仪表出厂前一般已做标定,用户可直接投入使用。2) 为保证电导率仪器的测量精度,使用前应用电导率仪对电极常数进行重新标定,同时,应定期进行电导率电极常数标定,如出现误差较大时应及时更换电导电极。3) 建议用户每1到2月标定一次。 (三)安装方式与PH相同 (四)维护、保养和储存1) 可以用含有洗涤剂的温水清洗电极上的有机成分污垢,也可以用酒精清洗,清洗电极后只能用柔软的纸巾吸干水分。2) 储存电极时,需晾干电极后干放存储3) 必须保持电缆线接头清洁,不能受潮或进水。 (五)故障排除1) 使用时出现测量不准时,一般仪表的故障率较低,主要是电导率电极的状态发生了变化,因此需检查电极是否在良好状态。而电导率电极也不易损坏,一般是结垢,堵塞等,应及时维护保养或更换。2) 仪器显示值过大、过小或无变化时,检查电极与仪表连接线或接头是否完好3. 溶氧(一)使用前说明1) 本说明适用于智慧溶解氧系列电极。2) 传感器膜头属于易损品,一旦损坏将无法修复。3) 打开包装前请检查包装是否有损坏。如果外包装已破损,请不要继续打开包装物,请立即与销售公司、最近的授权代理商或直接与我们联系,运输方代表到场后共同打开包装检验电极是否损坏,建议拍照取证。4) 如外包装完好但电极损坏请立即与销售公司、最近的授权代理商或直接与我们联系,并将电极原包装寄回。5) 溶解氧电极在使用前须轻轻将保护套取下,放入含氧的溶液中通电6小时以上,数据就会趋向于准确与稳定。6) 未添加电解液会导致测量值不准确或波动。7) 添加电解液后的电极在空气中存放超过30分钟,将会导致极帽损坏、测量值不准确或波动。8) 测量过程中,电极膜头处若有污垢、黏着物或结垢,将会导致测量值不准确或波动 ,应及时清洗和校准。9) 膜头内若有气泡,将会导致测量值不准确或波动。10) 该说明书所阐述的内容将随产品不断改进而改变,本公司在在说明书中将不另行通知,并且不承担由此带来的后果 (二)添加电解液和更换膜头1) 新电极是添加了电解液的,建议用户使用前做确认检查。2) 建议用户每三个月进行一次更换电解液的操作,但实际应与被测介质和电极具体使用情况而定。3) 如果电极信号不正常(响应时间长,机械损坏,在零氧水中过大或在空气中过大、过小等),就需要更换膜头,普通4) 氧膜每6至12个月更换,钢化氧膜每18至24个月更换。5) 更换膜头和添加电解液的操作步骤如图。 (三)电极极化1) 极化方法:将电极与变送器相连,将电极放入待测溶液中,并接上电源,通电后即开始极化。2) 下列情况电极需要极化。?电极使用时,极化6小时以上;?更换膜头或电解液,极化6小时以上;?变送器断电,或电极与电源线断开,极化时间见表 (四)电极的标定1) 电极发货前一般已做标定,用户可直接投入使用。在线监测被测介质应保持一定的流速且恒定,流速范围15-30L/h。2) 溶氧电极的标定采用零氧标定和满度标定,在标定前保证电缆线接于仪表通电极化6小时以上。3) 建议用户每1到2个月标定一次。(五)安装与PH安装方式相同(六)维护,保养,储存1) 电极应定期清洗,拆装及冲洗电极时不同弄破透氧膜,不能用滤纸或者砂纸擦电极上的透氧膜2) 当膜头结垢、网膜堵塞、电解液干涸、缺少或电解液污染时应当停止使用并拆卸清洗膜头3) 清洗完电极、更换膜头,添加电解液,长期存放需要极化并标定后方可继续使用4) 必须保持电缆线接头清洁,不能受潮或者进水5) 当现场断水或者电极不用需短期储存,应取出电极,清洗干净,并且套上保护套保存;当电极长时间不用需要长期储存,取下电极,排空电解液用30-40℃的水彻底清洗阴阳极和膜头,晾干后套上保护套,室温下放置在干燥处储存(七)故障排除测量时有测量不准的时候,主要是溶氧电极的状态发生了变化,因此需要检查溶氧电极是否在良好的状态。而溶氧电极也不容易损坏,一般是膜头破损,结垢,电解液被污染或者损耗等需要更换膜头或者添加电解液。 十七、质保与维修1) 本公司从客户购买时起对仪器仪表传感器有一年的保修期,只要在保修期内非人为使用不当造成的损坏,请预付运费将仪表妥善包装好后运回免费为您修理 保修期过后,本公司会根据实际仪表的损坏分析原因,超出质保条件,需要收取维修费用。2) 任何理由的返修必须通过本公司客户服务部批准才可返回,申请批准后请将返修卡随维修品一起返回,返修物品必须仔细包装以免在运输途中损坏并加保险,本公司不会对任何因返修物品遗失或粗劣包装而造成的损坏承担责任; 十八、经典案例广东惠州 海水流水养殖系统 广西贵港市渔米之乡东津郁江流域鱼养殖场,15套水产养殖物联网监测系统,监测参数(PH、水温、溶解氧、盐度,另附气象5参数)浙江德清县禹越镇 水产养殖场11套水产养殖物联网监测系统,监测参数(PH、水温、溶解氧、盐度)十九、结束本系统介绍,来自深圳市猫头鹰智慧科技有限公司,公司以“诚信,快速,质量优先”为信念服务全国客户,欢迎垂询 二十、附录-PH是如何影响产量的1. 水产pH水中H+离子浓度(摩尔/升)的负对数称为pH (pH = -log[H+]= -lg( aH+) )aH+——氢离子在水溶液中的活度,衡量溶液接受或迁移离子的相对强度。 水体pH的作用:氢离子浓度一向被认为是养鱼水质的一个重要因素,分析养鱼用水的水质时通常都要测定pH值, 这是因为氢离子浓度从多个方面影响到鱼和鱼的生产。 (1)鱼类能够安全生活的pH范围大致是6到9,而最适宜的范围在鲤科鱼类为弱碱性,即pH为7到8.5,在鲑科鱼类为中性附近即pH值为7上下。pH超出一定范围(高限为9.5到10,低限为4到5)会直接造成鱼的死亡。pH在安全范围内,当超出最适范围时也会对鱼类的生命活动起消极作用,从而影响到养鱼的效益。 (2)pH还通过影响其他的环境因子而间接影响到鱼。例如在低pH下,铁离子和硫化氢的浓度都会增高,而这些成份的毒性又和低pH有协力作用,pH越低,毒性越大;另一方面,高的pH又会增大氨的毒性。另外pH偏离了中性到弱碱性范围而变得过高或过低时,都会抑制植物的光合作用和腐败菌的分解作用;而前者又会影响到水体的氧气状况和鱼类的呼吸条件,后者又会影响到水中有机质的浓度。 (3)pH还严重影响到水体的生物生产力,首先pH的不适宜会破坏水体生产的最重要的物质基础-磷酸盐和无机氮合物的供应。如果水偏碱会形成难溶的磷酸三钙,偏酸又会形成不溶性的磷酸铁和磷酸铝都会降低肥效,在氮的循环中pH也起重大作用,硝化作用固氮作用都以弱碱性pH7.0到8.5最适宜,遇到酸性或弱碱性条件都会受到抑制,此外,pH还通过直接影响植物的光合作用和各类微生物的生命活动,从而影响水体的整个物质代谢。 2. pH的决定因素和变化规律:决定pH因素很多,但最主要的是水中游离二氧化碳和碳酸盐的平衡系统,以及水中有机质的含量和它的分解条件。二氧化碳和碳酸盐的平衡系统根据水的硬度和二氧化碳的增减而变动。(1) 养殖水体内的二氧化碳平衡系统 天然水中CO2平衡系统图解(2)养殖鱼塘里光合作用和呼吸作用,能使pH发生较大变化。水生生物的光合作用主要是利用水中的二氧化碳,会导致pH上升,每天从上午开始,随着光照强度增加, pH值逐步上升,到下午4点时达到高值,可达9.0左右,水中二氧化碳不足,光合作用会受到抑制。而水生动物在进行呼吸作用时,吸收水中的溶解氧,放出二氧化碳,形成碳酸,碳酸的电离使pH值下降,如果放养密度过大,在夜间至早晨, pH可下降到7.0以下.过量的二氧化碳会导致生物中毒。 (3)pH作水质标准的实际价值如果看到一个养鱼水体pH值偏低,又没有外来的特殊污染,就可以判断这个水体有可能硬度偏低,腐殖质过多,溶氧二氧化碳偏高和溶氧量不足,同时也可以判断这一水体植物光合作用不旺或者鱼的密度过大以及微生物受到抑制,整个物质代谢系统代谢缓慢。如果pH过高,也可能是硬度不够,以及植物繁殖过于旺盛,光合作用过强或者水中腐殖不足。 (4)pH值的变化规律:养殖水体在一般情况下日出时pH开始逐渐上升,至下午16:30-17:30达到值,接着开始下降,直至翌日日出前至最小值,如此循环往复,pH的日正常变化范围为1-2,若超出此范围,则水体有异常情况。3. pH对水质及养殖生产的影响:1) 对物质存在形式的影响a.pH下降,弱酸电离减少,弱酸根CO32-、S2-、PO43-、SiO32-、有机酸根等多数以分子存在,相应的络合物及沉淀分解或溶解,游离态金属离子浓度增加。b.pH升高,弱碱电离减少;弱酸电离增大;金属离子生成氢氧化物、碳酸盐沉淀或胶体,游离态金属离子浓度下降。 2) 直接对水生生物的影响a.pH升高,NH3对虾的毒性增强;pH值下降,H2S、CO2对虾的毒性增强。b.pH升高,Cu2+、Pb2+转以络合物或螯合物存在或被胶粒吸附絮凝,毒性减弱。c.生物还有其自身的pH值生理极限,鲤科鱼类适宜的pH值范围为7.5—8.5的弱碱性水体。3) pH变化太频繁、变幅过大对养殖不利,日变化幅度在0.5~1;pH值在正常范围内,4) 当水体pH过低会使鱼类血液的pH值下降,降低血液的载氧能力,造成缺氧症,即使水中溶氧较高,鱼类仍会出现浮头现象 。5) 判断水体pH偏高或者偏低的方式上午7点pH超过8.5即可认为池水pH偏高;上午7点pH低于7.5即可认为池水pH偏低。4. 如何调控pH:(1)pH偏高时应对方法a.化学方式:使用漂白粉、硫酸铜、硫酸亚铁等泼洒杀灭部分藻类,减弱藻类的光合作用强度;使用小苏打提高水体的碱度,抑制pH过快升高;使用明矾水解,沉降吸附部分有机物;使用弱酸性物质如应激解毒灵、醋酸全塘泼洒进行中和反应。b.物理方式:适量进换水利用外源水来稀释池塘水体达到降低pH值的效果;清除多余的藻类,通过滤食性鱼类、人工或机械等方法清除池塘部分藻类。c.生物方式:使用活嫩爽、底垢净、益水藻元等加红糖活化,增加水体中菌类数量,让其同藻类争夺营养物质抑制藻类生长,减弱光合作用强度。d.如果pH大于9,要降下来先得使用化学制剂处理,然后再用菌去稳定。(2)pH偏低时应对方法:加水引进新的藻种,使用绿源多肽+磷肥进行培藻。如经常偏低施用生石灰20-30斤/亩。5. 注意事项:a.经常检测水体pH的变动,每天早晚各一次,一旦出现异常就要及时找出原因,采取有效的处理措施。b.对新水等水质稳定后再放鱼种。c.出现蓝绿藻的水要及时控制或更换池水,培养新的藻相,必要时追施无机肥料。d.养殖时间过久的池子,淤泥的有机质太多这时就要适当增加换水量,必要时清洗池底并撒些石灰提高pH。e.出现氨氮偏高时,忌用提高碱性物质。
    留言咨询
  • 便携式底栖藻类分析仪(Bentho Torch)是一款能够测量底栖藻类浓度的检测设备,该设备具有轻便,易携带,分析快速,操作方便,测量准确度高等特点,能够对不同基地,例如石头和沉积物上的藻类进行定性定量分析。该设备适合野外作业,使用时无需预先准备样本,只需打开设备电源开关并将设备探测面平放于被测面上,20秒后即可得到检测结果。 产品特点:分析快速,整个检测过程小于20秒;操作简便;无需样品制备;配备GPS传输模块;高灵敏度;重量轻,易携带;自动校正基底;内置充电电池。 检测原理:基于藻类细胞中的自然荧光特性,依据藻类的特征 光谱及其强度,对藻类进行定性、定量分析。 应用场合:恢复和重建项目;环境监测;湖沼研究;科研与教学。 软件:图像的方式显示浓度数据、图像的方式显示时间数据、 检索和管理以文本文档形式、将GPS坐标导出到Google Earth
    留言咨询
  • bbe野外藻类分析仪FLP 400-860-5168转4464
    野外藻类分析仪(Fluoroprobe)是一款适用于野外现场对叶绿素进行定量分析以及对各类藻进行定性定量分析的高灵敏度藻分类检测设备。能够快速可靠的判定各种藻类及其浓度;能够判别4种以上的藻类;能够深入水下进行剖面测量分析(zui深可达1000米);带有黄色物质判断功能;内置充电电池以及压力传感器。应用场合 适用于湖泊藻类爆发早期预警;科学与教学;船上实验室连续分析;湖泊研究;饮用水蓝藻检测;水库监测 海洋赤潮预警;剖面测量(适用于浮标或静止船体)检测原理光合色素组成相似的藻类对多个设定波长的激发光 具有相近的响应荧光光谱,因为特征色素的存在,不同 类群藻类的荧光光谱之间具有较大的差异,根据藻类 各自的特征光谱及其强度,对藻类进行分类及对各类藻 的浓度进行定量检测。产品特点 ●能够判别4种以上的藻类 ● 能够在数秒内对不同藻类浓度进行定量分析 ●带有黄色物质判断功能 ●减少实验室用显微镜观察的工作 ● 内置充电电池 ●内置压力传感器 技术参数型号TS测量参数总叶绿素a/总藻密度;黄色物质;绿藻浓度/密度;蓝藻浓度/密度;硅/甲藻浓度/密度;隐藻浓度/密度;深度测量范围0-500μg chl-a/l测量方法荧光光谱法测量光源370/470/525/570/590/610nm测量时间3 s分辨率0.01μg chl-a/l检出限0.05μg/l透光性0-100%样品温度-2-40℃储存温度0-50℃维护周期≥7天/次箱体材料加强碳纤维/V4A钢重量6.4Kg/7.2Kg带外壳/5.1Kg钛制外壳尺寸450mm*140mm(H*Φ)电压12V 内存容量2GB/1000组数据集通讯接口RS485测量深度0-100m(标配)、0-200(选配)、0-1000m(选配)选配工作25(台式支架);温度测量;透光性测量;雨刷单元;保护壳;电缆卷筒;自启动插头;手持蓝牙;运输箱;长度为3/10/20/30/50/100米的电缆
    留言咨询
  • 多波长藻类传感器 400-860-5168转6075
    工作原理:多波长激发式荧光光度仪不同于其他叶绿素荧光光度仪,采用9波长测量得出植物荧光特性《激发荧光光谱》。这种荧光谱的特征和各种浮游植物的色素组成具有相关关系。像指纹一样,每一类浮游植物都有其独特的荧光特性,可以用来区分不同的种类。依据这个原理,就能推断出绿藻类、甲藻类、硅藻类、蓝藻类、隐藻类等浮游生物群体的种类。此外。通过多变量分析,还可以推算出各种浮游生物的数量。叶绿素荧光光度计 自动识别、分类浮游植物多波长激发式荧光光度仪可以通过对生物光谱的测量,确定微生物的生物量和种类。同传统的单一荧光光座计相比,性能更为卓越。 精度更高,应用范围更广9波长激发机制能够提供高精度的大波长激发谱。在高反射率的浑浊水体中的信噪比也得到了大大的提高。升级后的荧光光度计能更准确地对浮游植物进行分析归类。为了防止长期观测中,生物附着在光学窗口上,仪器配备了机械式清洁刷自动清洁光学窗口,即使在浮游生物繁多的水域也可以放心进行长期观测。多波长激发式荧光光度仪还配备了浊度、水温和深度传感器,大大拓宽了仪器的应用范国。本仪器有自容式和有线输出(RS485通讯缆线》两种规格,后者可以进行实时观测,并与其他设备平台联合使用。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制